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1. INTRODUCTION 

 

 

1.1. Anomalous Properties of Protons and Hydroxide Ions 

 Protons (H+   and hydroxide ions (OH−   in liquid water have abnormally higher 

mobility compared with other ions. In general, the ionic mobility in water decreases with 

a decrease in the ionic radius. This occurs because ions with a smaller radius tend to be 

more easily hydrated by neighboring water molecules and finally have a larger radius; for 

example, the ionic mobilities [1] are 5.19, 7.62, 7.91, and 8.09 10−8 m2s−1V−1 for Na+, 

K+, Cl-, and Br, respectively. However, the mobilities of protons and hydroxide ions do 

not follow this trend, with mobilities [1] of 36.23× 10−8 m2s−1V−1  for H+  and 

20.64× 10−8 m2s−1V−1 for OH−. This abnormal behavior is explained by the Grotthuss 

mechanism [2], in which protons diffuse by connection and disconnection of the O–H 

chemical bond, rather than by the usual diffusion process. This mechanism plays 

important roles in the fuel cells and proton exchange membranes [3–7]; and thus, a 

thorough understanding analysis is warranted. 

 In the research of the Grotthuss mechanism [8–15], the particularly difficult part 

would be that the water molecules in the liquid state constantly change their 

microstructure [9,15]; this property is thought to complicate the understanding of the 

anomalous phenomena at the microscale. For example, although previous studies [16,17] 



- 2 - 

 

have tried to isolate the IR spectrum of acidic water from that of pure water, this was 

difficult because the broad absorptions in these spectra did not present assignable features. 

In contrast, the clusters with a relatively small number of degrees of freedom, such as 

(H2O)𝑛H
+ and (H2O)𝑛−1OH

−, contained distinct IR features that help isolation from 

the convoluted liquid spectrum associated with these anomalous phenomena [13]. 

Therefore, extracting a core structure of the target phenomena as a cluster, and studying 

that in place of liquid water is a reasonable strategy; it is clearly easier than performing a 

direct analysis of liquid water. This is evidenced by a large number of research papers for 

these clusters [9,13,15,18–39]. However, the spectroscopic experiment, such as the IR, 

measures the excitation energy from the ground state and cannot observe the molecular 

behavior at the ground state in which the abnormal phenomena are thought to occur; In 

addition, experimental approaches generally cannot observe the ground state because of 

strong quantum effects. Therefore, in the context of interpreting such experimental results, 

it is not surprising that there has been extensive theoretical research on protonated and 

deprotonated water clusters [10,15,40–68]. 

 

1.2. Theoretical Approaches for the Ground State 

 As shown in previous works [10,15,40–68], theoretical approaches have an important 

role in the context of providing an interpretation to the experimental results. The simplest 

theoretical approach perhaps is the harmonic approximation (HA , which allows an 

affordable determination of ground-state vibrational energies using the curvature around 

the potential energy minimum. However, protonated and deprotonated water clusters have 

been shown to be strongly affected by the anharmonicity of the potential energy surface 
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[51,54,57,68–77]. For example, the shared proton in the Zundel cation has a flat potential 

energy surface, such as a fourth-order function [70], and the ground-state energy by the 

harmonic approximation was adjusted by 1.5–5.5 mHartree by the anharmonic effects 

[51,68]. Therefore, it is important to take into account the anharmonic effects for the 

precise examination of the quantum properties of water clusters. 

 Two approaches can achieve the above requirements. The first approach is a method 

of optimizing the trial wavefunction based on variational principles [68,78–84]: for 

example, the vibrational self-consistent field (VSCF  method [78,79] or a variational 

Monte-Carlo/molecular dynamics (VMC/VMD  method [85–87] combined with Newton 

or steepest-descent methods [68,80–84]. These approaches can partly describe the 

anharmonic effects within the representing ability of the chosen trial wavefunction. For 

example, in a VMD study of protonated water clusters [68], we clarified that the 

anharmonic effects strongly affected the vibrational ground-state because the 

wavefunction is delocalized so as to cover multiple potential energy minima. However, 

as indicated above, these approaches have a weakness relative to variational methods. 

This weakness is that the accuracy is strongly dependent on the representation ability of 

the trial wavefunction: naturally, although the exact solution can be obtained if it is 

possible to prepare and optimize infinite trial wavefunctions, it is explicitly impossible. 

 Another approach [85,86] is the diffusion Monte-Carlo (DMC  or the variational path 

integral (VPI , which can compute the exact ground state for quantum many-body 

systems, numerically. Although these methods are essentially comparable, for the VPI 

only, a molecular dynamics algorithm has been developed, which is referred to as the 

variational path integral molecular dynamics (VPIMD  method [87]. As molecular 

dynamics sampling is expected to be more efficient than Monte-Carlo sampling, the VPI 
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method is considered to be better than DMC in terms of computational efficiency. 

Therefore, in this research, we utilized the VPIMD method to analyze the nature of the 

ground state of water clusters. 

 

1.3. Potential Energy Surface for Water 

 The accuracy of the VPIMD calculations is decided by the accuracy of the given 

potential energy surface: thus, the most important procedure in ground-state calculations 

is the selection of an adequate potential energy surface for the target system. The potential 

energy surface is computed from electronic structure calculations as the eigenvalue of the 

electronic Hamiltonian based on the Born-Oppenheimer approximation. However, high 

computational cost remains a problem even if the target system is relatively small, 

because many potential energy samples are required in VPIMD simulations. For example, 

in our estimation, the VPIMD simulation for H5O3
− takes approximately 10,000 days for 

MP2 and approximately 1,000,000 days for CCSD(T . Therefore, it is important to model 

the potential energy surface to minimize computational time. 

 In view of these demands, many potential energy surfaces for water clusters have 

been proposed [44,45,88,89]: the anisotropic site potentials (ASPs  for H3O
+ and H2O 

[45]; the neural network potential energy surface for H4O2 [88]; and the OSS series for 

(H2O)𝑛H
+ up to 𝑛 = 5 [44]; and the Huang, Braams, and Bowman potential energy 

surface for H3O2
−  [89]. The OSS3 PES [44] has been demonstrated to predict the 

formation energies and structures of the small protonated water clusters with close 

accuracy to ab initio MP2 results; in contrast, for deprotonated water clusters, to the best 

of our knowledge, no model potential energy surface has been proposed to describe the 
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interaction for over eight atoms. Therefore, we employed the OSS3 PES for protonated 

water clusters and have constructed a new potential energy surface by machine learning. 

 Regression by a machine learning approach is certainly easier than the traditional 

method of least squares regression because there is no need to fit the target system to the 

analytical functions. In previous studies [88,90–92], neural networks and Gaussian 

process regression have been utilized as machine learning approaches to construct the 

potential energy surface. The use of these machine learning methods is dependent on the 

size of the target system: for a system with a relatively small number of degrees of 

freedom, Gaussian process regression has been reported to be a more efficient tool than 

the neural network [90,91,93]. In this work, we employed Gaussian process regression 

because the deprotonated water clusters can be regarded as a relatively small system. 

However, two problems remained when constructing the potential energy surface using 

Gaussian process regression: the exponential increase in computational cost the number 

of learning materials increased; and molecular symmetry. Although the potential energy 

must be invariant with respect to any symmetric operations, traditional Gaussian process 

regression does not satisfy this condition. Therefore, we developed two algorithms to 

improve the accuracy of machine learning of the potential energy surface with a limited 

amount of training data [91] and to adapt the molecular symmetry to the Gaussian process 

regression algorithm. 

 

1.4. Goals of the Thesis 

 In summary, the aim of this thesis was to clarify the nature of the ground state of 

protonated and deprotonated water clusters, instead of liquid water, as it is easier to 
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interpret. To calculate the nature of the ground state precisely, the variational path integral 

molecular dynamics method was selected. For the interatomic interactions, the OSS3 

potential energy surface was employed for protonated water clusters, and the machine 

learning potential energy surface (MLPES  was adopted for deprotonated water clusters 

to obtain high-quality results. However, before constructing the MLPES, we proposed 

solutions to the two problems associated with Gaussian process regression. 
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2. THEORY for NUCLEAR GROUND STATE 

 

 

2.1. Theory for Nuclear Ground State 

 In Chapter 2, we explain two theories, which can precisely simulate the nuclear 

ground state for the many-body atomic system. We first derive a target Hamiltonian using 

the Born Oppenheimer approximation. Then, section 2.3 explains the variational 

molecular dynamics (VMD  method combined with the steepest-descent or Newton 

method, which is a method [68] to minimize the variational energy of the given trial 

wavefunction based on the variational principle in quantum mechanics. Finally, we briefly 

introduce another theory, known as the variational path integral molecular dynamics 

(VPIMD  method, which is an exact numerical method to extract the exact ground state 

from the arbitrary trial wavefunction. 

 

2.2. Born-Oppenheimer approximation 

 As expressed above, the purpose of this section is to derive the Hamiltonian for the 

nuclear ground state. The starting point is the exact non-relativistic, time-independent 

Hamiltonian �̂� for the system consisting of nucleus and electrons: 

 �̂�(𝒓, 𝑹) = �̂�e(𝒓, 𝑹) + �̂�n(𝑹), (2.1)  
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with the electronic Hamiltonian, 

 �̂�e(𝒓,𝑹) = �̂�e(𝒓) + �̂�(𝒓,𝑹), (2.2)  

where 𝒓  is the coordinate vector for the electron, 𝑹  is the coordinate vector for the 

nuclei, �̂�n  is the nuclear kinetic energy operator, �̂�e  is the electronic kinetic energy 

operator, �̂� is the potential energy operator as a coupling term between electrons and 

nuclei. Moreover, please note that the electronic Hamiltonian includes the nuclear 

position, 𝑹.  

 As the mass of the electron is much smaller than one of the nuclei (the proton has 

1800 times bigger mass comparing with electron , we can put the following assumption: 

 �̂�𝑒(𝒓) ≫ �̂�𝑛(𝑹) (2.3)  

Therefore, the Hamiltonian on Equation 2.1 can be rewritten as follow: 

 �̂�(𝒓, 𝑹) ≈ �̂�e(𝒓, 𝑹) (2.4)  

where nuclear coordinate is no longer a variable and are regarded to a constant. The 

Schrödinger equation for the electronic Hamiltonian �̂�e can be described by: 

 �̂�e(𝒓, 𝑹)|Ψe⟩ = 𝑉(𝑹)|Ψe⟩. (2.5)  

where the eigenfunction |Ψe⟩  and the eigenvalue 𝑉  correspond the electronic 

wavefunction and energy at the electronic ground state, respectively. 

 Finally, replacing the electronic Hamiltonian on Equation 2.1 with the resulting 

eigenvalue 𝑉(𝑹), we can obtain the following Hamiltonian: 

 �̂�(𝒓, 𝑹) ≈ �̂�(𝑹) = �̂�𝑛(𝑹) + 𝑉(𝑹). (2.6)  

This is referred to as the nuclear Hamiltonian and depends only on the nuclear coordinates 
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𝑹. Moreover, the associated Schrödinger equation can be expressed by: 

 �̂�(𝑹)|Ψ0(𝑹)⟩ = 𝐸0|Ψ0(𝑹)⟩. (2.7)  

where the eigenfunction |Ψ0(𝑹)⟩ and eigenvalue 𝐸0 indicate the nuclear wavefunction 

and energy at the ground state, respectively. Consequently, in the present thesis, Equations 

2.6 and 2.7 are utilized to calculate nuclear ground-state wavefunctions and energies for 

protonated/deprotonated water clusters. 

 

2.3. Variational Monte-Carlo/Molecular Dynamics Method 

 In Section 2.3, we explain the methods for minimizing the variational energy of the 

trial wavefunction based on the variational principle in quantum mechanics. The 

importance of minimizing the variational energy is discussed in Section 2.3.1 in terms of 

the variational principle in quantum mechanics. Then, we show the concrete expression 

of the trial wavefunction in Section 2.3.2. As a method to compute the variational energy 

for the trial wavefunction, we introduce the variational Monte-Carlo/molecular dynamics 

(VMC/MD  methods in the present work. Finally, in Section 2.3.4, the steepest-descent 

method is explained to minimize the variational energy. 

 

2.3.1. Variational Principle in Quantum Mechanics 

 We derive the variational principle in quantum mechanics to provide the importance 

of minimizing the variational energy. Let us start from eigenvalues 𝐸𝑖  and 

eigenfunctions |Ψ𝑖⟩ of the nuclear Hamiltonian on Equation 2.6: 

 �̂�|Ψ𝑖⟩ = 𝐸𝑖|Ψ𝑖⟩, ⟨Ψ𝑗|Ψ𝑖⟩ = 𝛿𝑗𝑖 (2.8)  
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where 𝛿𝑖𝑗 is Kronecker delta and the eigenvalues are numbered in ascending order: 

 𝐸0 ≤ 𝐸1 ≤ 𝐸2 ≤ ⋯. (2.9)  

Then, using the closure 1 = ∑ |Ψ𝑖⟩⟨Ψ𝑖|
∞
𝑖=0  enables the expansion of a normalized trial 

wavefunction |ΦT⟩ as: 

 |ΦT⟩ = ∑𝑐𝑖

∞

𝑖=0

|Ψ𝑖⟩, (2.10)  

where 𝑐𝑖 is the expansion constant. The expectation value of the nuclear Hamiltonian �̂� 

can be evaluated by: 

𝐸v = ⟨ΦT|�̂�|ΦT⟩ = ∑∑𝑐𝑗
∗𝑐𝑖⟨Ψ𝑗|�̂�|Ψ𝑖⟩

∞

𝑖=0

∞

𝑗=0

  

 =∑∑𝑐𝑗
∗𝑐𝑖𝐸𝑖𝛿𝑖𝑗

∞

𝑖=0

∞

𝑗=0

  

 =∑|𝑐𝑖|
2𝐸𝑖

∞

𝑖=0

. (2.11)  

Here, by the large/small relation on Equation 2.9, the following relation is derived: 

 𝐸v ≥ 𝐸0 (2.12)  

This fact shows that the trial wavefunction |ΦT⟩ becomes the ground state wavefunction 

|Ψ0⟩  when 𝐸0 = 𝐸v . Therefore, minimizing the variational energy can make the trial 

wavefunction closer to the ground state wavefunction. 

 

2.3.2. Trial Wavefunction for Nuclear Ground States 

 We start by considering a quantum system consisting of 𝑁 atoms whose coordinates 
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are denoted by 𝑹𝑖, 𝑖 = 1,⋯  𝑁. The local mode, 𝑆𝜈, for this system is defined as: [94] 

 𝑆𝜈 = |𝑅𝑖 − 𝑅𝑗|, 1 ≤ 𝑖 < 𝑗 ≤ 𝑁, 1 ≤ 𝜈 ≤ 𝑁𝑝𝑎𝑖𝑟 , (2.13)  

where 𝑁𝑝𝑎𝑖𝑟 = 𝑁(𝑁 − 1)/2 is the total number of the local modes and |𝑅𝑖 − 𝑅𝑗| is the 

interatomic distance between 𝑖 th and 𝑗 th atoms. The ground state is modeled by the 

following trial wavefunction of the Gaussian form: 

 ΦT(𝑹,𝐀) = exp(∑ ∑ Δ𝑆𝜇𝐴𝜇𝜈

𝑁𝑝𝑎𝑖𝑟

𝜈

𝑁𝑝𝑎𝑖𝑟

𝜇

Δ𝑆𝜈), (2.14)  

where 𝐴𝜇𝜈 denotes an element of a variational parameter matrix 𝐀 and 

 Δ𝑆𝜈 = 𝑆𝜈 − 𝑆𝜈
0. (2.15)  

The constant 𝑆𝜈
0 in the trial wavefunction associated with the 𝜈th local mode is set to 

the equilibrium interatomic distance in the potential energy surface.  

