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CONSTRUCTING THE DETERMINANT SPHERE USING A

TATE TWIST

TOBIAS BARTHEL, AGNÈS BEAUDRY, PAUL G. GOERSS, AND VESNA STOJANOSKA

Abstract. Following an idea of Hopkins, we construct a model of the deter-
minant sphere S〈det〉 in the category of K(n)-local spectra. To do this, we
build a spectrum which we call the Tate sphere S(1). This is a p-complete

sphere with a natural continuous action of Z
×

p . The Tate sphere inherits an
action of Gn via the determinant and smashing Morava E-theory with S(1)
has the effect of twisting the action of Gn. A large part of this paper consists of
analyzing continuous Gn-actions and their homotopy fixed points in the setup
of Devinatz and Hopkins.

1. Introduction

Let p be a prime and n > 0 an integer; these will be fixed throughout and we will
always suppress p and mostly suppress n from the notation. Let E = En denote
the Lubin–Tate spectrum associated to the Honda formal group law of height n
over Fpn , and let K = K(n) be the corresponding Morava K-theory at height n at
the prime p. As is the usual convention, given any spectrum X , we write

E∗X = π∗LK(E ∧X)

where LK denotes K-localization.

We are interested in the K-local category and, in particular, one very interesting
spectrum therein which arises from comparing two dualities. The first of these du-
ality functors is Spanier–Whitehead duality, sending X to DnX = F (X,LKS

0).
If X is a dualizable spectrum – for example if X is a finite spectrum – then
E∗DnX ∼= E−∗X and can be computed by a universal coefficient spectral sequence.
The second is Gross–Hopkins duality, sending X to InX = F (MnX, IQ/Z), the
Brown–Comenetz dual of its monochromatic layer. Specifically, MnX is the fiber
of LnX → Ln−1X and IQ/Z is the spectrum representing the cohomology theory
I∗
Q/Z(X) = HomZ(π∗X,Q/Z). It is a consequence of the work of Gross and Hopkins

that the dual In of the sphere LKS
0 is invertible in the K-local category and, hence,

we have for any spectrum X a natural equivalence

InX ≃ LK(DnX ∧ In).
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At this point, information about the homotopy type of In becomes vital, and one
gets a handle on it using that the spectrum E has an action by the Morava stabilizer
group G = Gn. Consequently, the graded E∗-module E∗X has a continuous action
by G, giving it the structure of a Morava module (see Definition 5.3.20 [BB20]).

The key to the invertibility of In is the calculation of the Morava module E∗In.
The group G is a semidirect product S ⋊Gal(Fpn/Fp), where S = Sn is the auto-
morphism group of the formal group law of K. The group S can be identified with
a subgroup of the general linear group Gln(W), where W denotes the Witt vectors
on the finite field Fpn . The group S has enough symmetry that the determinant
Gln(W) → W× restricts to a homomorphism

det: S −→ Z×
p ,

which can be extended to G as the composite

det : G = S ⋊Gal(Fpn/Fp)
det× id
−−−−−→ Z×

p ×Gal(Fpn/Fp)
proj1
−−−→ Z×

p .

This gives a G-action on Zp, and we write the corresponding representation
as Zp〈det〉. If M is a Morava module, we can define a new Morava module by
M〈det〉 =M⊗Zp

Zp〈det〉 with the diagonal G-action. Then we have by [HG94] and
[Str00] an isomorphism of Morava modules

E∗In = E∗(S
n2−n)〈det〉.

If the prime is large (2p > max{n2 + 1, 2n + 2}) this determines the homotopy
type of In. If the prime is not large, then we would like a fixed model S〈det〉 of an
invertible spectrum in the K-local category equipped with an isomorphism

E∗S〈det〉 ∼= E∗〈det〉.

Then we have a K-local equivalence

In ≃ Sn
2−n ∧ S〈det〉 ∧ Pn,

where Pn is an invertible K-local spectrum with E∗Pn ∼= E∗S
0 as Morava modules,

and attention turns to identifying Pn. In the known cases this comes down to
calculating the homotopy groups of InX for X a particularly nice type n complex.
See [GHMR15] for analysis of Pn at n = 2 = p− 1; the case n = 1 = p− 1 was done
by [HMS94] and also appears in [HS14, GHMR15].

The point of this note is to give a construction of a model of S〈det〉 valid at all
primes p and all n > 0. We actually give two constructions of S〈det〉, one using
homotopy fixed points, following an idea of Mike Hopkins, and another, more naive
and direct one, following ideas from [GHMR15, Wes17], fixing the typos therein
and extending the construction to the prime 2. A different construction of S〈det〉,
valid at primes large with respect to the given height and choice-free, was given
by Peterson in [Pet20, Cor. 3]. Since the Morava module determines an invertible
K-local object at large primes, the two constructions give equivalent spectra in this
situation.

