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A B S T R A C T   

Background: The streak artifacts in computed tomography (CT) images caused by low photon counts are known to 
be effectively suppressed by raw-data-based techniques. This study aims to propose a technique to reduce the 
streak artifact without accessing the raw data. 
Methods: The proposed streak artifact reduction (SAR) technique consists of three steps: numerical forward 
projection to a CT image, adaptive filtering of the generated sinogram, and image reconstruction from the 
processed sinogram. The authors have expanded the two-dimensional method (2D-SAR) to three dimensions (3D- 
SAR) by using consecutive CT images. The modulation transfer function (MTF), the image noise (standard de
viation), and the visibility of comb-shaped objects were evaluated at a low dose of 5 ​ mGy. Using anthropo
morphic abdominal and chest phantoms, CT images and the artifact index (AI) were compared between 3D-SAR 
and two types of iterative reconstruction (IR). 
Results: Sufficient artifact reductions associated with 54% and 61% reduction of noise for 2D- and 3D-SAR, 
respectively, were obtained in the phantom images, although the 50%MTF decreased by 28%. The visibility 
of the combs was improved with both the 2D- and 3D-SAR methods. The AI results of 3D-SAR were better than 
one type of IR and almost equal to the other type of IR, which was consistent with observed artifacts. 
Conclusion: Both 2D-SAR and 3D-SAR have turned out to be effective in reducing streak artifacts. The proposed 
technique will be an effective tool since it needs no raw data, and thus can be applied to any CT images produced 
by a wide variety of CT systems.   

1. Introduction 

The streak artifact due to low photon counts tends to occur in 
computed tomography images obtained with low radiation doses [1]. 
Since the human body is oblong in shape, streak artifacts tend to run 
horizontally in body CT images. Further, additional streak artifacts are 
introduced by the photon noise resulting from the additional attenuation 
caused by the bone structure. For clinical diagnosis, these artifacts are a 
nuisance to radiologists because they can obstruct the view of the un
derlying anatomy and render the CT images unsuitable. Thus, several 
raw-data-based techniques have been proposed to reduce the streak 
artifacts caused by low photon counts (hereinafter simply referred to as 

“streak artifact(s)”), including those which smooth excessive photon 
noise caused by a highly attenuated x-ray adaptively according to the 
noise level [2–4]. It is generally difficult to reduce streak artifacts by 
means of image-based processing, which cannot make use of the 
measured attenuation values and the photon statistics [4]. The di
rections, locations, and quantity of streak artifacts cannot be clearly 
identified without attenuation data in the raw-data. Thus, the 
raw-data-based techniques that reduced the origins of streak artifacts, 
such as the one mentioned above, have also been proposed. Whereas 
iterative reconstruction (IR) techniques are clinically available, only the 
full versions of IR techniques that perform multiple iterations between 
the raw-data space and the image space incorporating sophisticated 
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system models are effective in reducing streak artifacts [5–7]. The 
hybrid-type IR techniques that reduce the image noise mostly in the 
image space to keep the reconstruction time as short as with the con
ventional filtered back projection (FBP) can smooth streak artifacts but 
cannot reduce them [8]. More recently, deep-learning-based recon
struction (DLR) has been clinically available. DLR separates noise from 
signals by applying backpropagation to reconstruction processes based 
on differences between the ground truth images and low dose images, 
and suppresses the image noise without impacting anatomical structures 
(signals) [9]. DLR appears to be effective in streak artifact reduction as 
far as observed in images in recent reports [10,11]. However, it requires 
a very sophisticated reconstruction device; thus, its use is still limited to 
high-end CT systems incorporating expensive options for DLR. Mean
while, the full version of IR, which also requires an additional device for 
reconstruction, takes as long as 10–30 ​ min (primarily for reconstruc
tion) to complete one scan, which renders it unsuitable for routine use 
[12,13]. 

Consequently, the streak artifacts still remain visible in many of 
clinical images, and it is almost impossible to restore the clean image 
because one cannot access and modify the reconstruction program in
side the CT system for reducing streak artifacts. Moreover, as for CT 
images transferred from a remote location, there is no way of accessing 
the corresponding raw-data in the first place. 

The image-based forward projection techniques can be used for a CT 
image to obtain projection data that mimic the real raw-data corre
sponding to the image. Particularly, with the full versions of IR, the 
projection data generated by image-based forward projection is neces
sary in a process that compares it with the real raw data to estimate the 
compensation data for reducing image noise and/or artifacts [14]. Also, 
forward projection has been used in studies to insert simulated lesions 
into patient images, reproducing realistic lesion appearances [15] and to 
reduce metal artifacts [16]. These processes require precise geometric 
information for the corresponding acquisitions to correctly perform 
forward projection. Thus, forward projection is effective only in each 
dedicated development (study) environment that can communicate with 
CT developers. In theory, image data can be reproduced (reconstructed) 
from the projection data generated using an image-based forward pro
jection based on any geometric assumption, via the corresponding in
verse (back projection) process. Therefore, data processing using such 
projection data is expected to be effective in improving CT image 
quality. However, to the best of our knowledge, there have been no 
reports to date that investigate the usefulness of image-based forward 
projection, other than IR, lesion insertion, and metal artifact reduction. 
Since a CT image represents a distribution of the attenuation coefficient 
within a slice, image-based forward projection produces attenuation 
data nearly proportional to the real attenuations at each projection 
angle. Thus, the noise levels in the data can be approximated from these 
attenuation data using the presumed radiation dose input. Therefore, we 
expect that the projection data would be useful in reducing streak arti
facts just as with conventional raw-data-based processing and that the 
streak artifacts that still remain in existing CT images can be reduced 
without accessing the raw data. 