 

2.3.3. Variational Monte-Carlo/Molecular Dynamics method 

 The goal in this section is to transform the integral into a suitable form for the Monte-

Carlo or the molecular dynamics simulations to evaluate the variational energy 𝐸V for 

the given trial wavefunction |ΦT⟩. Following Section 2.3.2, we consider the 𝑁 atomic 

system described by a trial wavefunction ΦT(𝑹, 𝐀)  that consists of the vector of the 

atomic coordinates 𝑹 and the matrix of variational parameters 𝐀. The expectation value 

of the Hamiltonian is written by the following integral: 

 𝐸v =
∫ 𝑑𝑹 ΦT

∗ (𝑹)�̂�ΦT(𝑹)

∫ 𝑑𝑹 |ΦT(𝑹)|2
=
∫ 𝑑𝑹 |ΦT(𝑹)|

2𝐸𝐿(𝑹)

∫ 𝑑𝑹 |ΦT(𝑹)|2
, (2.16)  

where 𝐸𝐿(𝑹) denotes a local energy defined by: 
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 𝐸𝐿(𝑹) =
�̂�ΦT(𝑹)

ΦT(𝑹)
. (2.17)  

Equation 2.16 indicates that the variational energy 𝐸v can be computed as the statistical 

average of the local energy 𝐸𝐿(𝑹𝑖):  

 𝐸v =
1

𝑁
∑𝐸𝐿(𝑹𝑖)

𝑁

𝑖

, (2.18)  

where the nuclear coordinates 𝑹𝑖  are generated based on the distribution function, 

𝜌(𝑹) = |ΦT(𝑹)|
2/∫ 𝑑𝑹 |ΦT(𝑹)|

2. Then, we introduce the following effective potential 

𝑉VMC(𝑹): 

 𝜌(𝑹) ≡ 𝑒−𝑉𝑉𝑀𝐶(𝑹) 𝑘𝐵𝑇⁄ . (2.19)  

Here, 𝑘𝐵 is the Boltzmann constant and 𝑇 is an arbitrary parameter that can be regarded 

as temperature. The distribution 𝜌(𝑹)  is generated by canonical molecular dynamics 

method in accordance with the following classical Hamiltonian 𝐻VMD: 

 𝐻VMD =∑
𝐩𝑖
2

2𝑚𝑖
′ + 𝑉VMC(𝑹)

𝑁

𝑖=1

 (2.20)  

where 𝒑𝑖  and 𝑚𝑖  are the momentum and the associated mass of the 𝑖 th atom, 

respectively. A single Nosé–Hoover chain thermostat [95] is attached to the system to 

control the parameter 𝑇 . Finally, the expectation values of physical quantities are 

evaluated by taking the average of suitable estimators along the molecular dynamics 

trajectory.  

 As explained above, the classical Hamiltonian on Equation 2.20 enables to solve the 

integral on Equation 2.16 by the molecular dynamics algorithms; thus, this method is 

referred to as the variational molecular dynamics (VMD  method. In contrast, if the 

Monte-Carlo algorithms are employed, its method is referred to as the variational Monte 
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Carlo (VMC  method. Both VMC and VMD methods are expected to have the following 

great advantages [96] for obtaining quantum expectation values. It is possible to describe 

many-body systems far more compactly than possible with other methods such as 

vibrational self-consistent field methods [78,79] even in complex systems including 

explicit two-body and higher-order correlation terms. The computational cost increases 

only between 𝑁2  and 𝑁3  even if systems being treated increase in size, unlike 

vibrational SCF methods that scale with larger powers of system size. 

 

2.3.4. Optimization of Variational Parameters 

 We finally describe the method [91] for optimizing variational parameters in the trial 

wavefunctions using the VMD method to minimize the variational energy, 𝐸v . Two 

methods are currently known to optimize the variational parameters: variance 

minimization [97,98] and energy minimization [80–84]. However, in the present study, 

we have adopted the energy minimization approach that has been reported to be 

numerically more efficient than the variance optimization approach [99,100]. 

 In order to find the variational parameters corresponding to the minimum variational 

energy, the energy gradient 𝒈  and energy Hessian 𝐡  regarding the variational 

parameters 𝐴𝜇𝜈 are summarized below. Using the hermiticity of the Hamiltonian �̂�, the 

energy gradient 𝑔𝛼 is written as follows: [101] 

 𝑔𝛼 = ⟨Υ𝛼𝐸𝐿⟩ − ⟨Υ𝛼⟩⟨𝐸𝐿⟩, (𝛼 = 1,… ,𝑁𝑝𝑎𝑖𝑟
2 ), (2.21)  

where 

 Υ𝛼 =
2

Φ𝑇(𝐀)

𝜕Φ𝑇(𝐀)

𝜕𝐴𝛼
. (2.22)  

Here and hereafter, the combination 𝜇𝜈 of two subscripts is expressed by a single symbol 
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𝛼  or 𝛽  for simplicity. It is worthwhile to note that 𝐸𝐿(𝑹)  becomes constant 

everywhere in the configuration space if the trial wavefunction Φ𝑇(𝑹,𝐀) is the exact 

ground state wavefunction. This is referred to be the zero-variance principle [100]; the 

energy gradients 𝑔𝛼 in Equation 2.21 would vanish in the zero-variance condition. 

 On the other hand, the energy Hessian 𝐡 is evaluated by the following form: [83] 

 ℎ𝛼𝛽 = 𝑎𝛼𝛽 + 𝑏𝛼𝛽 + 𝑐𝛼𝛽 , (2.23)  

where  

 𝑎𝛼𝛽 = ⟨Υ𝛼𝛽𝐸𝐿⟩ − ⟨Υ𝛼𝛽⟩⟨𝐸𝐿⟩, (2.24)  

 𝑏𝛼𝛽 = ⟨Υ𝛼Υ𝛽𝐸𝐿⟩ − ⟨Υ𝛼Υ𝛽⟩⟨𝐸𝐿⟩ − ⟨Υ𝛼⟩𝑔𝛽 − ⟨Υ𝛽⟩𝑔𝛼, (2.25)  

 𝑐𝛼𝛽 =
1

2
[⟨Υ𝛼

𝜕𝐸𝐿
𝜕𝐴𝛽

⟩ − ⟨Υ𝛼⟩ ⟨
𝜕𝐸𝐿
𝜕𝐴𝛽

⟩ + ⟨Υ𝛽
𝜕𝐸𝐿
𝜕𝐴𝛼

⟩ − ⟨Υ𝛽⟩ ⟨
𝜕𝐸𝐿
𝜕𝐴𝛼

⟩], (2.26)  

and 

 Υ𝛼𝛽 =
𝜕Υ𝛼
𝜕𝐴𝛽

= 2 [
1

Φ𝑇(𝐀)

𝜕2Φ𝑇(𝐀)

𝜕𝐴𝛼𝜕𝐴𝛽
−

1

Φ𝑇
2(𝐀)

𝜕Φ𝑇(𝐀)

𝜕𝐴𝛼

𝜕Φ𝑇(𝐀)

𝜕𝐴𝛽
]. (2.27)  

Though a conventional expression of Equation 2.26 is given by 𝑐𝛼𝛽 = ⟨Υ𝛼 ∙ 𝜕𝐸𝐿/𝜕𝐴𝛽⟩ 

[81], the use of the Hessian computed by the conventional 𝑐𝛼𝛽 is known to make the 

numerical computation unstable. Therefore, we here introduced Equation 2.26, which is 

another expression for reducing the numerical instability proposed by Umrigar and Filippi 

in Ref. [83]. Please note that Υ𝛼 = 2Δ𝑆𝜈Δ𝑆𝜇 and Υ𝛼𝛽 = 0 when the trial wavefunction 

on Equation 2.14 is adopted. 

 Here, we introduce methods of optimizing the trial wavefunction using two quantities 

explained above. One is the steepest descent method. In this case, the variational 

parameters are updated as follows: 
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 𝐴𝛼
new = 𝐴𝛼

old − 𝑤𝑔𝛼(𝐴𝛼
old), (2.28)  

where 𝑤 is a positive constant that determines the weight of the value to be updated in 

one iteration. Another is the Newton method, which update the variational parameters as 

follows: 

 𝑨new = 𝑨old − 𝐡−1(𝑨old) ∙ 𝒈(𝑨old), (2.29)  

where 𝐡−1(𝑨old)  is the inverse matrix of the Hessian 𝐡(𝑨old) . Since the Newton 

method is known to be stabilized by adding a positive constant 𝑤𝑑𝑖𝑎𝑔 to the diagonal 

elements of the Hessian 𝐡(𝑨old) [83]: that is, the Hessian is usually modified as follows: 

ℎ𝑖𝑗 → ℎ𝑖𝑗 + 𝑤𝑑𝑖𝑎𝑔𝛿𝑖𝑗. This operation rotates the direction of energy optimization from 

the Newtonian-direction to the steepest descent-direction. In the case of the Newton 

method, the total energy is expected to quadratically converge and faster than in the case 

of the steepest descent method; however, the evaluation of the Hessian 𝐡  (Equation 

2.23  requires the huge computational cost that the square of the evaluation of the gradient 

𝒈. In addition, it should be noted that all the quantities 𝐸𝑉, 𝒈, and 𝐡 evaluated by the 

VMC/VMD method include statistical error. That is, there is a possibility that the Newton 

method is more computationally unstable than the steepest-descent method because more 

parameters are updated in the Newton method. Therefore, in this thesis, we employed the 

steepest descent method to minimize the variational energy of the trial wavefunction. 
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2.4. Variational Path Integral Molecular Dynamics Method 

2.4.1. Variational Path Integral 

 In this section, we explain the variational path integral molecular dynamics (VPIMD) 

method which is one of the exact numerical methods for many-body quantum ground 

states. The starting point is the following relation, which projects out the exact ground 

state |Ψ0⟩ from the trial wavefunction |Φ𝑇⟩ for a target system [85,86]: 

 |Ψ0⟩ = lim
𝛽→∞

𝑒−
𝛽
2
�̂� |Φ𝑇⟩, (2.30)  

where 𝛽 is a real number parameter referred to as the total projection time. Then, taking 

a scalar product of the exact ground state |Ψ0⟩ yields the following pseudo partition 

function 𝑍0 [102]: 

𝑍0 = ⟨Ψ0|Ψ0⟩  

 = lim
𝛽→∞

⟨Φ𝑇|𝑒
−𝛽�̂�|Φ𝑇⟩  

 = lim
𝛽→∞

∫∫𝑑𝑹 𝑑𝑹′ ⟨Φ𝑇|𝑹⟩⟨𝑹|𝑒
−𝛽�̂�|𝑹′⟩⟨𝑹′|Φ𝑇⟩, (2.31)  

where the closure relation for the coordinate basis, ∫ 𝑑𝑹 |𝑹⟩⟨𝑹| = 1, is utilized. A matrix 

element ⟨𝑹|𝑒−𝛽�̂�|𝑹′⟩  is found to be the same as a density matrix at the inverse 

temperature 𝛽, 𝜌(𝑹,𝑹′; 𝛽) [103,104]. For a general nuclear Hamiltonian on Equation 

2.6, the matrix element ⟨𝑹|𝑒−𝛽�̂�|𝑹′⟩ cannot be evaluated analytically. However, if the 

argument of the exponential can be regarded small, the matrix element could be evaluated 

approximately. But since 𝛽 need not be small, the argument of the exponential can be 

made arbitrarily small by writing: 
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 𝑒−𝛽𝐻 = [𝑒−𝛽𝐻/𝑀]
𝑀
= 𝑒−𝛽𝐻/𝑀𝑒−𝛽𝐻/𝑀…𝑒−𝛽𝐻/𝑀. (2.32)  

Substituting Equation 2.32 into 2.31 yields for the pseudo partition function, 

 𝑍0 = lim
𝑀→∞

∫∫𝑑𝑹 𝑑𝑹′ ⟨Φ𝑇|𝑹⟩⟨𝑹 |[𝑒
−𝛽𝐻/𝑀]

𝑀
| 𝑹′⟩⟨𝑹′|Φ𝑇⟩. (2.33)  

In addition, we introduce the second order Suzuki-Trotter decomposition [105], which 

states that: 

 𝑒−𝛽𝐻 = 𝑒−𝛽(�̂�+�̂�) = 𝑒−𝛽𝑉/2𝑒−𝛽�̂�𝑒−𝛽𝑉/2 + 𝑂(𝛽3). (2.34)  

For the higher order expansion of this operator [106–108], please confirm Appendix 7.1. 

Thus, the pseudo partition function can be written as  

𝑍0 = lim
𝑀→∞

∫∫𝑑𝑹 𝑑𝑹′ ×  

⟨Φ𝑇|𝑹⟩⟨𝑹 |[𝑒
−𝛽𝑉/2𝑀𝑒−𝛽�̂�/𝑀𝑒−𝛽𝑉/2𝑀 + 𝑂((𝛽/𝑀)3)]

𝑀
| 𝑹′⟩⟨𝑹′|Φ𝑇⟩. (2.35)  

The Trotter theorem guarantees that, at the limit 𝑀 → ∞, the integral in Equation 2.35 

will converge to the exact pseudo partition function at the ground state. Matrix elements 

of the individual factors [𝑒−𝛽𝑉/2𝑀𝑒−𝛽�̂�/𝑀𝑒−𝛽𝑉/2𝑀 + 𝑂((𝛽/𝑀)3)]  are obtained by 

inserting the closure relation into the coordinate basis, ∫ 𝑑𝑹|𝑹⟩⟨𝑹| = 1 between each 

of the 𝑀 − 1 pairs of factors in Equation 2.35, giving the following expression, 

𝑍0 = ∫𝑑𝑹 𝑑𝑹
′ 𝑑𝑹1…𝑑𝑹𝑀−1 ⟨Φ𝑇|𝑹⟩⟨𝑹|[𝑒

−𝛽𝑉/2𝑀𝑒−𝛽�̂�/𝑀𝑒−𝛽𝑉/2𝑀]|𝑹1⟩  

 × ⟨𝑹1|[𝑒−𝛽𝑉/2𝑀𝑒−𝛽�̂�/𝑀𝑒−𝛽𝑉/2𝑀]… |𝑹𝑀−1⟩  

 × ⟨𝑹𝑀−1|[𝑒−𝛽𝑉/2𝑀𝑒−𝛽�̂�/𝑀𝑒−𝛽𝑉/2𝑀]|𝑹′⟩⟨𝑹′|Φ𝑇⟩  
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 = ∫𝑑𝑹0…𝑑𝑹𝑀 ⟨Φ𝑇|𝑹
0⟩ {∏⟨𝑹(𝑠)|𝑒−𝛽�̂�/2𝑀𝑒−𝛽�̂�/𝑀𝑒−𝛽�̂�/2𝑀|𝑹(𝑠+1)⟩

𝑀−1

𝑠=0

} ⟨𝑹𝑀|Φ𝑇⟩, (2.36)  

where, in Equation 2.36, the integration variables 𝑹 and 𝑹′ are renamed to 𝑹0 and 

𝑹𝑀, respectively. The matrix elements appearing in Equation 2.36 can now be evaluated 

analytically: The sought-after matrix element becomes: 

 ⟨𝑹(𝑠)|𝑒−𝛽𝑉/2𝑀𝑒−𝛽�̂�/𝑀𝑒−𝛽𝑉/2𝑀|𝑹(𝑠+1)⟩  

 = 𝑒−𝛽(𝑉
(𝑹(𝑠))+𝑉(𝑹(𝑠+1)))/2𝑀⟨𝑹(𝑠)|𝑒−𝛽�̂�/𝑀|𝑹(𝑠+1)⟩, (2.37)  

which follows from the fact that the potential is only a function of position, and thus its 

action on the coordinate eigenstate is equivalent to multiplication by the eigenvalue. The 

kinetic energy operator �̂�  is diagonal in the momentum rather than coordinate 

representation, and hence a basis change is required in order to evaluate the remaining 

matrix element in Equation 2.37: 

⟨𝑹(𝑠)|𝑒−𝛽�̂�/𝑀|𝑹(𝑠+1)⟩ = ∫𝑑𝒑 𝑑𝒑′ ⟨𝑹(𝑠)|𝒑⟩⟨𝒑|𝑒−
𝛽
𝑀
�̂�2

2𝑚|𝒑′⟩⟨𝒑′|𝑹(𝑠+1)⟩  

 =
1

(2𝜋ℏ)3
∫𝑑𝒑 𝑑𝒑′ 𝑒𝑖𝑹

(𝑠)∙𝒑/ℏ𝑒−
𝛽
𝑀
𝒑2

2𝑚𝑒−𝑖𝑹
(𝑠+1)∙𝒑′/ℏ𝛿(𝒑 − 𝒑′) 

 =
1

(2𝜋ℏ)3
∫𝑑𝒑𝑒𝑖𝒑∙(𝑹

(𝑠)−𝑹(𝑠+1))/ℏ𝑒−
𝛽
𝑀
𝒑2

2𝑚. (2.38)  

The momentum integral in Equation 2.38 can be carried out by completing the square, 

yielding: 

 ⟨𝑹(𝑠)|𝑒−𝛽�̂�/𝑀|𝑹(𝑠+1)⟩ = (
𝑚𝑀

2𝜋𝛽ℏ2
)
3/2

𝑒
−
𝑚𝑀
2𝛽ℏ

(𝑹(𝑠)−𝑹(𝑠+1))
2

. (2.39)  

Substituting Equations 2.39 and 2.37 into Equation 2.36 and taking the limit 𝑀 → ∞ 

gives the following expression for the canonical pseudo partition function: 
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 𝑍0 = lim
𝑀→∞

(
𝑚𝑀

2𝜋𝛽ℏ2
)
3𝑀/2

∫𝑑𝑹0…𝑑𝑹𝑀 ×  

 ⟨Φ𝑇|𝑹
0⟩ exp {−∑

𝑚𝑀

2𝛽ℏ2
(𝑹(𝑠) − 𝑹(𝑠+1))

2
+
𝛽

𝑀
𝑉(𝑹(𝑠))

𝑀−1

𝑠=0

} ⟨𝑹𝑀|Φ𝑇⟩. (2.40)  

For finite 𝑀, Equation 2.40 is equivalent to a configurational integral for a linear polymer 

with nearest neighbor harmonic couplings interacting with an external potential 

𝑉(𝒓𝑖)/𝑀: however, the end points of the linear polymer, 𝑹0 and 𝑹𝑀 are affected by 

the trial wavefunctions ⟨Φ𝑇|𝑹
0⟩  and ⟨𝑹𝑀|Φ𝑇⟩ . The pseudo partition function is 

rewritten as 

𝑍0 ∝ ∫𝑑𝑹(0)…𝑑𝑹(𝑀) ×  

 Φ𝑇(𝑹
(0)) exp {−Δ𝜏 [∑

𝑚

2ℏ2Δ𝜏2
(𝑹(𝑠) − 𝑹(𝑠+1))

2
+ 𝑉(𝑹(𝑠))

𝑀−1

𝑠=0

]}Φ𝑇(𝑹
(𝑀)). (2.41)  

where Δ𝜏 = 𝛽/𝑀  and 𝑆  indicate the imaginary time increment and the discretized 

imaginary time action, respectively. 