The first model will evidently have the property that LK(EhK∧S〈det〉) = EhK for
all closed subgroups K in the kernel of the determinant. The key to this construction
is to introduce a spectrum S(1) with a continuous G–action, non-equivariantly
equivalent to the p-complete sphere spectrum S0 = S0

p , and such that smashing
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with it naturally twists G–actions by the determinant representation. Then we
define

S〈det〉 = (E ∧ S(1))hG,

the action on the right-hand side being diagonal. The following is our main result.

Theorem 3.10. There is a canonical G-equivariant equivalence f : E ∧ S〈det〉 →
E ∧ S(1), where the action of G on the source is via the action on E, while on the
target it is diagonal. This induces an isomorphism of Morava modules E∗S〈det〉 ∼=
E∗〈det〉.

If K is a closed subgroup of G in the kernel of the determinant, taking K-homotopy
fixed points in this equivalence gives the desired result (Corollary 3.11)

EhK ∧ S〈det〉 ≃ (E ∧ S(1))hK ≃ EhK.

This project gives a chance to revisit and give an encomium on the amazing
paper of Devinatz and Hopkins on fixed point spectra in the K-local category
[DH04]. Distilled down we have the following question: let X be a spectrum with
a continuous action of the Morava stabilizer group G. We can then form the G-
spectrum Z = E ∧ X with diagonal G-action and discuss the homotopy type of
ZhG = (E ∧X)hG. Note that E∗Z = π∗LK(E ∧ Z) has two G-actions: the Morava
module action on E and the action on Z. A consequence of our results is that if X
is dualizable in the K-local category, then

(1.1) E∗

(
ZhG

)
= E∗(E ∧X)hG ∼= E∗X

and the Morava module action on E∗(E∧X)hG corresponds to the diagonal action
on

E∗X = π∗LK(E ∧X).

An analogue of this result for arbitrary spectra X with trivial G-action was proven
by Davis and Torii [DT12]. The equivalence (1.1) is not hard to prove once we
have come to terms with the notion of a continuous G-action. Since we are making
a homology calculation we need cosimplicial techniques, and this is exactly what
Devinatz and Hopkins supply.

We close with a remark on our choice of the formal group we use to specify
Morava K-theory and E-theory. At the beginning of this introduction, we specified
the Honda formal group over Fpn . This was simply because [DH04] is written for
the Honda formal group. Presumably, the work of Devinatz and Hopkins goes
through without change for any height n formal group over any finite extension Fq
of the prime field Fp. If this is the case, we could choose any F so that the map
det: Aut(F/Fq) → Z×

p is surjective.

Acknowledgements. We would like to thank Hans-Werner Henn, Mike Hopkins
and Charles Rezk for helpful conversations and the referee for their comments.

2. Continuous G actions and their homotopy fixed points

As is perhaps apparent from the introduction, we will assume our readership has
access to the standard framework of K-local homotopy theory. The usual source
for an in-depth study of the technicalities is Hovey and Strickland [HS99] and basic
introductions can be found in almost any paper on chromatic homotopy theory. We
were especially thorough in [BGH17, §2].
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Less familiar is the analysis of point-set properties of the action of Morava sta-
bilizer group G on the spectrum E. We will need to use an explicit construction
of the homotopy fixed points. For our purposes the original definition by Devinatz
and Hopkins [DH04] will do. The reader interested in extensions and variations
of the original notion may want to consult work such as Behrens–Davis [BD10],
Davis–Quick [DQ16] and Quick [Qui13].

We will also not access the full power and structure of equivariant stable ho-
motopy theory. Our G-spectra will simply be G-objects in some suitable category
of spectra; when G is profinite, we will also use a simple notion of continuity (see
Definition 2.5).

We start with some algebra. Recall that E∗ = WJu1, . . . , un−1K[u
±1] where the

power series ring is in degree zero and the degree of u is −2 and let m ⊂ E0 be the
maximal ideal.

Remark 2.1. Before we proceed further, we need to establish some more notation.
Using the periodicity results of Hopkins and Smith [HS98], Hovey and Strickland
produce a sequence of ideals J(i) ⊆ m ⊆ E0 and finite type n spectra MJ(i) with
the following properties:

(1) J(i + 1) ⊆ J(i) and
⋂
i J(i) = 0;

(2) E0/J(i) is finite;
(3) E0(MJ(i)) ∼= E0/J(i) and there are spectrum maps q : MJ(i+1) → MJ(i)

realizing the quotient E0/J(i+ 1) → E0/J(i);
(4) There are maps η = ηi : S

0 → MJ(i) inducing the quotient map E0 →

E0/J(i) and qηi+1 = ηi : S
0 → MJ(i);

(5) If X is a finite type n spectrum, then the map X → holimi(X ∧ MJ(i))
induced by the maps η is an equivalence.

(6) If X is any Ln-local spectrum then by [HS99] we have LKX ≃ holimiX ∧
MJ(i). In particular we have E ≃ holimiE ∧MJ(i).

Most of this is proved in [HS99, § 4], and (6) is proved in [HS99, Prop. 7.10]. Hovey
and Strickland also prove that items (1)-(5) characterize the tower {MJ(i)} up to

equivalence in the pro-category of towers under S0. See Proposition 4.22 of [HS99].
Note that the sequence {J(i)} of ideals defines the same topology on E0 as the
m-adic topology and that G acts on E0/J(i) through a finite quotient.