This study aims to propose a technique to reduce streak artifacts by 
working on the projection data generated by image-based forward 
projection and to evaluate its performance of artifact reduction through 
physical image quality measurements and image comparisons with two 
hybrid types of IR routinely used in clinical CT examinations. 

2. Methods and materials 

2.1. Basic procedures 

In our proposed streak artifact reduction (SAR) processing, first, a 
virtual sinogram (projection data set) was generated by a numerical 
parallel-beam forward projection performed in an angle range of 
0◦ ​ ≤ ​ θ ​ < ​ 180◦. Then, the generated sinogram was adaptively 

processed using a weighted summation between this generated sino
gram and its smoothed version. Basically, the portions having higher 
attenuations were weighted higher by the smoothed sinogram. Finally, a 
CT image was reconstructed from the processed sinogram. 

2.2. Application 

The application of the proposed technique is limited to the body CT 
images spanning from the chest to the pelvis that are reconstructed with 
the appropriate display fields of view (DFOVs) covering the full body 
contour, where the correct projection data is estimated by image-based 
forward projection. Moreover, CT images that include severe metal ar
tifacts or data corruption due to aliasing errors cannot be used because 
the projection data cannot be correctly estimated. 

2.3. Forward projection 

Prior to forward projection, each pixel value in the CT number data c 
(n, m), a matrix of 512 by 512, was converted to catt(n, m) by adding 
1000 to it. As a result, each item of data in catt(n, m) was made pro
portional to its attenuation coefficient, based on the commonly-used 
equation for calculating CT numbers from attenuation data. 

Fig. 1 shows the relationship between the coordinates in numerical 
parallel-beam forward projection and those in the rotated catt data. As 
shown in this figure, we employed a rotation-based method in which a 
projection data array remains fixed and the image is rotated through 
interpolation [17]. In each ray position at ri (i ​ = ​ 0, …, N-1), the data 
sampling at sj (j ​ = ​ 0, …, N-1) was repeated and accumulated to p(i, k) at 
each projection angle θk (k ​ = ​ 0, …, n-1) as follows: 

p(i, k) =
∑N− 1

j=0
c′

att(x(i, j), y(i, j)) (1)  

x(i, j)= ri cos(θk) − sj sin(θk), (2)  

y(i, j)= ri sin(θk) + sj cos(θk), (3)  

where x and y are x- and y-positions in the rotated image coordinate 
system, respectively, and c’att(x, y) is the data sampled in catt. Bicubic 
interpolation was used for the sampling with an α parameter of − 0.5 
because this method can produce a smaller spatial resolution loss 

Fig. 1. Coordinate relationship in numerical parallel forward projection to 
generate virtual projection data. For each discrete angle θk (k ​ = ​ 0, …, n-1), 
along a ray projection at a discrete position ri (i ​ = ​ 0, …, N-1), sampled data at 
sj (j ​ = ​ 0, …, N-1) were accumulated to p(i, k). Bicubic interpolation was used 
for the sampling. 
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compared with the bilinear technique [18]. The sampling interval was 
set at half the pixel pitch of the CT image; thus 1024 points were 
required (N ​ = ​ 1024) for each of the ri and sj positions. A total of 800 
projections (n ​ = ​ 800) were made at intervals of 180◦/n within 
0◦ ​ ≤ ​ θ ​ < ​ 180◦. Through this process, a set of sinogram data in a 
1024 ​ × ​ 800 matrix was obtained. Although we could have further 
increased the projection number, we settled for this value based on the 
results of a preliminary investigation that compared original images and 
their corresponding reconstructed images. 

In this numerical projection, we did not employ the fan-beam ge
ometry. The information in CT image files alone turned out to be 
insufficient to determine the fan-beam geometry that is precisely iden
tical to that of CT system we used. When we preliminarily tested fan- 
beam forward projections with several geometric assumptions, we did 
not see any advantages in the reduction of artifacts compared with the 
parallel method we adopted in this study. 

2.4. Adaptive sinogram filtering 

Fig. 2 illustrates the outline of adaptive sinogram filtering in SAR. A 
smoothed version of the sinogram was produced by using a two- 
dimensional (2D) Gaussian filter with standard deviation parameters 
σx and σy. While both σx and σy contribute to noise filtering, σy should be 
carefully increased because a larger σy may reduce the detector’s tem
poral resolution, causing non-negligible artifacts. 