 

2.4.2. Molecular Dynamics Algorithm for Variational Path Integral 

 We next explain a wat to sample configurations of the linear polymers. To do this, it 

would be useful to introduce the following frequency to Equation 2.41. 

 𝜔 =
1

ℏΔ𝜏
, (2.42)  

Moreover, it is also helpful to introduce a set of momentum integrations into Equation 

2.41: 
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𝑍0 ∝ ∫𝑑𝑹
(0)…𝑑𝑹(𝑀) 𝑑𝒑1…𝑑𝒑𝑀 ×  

Φ𝑇(𝑹
(0)) exp {−Δ𝜏 [∑

𝒑(𝑠)
2

2𝑚′(𝑠)
+
1

2
𝑚𝜔2(𝑹(𝑠) −𝑹(𝑠+1))

2
+ 𝑉(𝑹(𝑠))

𝑀−1

𝑠=0

]}Φ𝑇(𝑹
(𝑀)). (2.43)  

where 𝒑𝑖
(𝑠)

 and 𝑚𝑖
′(𝑠) are a fictitious momentum and the associated fictitious mass of 

an 𝑖th atom at an 𝑠th time slice, respectively. Equation 2.43 has the form of a phase 

space integral for a (𝑀 + 1) -particle system with two interactions, the harmonic 

interaction between 𝑹(𝑠)  and 𝑹(𝑠+1)  and the potential, 𝑉(𝑹(𝑠)) and can be solved 

using the molecular dynamics algorithms. We define the following Hamiltonian: 

 𝐻VPIMD =∑ [∑
𝒑𝑖
(𝑠)2

2𝑚𝑖
′(𝑠)

𝑁

𝑖=1
+ 𝑆({𝑹(𝑠)})]

𝑀

𝑠=0
− lnΦ𝑇(𝑹

(0)) − lnΦ𝑇(𝑹
(𝑀)), (2.44)  

where 

 𝑆({𝑹(𝑠)}) =
1

2
𝑚𝜔2(𝑹(𝑠) − 𝑹(𝑠+1))

2
+ 𝑉(𝑹(𝑠)) (2.45)  

Then, we derive equations of motion via Hamilton's canonical equations. Single Nosé-

Hoover chain thermostat [95] is attached to each degree of freedom [109,110] to generate 

the canonical distribution. In the present study, the staging coordinates are utilized to 

enhance the sampling efficiency of the linear polymer configurations [111]; definitions 

for the staging variables can be found in Ref. [110,112].  
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3. POTENTIAL ENERGY SURFACE 

 

 

 As demonstrated in Chapter 2, the variational path integral molecular dynamics 

(VPIMD  method can compute exactly molecular properties for the many-body ground 

state according to the given Hamiltonian, �̂�(𝑹) = �̂�(𝑹) + �̂�(𝑹). The accuracy of the 

VPIMD simulations is clearly dependent on the quality of the potential energy surface 

(PES , �̂�(𝑹). Electronic structure calculations are often utilized to obtain a high-quality 

PES. However, the VPIMD simulation requires many potential energy calculations and, 

when using electronic structure calculations, the high computational cost becomes a 

serious problem. Therefore, the purpose of this chapter is to describe the reduced 

computational cost in the VPIMD simulation by modeling the potential energy surface as 

a simple function of the nuclear coordinates. 

 

3.1. Electronic Structure Calculation 

 Electronic structure calculations give numerical solutions of the Schrödinger 

equation based on the electronic Hamiltonian on Equation 2.2. In this section, we discuss 

the electronic structure calculations appropriate for describing the interatomic 

interactions of water clusters. These calculations are important because their results are 

used to model the PES. For non-periodic molecular systems such as water clusters, the 
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following theories using a coordinate basis may be effective: molecular orbital theory 

(MOT , density functional theory (DFT , and valence bond theory (VBT . However, VBT 

is for conditioning the shape of the electronic wavefunction to chemically understand the 

molecular orbitals and is not an efficient tool for high-accuracy PESs. Therefore, we 

mainly discuss the MOT and DFT.  

 First, we shall explain MOT. In general, this theory consists of three approximations: 

The Born-Oppenheimer approximation in Section 2.2, the independent electron 

approximation (also called the orbital approximation , and the linear combination of 

atomic orbitals (LCAO  approximation. The most famous MOT is the Hartree-Fock (HF  

method [113]: although the HF method generally gives more than 99% of the 

experimental value and an overlap of 95% with electronic wavefunctions obtained using 

more accurate MOTs, many important chemical phenomena occur in the remaining 1% 

or 5%. Such errors can be described by using post–Hartree-Fock approaches, such as the 

second-order Møller–Plesset perturbation theory (MP2  [114], coupled-cluster singles 

and doubles augmented by a perturbative treatment of triple excitations (CCSD(T   

[115,116], and configuration interaction (CI  methods. 

 Next, we shall introduce DFT. The accuracy of DFT relies strongly on the specific 

functional used to approximate the electronic exchange and correlation contributions. The 

most famous is the Becke hybrid functional for exchange and the Lee−Yang−Parr 

functional for correlation (B3LYP  [117], which is evidenced by the number of citations. 

However, the DFT calculations using B3LYP often underestimate the hydrogen bonding 

energy of the water clusters with respect to MP2 or CC results [118,119]. In contrast, for 

water clusters, MP2 produces results that are in excellent agreement with CC theory, 

despite their low computational cost [120]. Therefore, in the present research, MP2 was 
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employed mainly as the ab initio method; its validity is discussed in Section 5.2.2. 

 

3.2. Regression using Least Squares Method 

3.2.1. Preparation 

 First, we consider fitting the PES computed by the electronic structure calculations, 

𝑉, using arbitrary model functions. For this, we assume that the potential energy is a 

function dependent only on the 𝐷-dimensional vector of the nuclear coordinate, 𝑹: 

 𝑉 = 𝑓(𝑹), 𝑅 = [𝑅1, … , 𝑅𝐷]
𝑇 (3.1)  

We prepare a training set 𝒟 of 𝑚 training points: 

 𝒟 = {(𝑉𝑖, 𝑹𝑖)|𝑖 = 1, … ,𝑚}, (3.2)  

And rewrite it as the following: 

 𝒟 = {𝑽, 𝐗}, (3.3)  

using vector 𝑽 and matrix 𝐗 notations, where: 

 𝑽 = [𝑉1, … , 𝑉𝑚]
𝑇 , 𝐗 = [𝑹1, … , 𝑹𝑚]

𝑇 . (3.4)  

The 𝑚 × 𝐷 matrix 𝐗 is called the design matrix. 

 

3.2.2. Linear Regression 

 In the least squares method, the simplest regression model – multiple regression – is 

given by the following equation: 
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 �̂� =

(

 

�̂�1
�̂�2
⋮
�̂�𝑚)

 = 𝒘𝑇 (

𝑹1
𝑹2
⋮
𝑹𝑚

) = 𝐗𝒘, (3.5)  

where �̂� is the predicted value of 𝑉, 

 �̂� = 𝒘𝑇𝑹, (3.6)  

𝒘𝑇𝑹 = 𝑹𝑇𝒘, and 𝒘 = [𝑤1, … , 𝑤𝐷]
𝑇 is the weight constant vector.  

 A clear goal of the multiple regression is to minimize the difference between the 

predicted value, �̂�, and the observed value, 𝑉. To do this, we define the prediction error 

by following relationship, 

 𝒥 =∑(𝑉𝑖 − �̂�𝑖)
2

𝑚

𝑖=1

=∑(𝑉𝑖 −𝒘
𝑇𝑹𝑖)

2

𝑚

𝑖=1

, (3.7)  

and its expression in terms of the matrices by the expression: 

𝒥 = (𝑽 − 𝐗𝒘)𝑇(𝑽 − 𝐗𝒘)  

 = 𝑽𝑇𝑽 − 2𝒘𝑇𝐗𝑇𝑽 + 𝒘𝑇𝐗𝑇𝐗𝒘 (3.8)  

Here, when 𝒥 is zero, the regression model can be regarded as a complete predictor for 

the observations. Then, we optimize the weight constants, 𝒘 , to minimize the least 

squares 𝒥; this is equivalent to finding the stationary point at which the gradient with 

respect to the weight constants is equal to zero: 

 
𝑑

𝑑𝒘
𝒥 =

𝑑

𝑑𝒘
𝑽𝑇𝑽 − 2

𝑑

𝑑𝒘
𝒘𝑇𝐗𝑇𝑽 +

𝑑

𝑑𝒘
𝒘𝑇𝐗𝑇𝐗𝒘 = 0 (3.9)  

Although the first term is clearly zero, the second and third terms remain, as 

 
𝜕

𝜕𝒘
𝒘𝑇𝐗𝑇𝑽 = 𝐗𝑇𝑽 (3.10)  
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and 

 
𝜕

𝜕𝒘
𝒘𝑇𝐗𝑇𝐗𝒘 = (𝐗𝑇𝐗 + (𝐗𝑇𝐗)𝑇)𝒘 = 𝟐𝐗𝑇𝐗𝒘, (3.11)  

respectively. Finally, we obtain: 

 
𝜕

𝜕𝒘
𝒥 = −2𝐗𝑇𝑽 + 𝟐𝐗𝑇𝐗𝐰 = 0 (3.12)  

Transforming Equation 3.12 results in the analytical solutions for the multiple regression, 

 𝐗𝑇𝐗𝒘 = 𝐗𝑇𝑽 (3.13)  

 𝒘 = (𝐗𝑇𝐗)−1𝐗𝑇𝑽 (3.14)  

Here, it is important to state that the solution exists only when 𝐗𝑇𝐗 has an inverse matrix, 

(𝐗𝑇𝐗)−1 . The equation 𝐗𝑇𝐗𝒘 = 𝐗𝑇𝑽  is called the normal equation in multiple 

regression. 

 We have explained the case of using the simple linear equation,  

 �̂� = 𝑤1𝑅1 + 𝑤2𝑅2 +⋯+𝑤𝐷𝑅𝐷, (3.15)  

but this model is expected to give a poor prediction when the relationship between 

potential energy and nuclear coordinate is not linear and more complex. Therefore, a more 

flexible regression model is required. To reach this purpose, the design matrix, 𝐗 , is 

redefined using arbitrary basis functions 𝜙(𝑹) to: 

 �̂� =

(

 

�̂�1
�̂�2
⋮
�̂�𝑚)

 = (

𝜙0(𝑹1) 𝜙1(𝑹1) ⋯ 𝜙ℎ(𝑹1)

𝜙0(𝑹2) 𝜙1(𝑹2) ⋯ 𝜙ℎ(𝑹2)

⋮ ⋮
𝜙0(𝑹𝑚) 𝜙1(𝑹𝑚) ⋯ 𝜙ℎ(𝑹𝑚)

)(

𝑤0
𝑤1
⋮
𝑤ℎ

) = 𝚽𝒘, (3.16)  

where 𝜙0 = 1 for any nuclear coordinates 𝑹, ℎ is the number of the basis functions, 

and the vector by basis functions, 
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 𝝓 = [𝜙0(𝑹), 𝜙1(𝑹),… , 𝜙ℎ(𝑹)]
𝑇 , (3.17)  

is referred to as the feature vector. Then, we investigate the least-square solution in the 

case of using the basis functions. The least square solution is expressed as: 

 𝒘 = (𝚽𝑇𝚽)−1𝚽𝑇𝑽 (3.18)  

as with the multiple regression (Equation 3.14  as it does not depend on whether basis 

functions are utilized. This regression model is called linear regression and a specific case 

is the multiple regression model when 𝐗 = 𝚽. Here, the reason why this is not nonlinear 

regression is that the predicted values from Equation 3.16 are linear for the parameter, 𝒘. 

 

3.2.3. LASSO and Ridge Regression 

 We introduced the linear regression model as a regression model with high 

expressivity. However, the problem remains that there is no analytical solution when the 

matrix 𝚽𝑇𝚽 does not have an inverse matrix (𝚽𝑇𝚽)−1. A simple solution is to add a 

small value to elements of the matrix 𝚽𝑇𝚽  so that the matrix 𝚽𝑇𝚽  has an inverse 

matrix; however, this operation raises the problem that the weight vector 𝒘  contains 

extremely large values [121]. In general, such models are quite sensitive regarding small 

changes in the nuclear coordinate 𝑹 and this may become a source of overfitting.  

 Least absolute shrinkage and selection operator (LASSO  regression [122] and ridge 

regression [121,123–126] are some simple techniques that can be used to prevent 

overfitting. These techniques comprise the following operations: minimizing the least 

square difference 𝒥 and the magnitude of the coefficient vector 𝒘. 

 𝒥1 = (𝑽 −𝚽𝒘)
2 + 𝛼|𝒘|, (3.19)  
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 𝒥2 = (𝑽 −𝚽𝒘)
2 + 𝛼𝒘𝑇𝒘, (3.20)  

where regularizations 𝒥1 and 𝒥2, which add the penalty terms 𝛼|𝒘| and 𝛼𝒘𝑇𝒘, are 

called L1 and L2 regularizations, respectively, and the parameter 𝛼  is the arbitrary 

coefficient to control the penalty of the regularization. If 𝛼 = 0 , the above equation 

agrees with the general method of the least squares; if 𝛼 = ∞, all elements of the wight 

constant vector 𝒘 become zero. 

 Then, the analytical solutions for L1 and L2 regularizations must be considered. For 

the L1 regularization, there is no analytical solution owing to the inclusion of a non-

differentiable point. However, the L2 regularization has an analytical solution. As shown 

in Section 3.2.2, the stationary point where the derivative of the least-squares difference 

with respect to the coefficient vector is zero can be found from the following: 

 
𝜕

𝜕𝒘
𝒥2 =

𝜕

𝜕𝒘
(𝑽 −𝚽𝒘)2 +

𝜕

𝜕𝒘
𝛼𝒘𝑇𝒘, (3.21)  

The solution for the former term is already presented in Section 3.2.2. For the latter term, 

its solution is easily obtained from: 

 
𝜕

𝜕𝒘
𝛼𝐰𝑇𝐰 = 2𝛼𝐰 (3.22)  

Therefore, using Equations 3.12 and 3.22, the stationary point in the difference 𝒥2 can 

be expressed by: 

 𝜕

𝜕𝒘
𝒥2 = −2𝚽

𝑇𝒚 + 𝟐𝚽𝑇𝚽𝐰+ 2𝛼𝐰 = 0 (3.23)  

and, from the perspective of the weight constant vector, 

 𝒘 = (𝚽𝑇𝚽+ 𝛼𝐈)−1𝚽𝑇𝒚. (3.24)  

The regression models using the L1 and L2 regularizations are named LASSO regression 

and ridge regression, respectively. Further, the elastic net [127] has been proposed as a 
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compromise between the LASSO and ridge regressions. 

 

3.3. Gaussian Process Regression 

3.3.1. Regression with the Machine Learning 

 If it is possible to guess basis functions to completely reproduce the PES, linear 

regression can generate the complete fitting model. However, in general, it is difficult to 

guess appropriate basis functions and hard to design a set of basis functions for every 

problem. Using machine learning (ML  approaches instead of basis functions helps to 

overcome these disadvantages in linear regression models. 