For profinite sets T = limj Tj and A = limiAi, recall that the set of continuous
maps from T to A is defined as

Mapc(T,A) = limi colimj Map(Tj , Ai).

Let M be a Morava module and always assume M is m-complete. An important
example of the previous construction is the Morava module of continuous maps

Mapc(G,M) = limiMapc(G,M/mi) = limi colimj Map(G/Uj ,M/mi)

where Uj+1 ⊆ Uj ⊆ G is a nested sequence of open normal subgroups so that
∩ Uj = {e}; then G = limj G/Uj.

We now begin to make these constructions topological by giving a definition of
a spectrum of continuous maps in the K-local category.
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Definition 2.2. Suppose T = limj Tj is a profinite set, and A ≃ holimiA ∧MJ(i)

is a K-local spectrum. Define

Fc(T+, A) = holimi hocolimj F (Tj+, A ∧MJ(i)).

In applications T will be G or G/K×Gs with s ≥ 0 and K ⊆ G a closed subgroup,
or G = Z×

p .

We now calculate π∗Fc(T+, A), at least for some A. For later applications, we
will need a slightly more general result about π∗F (Z, Fc(T+, A)) with Z arbitrary.
If Z is any spectrum we may write Z ≃ hocolimZα for some filtered collection
of finite spectra. If A ≃ holimiA ∧ MJ(i) is a K-local spectrum, then we have a

topology on πtF (Z,A) = A−t(Z) defined by the open system of neighborhoods of
zero given by the kernels of the map

πtF (Z,A) −→ πtF (Z
α, A ∧MJ(i)).

This is the natural topology of [HS99, Section 11]. The groups π∗F (Z,A) are com-
plete in this topology if

π∗F (Z,A) ∼= lim
α,i

π∗F (Z
α, A ∧MJ(i)).

In applying the following result our main example will be A = E ∧ X with X
dualizable in the K-local category.

Lemma 2.3. Suppose Z is any spectrum, T = limj Tj is a profinite set, and
A ≃ holimiA∧MJ(i) is a K-local spectrum. Further suppose πt(A∧MJ(i)) is finite
for all i and t. We then have an isomorphism

π∗F (Z, Fc(T+, A)) ∼= Mapc(T,A−∗Z)

where A−∗Z is equipped with the natural topology.

Proof. Let Z ≃ hocolimα Z
α be some cellular filtration on Z by finite spectra. Our

finiteness hypothesis on A implies

A−∗Z = π∗F (Z,A) ∼= lim
α,i

π∗F (Z
α, A ∧MJ(i)).

Now we have that

F (Z, Fc(T+, A)) ≃ holimα holimi F (Z
α, hocolimj F (Tj+, A ∧MJ(i)))

is equivalent to

holimα holimi hocolimj F (Z
α, F (Tj+, A ∧MJ(i))),

since Zα is dualizable. The homotopy groups of

F (Zα, F (Tj+, A ∧MJ(i))) ≃ F (Tj+, F (Z
α, A ∧MJ(i)))

are Map(Tj , π∗F (Z
α, A ∧MJ(i))) and the claim follows using the Milnor sequence

and our finiteness hypotheses for the vanishing of the lim1 term. �

Remark 2.4. For a K-local spectrum X ≃ holimX ∧MJ(i), we can give

F ((G/Uj)+, X ∧MJ(i))

a left G = limi G/Ui action by operating on the right on the source. (Note that
the subgroups Uj are normal.) This assembles into an action on Fc(G+, X). If
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the homotopy groups πt(X ∧MJ(i)) are finite, Lemma 2.3 gives an isomorphism of
continuous G-modules

(2.1) π∗Fc(G+, X) ∼= Mapc(G, π∗X)

where again G acts on the source.

Writing Gs = lim(G/Ui)
s we define Fc(G

s
+, X) for s ≥ 1 as in Definition 2.2. We

have that

Fc(G
s
+, Fc(G

t
+, X)) ≃ Fc(G

s+t
+ , X).

The equation Fc(G
s+1
+ , X) ≃ Fc(G+, Fc(G

s
+, X)) defines an action of G on Fc(G

s+1
+ , X)

using the right action on the first factor of Gs+1.

Evaluation defines a map G+ ∧ F ((G/Uj)+, X ∧MJ(i)) → X ∧MJ(i). Here G is
simply regarded as a set, with no topology. These fit together to give a map

G+ ∧ Fc(G+, X) −→ X.

We now come to the Devinatz–Hopkins notion of a continuous G–action on a
K-local spectrum. To prepare, we spend a few paragraphs examining the standard
bar construction in equivariant homotopy theory.

Let G be a discrete group and X a G-space. Then we can form the augmented
cosimplicial space

(2.2) X −→ map(G•+1, X)

with coface maps defined by

(diφ)(g0, g1, . . . , gs) =

{
g0φ(g1, . . . , gs), s = 0;

φ(g0, . . . , gigi+1, gs), s ≥ 1.