The peak values [v(k), k ​ = ​ 0, …, n-1] in respective projection data 
(i.e., each horizontal profile in the sinogram) were identified; then, the 
maximum and minimum peak values, vmax and vmin, were determined. 
To effectuate adaptive sinogram filtering, a weighted summation be
tween the original sinogram and the smoothed sinogram was performed 
by using weighting factors w(i, k) as follows:  

w(i, k) = (p(i, k) ​ − ​ (vmin ​ × ​ R)) / (vmax ​ − ​ vmin ​ × ​ R),                       (4) 

where R denotes an adjustment coefficient for vmin. While lower R values 

Fig. 2. Outline of adaptive sinogram filtering. The sinogram generated through numerical forward projection was processed by a 2-dimensional (2D) Gaussian filter 
with a parameter combination of σx and σy. A weighted summation was performed based on the attenuation values in the sinogram, which yielded a processed 
sinogram, where areas with higher attenuations were more smoothed. 
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contribute more to the reduction of streak artifacts, they tend to lower 
the spatial resolution. In this study, a fixed R value of 0.9 was used 
throughout the investigations to suppress the degradation of spatial 
resolution. The relationship between the data level (attenuation) and its 
variation (standard deviation) in a sinogram is known to be nonlinear (e. 
g., exponential) [3]. However, we found that the linear calculation of Eq. 
(4) for determining the weighting factors was effective enough in 
reducing streak artifacts in preliminary investigations. While the noise 
reduction effect of Gaussian filtering is rather small at low data levels, it 
increases as the data level increases, limiting the nonlinearity. The noise 
that causes streak artifacts tends to have more high-frequency compo
nents easily reduced by noise filtering. Instead of the Gaussian filter 
mentioned above, we preliminarily tested a median filter and a bilateral 
filter as edge-preserving noise reduction techniques, but found them 
unusable: They produced new artifacts around bone edges presumably 
due to inconsistencies in projection data resulting from the non-linear 
filtering processes in them. The adaptive filtering method using the 
weighted sum was selected because the processing time was reasonably 
short and the performance was sufficient for this pilot study that ex
amines the feasibility of the streak artifact reduction achievable without 
using the raw-data. 

Currently, tube current modulation (TCM), which controls the tube 
current adaptively according to the patient’s body size is commonly 
used in clinical CT examinations. Thus, the proposed technique is 
intended to be used under the regulated noise condition according to 
each setting of TCM. Owing to this limited application, σx and σy can be 
determined also according to the setting of TCM by observing the 
reduction level of the streak artifact. 

2.5. Filtered back projection 

Prior to the filtering process in filtered back projection (FBP), the 
horizontal data number of the sinogram was increased to 2048 by 
padding zeros to both its left side and right side to enable the filtering 
process. For each horizontal profile in the sinogram, a one-dimensional 
(1D) fast Fourier transform (1D-FFT) was applied; then, the derived 
Fourier coefficients were multiplied by Shepp-Logan type filter function 
data. Finally, a filtered profile was obtained by applying an inverse 1D- 
FFT. 

For each pixel location with x’(n, m) and y’(n, m) in an image to be 
reconstructed, the r position rn,m in the filtered sinogram at θk can be 
calculated as follows: 

rn,m = x′

(n,m)cos(θk) + y′

(n,m)sin(θk). (5) 

The sampling data at rn, m was obtained through one-dimensional 
cubic interpolation with an α parameter of − 0.5; then the sampled 
data was integrated (back-projected) to the pixel. By repeating this 
process for all the projection angles, the image was successfully recon
structed from the processed sinogram. Finally, a constant value of 1000 
was subtracted from all the pixel data to recover their CT numbers (This 
is to compensate for the addition of 1000 performed prior to the forward 
projection). 

2.6. Three-dimensional processing 

The above-mentioned 2D processing of SAR (2D-SAR) can be 
extended to three-dimensional (3D) processing (3D-SAR) using a CT 

Fig. 3. Image examples of an elliptic cylindrical water phantom in which a rod object (rod phantom) (a, b) or an assembly of three identical comb-shaped objects 
(bar-pattern phantom) with horizontal, vertical, and 45◦ alignments (c, d) was placed. The rod phantom and the bar-pattern phantom were employed to measure the 
modulation transfer function (MTF) and to visually assess the clarity of the bar pattern (bar-pattern visibility), respectively. 
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image stack (consecutive CT images), which is required to have a thin 
slice thickness of 1.0 ​ mm or less. First, a z-directional Gaussian filter 
(with parameter σz) was applied to the image stack. The remainder of 
the process is two-dimensional. The numerical forward projection was 
performed for both the original data catt and the z-smoothed data csatt to 
generate two sinograms; then, a 2D Gaussian filter with σx and σy was 
applied to the sinogram from csatt data. Adaptive sinogram filtering was 
accomplished using these sinograms. Since the sinogram generated from 
csatt had less noise compared with that from catt, streak artifacts were 
further reduced, while the z-directional resolution decreased, depending 
on σz and the weighting in the adaptive filter. 