 Given these advantages, neural network (NN  [128–130] and Gaussian process 

regression (GPR  [131–133] have attracted attention as ML approaches to fitting the PES: 

the first NN and GPR PESs were presented in 1995 [134] and 2009 [135], respectively, 

and many types of PESs have since been successfully developed [90–93,136–142]. As 

each of these approaches has different advantages, it is important to choose the 

appropriate ML technique according to the nature of the target PES. Therefore, to 

determine the appropriate ML for the small water clusters, we briefly discuss the 

advantages of NN and GPR [90–93,140,141]: 

Training cost: A NN is generally faster than GPR, although it is strongly dependent 

on the number of hidden layers 𝑁hl, artificial neurons 𝑁an, dimensionality 𝐷, and 

training points 𝑚 . For a single-hidden-layer NN (𝑁hl = 1  , the training cost is 

dominated by the inner product 𝐖𝑹 between the 𝑁an × 𝐷 weight constant matrix 

𝐖 and the 𝐷-dimensional coordinate vector 𝑹. In the case of a multi-hidden-layer 

NN, if the number of artificial neurons is unchanged, the cost depends mostly on 
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𝑁an
2 × 𝑁hl × 𝐷. The rate-determining step in GPR is the evaluation of the inverse 

matrix 𝐊−1 of the 𝑚 ×𝑚 matrix 𝐊, although this is explained further in Section 

3.3.6. Finally, the training costs are 𝑚×𝑁an × 𝐷 for the single-hidden-layer NN, 

𝑚×𝑁an
2 × 𝑁hl × 𝐷 for the multi-hidden-layer NN, and 𝑚3 × 𝐷 for the GPR. 

Cost of the prediction: The prediction cost for each ML approach is 𝑁an × 𝐷 in the 

single-hidden-layer NN, 𝑁an
2 × 𝑁hl × 𝐷 in the multi-hidden-layer NN, and 𝑚 × 𝐷 

for GPR. A simple comparison is not possible because the cost of NN does not include 

the number of training points 𝑚. However, with the exception of the multi-hidden-

layer NN, the costs are of a similar order. Therefore, there is no major difference in 

the cost of the prediction between simple NN and GPR methods. 

Overfitting problem: As explained in Section 3.2, general regression often causes an 

overfitting problem. Indeed, for the NN, overfitting is a serious problem. In contrast, 

the GPR methodology is based on the ridge regression and usually does not create an 

overfitting problem; thus, in GPR, more accurate results are guaranteed when more 

training points are used.  

Accuracy: Both NN and GPR methods provide a more accurate PES if it is possible 

to use more training points. When there are fewer training points, GPR generally 

produces more accurate result than the NN. 
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 Based on these features, the appropriate 

ML approach to describe the high-accuracy 

PES should be considered. The deprotonated 

water trimer, H5O3
−, can be considered to be a 

small system as it only has 18 degrees of 

freedom (3𝑁 − 6 = 18 . Thus, relatively few 

training points are expected to be required to 

obtain a high-accuracy PES. As GPR can 

provide high-accuracy results with fewer 

training points, we decided that GPR is a more 

appropriate approach for the target system.  

 Finally, it would be useful to clarify the crossing point between the NN and the GPR. 

The neural network with one hidden layer (𝑁hl = 1  completely agrees with the Gaussian 

process with the limit that the number of artificial neurons is infinity (𝑁an = ∞   

[143,144]; proof of this is given in Appendix 7.2. Fig. 3.1 shows the conceptual diagram.  

 

3.3.2. Probability Model for Linear Regression 

 We here explain the probability model for the linear regression, which would be the 

most basic stating point of the GPR. The linear regression model obtained above is 

expected to be incomplete because it do not consider observation noise. To take into 

account such noise 𝜖, the Gaussian (normal  distribution with the mean 𝜇 and variance 

𝜎2 is often used: 

 𝑝(𝜖) = 𝒩(𝜖|𝜇, 𝜎2) =
1

√2𝜋𝜎
exp(−

(𝜖 − 𝜇)2

2𝜎2
) (3.25)  

Fig. 3.1 Conceptual diagram for the cross 

point between NN and GPR. 



- 31 - 

 

where the constant 1/√2𝜋𝜎 is the normalizing constant. The distribution with the mean 

0 and variance 1, 𝒩(0,1), is a special case, referred to as the standard normal distribution. 

According to the central limit theorem, even if observation noise is not normally 

distributed, their sum tends toward a normal distribution. Thus, the normal distribution is 

utilized widely in situations in which the distribution of noise is unknown. 

 Now, the construction of probabilistic models for linear regression must be 

considered. For this, we assume that the potential energy 𝑉 is always generated with the 

noise: that is, the PES 𝑉(𝑹) follows the normal distribution with a mean of 𝒘𝑇𝑹 and 

a variance of 𝜎2: 

 𝑝(𝑉|𝑹) = 𝒩(𝑉|𝒘𝑇𝑹,𝜎2) =
1

√2𝜋𝜎
exp(−

(𝑉 − 𝒘𝑇𝑹)2

2𝜎2
) (3.26)  

In addition, the probability of predicting the PES vector 𝑽 using the coordinate matrix 

𝐗 can be expressed by: 

 𝑝(𝑽|𝐗) =∏𝑝(𝑉𝑖|𝑹𝑖)

𝑚

𝑖=1

=∏
1

√2𝜋𝜎
exp (−

(𝑉𝑖 −𝒘
𝑇𝑹𝑖)

2

2𝜎2
)

𝑚

𝑖=1

 (3.27)  

As taking the logarithm for both side of equation does not change the maximum point in 

𝑝(𝑽|𝐗), we obtain: 

 − log 𝑝(𝑽|𝐗) =∑
(𝑉𝑖 −𝒘

𝑇𝑹𝑖)
2

2𝜎2

𝑚

𝑖=1

+𝑚 log√2𝜋𝜎 (3.28)  

where the right-hand side is clearly equivalent to the least squares 𝒥 . Therefore, 

maximizing this probabilistic model is equivalent to solving the linear regression using 

the method of least squares. 

 Next, we extend the probabilistic model to ridge regression to avoid overfitting. The 

purpose of the ridge regression is to prevent anomalous increase in the elements 𝑤𝑖 of 
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the weight vector 𝒘; this operation can also be performed by controlling the following 

normal distribution with zero mean and 𝜆2 variance: 

 𝑝(𝒘) =∏𝒩(𝑤𝑖|0, 𝜆
2)

𝐷

𝑖=1

. (3.29)  

Taking the logarithm for both sides yields: 

log 𝑝(𝒘) =∑log𝒩(𝑤𝑖|0, 𝜆
2)

𝐷

𝑖=1

  

 = −(𝐷 + 1) log(√2𝜆) −
1

2𝜆2
∑𝑤𝑖

2

𝐷

𝑖=1

. (3.30)  

Here, the simultaneous probability of 𝑽 and 𝒘, when the coordinate matrix 𝐗 is given, 

can be described by: 

 𝑝(𝑽,𝒘|𝐗) = 𝑝(𝑽|𝒘, 𝐗)𝑝(𝒘|𝐗) = 𝑝(𝑽|𝒘, 𝐗)𝑝(𝒘), (3.31)  

using the independency of 𝑝(𝒘). Finally, the probabilistic model of the ridge regression 

can be expressed by: 

− log 𝑝(𝑽,𝒘|𝑿) = − log(𝑽|𝒘,𝑿) − log 𝑝(𝒘)  

 

= 𝑚 log√2𝜋𝜎 +∑
(𝑉𝑖 −𝐰

𝑇𝑹𝑖)
2

2𝜎2

𝑚

𝑖=1

+ (𝐷 + 1) log √2𝜆 +
1

2𝜆2
∑𝑤𝑖

2

𝐷

𝑖=1

. (3.32)  

Ignoring the constant terms leads to: 

 
1

𝜎2
∑(𝑉𝑖 −𝒘

𝑇𝑹𝑖)
2

𝑚

𝑖=1

+
1

𝜆2
∑𝑤𝑖

2

𝐷

𝑖=1

∝ (𝑽 − 𝑿𝒘𝑇)2 + 𝛼𝒘𝑇𝒘, (3.33)  

where 

 𝛼 =
𝜎2

𝜆2
. (3.34)  
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This is in complete agreement with the equation for the ridge regression (Equation 2.20  

and shows that ridge regression is equivalent to maximizing the simultaneous probability 

𝑝(𝑽,𝒘|𝑿). For clarification, the parameter 𝛼 indicates the ratio of observation noise 𝜎2 

and variance 𝜆2 of the coefficient 𝒘. In general, the parameter 𝛼 should be quite small 

as the observation noise is smaller than the variance 𝜆2 of the weight constants. However, 

if an extremely small 𝛼 is selected, the accuracy of the regression model is expected to 

be reduced owing to underestimation of the observation noise. Therefore, it is important 

to select an appropriate value for 𝛼 according to the properties of the observation noise. 

 

3.3.3. Gaussian Process Model 

 In this section, we present briefly how to construct the fitting model using the 

Gaussian process, starting from the general linear regression model, 

 �̂� = 𝚽𝒘. (3.35)  

Here, we assume that the weight parameter 𝒘 follows a Gaussian distribution with zero 

mean and variance 𝜆2𝐈: 

 𝒘~𝒩(0, 𝜆2𝐈) (3.36)  

Then, the vector �̂� can be regarded to be a new the Gaussian distribution projected out 

from the Gaussian distribution 𝒘 by the matrix 𝚽. For the distribution �̂�, the expected 

value is given by: 

 𝔼[�̂�] = 𝔼[𝚽𝒘] = 𝚽𝔼[𝒘] = 0 (3.37)  

and the covariance matrix is evaluated by: 
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Σ = 𝔼[�̂��̂�𝑇] − 𝔼[�̂�]𝔼[�̂�𝑇]  

 = 𝔼[(𝚽𝒘)(𝚽𝒘)𝑇]  

 = 𝚽𝔼[𝒘𝒘𝑇]𝚽𝑇  

 = 𝜆2𝚽𝚽𝑇 (3.38)  

where 𝔼[𝒘𝒘𝑇] = 𝜆2𝐈  is used. As a result, the distribution for �̂�  is found to be the 

multivariate normal distribution: 

 �̂�~𝒩(0, 𝜆2𝚽𝚽𝑇). (3.39)  

As shown in Equation 3.39, the weight vector 𝒘 for the linear regression is eliminated, 

leaving only the design matrix 𝚽𝚽𝑇. In this case, unlike general linear regression, there 

is no need to optimize the weight vector 𝒘; therefore, if the weight constant vector 𝒘 is 

the infinite-dimensional vector, it may be possible to obtain the distribution of 𝑽 with a 

low cost. Here, the distribution of 𝑽 is dependent on only the covariance matrix 𝜆2𝚽𝚽𝑇 

and is therefore expected to be a function of the coordinate vector 𝑹. 

 Consequently, we can now define the Gaussian process model. As demonstrated 

above, if the joint distribution 𝑝(𝑉) for any finite subsets 𝐗 = [𝑹1, 𝑹2, … , 𝑹𝑚]
𝑇 and 

𝑽 = [𝑉0, 𝑉1, … , 𝑉𝑚]
𝑇 follows a multivariate normal distribution, the relationship between 

𝑹 and 𝑉 is defined to follow the Gaussian process. 

 𝑉~GP(𝜇, 𝜆2𝝓𝝓𝑇) (3.40)  

 Next, the features of the Gaussian process model is considered. Putting the 

covariance matrix as: 
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 𝐊 = 𝜆2𝚽𝚽𝑇 , (3.41)  

its elements are described by: 

 𝐾𝑖𝑗 = 𝜆
2𝜙(𝑹𝑖)

𝑇𝜙(𝑹𝑗) (3.42)  

The multivariate normal distribution basically takes similar values when the covariance 

between two variables is large. In other words, if the value of inner product 

𝜙(𝑹𝑖)
𝑇𝜙(𝑹𝑗)  is large, the predicted values 𝑉�̂�  and 𝑉�̂�  are expected to have similar 

values.  

 

3.3.4. Kernel Trick 

 The distribution of 𝑽  is determined by the covariance matrix 𝐊  with elements 

𝜙(𝑹𝑖)
𝑇 and 𝜙(𝑹𝑗). As this matrix is clearly a function of 𝜙(𝑹𝑖)

𝑇, it appears to require 

explicit calculation of 𝜙(𝑹𝑖)
𝑇. However, there is a way to avoid this, known as the kernel 

trick. We must then consider the direct calculation of the element 𝐾𝑖𝑗 of the covariance 

matrix, where the function that gives 𝐾𝑖𝑗 is defined as the kernel function 𝑘(𝑹𝑖, 𝑹𝑗) of 

𝑹𝑖 and 𝑹𝑗. In addition, the covariance matrix constructed by the kernel function is called 

the kernel matrix. 

 To explain the usefulness of this operation, the following example using the radial 

basis function (RBF  kernel can be examined. Let start with considering the situation that 

the following basis function is put in the coordinate space, 

 𝜙𝑖(𝑅) = 𝐴 exp(−
(𝑅 − 𝑖/ℎ)2

𝜃2
) (3.43)  

with the center on 𝑖/ℎ(𝑖 = −ℎ2, … , ℎ2), every 1/ℎ, in the range −ℎ < 𝑅 < ℎ on 𝑅-

axis. The function that consists of 2ℎ2 + 1 functions is defined to be the feature vector 
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corresponding the linear regression model. 

 𝝓(𝑅) = [𝜙−ℎ2(𝑅) … 𝜙0(𝑅) … 𝜙ℎ2(𝑅)] (3.44)  

Here, the kernel function is expressed by: 

 𝑘(𝑅, 𝑅′) = ∑ 𝜙𝑖(𝑅)𝜙𝑖(𝑅
′)

ℎ2

𝑖=−ℎ2

 (3.45)  

Assuming the infinite small grid ℎ → ∞, the kernel function is also the RBF, as shown 

below: 

𝑘(𝑅, 𝑅′) = lim
ℎ→∞

∑ 𝜙𝑖(𝑅)𝜙𝑖(𝑅
′)

ℎ2

𝑖=−ℎ2

  

 = ∫ 𝐴2 exp (−
(𝑅 − 𝑖)2

𝜃2
) exp(−

(𝑅′ − 𝑖)2

𝜃2
)𝑑𝑖

∞

−∞

  

 = 𝐴2∫ exp(−
2

𝜃2
(𝑖 −

𝑅 + 𝑅′

2
)

2

)𝑑𝑖
∞

−∞

× exp (−
1

2𝜃2
(𝑅 − 𝑅′)2)  

 = 𝐴2√
𝜋𝜃2

2
exp (−

1

2𝜃2
(𝑅 − 𝑅′)2) (3.46)  

Therefore, the Gaussian process model using the RBF can be regarded as a linear 

regression model using the infinite number of the RBF as a feature vector. As a result, 

although the feature vector has an infinite-dimensional degree of freedom in the linear 

regression model, the Gaussian process model can be described by only the finite number 

of the input vector as the weight vector is eliminated. 

 We have mentioned that utilizing the kernel function instead of the explicit feature 

vector can simplify the optimization for the infinite number of weights. This is a quite 

powerful property, known as the kernel trick [145–147]. However, please note that the 
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kernel matrix 𝐊 in the Gaussian process model need to be a symmetric matrix and to 

have an inverse matrix, as 𝐊 corresponds to the covariance matrix. For example, the 

Matérn kernel [132] is well-known as the generalized model of the RBF kernel (confirm 

Reference 132 for more examples of the kernel function . 

 

3.3.5. Observation Noise 

 In a real-world situation, the observed values would include the noise. That is, we 

consider the noise by the following model for 𝑖 = 1,… ,𝑚, 

 𝑉𝑖 = 𝑓(𝑹𝑖) + 𝜖𝑖. (3.47)  

Assuming that above noise follows the Gaussian distribution  

 𝜖𝑖 = 𝒩(0, 𝜎
2), (3.48)  

with zero mean and variance 𝜎2, the probability distribution for the observed value 𝑉 

can be written as 

 𝑝(𝑽|𝒇) = 𝒩(𝒇|𝜎2𝐈), (3.49)  

where we assume 𝒇 = [𝑓(𝑹1) 𝑓(𝑹2) …  𝑓(𝑹𝑚)]
𝑇 . Therefore, how can be the prior 

distribution after giving the inputs 𝐗 = [𝑹1 𝑹2  … 𝑹𝑁]  be described? As the output 

depend on the function 𝑓  having input 𝐗  as a variable, taking the expectation value 

respect with 𝑓 leads to  

𝑝(𝑽|𝑿) = ∫𝑝(𝑽, 𝒇|𝑿)𝑑𝒇  

 = ∫𝑝(𝑽|𝒇)𝑝(𝒇|𝑿)𝑑𝒇  
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 = ∫𝒩(𝒇|𝜎2𝑰)𝒩(𝒇|𝝁,𝑲)𝑑𝒇, (3.50)  

where the chain rule for the probability is utilized. This is the simple convolution of two 

Gaussian distributions and its covariance matrix is expressed as follows: 

 𝑝(𝑽|𝑿) = 𝒩(𝒇|𝝁, 𝐊 + 𝜎2𝐈). (3.51)  

In other words, the probability distribution considering the noise can be simply described 

by the kernel matrix to which its diagonal terms are added by the variance 𝜎2 of the 

noise distribution. Therefore, the kernel in this case is newly determine as: 

 𝑘(𝑹𝑖, 𝑹𝑗) = 𝑘(𝑹𝑖, 𝑹𝑗) + 𝜎
2𝛿𝑖𝑗 , (3.52)  

where 𝛿𝑖𝑗 is a delta function that returns 1 at 𝑖 = 𝑗 and 0 in other cases.  