The codegeneracy maps si insert the unit in the ith slot and the augmentation
η : X → map(G,X) is adjoint to the action map G ×X → X . Notice that si for
all i, and di for all i ≥ 1 depend only on G, and not on the action of G on X .
However, for all s, d0 is given by the composition

map(Gs, X)
map(Gs,η)

// map(Gs,map(G,X))
∼= // map(Gs+1, X),

where we have used the adjoint isomorphism map(Y,map(G,X)) ∼= map(G×Y,X).

We could turn these observations around and define a G-action on X as a map
η : X → map(G,X) so that the diagram (2.2) determined by these formulas is an
augmented cosimplicial space; that is, the various compositions satisfy the cosim-
plicial identities. We find that this is equivalent to the usual definition.

There is nothing special about spaces in this discussion:for example, an action of
G on a spectrum X defines and is defined by an augmented cosimplicial spectrum

X −→ F (G•+1
+ , X).

In our definition of a continuous G–spectrum, which again is essentially due to
Devinatz–Hopkins [DH04], we replace the functors F (Gs+1

+ ,−) by the functors

Fc(G
s+1
+ ,−).

Definition 2.5 (Continuous G-actions). Let X be a K-local spectrum. A con-
tinuous G–action on X consists of a map

η = ηX : X → Fc(G+, X)
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so that the diagram

(2.3) X −→ Fc(G
•+1
+ , X)

determined by η and G is an augmented cosimplicial spectrum.

A map of continuous G–spectra consists of a map of the respective augmented
cosimplicial diagrams.

Remark 2.6. If X has a G-action, then the composition

(2.4) X
η

// Fc(G+, X) // F (G+, X)

defines an action (in the usual sense) of G on X . Conversely given an action of G

on X , we say that action refines to a continuous action, or simply that the action
is continuous, if there is a factoring as in (2.4) that gives X the structure of a
continuous G-spectrum.

This is what Devinatz–Hopkins [DH04] accomplish, where the discrete G–action
on E was already given by the Goerss–Hopkins–Miller theorem. We discuss this
example further in Remark 2.13 below.

Example 2.7. A more tautological example is the following: For any K-local spec-
trum X , the trivial action of G on X is continuous. Here we start with η : X →
Fc(G+, X) adjoint to the projection map G+ ∧X → X .

Definition 2.8 (Homotopy fixed points). If X is a continuous G–spectrum and
K ⊆ G is a closed subgroup, we define Fc(G+, X)K = Fc(G/K+, X) and

XhK = holim∆ Fc(G
•+1
+ , X)K(2.5)

≃ holim∆ Fc(G/K+ ∧ G•
+, X).

Remark 2.9. Suppose further that K ⊆ G is a closed subgroup and that X ≃
holimiX ∧ MJ(i) is a K-local spectrum such that πt(X ∧ MJ(i)) is finite for all i
and t. Using Lemma 2.3, one sees that these definitions are designed so that the
Bousfield–Kan spectral sequence associated to (2.5) is the homotopy fixed point
spectral sequence

Es,t2
∼= Hs

c (K, πtX) =⇒ πt−sX
hK

with E2-term given by the continuous group cohomology.

Remark 2.10. There is an obvious generalization of this definition to other settings,
for example the group may be any profinite group. Likewise, the spectrum X
may live in another category where analogues of the generalized Moore spectra
MJ(i) play a similar role. For example X may be a p-complete spectrum, so X ≃

holimiX ∧ S/pi. While we will in effect construct a continuous p-complete Z×
p

spectrum in this sense in Section 3, we refrain from setting up a general theory.

The following is an easy but useful property, which we record as a lemma for
convenient future reference.

Lemma 2.11. Let X be a continuous G–spectrum. If XhG is given the trivial
G–action, the “inclusion of fixed points” map XhG → X is G-equivariant.

Proof. The map in question is holim∆ of the cosimplicial map

Fc(G
•
+, X) ≃ Fc(G

•+1
+ , X)G −→ Fc(G

•+1
+ , X),
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given by the inclusion of fixed points, which by construction has the required prop-
erties. �

One way to summarize the results of Devinatz and Hopkins [DH04] is as follows.
The phrase “essentially unique” means the space of choices is contractible.

Theorem 2.12. The G-spectrum E has an essentially unique structure as a contin-
uous G-spectrum with the property that if K ⊆ G is closed, then the map of Morava
modules E∗E

hK → E∗E is naturally isomorphic to the inclusion

Mapc(G/K,E∗) −→ Mapc(G,E∗).

The Morava modules E∗E
hK and E∗E are discussed in more details immediately

after Remark 2.13.

Remark 2.13. The statement of Theorem 2.12 at once disguises quite a bit of dif-
ficult work and obscures the logic of the Devinatz–Hopkins argument; thus, it is
surely worth going into a bit of detail.