2.7. Phantom and data acquisition 

An elliptic cylindrical water phantom was used to simulate the 
abdomen of an adult. The phantom had outer dimensions of 360 ​ mm 
(width, x-direction) ​ × ​ 210 ​ mm (height, y-direction) ​ × ​ 200 ​ mm 
(depth, z-direction). To assess the effect of SAR on spatial resolution, a 
rod object made of acrylic was placed in the water phantom at its center 
or 100 mm away from its center (Fig. 3a and b). This 100-mm offset 
position was selected because streak artifacts were conspicuous around 
this location in the phantom image. The rod had a diameter of 40 ​ mm 
and a height of 90 ​ mm. The phantom alignment of the rod was adjusted 
so that the rod axis was completely parallel to the rotation axis of the CT 
system. The attenuation of the acrylic rod was approximately 130 
Hounsfield units (HU) at 120 ​ kV. Consecutive disk images of the acrylic 
rod were used to measure the spatial resolution using the circular edge 
method employed in various studies for evaluating performances of IRs 
[19–22]. To visually evaluate the spatial resolution, a small assembly of 
three identical acrylic comb-shaped objects (bar-pattern phantom) was 
placed at the center and 100-mm offset from the center. These 
comb-shaped objects were arranged horizontally, vertically, and at 45◦

to represent three orientations as shown in Fig. 3c and d. Each bar (tooth 
of the comb) was 2 ​ mm wide (a square-wave frequency of 0.25 ​ mm− 1) 
and 5 ​ mm thick. The water-only section of the phantom was used for 
image noise (standard deviation: SD) measurements. A 320-row 
multi-slice CT (MSCT) system called Aquilion One (Canon Medical 
Systems Corp., Otawara, Japan) was used to scan the phantom. Scans 
were performed with 120 ​ kVp, 0.5 ​ s per rotation, 0.5 ​ × ​ 80 ​ mm de
tector configuration, and with a pitch factor of 0.81 in helical mode. The 
tube current was adjusted to obtain a low CT dose index (CTDI) of 
5 ​ mGy, which was nearly one third of a standard dose for abdominal CT 
reported in the diagnostic reference levels in Japan [23]. The CT images 
were reconstructed with a DFOV of 400 ​ mm, a slice thicknesses of 
1.0 ​ mm, and a table increment of 1.0 ​ mm. A reconstruction kernel of 
FC03 for filtered back projection (FBP) was used. 

2.8. In-plane spatial resolution measurement 

Disk images from the rod object were analyzed to measure the in- 
plane modulation transfer functions (MTFs). Prior to the analysis, 
image averaging was performed using 130 images, which had been 
obtained by scanning the phantom twice, to improve the contrast-to- 
noise ratio (CNR) of the averaged image to be analyzed [20–22,24]. 
CNRs of more than 24 were achieved by this averaging, satisfying the 
recommendation (CNR>15) in a guideline for CT performance evalua
tion [25]. Descriptions of the detailed procedures of the circular edge 
method [19–22] are omitted in this paper. We measured MTFs of the 
original image and the images processed by SAR with different param
eter combinations. In addition, we measured the MTF of the image 
processed without an adaptive filter to evaluate the effects of the nu
merical forward projection and subsequent filtered back projection on 
the spatial resolution. The spatial frequencies at 50%MTF were obtained 
from the MTF results. 

2.9. z-directional spatial resolution 

The z-directional spatial resolution was measured from the plane 
edge at the interface between the rod object used for the in-plane MTF 
measurement and the water [20,21,26]. For this measurement, we 
ensured in advance that the rod’s plane edge was sufficiently flat and 
precisely perpendicular to the rod’s axis. This measurement was per
formed only for 3D-SAR with the σz parameter. To precisely detect the 
change in z-directional CT number at the plane edge, 50 consecutive CT 
images were reconstructed with increments of 0.2 ​ mm. Because of this 
fine increment, the σz parameter was adjusted (increased) by a factor of 
5.0 (1.0/0.2) to reproduce the effect of the σz parameter applied to 
image stacks with the normal (1.0-mm) increment. The z-directional 
edge spread function (ESF) measured from the images including the 
plane edge was differentiated to yield a line spread function (LSF), 
which is equal to the slice sensitivity profile (SSP). The full-width at half 
maximum (FWHM) of SSP was used for the comparison. 

2.10. Noise measurement 

On a set of images at the water-only section selected from the 
phantom images, SDs were measured for the regions of interest (ROIs), 
with 40 ​ × ​ 40 pixels, located at the center and the 100-mm offset po
sitions. The SD values of 10 consecutive images were averaged to pro
duce the results. 