 

3.3.6. Gaussian Process Regression 

 Now, solving the regression problem based on the Gaussian process can be 

considered. As shown in Section 3.2.1, on the assumption of 𝑚 pairs, which consist of 

input 𝑹 ∈ 𝒳 and output 𝑉, we obtain: 

 𝒟 = {(𝑉𝑖, 𝑹𝑖)|𝑖 = 1, … ,𝑚}, (3.53)  

where there is the following relation between 𝑹 and 𝑉, 

 𝑉 = 𝑓(𝑹), (3.54)  

and this function 𝑓 is generated from the Gaussian process with mean 𝜇 and variance 

𝑘(𝑹,𝑹′).  

 𝑓~GP(𝜇, 𝑘(𝑹,𝑹′)) (3.55)  
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The noise here is included in the kernel function as shown in Section 3.3.5. Here, the 

outputs also follow a Gaussian distribution and are expressed as: 

 𝑽~GP(𝝁,𝐊). (3.56)  

 Next, we consider the method to predict the unknown 𝑉+ for a new input 𝑹+, where 

the new vector adding 𝑉+ to 𝑽 is defined as 𝑽+ and the new matrix adding 𝑹+ to 𝑿 

is defined as 𝐗+ : in other words, 𝑽+ = [𝑉1  … 𝑉𝑚 𝑉+]
𝑇  and 𝐗+ = [𝑹1  … 𝑹𝑚 𝑹+]

𝑇 . 

The new vector and matrix also are also subject to the Gaussian process. 

 𝑽+~GP(𝝁,𝐊+) (3.57)  

and 

 (
𝑽
𝑉+
)~𝒩(𝝁, (

𝐊 𝒌+
𝒌+
𝑇 𝑘++

)). (3.58)  

As the above equation is the joint distribution of 𝑽 and 𝑉+, the conditional probability 

of 𝑉+ given 𝑽 is obtained from: 

 𝑝(𝑉+|𝑹+, 𝑿, 𝑽) = 𝒩(𝒌+
𝑇𝐊−1𝑽, 𝑘++ − 𝐤+

𝑇𝐊−1𝐤+) (3.59)  

The expectation value of the distribution 𝑉+ becomes: 

 �̂�+ = 𝔼[𝑉+|𝑹+, 𝐗, 𝑽] = 𝒌+
𝑇𝐊−1𝑽, (3.60)  

where the hat ^ over the symbol denotes the predicted value and 

 𝒌+
𝑇 = [𝑘(𝑹+, 𝑹1) …  𝑘(𝑹+, 𝑹𝑚)]. (3.61)  

In Equation 3.60, the parameters 𝐗, 𝐊−1, and 𝑽 can be estimated using the given data 

(training data , 𝒟. Therefore, Equation 3.60 indicates that the prediction value �̂�+ is a 

simple function of 𝑹+ and is the regression model of the GP. Here, it should be noted 

that Equation 3.60 uses the training points 𝑽 directly, which means that the prediction 
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accuracy is sensitive to the spatial distribution of points 𝐗 in 𝐷-dimensional space. 

 Finally, the optimization of the GP model is explained. The probability that the GP 

precisely predicts the training points 𝑽 is expressed by: 

 𝑝(𝑽|𝐗, 𝐊) = 𝒩(𝑽|𝐗, 𝐊) =
1

(2𝜋)𝑚/2|𝐊|1/2
exp(−

1

2
𝑽𝑇𝐊−1𝑽) (3.62)  

and taking the logarithm of the above gives 

 log 𝑝(𝑽|𝐗, 𝐊) = −
𝑚

2
log(2𝜋) −

1

2
log|𝐊| −

1

2
𝑽𝑇𝐊−1𝑽 (3.63)  

Therefore, the GP model is optimized so that the kernel parameters give this equation its 

maximum value. For this, we need to compute the partial derivatives of Equation 3.63 

with respect to the hyperparameters as: 

 
𝜕

𝜕𝜃𝑖
log 𝑝(𝑽|𝐗, 𝐊) =

1

2
tr ((𝜶𝜶𝑇 − 𝐊−1)

𝜕𝐊

𝜕𝜃𝑖
), (3.64)  

where 

 𝜶 = 𝐊−1𝑽, (3.65)  

and the Cholesky decomposition is typically utilized to efficiently solve Equation 3.64. 

However, this approach scales as 𝒪(𝑚3) and causes the problem that the computational 

cost increases exponentially with increasing the number of training data as explained in 

Chapter 1. 

 

3.3.7. Improvement of Gaussian Process Regression 

 As discussed in Chapter 1, we here suggest two algorithms to solve two problems 

occurring during the construction of the MLPES by GPR. The first is to generate the 

MLPES with high accuracy using only a limited number of training points. The second is 
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to satisfy the molecular symmetry. 

 Accuracy Improvement: fragmentation approach [91]: We propose a method to 

improve the accuracy of the potential energy surface given by the GPR without 

increasing the number of training points. We follow the methods described in Ref. 148 

and 149, which split the full configuration space into smaller parts 𝑸, and represent 

the energy of the entire molecular system as: 

 �̂�Exact(𝑹) = �̂�1(𝑸1) + �̂�2(𝑸2) + �̂�12(𝑸12), (3.66)  

where 𝑹  is the full-dimensional vector, 𝑸 ⊂ 𝑹 , �̂�1  and �̂�2  are independent GP 

models depending on vectors of lower dimensionality, �̂�12 is a GP model that brings 

fragments 𝑸1 and 𝑸2 together into the full surface and that depends on the vector 

𝑸12 with the dimensionality to be determined.  

 The representation (Equation 3.66  essentially reduces the problem of constructing 

the 𝐷-dimensional PES to build GP models of potential energy for smaller molecular 

fragments and constructing a 𝐷-dimensional GP model of the difference between the 

global surface and these lower-dimensional GPs. In Chapter 5, we will demonstrate the 

gain in accuracy resulting from this approach by comparing GP models (3.66  with 

those obtained directly by fitting energy in the 28-dimensional space for the 

deprotonated water trimer H5O3
− . This approach is motivated by Ref. 148, which 

introduced a hierarchy of molecular fragmentations to approximate the total electronic 

energy from the energies of the fragments. In general, the molecular fragmentation in 

Equation 3.66 should be performed to ensure that the energy of the fragments and of 

the full system can be computed using the same ab initio method. 

 Molecular Symmetry Adaption: In this subsection, we determine the condition for 

which the MLPES has the same value at both 𝑹  and �̂�𝑹 , where �̂�  is the arbitrary 
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symmetric operator that satisfies the following relationship: 

 �̂�(𝑹) = �̂�(�̂�𝑹). (3.67)  

where 

 𝑹 = [𝑅1, … , 𝑅𝐷]
𝑇 (3.68)  

 �̂�𝑹 = [𝑅1
inv, … , 𝑅𝐷

inv]
𝑇
 (3.69)  

As shown in Equation 3.60, the MLPES by GPR is described by: 

 �̂�(𝑹) = 𝒌T(𝑹,𝑹′)𝐊′
−1
𝑽′ = 𝒌T(𝑹, 𝑹′)𝜶 =∑𝑘𝑖(𝑹, 𝑹𝑖

′)

𝑚

𝑖=1

𝛼𝑖, (3.70)  

where the training dataset is given by: 

 𝒟 = {𝑹𝑖
′, 𝑉𝑖

′|𝑖 = 0,… ,𝑚}, (3.71)  

 𝑽′ = [𝑉1
′, … , 𝑉𝑚

′ ]𝑇 (3.72)  

𝒌  and 𝐊  are the vector and the 𝑚 ×𝑚  matrix of the kernel, respectively, and 

𝐊′−1𝑽′ = 𝜶, for simplicity, as the number of training points can be regarded as a constant. 

Therefore, we employ the RBF as the kernel function: 

𝑘𝑖(𝑹,𝑹𝑖
′) = exp(∑−

(𝑅𝑗 − 𝑅𝑖𝑗
′ )
2

2𝜃𝑗

𝐷

𝑗=1

)  

 = exp(−∑
𝑅𝑗
2 − 2𝑅𝑗𝑅𝑖𝑗

′ + 𝑅𝑖𝑗
′ 2

2𝜃𝑗

𝐷

𝑗=1

) , (3.73)  

where the 𝐷 indicates the number of dimensions of the nuclear coordinates and 𝜃𝑗  is 

the anisotropic length parameter for the 𝑗 th nuclear coordinate. In another words, 

adapting the molecular symmetry to GPR is equivalent to finding the conditions that 
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satisfy the following relationship: 

 �̂�(𝑹) =∑𝑘𝑖(𝑹,𝑹𝑖
′)

𝑚

𝑖=1

𝛼𝑖 =∑𝑘𝑖(�̂�𝑹, 𝑹𝑖
′)

𝑚

𝑖=1

𝛼𝑖 = 𝑉(�̂�𝑹), (3.74)  

and, that is, 

 ∑exp(−∑
𝑅𝑗
2 − 2𝑅𝑗𝑅𝑖𝑗

′ + 𝑅𝑖𝑗
′ 2

2𝜃𝑗

𝐷

𝑗=1

)𝛼𝑖

𝑚

𝑖=1

  

 =∑exp(−∑
𝑅inv𝑗

2
− 2𝑅inv𝑗𝑅𝑖𝑗

′ + 𝑅𝑖𝑗
′ 2

2𝜃𝑗
inv

𝐷

𝑗=1

)𝛼𝑖

𝑚

𝑖=1

. (3.75)  

First, if 𝜃𝑗 is equivalent to 𝜃𝑗
inv,  

 𝜽 = �̂�𝜽, 𝜽 = [𝜃1, … , 𝜃𝐷]
𝑇 , (3.76)  

the above equation can be rewritten as the following: 

 ∑exp(∑
2𝑅𝑗𝑅𝑖𝑗

′ − 𝑅𝑖𝑗
′ 2

2𝜃𝑗

𝐷

𝑗=1

)𝛼𝑖

𝑚

𝑖=1

=∑exp(∑
2𝑅inv𝑗𝑅𝑖𝑗

′ − 𝑅𝑖𝑗
′ 2

2𝜃𝑗

𝐷

𝑗=1

)𝛼𝑖

𝑚

𝑖=1

 (3.77)  

Here, we prepared the new training dataset 𝑹inv
′
 and �̂�(𝑹inv

′
) and expanded it as with 

above equation: 

 ∑exp(∑
2𝑅𝑗𝑅

inv
𝑖𝑗
′
− 𝑅inv𝑖𝑗

′ 2

2𝜃𝑗

𝐷

𝑗=1

)𝛼𝑖

𝑚

𝑖

  

 =∑exp(∑
2𝑅𝑗

inv𝑅inv𝑖𝑗
′
− 𝑅inv𝑖𝑗

′ 2

2𝜃𝑗

𝐷

𝑗=1

)𝛼𝑖

𝑚

𝑖

 (3.78)  

Finally, adding the two equations gives: 

∑exp(∑
2𝑅𝑗𝑅𝑖𝑗

′ − 𝑅𝑖𝑗
′ 2

2𝜃𝑗

𝐷

𝑗=1

)𝛼𝑖

𝑚

𝑖

+∑exp(∑
2𝑅𝑗𝑅

inv
𝑖𝑗
′
− 𝑅inv𝑖𝑗

′ 2

2𝜃𝑗

𝐷

𝑗=1

)𝛼𝑖

𝑚

𝑖
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=∑exp(∑
2𝑅inv𝑗𝑅𝑖𝑗

′ − 𝑅𝑖𝑗
′ 2

2𝜃𝑗

𝐷

𝑗=1

)𝛼𝑖

𝑚

𝑖

+∑exp(∑
2𝑅𝑗

inv𝑅inv𝑖𝑗
′
− 𝑅inv𝑖𝑗

′ 2

2𝜃𝑗

𝐷

𝑗=1

)𝛼𝑖

𝑚

𝑖

 (3.79)  

where the following relations are clearly established: 

 
∑exp(∑

2𝑅𝑗𝑅𝑖𝑗
′ − 𝑅𝑖𝑗

′ 2

2𝜃𝑗

𝐷

𝑗=1

)𝛼𝑖

𝑚

𝑖

=∑exp(∑
2𝑅𝑗

inv𝑅inv𝑖𝑗
′
− 𝑅inv𝑖𝑗

′ 2

2𝜃𝑗

𝐷

𝑗=1

)𝛼𝑖

𝑚

𝑖

 (3.80)  

and 

 ∑exp(∑
2𝑅inv𝑗𝑅𝑖𝑗

′ − 𝑅𝑖𝑗
′ 2

2𝜃𝑗

𝐷

𝑗=1

)𝛼𝑖

𝑚

𝑖

=∑exp(∑
2𝑅𝑗𝑅

inv
𝑖𝑗
′
− 𝑅inv𝑖𝑗

′ 2

2𝜃𝑗

𝐷

𝑗=1

)𝛼𝑖

𝑚

𝑖

 (3.81)  

In Equation 3.79, the left-hand side is clearly equal to the right-hand side. Therefore, two 

conditions in which the MLPES by GPR satisfies the molecular symmetry are: (1  the 

kernel parameters are immutable for the arbitrary symmetrical operation, 𝜽 = �̂�𝜽; and 

(2  the training dataset 𝒟 consists of {𝑹𝑖
′, 𝑉𝑖|𝑖 = 1,… ,𝑚} and {𝑹inv𝑖

′
, 𝑉𝑖|𝑖 = 1,… ,𝑚}. 

This approach confers the following advantages: (I  the symmetry of the PES is 

guaranteed for all the configuration space; (II  the variables to be optimized can be 

reduced; and (III  it can be easily combined with other GPR algorithms, such as 

fragmentation approaches. Although we explain the case of the system with only one axis 

of symmetry, can easily extend to system with multiple axes of symmetry, such as NH3 

and CH4. 
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4. COMPUTATIONAL DETAILS 

 

 

4.1. Potential Energy Surface 

4.1.1. OSS Potential Energy Surfaces 

 To describe the interatomic interaction for the protonated water clusters, we adopted 

a polarizable and dissociable model developed by Ojamae, Singer, and Shavitt [44] that 

is dubbed as OSS potential. A series of the OSS potential has been parameterized using 

the extensive ab initio MP2 results for the Zundel dimer H5O2
+ ; the resulting OSS 

potentials have been reported to be able to predict formation energies and structures with 

close accuracy to ab initio MP2 results for small protonated water clusters [44,51]. 

Among the OSS potentials, the following OSS3 potential, 

𝑉OSS3(𝑹) = 𝑉el(𝑹) +∑∑𝑉OH(𝑅𝑖𝑗)

𝑛H

𝑗

𝑛O

𝑖

+ ∑ ∑𝑉OO(𝑅𝑖𝑗)

𝑛O

𝑗>𝑖

𝑛O−1

𝑖

  

 + ∑ ∑∑𝑉HOH(𝑅𝑖𝑗, 𝑅𝑘𝑗, 𝜃𝑖𝑗𝑘)

𝑛O

𝑗

𝑛H

𝑘>𝑖

𝑛H−1

𝑖

  

 + ∑ ∑∑𝑉HOH𝜇(𝑅𝑖𝑗, 𝑅𝑘𝑗 , 𝜃𝑖𝑗𝑘 , 𝜇𝑗)

𝑛O

𝑗

𝑛H

𝑘>𝑖

𝑛H−1

𝑖

, (4.1)  
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was adopted in the present study, which 

is expected to be most accurate in the 

OSS potentials; 𝑉el  is the total 

electrostatic energy, 𝑉OH  and 𝑉OO  are 

the two-body potential energies for H–O 

and O–O pairs, respectively, 𝑉HOH  and 

𝑉HOH𝜇  are three-body potential and 

dipole-three-body coupling energies for 

H–O–H triplets, respectively, 𝑅𝑖𝑗 =

|𝑹𝑖 − 𝑹𝑗| , 𝜃  indicates the H–O–H 

angle, 𝜇  is the induced dipole moment 

of the oxygen ion. The explicit 

expression of the potential energy terms 

can be found in Ref. [44]. 