Suppose for a moment that we knew that Theorem 2.12 was true. As above,
choose a nested sequence of open normal subgroups Uj+1 ⊆ Uj ⊆ G with ∩ Uj =
{e}. Then we would have a sequence of spectra

(2.6) · · · −→ EhUj −→ EhUj+1 −→ · · · −→ E

with the following properties

(1) EhUj is a G/Uj spectrum and all the maps of (2.6) are G-equivariant;
(2) the map E∗E

hUj −→ E∗E of Morava modules is isomorphic to the inclusion

Mapc(G/Uj ,E∗) −→ Mapc(G,E∗);

(3) the induced map hocolimj E
hUj → E is a K-local equivalence.

Let us give some detail on Part (3). By Remark 2.1, Part (6) we have that if
X is Ln-local then LKX = holimX ∧ MJ(i). The spectra EhUj are K-local and,
hence Ln-local. Since Ln is smashing the homotopy colimit is Ln-local, so Part (3)
is equivalent to the statement that

hocolimj E
hUj ∧MJ(i) −→ E ∧MJ(i)

is an equivalence for all i. This follows from (2) and the fact that ∩ Uj = {e}.

Next observe that since G/Uj is finite, E∗E
hUj is finitely generated as an E∗-

module, hence EhUj is dualizable in the K-local category, by [HS99, Thm. 8.6].
Putting all this together – and still assuming we know Theorem 2.12 – we would
have the following diagram of cosimplicial spectra, with the vertical maps being
K-local equivalences

(2.7) hocolimj E
hUj //

≃

��

hocolimj F ((G/Uj)
•+1
+ ,EhUj )

≃

��

E // Fc(G
•+1
+ ,E).

Devinatz and Hopkins prove Theorem 2.12 by reversing the logical order of this
discussion: Recall that the Goerss–Hopkins–Miller theorem provides E with an
essentially unique structure as an E∞-ring spectrum, the space mapE∞

(E,E) has
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contractible components, and π0 mapE∞
(E,E) ∼= G. This gives E an essentially

unique structure as G-spectrum, with the action through E∞-ring maps.

Using the Goerss–Hopkins–Miller Theorem, Devinatz and Hopkins define a se-
quence of spectra which they call EhUj and maps as in (2.6) satisfying Parts (1)–
(3) above. They then define the continuous G-structure on E using the diagram
of (2.7). Then they must justify the notation EhUj ; that is, they must show the
spectra defined this way agree, up to equivalence, with the fixed points as defined
in (2.5). Finally, they must calculate E∗E

hK. For this they use the remarkable
Proposition 2.16 below.

We further unpack the statement of Theorem 2.12 and generalize it (Proposition 2.17
and Corollary 2.18). For any X ,

E∗(E ∧X) = π∗LK(E ∧E ∧X)

is a Morava module, using the action of G on the left factor E. Now, suppose X
itself has a G-action so that the diagonal action on E ∧X is continuous. If h ∈ G

and x ∈ E∗X , then we write h ∗d x for this action. The adjoint of the diagonal
action of G on E ∧X gives rise to a map

(2.8) η : E∗(E ∧X) −→ Mapc(G,E∗X).

Explicitly, if x : St → E ∧E ∧X and g ∈ G, then ηx(g) is the composite

St
x // E ∧E ∧X

1∧g∧g
// E ∧E ∧X

µ∧1
// E ∧X,

where µ is multiplication and we have suppressed the K-localizations.

If X is S0 with the trivial action, then η gives the identification of E∗E with
Mapc(G,E∗) which appeared in Theorem 2.12. The following result covers every
case that arises in this note.

Lemma 2.14. Suppose X = Y ∧ Z where K∗Y is zero in odd degrees and Z is a
K-locally dualizable spectrum. Then the map η in (2.8) is an isomorphism.

Proof. As in the proof of [GHMR05, Prop. 2.4], it suffices to show that the natural
map

E∗(E ∧X) −→ lim
i
E∗(E ∧MJ(i) ∧X)

occurring in the Milnor sequence associated to holimiE ∧ E ∧ X ∧ MJ(i) is an

isomorphism, i.e., that lim1
i E∗(E ∧MJ(i) ∧X) = 0. The assumption on Y implies

that E∗(Y ) is a flat E∗-module, so there is an isomorphism

E∗(E ∧MJ(i) ∧X) ∼= E∗E⊗E∗
E∗(Y )⊗E∗

E∗(MJ(i) ∧ Z).

Since Z is dualizable, MJ(i)∧Z is K-locally compact, hence E∗(MJ(i)∧Z) is finite.
This shows that the tower (E∗(MJ(i) ∧ Z))i is Mittag-Leffler, which implies that

the required lim1 vanishes. �

Remark 2.15. We now have (at least) two actions to keep straight.

(1) For the Morava module structure on E∗(E∧X) the isomorphism η becomes
G-equivariant if we give the module of functions the conjugation action

(hφ)(g) = h ∗d φ(h
−1g).
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(2) The diagonal action on E∧X gives an action of G on E∗(E∧X); this involves
the right factor of E. With respect to this action η becomes G-equivariant
if we give the module of functions the action

(h ⋆ φ)(g) = φ(gh).