2.11. Investigations using abdominal and chest phantoms 

Anthropomorphic abdominal and chest phantoms, PH-5 and N-1 
(Kyoto Kagaku, Kyoto, Japan), respectively, were scanned using the 
Aquilion One and a 64-row MSCT system called HD750 (GE Healthcare, 
Waukesha, WI). For both the Aquilion One and the HD750, the same 
scan parameters as those for the elliptic cylindrical water phantom were 
used except for a pitch factor of 0.98 for the HD750. Thus, the low dose 
condition at 5 ​ mGy was applied to this investigation. A slice thickness of 
1 ​ mm and a reconstruction kernel of Standard were selected for image 
reconstruction with the HD750. The 3D-SAR images were generated 
from the FBP images of each CT system. 

In this investigation, hybrid-type IR performed on the Aquilion One 
and the HD750, named AIDR 3D and ASiR, respectively, were compared 
with 3D-SAR. With AIDR 3D, four settings of noise reduction strength 
are available: Weak, Mild, Standard, and Strong. Mild was selected 
among them because it was the preferred setting in the hospital 
participating in this research. The noise reduction strength of ASiR is 
adjusted by setting the blending ratio between ASiR and FBP (100%: 
strongest, no blending with FBP). The 100% strength (no blending) was 
selected to evaluate the performance of ASiR itself. According to a white 
paper on AIDR 3D, this process reduces noise in projection data using a 
quantum statistical model and a scanner model; thus, streak artifacts 
caused by low photon counts are presumed to be suppressed in the 
reconstructed CT images. In addition to the process in the projection 
space, AIDR also performs noise reduction in the image space [27]. ASiR 
reduces image noise using processing that works mainly in the image 
space [8]. 

2.12. Artifact index 

The artifact reduction capability was evaluated for the phantom 
images using the following artifact index (AI) estimation method. For 
each ROI of 15 ​ × ​ 15 pixels in CT image, two sets of SD values were 
used: SDP corresponding to those having streak artifacts (p meaning 
‘presence’) and SDA corresponding to those without streak artifacts (A 
meaning ‘absence’). For the chest phantom, the SDP values were 
measured in areas between the clavicle and the humeral head in five 
slices at the lung apex level. A representative value of SDA (SD’A) was 
determined by averaging SDA values in areas just above the scapula in 
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five slices at the tracheal bifurcation level. For the abdominal phantom, 
the SDP values were measured in the liver parenchyma in five slices, 
which exhibited conspicuous streak artifacts. The SD’A was determined 
from areas on the ventral side in five slices at the kidney level. Since the 
SD’A values (i.e., original image noise) were significantly different be
tween the image sets compared due to inherent noise difference, we used 

the normalized AI (nAI) calculated by the following formula: 

nAI =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

SDP
2 − SD′

A
2

√ /

SD′

A (6)  

to cancel out the noise difference [28]. When the nAI value of processed 
images was not significantly different from that for the original FBP 

Fig. 4. (a) Original image of an anthropomorphic abdominal phantom, (b) the corresponding image processed with numerical forward projection followed by 
filtered back projection (without an adaptive filter for streak artifact reduction), and (c) the difference image between them. MTFs corresponding to the original and 
the processed images are also presented in (d). All the window widths/levels were set at 400/40. 

Fig. 5. MTF results of different combinations of σx and σy for 2D-processing of SAR (2D-SAR) at the 100-mm offset position (a, c) and the center position (b, d).  
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images even though the artifacts appear to be reduced, this indicates 
that the process simply smoothed the streak artifacts, instead of actually 
reducing the streak artifacts. 

3. Results 

3.1. Difference image and MTF 

Fig. 4 shows the original image of the abdominal phantom, the 
corresponding image processed with numerical forward projection fol
lowed by filtered back projection (without an adaptive filter), and the 
difference image between them. The MTF deterioration by the process 
was slight as shown in Fig. 4d. Weak signals of up to 12 HU were 
identifiable in the difference images, at high contrast edges between the 
air and the soft-tissue and between the cortical bone and the soft-tissue. 

Table 1 
50%MTF results of the original and different combinations of σx and σy for 2D- 
SAR. The values in parentheses are the percent decreases from the original.  

σx σy 50%MTF (mm− 1) 

100-mm offset Center 

Original 0.33 0.36 
1.5 0.6 0.27 (18%) 0.28 (22%) 
2.1 0.6 0.25 (24%) 0.26 (28%) 
2.7 0.6 0.23 (30%) 0.23 (36%) 
1.5 0.3 0.25 (24%) 0.26 (28%) 
1.5 0.9 0.25 (24%) 0.26 (28%) 
1.5 1.2 0.24 (27%) 0.26 (28%)  

Fig. 6. (a-f) Bar-pattern phantom images of the original and 2D-SAR at the 100-mm offset position. From (b)–(d), the effects of σx with σy fixed at 0.6 can be 
observed. From (b), (e), and (f), the effects of σy with σx fixed at 1.5 can be observed. The difference images between (a) and (c) and between (a) and (e) are also 
presented in (g) and (h), respectively. 
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3.2. In-plane and z-directional spatial resolution 