 We next present stable structures for 

the protonated water clusters (H2O)𝑛H
+ 

on the OSS3 potential energy surface. Up to the size 𝑛 = 2, one stable structure is known 

for each system. For the trimer, 𝑛 = 3, several stable structures characterized by the same 

hydrogen bonding topology have been found in the present study; the structure presented 

in Figure 4.1 is the most stable one among them. For the tetramer, 𝑛 = 4, there exist three 

stable isomers respectively called branched, cyclic, and linear structures. For the pentamer, 

𝑛 = 5, six stable isomers are known: kitelike, branched, cyclic[a], cyclic[b], pentagonal, 

and linear structures. In the present thesis, we find slightly lower energy structures than 

those found previously for branched, cyclic[b], and linear pentamers in Ref. 51; details 

TABLE 4.1. The minimum potential 

energy 𝑉min for protonated water clusters 

(H2O)𝑛H
+ up to 𝑛 = 5 calculated by the 

OSS3 potential. Previously obtained 

minimum potential energy using the OSS3 

potential [44] is also presented for 

comparison. Energy is given in units of 

hartree. 

cluster size n 

𝑉min 

Ref. [51] this work 

(a) 1 -1.51534  -1.51534  

(b) 2 -2.91762  -2.91762  

(c) 3 -4.30319  -4.30319  

(d) 4 branched -5.68131  -5.68131  

(e) 4 cyclic -5.67798  -5.67798  

(f) 4 linear -5.67791  -5.67791  

(g) 5 kitelike -7.05296  -7.05296  

(h) 5 branched -7.05133  -7.05163  

(i) 5 cyclic[a] -7.04996  -7.04996  

(j) 5 cyclic[b] -7.04982  -7.04991  

(k) 5 pentagonal -7.04923  -7.04923  

(l) 5 linear -7.04841  -7.04928  
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are described in Section 5.1.3. Energies for the stable structures are collected in Table 4.1. 

These structures have been used to construct the trial wavefunction Equation 2.14 for the 

protonated water clusters. 

 

 

 

FIG. 4.1. The stable structures of the protonated water clusters on the OSS3 potential 

energy surface. The labels from (a  to (l  are defined in Table 4.1. 
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4.1.2. Machine Learning Potential Energy Surface 

 In this section, we generate the training points to construct the machine learning 

potential energy surface (MLPES  for deprotonated water clusters OH− , H3O2
− , and 

H5O3
−. The potential energies for the training points are calculated at ab initio MP2/6-

31++G (d, p  level. We start with the known geometry of deprotonated water clusters in 

Ref [150] and reoptimized it to obtain the most stable structure (Figure 4.2 . Then, 

centering on these structures, 51 points were randomly sampled for OH−, 5001 points for 

H3O2
−, and 6000 points for H5O3

− in the range shown in Figure 4.2. In this thesis, as a 

random number generator, the Latin hypercube sampling method is adopted to avoid 

clustering.  

 Then, we condition the training dataset so that deprotonated water clusters have the 

same energy at the coordinates 𝑹 and �̂�𝑹, where the symmetric operator �̂� are defined 

in given by the symmetric in Figure 4.3. As discussed above, the restriction to satisfy the 

molecular symmetry is that the training dataset always includes the pair of 𝑹 and �̂�𝑹 

for all the training points. Therefore, we generated symmetry-operated coordinates �̂�𝑹 

paired with the coordinate 𝑹 and added �̂�𝑹 to the training data. Finally, 51 points for 

OH−, 10,001 points for H3O2
−, and 12,000 points for H5O3

− were used as training data. 

Here, please note that the number of training points is not simply double when the 

structure is included in the training points so that 𝑹 = �̂�𝑹. Accuracy of the constructed 

PES will be discussed in Section 5.2.1. 
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FIG. 4.2. Sampling ranges for the 1 degree-of-freedom of OH− , the 9 

degree-of-freedoms of H3O2
−, and the 18 degree-of-freedoms of H5O3.  

 

 

 

FIG. 4.3. The definition of the symmetrical operator.  
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4.2. Variational Parameter Optimization 

 We numerically optimized the trial wavefunctions on Equation 2.14, where the 

number of the variational parameters is 36 for H3O
+, 441 for H5O2

+, 2025 for H7O3
+, 

6084 for H9O4
+ , 14400 for H11O5

+ , 1 for OH− , 100 for H3O2
− , and 748 for H5O3

− , 

respectively. In order to evaluate the energy gradient 𝒈 for given variational parameters, 

the VMD calculations have been performed 200,000 steps with time increment 𝛥𝑡 = 0.2 

fs. Then, the variational parameters have been updated according to Equation 2.28; the 

iteration was terminated if the absolute values of all components of the energy gradient 

𝒈 become a value less than 1.0 × 10−3 hartree bohr2. The inverse temperature of the 

system 𝛽 = 1/𝑘𝐵𝑇 was set to be 𝑇 = 100 K where 𝑘𝐵 is the Boltzmann constant.  

 Please note that, in the present study, the trial wavefunctions have been optimized for 

(H2O)𝑛H
+  and (H2O)𝑛−1OH

− , which are not isotope-substituted; the resulting 

variational parameters have also been utilized for variational path integral calculations of 

isotopologues substituted by deuterium D or tritium T. 

 

4.3. Variational Path Integral Molecular Dynamics 

 We here determine the computational conditions for the VPIMD method. We first 

investigate the imaginary time increment 𝛥𝜏 and total projection time 𝛽 to extract the 

exact ground state from the trial wavefunction, which has been optimized in Section 4.2. 

Figure 4.4 shows the total energy of the H5O2
+  as a function of the imaginary time 

increment 𝛥𝜏  for a given projection time 𝛽 = 0.02  K−1 . The total energy is 

demonstrated to show quadratic convergence on 𝛥𝜏; an approximate density operator 

with 𝛥𝜏 less than or equal to 0.0001 K-1 is found to yield numerically converged results. 
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Figure 4.5 shows the total energy as a function of the projection time 𝛽  with 𝛥𝜏 =

0.0001 K−1. We find that the projection time 𝛽 more than or equal to 0.01 K-1 attains 

convergence on the total energy. In this thesis, we adopted the imaginary time increment 

𝛥𝜏 = 0.0001 K−1  and the total projection time 𝛽 = 0.02 K−1  for all the VPIMD 

calculations; these parameters correspond to the number of imaginary time slices 𝑀 =

𝛽/𝛥𝜏 = 200. For all the clusters studied in the present study, VPIMD calculations have 

been performed from 1,000,000 to 5,000,000 steps with MD time increment 𝛥𝑡 = 0.2 

fs. The fictitious masses for the staging variables were set to be equal to the corresponding 

standard staging masses except for end-point coordinates (at 𝑠 = 0  and 𝑀   where 

𝑚′(0) = 𝑚′(𝑀) = 𝛾ep𝑚 with 𝛾ep = 4/𝑀 and physical masses of particles 𝑚. 

 

 

FIG. 4.4. Total energy of H5O2
+ as a function of the imaginary time increment 

𝛥𝜏. Open circles indicate the total energies calculated by the VPIMD method. 

The black curve represents a fitted curve by a quadratic function of 𝛥𝜏. The 

total projection time 𝛽 is set to be 0.02 K−1 for all the calculations. Error 

bars are expressed at 95% confidence level. Energy is given in units of hartree. 
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FIG. 4.5. Total energy of H5O2
+ as a function of the total projection time 𝛽. 

Open circles indicate the total energies calculated by the VPIMD method. The 

imaginary time increment 𝛥𝜏 is set to be 0.0001 K−1 for all the calculations. 

Error bars are expressed at 95% confidence level. Energy is given in units of 

hartree. 
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5. GROUND STATES of WATER CLUSTERS 

 

 

5.1. Protonated Water Clusters (H2O)𝑛H
+ 

5.1.1. Energy 

 In this section, we present the energy for the protonated water clusters, (H2O)𝑛H
+. 

Table 5.1 shows that the total energy 𝐸HA by the harmonic approximation (HA  and the 

total energy 𝐸0  by the VPIMD method. The VPIMD energy 𝐸0  has been calculated 

using the following mixed estimator, [151,152] 

 𝐸0 =
⟨Φ𝑇|�̂�𝑒

−𝛽�̂�|Φ𝑇⟩

⟨Φ𝑇|𝑒−𝛽�̂�|Φ𝑇⟩
. (5.1)  

In the beginning, we compare the total energy by our VPIMD method with that computed 

by the diffusion Monte Carlo (DMC  method [51]; the DMC calculations have been 

performed using the same OSS3 potential. The DMC energies are collected in Table 5.1 

where the entry “R.O.” indicates that the cyclic isomer was converted to the linear or 

branched isomer by spontaneous ring opening (R.O.  during the DMC calculations. The 

VPIMD energies are found to be in good agreement with the available DMC energies. 

This demonstrates the reliability of our calculations. One exception is given by the 

branched tetramer; the VPIMD energy is 2 mhartree lower than the DMC energy. As 

demonstrated in Section 5.1.3, our VPIMD calculation seems to have sampled more 
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widely in the configuration space than the previous DMC calculation; this could be 

ascribed to the source of the small discrepancy in energy. 

 

 

TABLE 5.1. The total energies for protonated water clusters (H2O)𝑛H
+ , (D2O)𝑛D

+ , 

and (T2O)𝑛T
+  up to 𝑛 = 5  calculated by the harmonic approximation, 𝐸HA and the 

variational path integral molecular dynamics (VPIMD  method, 𝐸0. The total energies 

by the diffusion Monte Carlo (DMC  method [51] are also presented for comparison. 

Energy is given in units of hartree. Statistical error in the last digits is indicated in 

parentheses (1 hartree = 627.51 kcal/mol . The labels from (a  to (l  are defined in Table 

4.1. 

 

𝐸HA 𝐸0 (DMC) 𝐸0 (VPIMD) 

(H2O)𝑛H
+ (D2O)𝑛D

+ (T2O)𝑛T
+ (H2O)𝑛H

+ (D2O)𝑛D
+ (T2O)𝑛T

+ 

(a) -1.48083  -1.49017  -1.49418  -1.482253(7) -1.48223(3) -1.49097(4) -1.49478(3) 

(b) -2.85641  -2.87261  -2.87960  -2.85862(3) -2.85856(5) -2.87390(4) -2.88055(6) 

(c) -4.21517  -4.23854  -4.24862  -4.21879(4) -4.21883(5) -4.24069(6) -4.25020(8) 

(d) -5.56869  -5.59863  -5.61156  -5.57188(9) -5.57244(5) -5.60090(7) -5.61321(8) 

(e) -5.56348  -5.59389  -5.60702  R.O. -5.56756(5) -5.59635(7) -5.60883(7) 

(f) -5.56498  -5.59487  -5.60777  -5.56962(9) -5.56930(6) -5.59754(8) -5.60969(9) 

(g) -6.91408  -6.95100  -6.96695  R.O. -6.91829(6) -6.95340(9) -6.96881(10) 

(h) -6.91389  -6.95047  -6.96627  -6.9165(1) -6.91848(6) -6.95321(8) -6.96830(9) 

(i) -6.91086  -6.94777  -6.96371  R.O. -6.91527(11) -6.95044(13) -6.96573(14) 

(j) -6.91068  -6.94758  -6.96353  R.O. -6.91553(9) -6.95057(9) -6.96578(11) 

(k) -6.91010  -6.94692  -6.96283  R.O. -6.91438(7) -6.94953(8) -6.96483(10) 

(l) -6.91046  -6.94724  -6.96311  -6.9156(2) -6.91570(12) -6.95039(9) -6.96541(13) 

 

 

We next discuss the structural stability for three isomers of the tetramer and six 

isomers of the pentamer. Regarding the tetramer, the minimum potential energy 𝑉min 

indicates the following stability order: 

linear ≈ cyclic > branched. 
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Here, the energy is lowered to the right. The spatially compact isomer, branched one, has 

the lowest potential energy. Other isomers, cyclic and linear, have almost the same energy, 

the difference is found to be 7 × 10−5 hartree (= 0.04 kcal/mol . Considering the nuclear 

quantum effect by the standard harmonic approximation, the order changes to be 

cyclic > linear > branched. 

The cyclic isomer is predicted to have higher total energy, although both isomers have 

almost the same 𝑉min. The higher total energy of the cyclic isomer is due to the larger 

kinetic energy arising from the larger curvature around the potential energy minimum in 

comparison to the linear one. Regarding the VPIMD results, the total energy 𝐸0, which 

fully includes the anharmonic effect, is found to be the following order: 

cyclic > linear > branched. 

The trend is the same with the HA prediction, 𝐸HA. It is worth noting that the VPIMD 

energy is systematically lower than the HA counterpart for all the H9O4
+ isomers. This 

difference comes from the anharmonicity of the potential energy surface; as expected, the 

harmonic approximation is not enough to quantitatively describe the floppy molecular 

systems. More importantly, as demonstrated in Section 5.1.3, the nuclear wavefunction 

of the clusters is delocalized in the configuration space so as to cover multiple local 

minima; this type of effect must be included for quantitative prediction in addition to the 

anharmonicity around the single potential energy minimum. 

 Next, the structural stability of six isomers of the pentamer is discussed. Regarding 

the minimum potential energy 𝑉min, the isomers are sorted in the following order: 

pentagonal ≈ linear > cyclic[b] ≈ cyclic[a] > branched > kitelike. 

The energy differences between the pentagonal and linear structures and between the 

cyclic[b] and cyclic[a] structures are both quite small. Taking account of the nuclear 
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quantum effect by the HA, the order becomes as follows: 

pentagonal > linear > cyclic[b] > cyclic[a] > branched > kitelike. 

Nearly energetically degenerate isomers are well separated by reflecting the curvature 

around the potential energy minimum. Then, the VPIMD energies give the following 

order: 

pentagonal > cyclic[a] > cyclic[b] > linear > kitelike > branched. 

As in the case of the tetramer, the VPIMD energy is systematically lower than the HA 

prediction. Unlike the tetramer, however, the order of the structural stability partly 

changes for the pentamer. Although the HA results predict that the kitelike isomer is the 

most stable, the VPIMD results show that the branched isomer is the most stable. In 

addition, the spatially loose linear structure is found to has lower total energy than the 

compact structures, the cyclic[a], cyclic[b], and pentagonal. Thus, the simple harmonic 

approximation cannot predict the properties of the pentamer even in a qualitative level 

for the pentamer. 

 Finally, we discuss the isotope effects on the structural stability of the protonated 

water clusters. Since substituting the hydrogen with heavier isotopes generally reduces 

the spatial delocalization of the nuclear wavefunction, the total energy is expected to be 

lower with increasing mass of the isotope. Indeed, as shown in Table 5.1, both the HA 

and the VPIMD results show this trend for all the clusters studied. The harmonic 

approximation predicts that the stability order of the isomers does not change for the 

tetramer and the pentamer by substituting the hydrogen atom with the deuterium or tritium. 

Likewise, the stability order regarding the isomers of the tetramer does not change by the 

isotopic substitution even when the anharmonic effect is fully accounted for by the 

VPIMD method. On the other hand, the deuteration of the pentamer changes the stability 
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order of the isomer into 

pentagonal > linear > cyclic[b] = cyclic[a]＞branched = kitelike, 

where the symbol = indicates that both structures have the same total energy within the 

statistical error. The tritiation also changes the stability order as follows: 

pentagonal > linear > cyclic[b] = cyclic[a]＞branched > kitelike. 

These behaviors demonstrate that the stability order approaches that of the minimum 

potential energy by the isotopic substitution. 

 

5.1.2. Hydrogen Bonds 

  It is widely known that there are two important structural motifs for the protonated 

water clusters. One is given by complexes including the hydronium ion, H3O
+; the Eigen 

cation, H3O
+(H2O)3 [153,154], provides an important example. In the present study, 

the structure containing the motif of the H3O
+ cation is called the Eigen structure. The 

other is given by the Zundel cation, H5O2
+, where a proton is shared by two neighboring 

water molecules; we call the structure containing the motif of the H5O2
+  cation the 

Zundel structure [155,156]. It is worth mentioning that the hydrogen bond associated with 

the shared proton in the Zundel cation is known to be shorter than the standard hydrogen 

bond, which is categorized into the low-barrier hydrogen bond [157]. The average 

hydrogen bond length calculated by the VPIMD method is summarized in Figure 5.1. The 

structures (b), (f), and (k), which are presented in Figure 4.1, are classified into the Zundel 

structure and the others (c), (d), (e), (g), (h), (i), (j), and (l) in Figure 4.1 into the Eigen 

one. 
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 To precisely discuss the hydrogen bond, two types of the hydrogen bond are 

introduced; one is defined between the structural motif of H3O
+ or H5O2

+ and water 

molecules coordinated to the motif. For the Zundel structure, an additional type of the 

hydrogen bond is defined between the shared proton and neighboring oxygens bonded to 

the proton. The former bond length is denoted by 𝑅1 and the latter by 𝑅2. While the  

 

 

 

FIG. 5.1. Average bond lengths of protonated water clusters evaluated by the 

VPIMD calculations. Two types of the bond, 𝑅1  and 𝑅2  are defined. The 

structures (b , (f , and (k  in Figure 4.1 are classified into the Zundel structure 

and others (c , (d , (e , (g , (h , (i , (j , and (l  in Figure 4.1 are classified into the 

Eigen structure. Blue circles, orange rhombus, and gray bars indicate the bond 

lengths calculated for (H2O)𝑛H
+ , (D2O)𝑛D

+ , and (T2O)𝑛T
+ , respectively. 