Note that the two actions commute.

At this point, we need the following remarkable result due to Devinatz and
Hopkins.

Proposition 2.16. Let W • be a cosimplicial spectrum. Suppose there exists an
integer N and a finite type 0 spectrum Y so that for all spectra Z the Bousfield–
Kan spectral sequence

πsπtF (Z, Y ∧W •) =⇒ πt−sF (Z, holim∆(Y ∧W •))

has a horizontal vanishing line of intercept s = N at the E∞-page. Then for any
spectra A and F and maps v : ΣkA→ A, there is an equivalence

v−1LF (A ∧ holim∆W
•) ≃ holim∆(v

−1LF (A ∧W •)).

Proof. This is all contained in [DH04, §5], even if it is not explicitly stated this
way. More specifically, we combine the material before their Lemma 5.11, Lemma
5.12, and the argument given in the proof of their Theorem 5.3, substituting our Y
for their spectrum X . �

Proposition 2.17. Let X be a G-spectrum, which is (K-locally) dualizable, and
such that the diagonal action of G on E ∧ X is continuous. Then for a closed
subgroup K of G and any spectrum A, there is a K-local equivalence

A ∧ (E ∧X)hK ≃ (A ∧E ∧X)hK,

where on the right-hand side, K is acting trivially on the first factor.

Proof. We will prove this by applying Proposition 2.16 (with F = K, and v = id)
to the cosimplicial spectrum which computes the homotopy fixed points (E∧X)hK.
Specifically, (E ∧X)hK ≃ holim∆W

•, with

W s = Fc(G
s+1
+ ,E ∧X)K = Fc(G/K+ ∧ Gs+,E ∧X).

We need to check that the conditions of Proposition 2.16 are satisfied; then the
result follows. The argument we give exactly mirrors that of [DH04, Theorem 5.3].

We choose Y to be a finite type 0 spectrum so that E0Y is free as a C-module
for every cyclic subgroup C ⊆ G of order p and so that E1Y = 0. Moreover, E∗Y is
free as an E∗-module. Such a spectrum Y is constructed by Jeff Smith; see [Rav92,
§6.4, 8.3, 8.4].

Since both X and Y are dualizable, Lemma 2.3 gives us that, for any spectrum
Z, there is an isomorphism

πtF (Z, Y ∧W s) ∼= Mapc(Gs+1, πtF (Z,E ∧X ∧ Y ))K.

Using again that X and Y are dualizable as well as that E∗Y is in even degrees
and free over E∗,

πtF (Z,E ∧X ∧ Y ) ∼= E−t(Z ∧DX)⊗E0
E0(Y ).
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Now E0(Y ) is free as a C-module for every cyclic subgroup C ⊆ G of order p, so
the same is true for πtF (Z,E ∧X ∧ Y ), and that fact implies that

πsπtF (Z, Y ∧W •) ∼= Hs(K,E−t(Z ∧DX)⊗E0
E0(Y ))

is zero for s > n2 [Rav92, Lemma 8.3.5].1 In particular, this gives a horizontal
vanishing line at the E2-page, and Proposition 2.16 applies to give the claim. �

Corollary 2.18. If X and K are as in Proposition 2.17, then there is an isomor-
phism of Morava modules

E∗((E ∧X)hK) ∼= Mapc(G/K,E∗X)

where the Morava module structure on the right-hand side is the conjugation action
described in Remark 2.15.

Proof. Proposition 2.17 implies that E∗((E ∧ X)hK) ∼= π∗(E ∧ E ∧ X)hK. We will
use the homotopy fixed point spectral sequence computing π∗(E ∧ E ∧ X)hK. As
was discussed in Remark 2.15, there is a K- equivariant isomorphism

E∗(E ∧X) ∼= Mapc(G,E∗X)

with the K-action on E∗(E ∧X) = π∗(E ∧E ∧X) the diagonal action on the right
two factors and the K-action on Mapc(G,E∗X) is right multiplication on the source.
It follows that the E2-term of the homotopy fixed point spectral sequence is

H∗(K, π∗(E ∧E ∧X)) ∼= H∗(K,Mapc(G,E∗X)).

Furthermore

Hs(K,Mapc(G,E∗X)) ∼=

{
Mapc(G/K,E∗X), s = 0;

0, s 6= 0

since Mapc(G,E∗X), is induced as G-module, and hence as K-module. Thus, the
homotopy fixed point spectral sequence collapses and the edge homomorphism gives
an isomorphism of Morava modules

E∗((E ∧X)hK)
∼=
−→ (E∗(E ∧X))K ∼= Mapc(G/K,E∗X). �

3. The Tate sphere and the determinant sphere

In order to define the determinant sphere, we need a spectrum-level construction
which twists actions. This is accomplished by a sphere spectrum we suggestively
denote by S(1), to be indicative of a Tate twist. Namely, S(1) is the p-completed
sphere spectrum S0 with a continuous action of Z×

p coming from its action as

automorphisms on π0S
0, to be constructed below.