Fig. 5 shows MTF results for different combinations of σx and σy for 
2D-SAR. Table 1 summarizes 50%MTF values. With σy fixed at 0.6, the 
MTF decreased with increasing σx (Fig. 5a and b), while the percentage 
decreases of 50%MTF were 18–30% for the offset position and 22–36% 
for the center position. In contrast, varying the σy parameter between 0.3 
and 1.2 did not affect MTF at either the offset or the center position 
(Fig. 5c and d). The measured FWHM (slice thickness) values were 1.14, 
1.29, 1.41, and 1.52 ​ mm for the original, σz ​ = ​ 0.3, σz ​ = ​ 0.6, and 
σz ​ = ​ 0.9, respectively. Fig. 6 presents the original bar-pattern phantom 
image, the images processed by 2D-SAR, and the difference images be
tween the original and processed images, at the offset position. 
Considerable streak artifacts were noticeable in the original image due 
to the low dose of 5 ​ mGy. These artifacts were sufficiently suppressed in 
the images with the parameter combinations of σx ​ = ​ 2.7 and σy ​ = ​ 0.6; 
σx ​ = ​ 1.5 and σy ​ = ​ 1.2. However, for the combination of σx ​ = ​ 2.7 and 
σy ​ = ​ 0.6, a non-negligible deterioration was observed in spatial reso
lution, corresponding to the 30% decrease in 50%MTF. In the difference 

image, no signals from the bar-pattern phantom were observed. Fig. 7 
shows the phantom images at the center position. The MTF deterioration 
by σx ​ = ​ 2.7 and σy ​ = ​ 0.6 was more obvious than at the offset position. 
In addition, the artifacts were almost constant regardless of σy, with σx 
fixed at 1.5 (Fig. 7c and d). Slight bar-pattern edge signals were observed 
in the difference image for the combination of σx ​ = ​ 2.1 and σy ​ = ​ 0.6. 
Fig. 8 presents axial, coronal, and sagittal phantom images, comparing 
the original and 3D-SAR (σz ​ = ​ 0.3 to 0.9 with a fixed combination of 
σx ​ = ​ 1.5 and σy ​ = ​ 0.9), and the difference images for σz ​ = ​ 0.6, at the 
100-mm offset position. The streak artifact was notably decreased by the 
σz values of 0.6 and 0.9. However, the σz value of 0.9 caused an unfa
vorable z-directional blurring. The sagittal difference image contains 
slight signals from the rod edges. 

3.3. Image noise 

Table 2 shows the results of the image noise (SD). The percent noise 
reduction ranged from 45% to 65% with 2D-SAR and from 48% to 64% 
with 3D-SAR. The parameter combination of σx ​ = ​ 1.5 and σy ​ = ​ 0.9 for 

Fig. 7. (a-f) Bar-pattern phantom images of the original and 2D-SAR at the center position. From (b)–(d), the effects of σx with σy fixed at 0.6 can be observed. From 
(b), (e), and (f), the effects of σy with σx fixed at 1.5 can be observed. The difference images between (a) and (c) and between (a) and (e) are also presented in (g) and 
(h), respectively. All the window widths/levels were set at 400/40. 
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2D-SAR, which reduced the bar-pattern visibility only negligibly, gave 
54% and 46% noise reductions at the offset and the center positions, 
respectively. More notable noise reductions (61% and 57% at the offset 
and the center positions, respectively) were achieved with the parameter 
combination of σx ​ = ​ 1.5, σy ​ = ​ 0.9, and σz ​ = ​ 0.6 for 3D-SAR. 

3.4. Images of abdominal and chest phantoms 

Fig. 9 presents the axial and coronal images (obtained by the Aqui
lion One) of the original, 3D-SAR, and AIDR 3D, and the difference 
images between the original and 3D-SAR, for the abdominal phantom. A 
parameter combination of σx ​ = ​ 1.5, σy ​ = ​ 0.9, and σz ​ = ​ 0.6 was used 
for 3D-SAR. Fig. 10 presents the corresponding images obtained by the 
HD750. The artifact reduction effect was more evident with the coronal 
image than with the axial image. In the difference images, although 
some weak signals from bone edges and boundaries between the air and 
the soft-tissue were present, no signals from soft-tissue organs were 
detected. Fig. 11 compares the original, 3D-SAR, and AIDR 3D, and the 

difference images between the original and 3D-SAR obtained by the 
Aquilion One, for the chest phantom. Fig. 12 presents the corresponding 
images obtained by the HD750. We found that 3D-SAR performs artifact 
reduction as well as AIDR 3D for both the chest and abdomen phantoms. 
In addition, looking at the bone edges and boundaries of the simulated 
tumors, we found only a small difference in spatial resolution between 
the original and 3D-SAR images. The artifact reduction by ASiR of the 
HD750 was insufficient. Although the artifact appeared to be reduced, 
streaks, smoothed by noise reduction process in the image space of ASiR, 
remained. The 3D-SAR effectively reduced streak artifacts of the HD750, 
as was similarly the case with the Aquilion One. 