Yellow triangles indicate the associated bond lengths evaluated for the potential 

energy minimum structure. Dashed line in the lower-left panel is drawn for the 

bond length = 2.91 bohr as an aid to the eye. Length is given in units of bohr (1 

bohr = 0.5292 Å . 
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hydrogen bonds contained in the Eigen structures are characterized by 𝑅1, those in the 

Zundel structures by 𝑅1 and 𝑅2. Definition of the bond lengths is given pictorially in 

Figure 5.1. We first discuss nuclear quantum effects on the structure (b), the Zundel cation, 

H5O2
+ . The hydrogen bond is found to become longer compared with the minimum 

potential energy structure; in addition, substituting heavier isotopes of the hydrogen 

shortens the hydrogen bonds. This trend is consistent with the observation in the previous 

study [158]. Regarding the larger size Zundel structures (f) and (k), the hydrogen bond 

length evaluated by the VPIMD calculations is found to be longer about 0.07~0.15 bohr 

than the minimum potential energy structure. Similar trend is found for the hydrogen bond 

in the Eigen structures. This clearly shows the importance of the anharmonic effect for 

all the clusters studied. It is interesting to mention that the hydrogen bond length 𝑅1 for 

the Eigen structures can be classified into two ranges 2.72 < 𝑅1 < 2.89 and 3.06 <

𝑅1 < 3.12 bohr. It is found that the former corresponds to the hydronium ion coordinated 

by two water molecules and the latter to the ion coordinated by three water molecules. 

On the other hand, the hydrogen bond lengths 𝑅1 and 𝑅2 are mostly independent for 

the Zundel structures studied. Regarding the isotope effect, as shown in Figure 5.1, 

substituting heavier hydrogen isotopes is found to make the hydrogen bonds of the Eigen 

and Zundel structures shorter, as expected.  

 

5.1.3. Nuclear Wavefunction in Configuration Space 

 In order to characterize the multidimensional nuclear wavefunction in the 

configuration space, we have applied the inherent structure analysis [159–161] to the 

VPIMD trajectories. As seen in the Section 2.4, configurations at the imaginary time 𝜏 =

𝛽/2 are distributed according to the exact nuclear wavefunction when the projection time 
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𝛽  is long enough. Each structure at the imaginary time 𝜏 = 𝛽/2  along the VPIMD 

trajectory can be mapped onto the nearest local potential energy minimum in the 

configuration space using the steepest descent minimization method. The obtained 

structures are classified by the topology of the hydrogen bonds and summarized in Table 

5.2.  

 We first discuss the nuclear 

wavefunction of the clusters containing 

lightest hydrogen isotopes. Both for the 

H3O
+  and H5O2

+ , a single inherent 

structure is found, indicating the nuclear 

wavefunction is well localized around 

the minimum energy structure. For the 

trimer, three inherent structures are 

found. Each structure is characterized by 

the same topology of the hydrogen 

bonds; the obtained inherent structures 

are interconverted by rotating the torsion 

angle around the hydrogen bond. As shown in Figure 4.1, several topologically 

distinguishable isomers exist for the larger clusters. Regarding the tetramer, there are 

three isomers; each isomer is characterized by several inherent structures. The linear 

isomer has a larger number of inherent structures than the cyclic and branched isomers, 

due to the structural flexibility along the hydrogen bonding chain. For the pentamer, the 

wavefunction increases the complexity in the configuration space. As in the case of the 

tetramer, the linear isomer has higher flexibility than other spatially compact isomers and 

TABLE 5.2. Number of types of inherent 

structures belonging to each isomer for 

(H2O)𝑛H
+, (D2O)𝑛D

+, and (T2O)𝑛T
+. 

cluster  

size 𝑛 
(H2O)𝑛H

+ (D2O)𝑛D
+ (T2O)𝑛T

+ 

1 1 1 1 

2 1 1 1 

3 3 3 3 

4 branched 3 3 3 

4 cyclic 3 2 2 

4 linear 8 7 4 

5 kitelike 4 3 3 

5 branched 7 7 5 

5 cyclic[a] 4 4 3 

5 cyclic[b] 4 3 3 

5 pentagonal 3 3 2 

5 linear 10 8 7 

 



- 61 - 

 

its nuclear wavefunction is delocalized to cover many local minima in the configuration 

space.  

 

 

FIG. 5.2. Overlaying snapshots of inherent structures belonging to the same isomer. The 

labels from (a  to (l  are defined in Table I. The inherent structures were obtained using 

instantaneous structures of the (H2O)𝑛H
+  at the imaginary time 𝛽 2⁄   along the 

variational path integral molecular dynamics trajectory. 
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 In order to visualize the difference between the inherent structures, we overlay all the 

inherent structures belonging to the same class of the hydrogen bonding topology to show 

in Figure 5.2. In the case of spatially compact isomers, molecules at the edge of the 

clusters take different torsion angles around hydrogen bonds to form a group of inherent 

structures. On the other hand, the nuclear wavefunctions of spatially flexible structures 

have more diversity in inherent structures than those of the compact structures.  

 We next examine the population of the inherent structures reflecting the probability 

of finding the system in the corresponding basin in the potential energy landscape. In 

Figures 5.3 and 5.4, we present the population visiting in each potential energy basin. The 

inherent structures belonging to each isomer are labeled by Roman numbers; the smaller 

number is assigned to lower energy inherent structure. For the trimer, the lowest energy 

structure has the highest population; other two local minima are occupied by less than 

15 %. For the tetramer, the branched and cyclic isomers show a similar trend as seen in 

the trimer; the lowest energy structure has the highest population, and the population 

decreases with increasing the energy. On the other hand, the linear isomer shows more 

diverse behavior. The overall trend is similar with the branched and cyclic isomers, 

however, the populations of the structures (III , (IV , (VI , (VII , and (VIII  are 

vanishingly small. This indicates that quantum mechanical tunneling from the 

neighboring stable structures in the configuration space would be suppressed; this could 

be ascribed to the complexity of the tunneling path from the neighbors to the above 

structures. For the pentamer, the kitelike, branched, cyclic[a], cyclic[b], and pentagonal 

isomers show a similar trend with the trimer and the branched and cyclic tetramers. On 

the other hand, the linear pentamer obeys the similar trend seen in the linear tetramer; 

several inherent structures (II , (III , (VI , (VII , (VIII , (IX , and (X  are occupied in 
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vanishingly small rates. It is worth noting that for the branched, cyclic[b], and liner 

pentamers, lower energy inherent structures are found compared with the previous DMC 

results. This indicates that our VPIMD calculations could sample more widely in the 

configuration space than the DMC calculations, though the energy difference between the 

present and previous stable structures is rather small, about sub mhartree as seen in Table 

4.1. 

 Finally, we discuss the isotope effects on the wavefunction. Table 5.2 shows that the 

variety of the inherent structure decreases with increasing the hydrogen mass for all the 

cluster sizes; the nuclear wavefunction tends to be localized for the heavier isotopes. 

Figures 5.3 and 5.4 show that while the deuteration or the tritiation increases the 

population of the most stable structure, the populations for other structures are decreased 

or vanished.  
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FIG. 5.3. Population of inherent structures for H7O3
+ and each isomer of H9O4

+ and 

associated isotope effect by deuterium (D  or tritium (T . The labels from (c  to (f  

are defined in Table 4.1. The inherent structures belonging to the trimer or each 

isomer of the tetramer are labeled by Roman numbers; the smaller number is assigned 

to lower energy inherent structure. Snapshot of each inherent structure is presented 

(1 hartree = 627.51 kcal/mol .  
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FIG. 5.4. Population of inherent structures for each isomer of H11O5
+and associated 

isotope effect by deuterium (D  or tritium (T . The labels from (g  to (l  are defined 

in Table 4.1. The inherent structures belonging to each isomer of the pentamer are 

labeled by Roman numbers; the smaller number is assigned to lower energy inherent 

structure. Snapshot of each inherent structure is presented (1 hartree = 627.51 

kcal/mol . 
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5.2. Machine Learning Potential Energy Surface 

5.2.1. Accuracy vs Number of Training Points 

 We investigated the prediction accuracy of a machine-learning PES for potential 

energies and forces. First, the variational path integral molecular dynamics (VPIMD  

simulation was preliminarily executed 106 times to generate a trajectory. Then, the 

coordinate data were extracted from the trajectory for every 100 points, and the potential 

energy and force were calculated with ab initio MP2 at the 6-31 ++ G (d, p  level. The 

prediction accuracy (RMSE  of machine learning PES for the generated 104 test data is 

shown in Table 5.3. The units are kcal/mol for energy and kcal/mol/Å for force. Here, the 

force was calculated analytically from the coordinate derivative of the kernel function in 

Equation 3.60. 

 

TABLE 5.3. RMSEs for 10,000 testing points extracted from the VPIMD trajectory 

computed for the deprotonated water clusters OH−, H3O2
−, H5O3

−, and fragmented 

H5O3
−. 

Molecule 
Number of 

training points 𝑁 

RMSE for energy RMSE for force 

cm-1 kcal/mol cm-1/Å kcal/mol/Å 

OH− 51 0.4 0.001 6.3 0.018 

H3O2
− 10001 4.2 0.012 28.8 0.082 

H5O3
− 12000 83.5 0.239 451.6 1.3 

Fragmented H5O3
− 12000 18.3 0.052 80.4 0.23 

 

 The RMSEs for energy and force are 0.001 kcal/mol and 0.02 kcal/mol/Å for OH−, 

and 0.01 kcal/mol and 0.08 kcal/mol/Å for H3O2
−, respectively, as shown in Table 5.3; 

therefore, the accuracy can be regarded as sufficiently high. However, the RMSE for 

H5O3
− exceeds 1.0 kcal/mol/Å for the force and is therefore expected not to be sufficient 

to describe the chemical phenomena precisely. To solve this problem, we applied our 

fragmentation approach to the potential energy surface of the protonated water trimer, 
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H5O3
−. In this approach, as shown in Figure 5.5, the potential energy is represented by the 

sum of the energies of two fragments 𝑸1  and 𝑸2  and one connecting layer 𝑸3 , as 

described in Equation 3.66. The RMSEs for energy and force were then improved from 

0.24 to 0.05 kcal/mol and from 1.3 to 0.23 kcal/mol/Å, respectively, without changing the 

number of training points. Therefore, the VPIMD simulations were performed using the 

most accurate machine-learning PES for 51, 10001, and 12000 points.  

 

 

FIG. 5.5. Conceptual diagram of the fragmentation approach. 

 

 

5.2.2. Accuracy vs Electronic Structure Calculations 

 We employed the MP2/6-31++G (d, p  to generate training points for the GPR. 

However, it is unknown if the MP2/6-31++G (d, p  can describe the PES for the 

deprotonated water clusters with high accuracy. Thus, to prove the validity of our 

simulation, we investigate the dependency between the VPIMD results and the electronic 

structure calculations. GPR PESs for HF, B3KYP, and CCSD(T  were constructed and 

the VPIMD simulations were performed on these PESs. The results are shown in Figure 

5.6, where the VPIMD results indicate the ground state vibrational energy. The MP2 

method is close in value to the CCSD(T  and is therefore sufficiently accurate. In contrast, 

HF overestimates the ground state energy and DFT (B3LYP  underestimates the ground 

state energy. Here, it is interesting that the ground-state energy given by the HF method 
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has an extremely higher value than by the CCSD(T  method even though it is generally 

considered to give more than 99% of the experimental value as introduced in Section 3.1. 

As introduced in Section 3.1, the HF method generally gives more than 99% of the 

experimental value. It is also interesting results that the underestimation by the 

DFT(B3LYP  was as we expected in Section 3.1. Therefore, we conclude that it is difficult 

to utilize the PESs generated by the low-level electronic structure calculations to 

quantitively estimate the nuclear ground-state properties. In addition, we also examined 

the dependence on the basis set. As shown in Figure 5.7, our choice, 6-31++G(d, p , 

results in high accuracy, similar to the results from the higher-level basis sets. 

 

 

 

FIG. 5.6. Dependency between the variational path integral 

molecular dynamics (VPIMD  results and the electronic structure 

calculations. 
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FIG. 5.7. Dependency of the variational path integral molecular dynamics 

(VPIMD  results on the quality of the basis set. 

 

 

5.2.3. Computational Cost 

 We compared the computational time between our GP model and the ab initio 

calculations. In the present study, as the VPIMD sampling was performed 106 times for 

200 beads, so the calculations of potential energy and force were required 2 × 108 times 

in total. Here, we estimated the computational time when these calculations were 

performed by using 8-cores of the Intel Core i7-9700K: the computational cost for ab 

initio MP2/6-31++G(d, p  was found to be 200 days for OH−, 1,700 days for H3O2
−, and 

10,000 days for H5O3
−. In contrast, the prediction cost for the GP model is 𝒪(𝑛) and 

was found to require only 0.5 hours for OH− , 5.0 hours for H3O2
− , and 20 hours for 

H5O3
−. This showed that the GP model enabled approximately 10,000 times faster VPIMD 

simulation.   
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5.3. Deprotonated Water Clusters (H2O)𝑛−1OH
− 

5.3.1.  Energy 

 In this section, we discuss the nuclear ground-state energy of the deprotonated water 

clusters (H2O)𝑛−1OH
−(𝑛 = 1 − 3). The total energies for deprotonated water clusters 

(H2O)𝑛−1OH
− , (D2O)𝑛−1OD

− , and (T2O)𝑛−1OT
−  up to 𝑛 = 3  calculated by the 

harmonic approximation, the Numerov method, and the VPIMD method are summarized 

in Table 5.4, where the VPIMD energy 𝐸0 has been calculated using the mixed estimator 

as expressed in Section 5.1.1. First, the energies computed by the Numerov method are 

found to be equivalent to by the VPIMD method within the error margin. This fact clearly 

shows that our VPIMD calculations can project out the exact ground-state according to 

Equation 2.30.  

 

Table 5.4. The total energies for deprotonated water clusters 

(H2O)𝑛−1OH
− , (D2O)𝑛−1OD

− , and (T2O)𝑛−1OT
−  up to 𝑛 = 3 

calculated by the harmonic approximation, 𝐸HA, the Numerov method, 

𝐸0 , and the variational path integral molecular dynamics (VPIMD  

method, 𝐸0 . The unit of energy is the kcal/mol (1 hartree = 627.51 

kcal/mol . The statistical error of the last digit is indicated in parentheses. 

 𝐸HA 𝐸0 by Numerov 𝐸0 by VPIMD 

OH−(𝑛 = 1) 5.45  5.40  5.40(1) 

OD−(𝑛 = 1) 3.96  3.94  3.94(1) 

OT−(𝑛 = 1) 3.33  3.31  3.31(1) 

H3O2
−(𝑛 = 2) 20.11  - 19.13(3) 

D3O2
−(𝑛 = 2) 14.78  - 14.13(2) 

T3O2
−(𝑛 = 2) 12.48  - 11.97(2) 

H5O3
−(𝑛 = 3) 36.57  - 35.64(2) 

D5O3
−(𝑛 = 3) 26.85  - 26.38(2) 

T5O3
−(𝑛 = 3) 22.65  - 22.32(1) 
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 Then, for all the clusters, the VPIMD calculation gives the lower energy than the 

harmonic approximation, 𝐸HA > 𝐸0 . Therefore, we expect that deprotonated water 

clusters are strongly affected by the anharmonic effects and the harmonic approximation 

cannot analyze the quantum properties of these clusters, quantitatively. Moreover, we 

focus on the isotope effects on the total energy. As expected in Section 5.1.1, the total 

energies are reduced by replacing the hydrogen atoms with the Deuteriums or Tritiums. 

Therefore, it is considered that isotope substitution with a heavy atom suppresses the 

nuclear quantum effects.  

 Here, the other important result is that the ground state energies are much higher than 

the thermodynamic energy. For example, the total energies for (H2O)𝑛−1OH
−  are 

5.40(1  kcal/mol (1,359 K/atom  for OH−, 19.13(3  kcal/mol (1,925 K/atom  for H3O2
−, 

and 35.64(2  kcal/mol (2,242 K/atom  for H5O3
− . These facts show that the PESs we 

constructed in Section 5.2 have effective ranges for not only our VPIMD simulation but 

also global applications. 

 

5.3.2. Hydrogen bonds and Nuclear wavefunctions 

 In this section, we investigate the hydrogen bond length and the nuclear wavefunction 

of deprotonated water clusters. However, in contrast to the protonated water clusters, it is 

considered that nuclear wavefunctions of protonated water clusters include only the small 

number of inherent structures because the molecular degree of freedom is small. Thus, 

other analysis would be required to visualize the spread of the nuclear wavefunctions. In 

the present thesis, we employed the simplest approach plotting the nuclear wavefunction 

in the Cartesian space. Here, the hydrogen bond lengths and the nuclear wavefunctions 
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of deprotonated water clusters H3O2
− and H5O3

− are shown in Table 5.5 and Figure 5.8, 

respectively.  