We can also consider S(1) as a spectrum with a G-action, where G acts through
the determinant homomorphism

det: G −→ Z×
p ,

defined as in [GHMR05, Section 1.3]. The determinant is a surjection and we let
SG denote its kernel, so that there is an exact sequence

1 −→ SG −→ G −→ Z×
p −→ 1.

1The quoted results only claims the vanishing for s > N where N depends only on n and p.
To get N = n2 would require reworking the proof and using that G has virtual Poincaré duality
of dimension n2.
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We will then define S〈det〉 as the homotopy fixed points of a particular G-spectrum
in the K-local category.

We now begin the construction of S(1); we will start by constructing a discrete
action of a dense subgroup of Z×

p . If p > 2, we have a decomposition

(1 + pZp)× µ ∼= Z×
p

where µ = F×
p is the cyclic group of order p− 1 given by the Teichmüller lifts. Let

C ⊆ 1 + pZp be the infinite cyclic subgroup generated by τ = 1 + p ∈ 1 + pZp.

If p = 2, we have a slightly different decomposition

(1 + 4Z2)× µ ∼= Z×
2

where now µ = {±1}. Let C be generated by τ = 1 + 4 = 5 ∈ 1 + 4Z2.

With this setup, we write G = C × µ for all primes. Note that G is a dense
subgroup of Z×

p , and τ is a generator of the torsion-free subgroup C ∼= Z. If p > 2
the inclusion C → 1 + pZp completes to an isomorphism Zp ∼= 1 + pZp. At p = 2
we get a similar isomorphism Z2

∼= 1 + 4Z2.

Proposition 3.1. The inclusion G→ Z×
p = π1Bhaut(S0) can be canonically real-

ized by a map

BG −→ Bhaut(S0).

Proof. Since Bhaut(S0) is an infinite loop space we need only realize separately
the maps C → Z×

p and µ → Z×
p as maps BC → Bhaut(S0) and Bµ → Bhaut(S0).

The map we want will then be the composite

BG ≃ BC × Bµ −→ Bhaut(S0)×Bhaut(S0) −→ Bhaut(S0)

where the second map is the loop space multiplication.

At all primes BC ≃ BZ ≃ S1 and the choice of τ defines the required map
S1 → Bhaut(S0).

If p = 2, then Bµ ≃ BZ/2 ≃ BO(1) and the map we need is defined by the
composition

BO(1) −→ BO −→ Bhaut(S0).

Suppose p > 2 and let A be some 2-skeleton of Bµ. The inclusion µ ⊆ Z×
p defines

a map A → Bhaut(S0) by extending a generator of µ ⊂ π1Bhaut(S0) to A. Since
πiBhaut(S0) ∼= πi−1S

0 is p-complete for i ≥ 2 and µ has order prime to p, the map
out of A extends uniquely to a map Bµ → Bhaut(S0). �

Let k ≥ 1 and let Gk ⊆ G be the kernel of the composition

G
⊆

// Z×
p

// (Z/pk)×.

If p > 2, then G1 = C and Gk is infinite cyclic generated by τp
k−1

. If p = 2, then

G2 = C and for k > 1 the group Gk is infinite cyclic generated by τp
k−2

. We have
that the intersection ∩Gk is trivial, and limk G/Gk ∼= Z×

p ; thus, the subgroups Gk
define the usual topology on Z×

p .
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Proposition 3.2. Let S̃(1) be the p-complete sphere spectrum with the discrete
action of G constructed above. If p is odd let k ≥ 1 and if p = 2 let k > 1. Then
there is an equivalence

S/pk ≃ EG+ ∧Gk
S̃(1)

and the residual action of G/Gk ∼= (Z/pk)× realizes the standard action of (Z/pk)×

on Z/pk ∼= π0S/p
k.

Proof. The homotopy orbit spectrum EG+ ∧Gk
S̃(1) is a connected spectrum and

we have a homotopy orbit spectral sequence for H∗(−) = H∗(−,Z):

E2
p,q

∼= Hp(Gk, HqS̃(1)) =⇒ Hp+q(EG+ ∧Gk
S̃(1)).

Let p > 2. The group Gk is infinite cyclic generated by τp
k−1

where τ = 1 + p.

Since τp
k−1

≡ 1+ pk modulo pk+1 we have E2
p,q = 0 unless (p, q) = (0, 0) and there

is a surjection of G-modules

Zp ∼= H0(S̃(1)) −→ H0(Gk, H0(S̃(1))) ∼= Z/pk.

It follows that EG+∧Gk
S̃(1) must be a Moore spectrum for Z/pk with the standard

action of Z/pk on π0S/p
k. The proof at the prime 2 is completely analogous. �

Recall that continuous actions were discussed in Section 2. See in particular
Definition 2.5 and Remark 2.10.

Proposition 3.3. The G-action on S̃(1) extends to a continuous action of the
profinite group Z×

p , in the sense that we have an augmented cosimplicial spectrum

S̃(1) −→ Fc((Z
×
p )

•+1
+ , S̃(1)),

so that the augmentation refines the Z×
p –action.