3.5. Artifact index 

Table 3 shows results of nAI. The values of AIDR and 3D-SAR were 
comparable and notably lower than those of FBP. On the other hand, 
ASiR did not improve nAI and was notably inferior to 3D-SAR. These 
were consistent with the artifact reduction observed in the phantom 
images. 

4. Discussion 

We have demonstrated, using images of bar-pattern phantoms and 
anthropomorphic phantoms, that SAR can significantly reduce streak 
artifacts even though we used, in our analysis, the projection data 
generated through image-based forward projection instead of real raw- 
data. The streak artifacts appear along X-ray transmission passes with 
high attenuations; thus, they generate noise in high-level regions in the 
projection data (i.e., strong attenuations) generated by the image-based 
forward projection. This situation is similar to that with real raw-data. 
Thus, the streak artifacts were reduced by the filtering adaptively 
applied according to the data level. Though the projection data was 
generated using the parallel projection, which was different from the fan 
beam projection based on the real one, the relationship between atten
uations and noise levels appeared to be properly reproduced in the 

Fig. 8. Axial, coronal, and sagittal bar-pattern phantom images at the 100-mm offset position, comparing the original and 3D-SAR for different values of σz, with a 
fixed combination of σx ​ = ​ 1.5 and σy ​ = ​ 0.9. Difference images between (a) and (c) are also presented in (e). All the window widths/levels were set at 400/40. 

Table 2 
Results of image noise for the original and different combinations of σx and σy 
with 2D-SAR and for the combinations of σx, σy and σz with 3D-SAR. The values 
in parentheses are the percent decreases from the original.  

σx σy σz Standard deviation (HU) 

100-mm offset Center 

Original 60.6 54.7 
1.5 0.6  29.0 (52%) 29.7 (46%) 
2.1 0.6  23.8 (61%) 23.8 (56%) 
2.7 0.6  20.9 (65%) 20.3 (63%) 
1.5 0.3  29.6 (51%) 29.8 (45%) 
1.5 0.9  27.3 (54%) 29.6 (46%) 
1.5 1.2  25.4 (58%) 29.5 (46%) 
1.5 0.6 0.3 27.1 (55%) 28.2 (48%) 
1.5 0.6 0.6 23.5 (61%) 23.5 (57%) 
1.5 0.6 0.9 21.9 (64%) 21.4 (61%)  
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projection data, which contributed to the artifact reduction. 
When σx was large, the in-plane spatial resolution was more affected, 

and the degree of this effect was more notable at the center position than 
at offset positions. In contrast, σy did not affect the in-plane spatial 
resolution in most cases. These effects were similarly observed in a 
previous study that proposed an adaptive filter method using real raw 
data [4], where the filter parameters in the detector channel and the 
view angle directions correspond to σx and σy in our study, respectively. 
Thus, the degradation in spatial resolution seemed to be unavoidable 
and should be considered as a cost of the processing that can reduce the 
streak artifacts. 

The 3D processing was found to be more effective in reducing arti
facts than 2D-SAR. The influence of the increased slice thickness 
appeared slight in the phantom images up to σz ​ = ​ 0.6 with a 13% in
crease of FWHM. In the coronal images of 3D-SAR with this parameter, it 
was difficult to find a deterioration in z-directional spatial resolution by 
3D-processing. 

The comparisons of anthropomorphic phantom images between 3D- 
SAR and AIDR 3D have demonstrated that our proposed technique can 
deliver sufficient performance in reducing streak artifacts. The nAI 
values were consistently comparable with the observed artifact 

reductions (AIDR 3D vs. 3D-SAR: 0.44 vs. 0.30 for the abdominal 
phantom, 1.07 vs. 0.98 for the chest phantom). Basically, one cannot 
argue that techniques based on raw data, such as the one implemented in 
AIDR 3D, are inferior to our technique. The noise in the real projection 
data was more effectively suppressed by direct noise filtering using 
projection data in AIDR 3D than by indirect noise reduction using virtual 
projection data in SAR. Therefore, we believe that SAR’s comparable 
performance in artifact reduction was due to the moderate settings for 
artifact reduction in AIDR 3D. 

In contrast to the results using AIDR 3D, ASiR did not sufficiently 
reduce streak artifacts because it performs noise reduction mainly in the 
image space as mentioned earlier. The residual streak artifacts degraded 
visibilities of the simulated tumors and vessels in the abdominal phan
tom, whereas the degradations were smaller compared with FBP. The 
nAI values were comparable between FBP and ASiR (FBP vs. ASiR: 1.85 
vs. 1.92 for the abdominal phantom, 2.42 vs. 2.25 for the chest phan
tom), as was the case with the observed artifacts. Thus, the noise 
reduction process in ASiR seemed to smooth areas equally regardless of 
the presence or absence of streak artifacts but to have no sufficient 
ability to reduce streak artifacts as done by the raw-data-based 
processing. 