 For H3O2
− in Figure 5.9 (a , the wavefunction of the gray hydrogen is delocalized 

widely around the O–O axis. In addition, we examine the hydrogen atom shared between 

two oxygens. As shown in Table 5.5, the hydrogen atom is biased to one oxygen when 

the nuclear quantum effect is not considered: the distances are 1.397 Å and 1.094 Å, 

respectively. However, the hydrogen bond lengths calculated from the nuclear 

wavefunction are 1.257 and 1.255 Å, respectively, which indicates that the central 

hydrogen is shared equally between the two oxygen atoms. Moreover, the nuclear 

quantum effect increases 𝑅1 from 1.245 to 1.256 Å, similar to the case of protonated 

water clusters. In contrast, the average bond length between two oxygens 𝑅2 did not 

change. 

 We next discuss the nuclear wavefunctions and bond lengths for H5O3
−. The nuclear 

wavefunction in Figure 5.9 (c  indicates that the hydrogen atom is widely delocalized 

around the O–O axis; this trend is the same as H3O2
−. On the other hand, unlike H3O2

−, 

the hydrogen between the oxygen atoms is unevenly distributed to the outer oxygen even 

if the nuclear quantum effect is considered. Interestingly, the hydrogen bond length 𝑅1 

is reduced by the consideration of the nuclear quantum effect.  

 

  



- 73 - 

 

TABLE 5.5. Bond lengths of deprotonated water clusters by the 

VPIMD calculations, where the label “min” indicates the bond 

lengths evaluated for the potential energy minimum structure. 

The label H, D, and T indicate the bond lengths calculated for 

(H2O)𝑛−1OH
− , (D2O)𝑛−1OD

− , and (T2O)𝑛−1OT
− , 

respectively. Four types of the bond, 𝑅OH1, 𝑅OH2, 𝑅1 and 𝑅2 

are defined in Figure 5.8. Length is given in units of Å (1 bohr = 

0.5292 Å . 

cluster size min H D T 

 

H3O2
− 

(𝑛 = 2) 

𝑅OH1 1.397  1.257  1.254  1.256  

𝑅OH2 1.094  1.255  1.248  1.239  

𝑅1 1.245  1.256  1.251  1.247  

𝑅2 2.489  2.489  2.486  2.481  

H5O3
− 

(𝑛 = 3) 

𝑅1 1.548  1.535  1.543  1.546  

𝑅2 2.575  2.575  2.579  2.583  

 

 

 
FIG 5.8. Definition for four types of the bond length, where 𝑅OH1, 

𝑅OH2, and 𝑅1 correspond to the hydrogen bond length and 𝑅2 is the 

bond length between oxygens. 
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FIG. 5.9. Quantum fluctuations in the H3O2
− and H5O3

− structures, where red, 

gray, and blue dots indicate oxygen, hydrogen, and hydrogen-bonding hydrogen, 

respectively. For H3O2
−, one of oxygens in the origin, the two oxygen atoms 

sharing the proton on the X axis, and a hydrogen atom adjacent to the atom at 

the origin are in the XY plane. For H5O3
−, a third oxygen is in the XY plane. 

 

 

 Then, we considered the isotopic substitution. As expected in Section 5.3.1, it is 

considered that isotope substitution with a heavy atom suppresses the spread of the 

nuclear wavefunction. To clarify this, we have also analyzed the nuclear wavefunction 

after the isotopic substitution. For D3O2
−, the isotope substitution does not change the 

trend for the delocalization of hydrogen around the O-O axis. However, with a decrease 

in the total energy, the distribution of the hydrogen around the activation state (indicated 

by the arrow in Figure 5.9 (a  and (b   is decreased. In addition, the bond length between 
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the shared hydrogen and the oxygen atoms, 𝑅1, was decreased to 1.251 Å by isotope 

effects. We further confirmed that the tritiation reduced the bond length 𝑅1 to 1.247 Å. 

Then, when investigating the distance between the two oxygen atoms, the bond lengths 

𝑅2 were 2.489 Å for hydrogen, 2.486 Å for deuterium, and 2.481 Å for tritium, and were 

reduced by the isotope effects as seen for the bond length between the central hydrogen 

and oxygen.  

 For H5O3
−, decreasing the total energy suppress the spread of the hydrogen around 

the O–O axis and make the rotation more difficult; for example, Figure 5.9 (d  shows that 

the gray hydrogens on the right side are only distributed in the range over zero (> 0 Å . 

In addition, the bond length 𝑅1 is increased to 1.543 Å by the deuteration and to 1.546 

Å by the tritiation in contrast to the case of H3O2
−. Then, we also investigated the bond 

length between oxygens: the lengths were 2.575 Å for H5O3
−, 2.579 Å for D5O3

−, and 

2.580 Å for T5O3
−, and followed an increasing trend. 

 

5.4. Difference between (H2O)𝑛H
+ and (H2O)𝑛−1OH

− 

 We finally discuss the differences between protonated and deprotonated water 

clusters only up to 𝑛 = 3. For the total energy, both protonated and deprotonated water 

clusters are strongly affected by the anharmonic effect and there was no explicit difference. 

In contrast, some differences were found in the results of the bond length and the nuclear 

wavefunction.  

 The first difference is that the hydrogen bond length 𝑅1 of the H5O2
− is decreased 

by the nuclear quantum effects. As demonstrated in Sections 5.1.2 and 5.3.2, the hydrogen 

bond length for protonated water clusters is increased in the same situation. This reason 

can be considered to be in the number of protons. As shown in Figure 5.10, the number 
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of protons related to hydrogen bond length is higher in protonated water clusters than in 

deprotonated water clusters: In other words, the protonated water clusters are expected to 

be easily affected by the spatial spread of the proton's wavefunction. Here, as the protons 

clearly repel each other, it is expected that the hydrogen bond of protonated water clusters 

was lengthened by considering nuclear quantum effects. In contrast, in the case of 

deprotonated water clusters, it can be predicted that the hydrogen bond was shortened by 

the nuclear quantum effect because the attraction between the proton and oxygen worked 

stronger than the repulsion between protons. 

 The second one is that the ionic core of the H3O2
−  was changed from OH−  to 

H3O2
− by the nuclear quantum effects. Here, it is important to note that the ionic core in 

all other clusters was kept even if the nuclear quantum effect is considered, where H3O
+, 

H5O2
+, and OH− are known as the typical ionic core. This result clearly indicates the 

possibility that the nuclear quantum effects change the structure of the ionic core. 

 The third point is in the spread of nuclear wavefunctions. To visualize this, we plot 

the nuclear wavefunctions of H5O2
+ , H7O3

+ , H3O2
−,  and H5O3

−  in Figure 5.11. 

Comparing Figures 5.11 (a  and (b , the distributions of the gray hydrogen are different: 

its range is approximately 360° for H5O2
+  and 180° for H3O2

− . In contrast, the gray 

hydrogens of H7O3
+  and H5O3

−  are distributed in the range of about 180° and 360°, 

respectively. In addition, for H7O3
+, the distribution for gray hydrogen neighboring to the 

origin's oxygen is clearly restricted when comparing with the H5O3
− . The reason is 

expected to be in the most stable structure at the potential energy minima: indeed, Figure 

5.12 shows that the gray hydrogen of H7O3
+ is unstable on the O-O axis. 
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FIG. 5.10. Conceptual figure for the proton related to the hydrogen 

bond length. 

 

 

 

FIG. 5.11. Nuclear wavefunctions in (a  H5O2
+, (b  H3O2

−, (c  H7O3
+, and (d  

H5O3
−  structures, where red, gray (orange , and blue dots indicate oxygen, 

hydrogen, and hydrogen-bonding hydrogen, respectively. For H5O2
+ and H3O2

−, 

one of oxygens in the origin, the two oxygen atoms sharing the proton on the X 

axis, and a hydrogen atom adjacent to the atom at the origin are in the XY plane. 

For H7O3
+ and H5O3

−, a third oxygen is in the XY plane. 
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FIG. 5.12. Views of the side of the stable structures for H7O3
+ 

and H5O3
− at the potential energy minima, where the atomic 

colors correspond to Figure 5.11. 
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6. CONCLUSION 

 

 

6.1. Protonated Water Clusters 

 We have applied the variational path integral molecular dynamics (VPIMD  method 

to the protonated water clusters (H2O)𝑛H
+ (𝑛 = 1 − 5). Ground state energetics and 

structural fluctuation of the clusters were analyzed. The harmonic approximation was also 

applied to the clusters to extract the anharmonic effect using the numerically exact total 

energy obtained by the VPIMD method. Remarkable anharmonic effect has been found 

for the protonated water clusters studied. The anharmonicity for the clusters for 𝑛 ≥ 3 

is characterized not only by a single potential energy minimum, but also by multiple 

potential energy minima, as revealed by the inherent structure analysis. Indeed, the 

nuclear wavefunction for the clusters was found to be delocalized in the configuration 

space so as to cover multiple local minima around the specified potential energy minimum. 

Regarding the isotope effect, it has been demonstrated that substituting the hydrogen atom 

with a heavier isotope spatially localizes the nuclear wavefunction in the configuration 

space and reduces the quantum kinetic energy, changing the stability order for the isomers 

of the pentamer. 
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6.2. Machine Learning Potential Energy Surface 

 For deprotonated water clusters, we constructed potential energy surfaces to describe 

the interatomic interactions using Gaussian process regression (GPR  in advance of the 

VPIMD simulations. Here, for the construction of the machine-learning PES (ML-PES , 

two algorithms we developed were utilized in order to solve two problems on the GPR. 

Problem (1) is that the computational cost is exponentially increased with increasing 

the number of training data. For this problem, we have developed the fragmentation 

approach and succeed to improve the RMSE without the use of much training data. 

Problem (2) is that the ML-PES constructed by the GPR does not satisfy the molecular 

symmetry. To solve this problem, we have found two conditions to corporate the 

molecular symmetry to the GPR algorithm. 

As a result, we succeed to obtain sufficiently accurate MLPESs with an RMSE of less 

than 1.0 kcal/mol (/Å . In addition, we found that our MLPES can calculate potential 

energy 10,000 times faster than ab initio MP2 level calculations. 

 

6.3. Deprotonated Water Clusters 

 We applied the VPIMD method and MLPESs to the deprotonated water clusters, 

(H2O)𝑛−1OH
− (𝑛 = 1 − 3), to analyze their nuclear quantum properties such as energy, 

hydrogen bond, and nuclear wavefunction. For the total energy, it was found that 

deprotonated water clusters are also affected strongly by the anharmonic effects similar 

to the case of protonated water clusters. However, as discussed in Section 5.4, we found 

some differences between protonated and deprotonated water clusters in hydrogen bonds 

and nuclear wavefunctions. For the hydrogen bond, follows were mainly suggested: (1  
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the relationship between the number of protons and the hydrogen bond length and (2  the 

possibility that nuclear quantum effects change the ionic core. For the nuclear 

wavefunction, it was clarified that the spread of nuclear wavefunctions is different 

between protonated and deprotonated water clusters. Regarding isotope effects, it has 

been demonstrated that isotopic substitution spatially localizes the nuclear wavefunction 

similar to protonated water clusters; in contrast to the trend of the protonated water 

clusters, the hydrogen bond length for H5O2
− was reduced. 

 

6.4. Summary of This Thesis 

 Finally, we conclude this thesis. We have exactly investigated the ground-state 

natures of protonated and deprotonated water clusters using the VPIMD method. 

Regarding the interatomic interaction, the OSS3 PES was employed for the protonated 

water clusters; for deprotonated water clusters, we newly suggested two machine learning 

algorithms to solve problems on conventional GPR and applied them to construct the 

MLPES. The resulting VPIMD simulation suggested the following possibilities for the 

ground state: (1  the structural stability is changed by anharmonic effects, (2  anharmonic 

effects are characterized not only by a single potential energy minimum but also by 

multiple potential energy minima, (3  nuclear quantum effects increase or decrease the 

hydrogen bond length depending on the number of near protons, (4  the structure of the 

ionic core is changed by the nuclear quantum effects, (5  isotopic substitution spatially 

localizes the nuclear wavefunction, and (6  isotopic substitution makes the hydrogen bond 

length closer to the structure with the minimum potential energy. We believe that our 

results help the interpretation of the ground state nature of protonated and deprotonated 

water clusters.   
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7. APPENDIX 

 

 

7.1. Forth order Trotter expansion 

 The fourth-order approach for the Trotter decomposition is one of the most common 

technics to construct the short-time propagators [106–108]. However, the computation of 

the commutator between �̂� and �̂� is required in contrast to the second-order approach 

as following form: 

 𝑒−2𝛽�̂� = 𝑒−2𝛽(�̂�+�̂�) = 𝑒−𝛽𝑉𝑒/3𝑒−𝛽�̂�𝑒−4𝛽𝑉𝑂/3𝑒−𝛽�̂�𝑒−𝛽𝑉𝑒/3 + 𝑂(𝛽5),  (7.1)  

where 

 �̂�𝑒 = �̂� +
𝛼

6
𝛽2 [�̂�, [�̂�, �̂�]],  (7.2)  

 
�̂�𝑂 = �̂� +

(1 − 𝛼)

12
𝛽2 [�̂�, [�̂�, �̂�]],  (7.3)  

and 𝛼 is an arbitrary parameter within the range [0, 1] and generally conditioned so that 

the variational energy is minimized.  

 

7.2. Neural Network and Gaussian Process 

 A neural network (NN  with a single hidden layer (𝑁hl = 1 , in principle, agrees with 

Gaussian process (GP  in the limit of infinity of the artificial neuron (𝑁an = ∞  [143,144]. 

For the detailed understanding, we briefly explain the proof of this in this section. An 



- 83 - 

 

output of the NN, �̂�, corresponding to an input vector 𝑹 is assumed to be given by: 

 

�̂� =∑𝑣𝑖𝜙𝑖(𝑹)

𝑁an

𝑖=1

,  (7.4)  

 
𝜙𝑖(𝑹) = 𝑓 (𝑏 +∑𝑊𝑖𝑗𝑅𝑗

𝐷

𝑗=1

), (7.5)  

where 𝑣𝑖 and 𝑊𝑖𝑗 denote elements of weight constant vector and matrix, respectively, 

𝑏  denotes the bias parameter, and the function 𝑓(∙)  is the nonlinear transformation. 

Moreover, let 𝑊, 𝑣, and 𝑏 are independent and identically distributed with zero mean 

and 𝜎𝑊, 𝜎𝑣, and 𝜎𝑏 variance, respectively. 

 𝑊𝑖𝑗~𝒩(0, 𝜎𝑊), 𝑣𝑖~𝒩(0, 𝜎𝑣/𝑁an), 𝑏 = 𝒩(0, 𝜎𝑏) (7.6)  

 Then, in order to investigate the relationship between the NN and GP, we discuss the 

mean and variance of the distribution that the output of NN follows. The mean for 

distribution �̂� of Equation 7.4 is given by: 

 
𝔼[�̂�] = 𝔼 [∑𝑣𝑖𝜙𝑖(𝑹)

𝑁an

𝑖=1

] =∑𝔼[𝑣𝑖𝜙𝑖(𝑹)]

𝑁an

𝑖=1

=∑𝔼[𝑣𝑖]𝔼[𝜙𝑖(𝑹)]

𝑁an

𝑖=1

= 0 (7.7)  

using 𝔼[𝑣𝑖] = 0 and the variance is evaluated by: 

𝔼[�̂��̂�′] − 𝔼[�̂�]𝔼[�̂�′] = 𝔼[�̂��̂�′]  

 = 𝔼 [(∑𝑣𝑖𝜙𝑖(𝑹)

𝑁an

𝑖=1

)(∑𝑣𝑗𝜙𝑗(𝑹
′)

𝑁an

𝑗=1

)]  

 =∑∑𝔼[𝑣𝑖𝑣𝑗]𝔼[𝜙𝑖(𝑹)𝜙𝑗(𝑹
′)]

𝑁an

𝑗=1

𝑁an

𝑖=1

  

 =∑∑𝛿𝑖𝑗
𝜎𝑣
𝑁an

𝔼[𝜙𝑖(𝑹)𝜙𝑗(𝑹
′)]

𝑁an

𝑗=1

𝑁an

𝑖=1
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 =
𝜎𝑣
𝑁an

∑𝔼[𝜙𝑖(𝑹)𝜙𝑖(𝑹
′)]

𝑁an

𝑖=1

 (7.8)  

 = 𝑘(𝑹,𝑹′), (7.9)  

where 

 𝔼[𝑣𝑖𝑣𝑗] = 𝛿𝑖𝑗
𝜎𝑣
𝑁an

. (7.10)  

Therefore, the output of the NN, �̂�, follows the Gaussian distribution with zero mean and 

𝑘(𝑹,𝑹′) variance: 

 �̂�~𝒩(0, 𝑘). (7.11)  
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