Fig. 9. Axial and coronal image examples of the abdominal phantom, using the Aquilion One: (a) the original; (b) 3D-SAR with σx ​ = ​ 1.5, σy ​ = ​ 0.9, and σz ​ = ​ 0.6; 
(c) hybrid iterative reconstruction (IR), AIDR 3D; (d) the difference image between (a) and (b). All the window widths/levels were set at 400/40. 
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We found the filtering of projection data to have some positive effects 
on the reduction of streak artifacts in certain directions of the image. 
When projection data (a horizontal profile in the sinogram) was filtered, 
its effect was basically limited in the direction perpendicular to the 
projection angle. Owing to this nature, streaks in the limited direction 
were suppressed (smoothed) without spatial resolution losses in the 
other directions. Furthermore, the weighting factors in the sinogram 
were reduced at areas with low attenuations. Thus, most of the object’s 
edges tended to be reproduced by the sinogram data with weak or no 
filtering. This effect can not be obtained image-based noise reduction 
techniques because directions, strengths, and locations of the streak 
artifact are difficult to be correctly identified without using the atten
uation data. In other words, some image-based processing for the streak 
artifact reduction may become possible with help of the attention data 
obtained through the forward projections. 

While this study demonstrated the usefulness of the projection data 
generated through image-based forward projection in reducing streak 
artifacts, the outcome indicates some possibility of other uses such as 
metal artifact reduction. If the metal artifact is not so severe as to make 
the shape and attenuation of the metal noticeable, the artifact might be 
reduced through estimations of beam hardening caused by the metal and 
subsequent projection data correction based on the estimations. 

Admittedly, this study has a few limitations. First, SAR cannot be 
reliably applied to enlarged CT images reconstructed with a DFOV 
smaller than the full width of the body contour (usually the width of a 

transverse section of the body). This is a shortcoming inherent in SAR in 
that its application is rather limited. Whereas the chest phantom we used 
had a simulated bone structure, the abdominal phantom had some 
simulated soft-tissue organs and tumors in addition to a simulated bone 
structure. However, various fat components and soft-tissue organs were 
missing in both of them. Thus, while x-ray attenuations were fairly 
closely simulated with these phantoms, not all kinds of artifact were 
reproduced. Finally, we did not particularly investigate ways to optimize 
parameter settings because we regarded this study just as a pilot study to 
quickly examine the feasibility of SAR. As mentioned earlier, TCM is 
commonly used today; thus, the noise level tends to be nearly constant 
for practically all body sizes, and so does the streak artifact. Since SAR is 
image-based, it should be straightforward to adjust the processing pa
rameters for each run of SAR. Thus, the effects of adjusting parameters 
σx and σz can be easily observed, facilitating the determination of the 
parameters. 

5. Conclusion 

This study has proposed a streak artifact reduction (SAR) technique 
that consists of three steps: numerical forward projection to a CT image, 
adaptive filtering of the generated sinogram, and image reconstruction 
from the processed sinogram. This technique sufficiently reduced the 
streak artifacts caused by low photon counts without accessing the raw 
data. While SAR degraded the spatial resolution measured by MTF to 

Fig. 10. Axial and coronal image examples of the abdominal phantom, using the HD750: (a) the original; (b) 3D-SAR with σx ​ = ​ 1.5, σy ​ = ​ 0.9, and σz ​ = ​ 0.6; (c) 
hybrid iterative reconstruction (IR), ASiR; (d) the difference image between (a) and (b). All the window widths/levels were set at 400/40. 
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some degree, the effects were limited in the abdominal and chest 
phantom images. A 3D version of SAR using consecutive CT images has 
further enhanced the effectiveness, offering artifact reduction perfor
mance comparable to that of the hybrid type IR (AIDR 3D), which used a 
raw-data-based process as well, and notably better than that of the 
hybrid type IR (ASiR), which used only image-based processing. 

Since it does not require raw data, SAR will be a promising tool for 
improving CT image quality, applicable to most CT images generated by 
various systems from different vendors. 

Fig. 11. Axial and coronal image examples of the chest phantom, using the Aquilion One: (a) the original; (b) 3D-SAR with σx ​ = ​ 1.5, σy ​ = ​ 0.9, and σz ​ = ​ 0.6; (c) 
AIDR 3D; (d) the difference image between (a) and (b). All the window widths/levels were set at 400/40. 

Fig. 12. Axial and coronal image examples of the chest phantom, using the HD750: (a) the original; (b) 3D-SAR with σx ​ = ​ 1.5, σy ​ = ​ 0.9, and σz ​ = ​ 0.6; (c) ASiR; (d) 
the difference image between (a) and (b). All the window widths/levels were set at 400/40. 
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