Proof. Write S/pk(1) for EG+ ∧Gk
S̃(1) with its G/Gk ∼= (Z/pk)×-action. Then

the augmented cosimplicial spectra

S/pk(1) → F ((G/Gk)
•+1
+ , S/pk(1))

assemble to give a map

S̃(1) ≃ holimk S/p
k(1) −→ holimk hocolimj F ((G/Gj)

•+1
+ , S/pk(1))

= Fc((Z
×
p )

•+1
+ , S̃(1))

as needed. �

Definition 3.4. We will write S(1) for the p-complete sphere S0 with the con-
tinuous Z×

p -action of Proposition 3.3. The same construction gives S(1) as a con-
tinuous p-complete G–spectrum, where G acts through the determinant surjection
det: G → Z×

p .

We refer to this equivariant sphere as the Tate sphere.

Now we take the Morava E-theory spectrum E and give E ∧ S(1) the diagonal
G-action. The next result indicates that this is an interesting construction.

Proposition 3.5. There is an isomorphism of Morava modules

E∗〈det〉 ∼= π∗(E ∧ S(1)) = E∗S(1).
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Proof. The edge map of the Tor spectral sequence

E∗〈det〉 = E∗ ⊗π0S0 π0S(1) −→ π∗(E ∧ S(1))

is an isomorphism, and respects the G-action by the naturality of the spectral
sequence. �

The following technical result is the key to our calculations.

Proposition 3.6. The G-spectrum E∧ S(1) has the structure of a K-local contin-
uous G-spectrum.

Proof. As in (2.3) we need to construct an augmented cosimplicial G-spectrum

E ∧ S(1) −→ Fc(G
•+1
+ ,E ∧ S(1))

so that the augmentation refines the G-action on E ∧ S(1).

As above, we continue writing S/pk(1) for EG+ ∧Gk
S̃(1) with its G/Gk ∼=

(Z/pk)× action. Let us also write S/pk for the Moore spectrum when we do not
need to refer to the action.

Since MJ(i) and S/p
k are finite spectra we have

Fc(G
s
+,E ∧ S(1)) = holimi hocolimj F ((G/Uj)

s
+,E ∧ S(1) ∧MJ(i))

≃
−→ holimk holimi hocolimj F ((G/Uj)

s
+,E ∧ S/pk(1) ∧MJ(i));

indeed, both sides of the last equivalence are p-complete and the natural map
between them is an equivalence after smashing with S/p. For all j so that Uj is in
the kernel of

G
det // Z×

p
// (Z/pk)×,

the diagonal action of G/Uj on EhUj ∧S/pk(1)∧MJ(i) defines an augmented cosim-
plicial G-spectrum

EhUj ∧ S/pk(1) ∧MJ(i) −→ F ((G/Uj)
•+1
+ ,EhUj ∧ S/pk(1) ∧MJ(i)).

Since hocolimj E
hUj ≃ E, these assemble into the cosimplicial spectrum we need.

�

We can now make our central definition.

Definition 3.7. The determinant sphere is the spectrum

S〈det〉 = (E ∧ S(1))hG = holim∆ Fc(G
•+1
+ ,E ∧ S(1))G.

Remark 3.8. If K ⊆ G is closed we defined (Definition 2.5)

(E ∧ S(1))hK = holim∆ Fc(G
•+1
+ ,E ∧ S(1))K.

Therefore, using Proposition 3.5 and Remark 2.9, we have a homotopy fixed point
spectral sequence

Hs
c (K,E∗〈det〉) =⇒ πt−s(E ∧ S(1))hK.

We now must show that there is an isomorphism of Morava modules E∗S〈det〉 ∼=
E∗〈det〉. But this follows directly from Proposition 3.5 and Corollary 2.18.

Proposition 3.9. There is an isomorphism of Morava modules

E∗S〈det〉 ∼= E∗〈det〉.
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We now extend this map to an equivalence of spectra. Let ι : S〈det〉 = (E ∧
S(1))hG → E ∧ S(1) be the inclusion of the fixed points from Lemma 2.11, and let
µ : E ∧E → E be the multiplication. Define

f : E ∧ S〈det〉 −→ E ∧ S(1)

to be the composition

(3.1) E ∧ S〈det〉
1∧ι // E ∧E ∧ S(1)

µ∧1
// E ∧ S(1).

This map is G-equivariant if we use the action on E on the source and the diagonal
action on the target.

Theorem 3.10. The map f : E ∧ S〈det〉 → E ∧ S(1) of (3.1) is a G-equivariant
equivalence and induces the isomorphism of Morava modules

E∗S〈det〉 ∼= E∗〈det〉.

of Proposition 3.9.

Proof. To check that f is an equivalence we need only check that it induces the
indicated map on Morava modules. Applying π∗(−) to (3.1) gives

E∗S〈det〉 //

∼=

��

E∗(E ∧ S(1))

∼=

��

µ∧1
// E∗S(1)

=

��
Mapc(G,E∗S(1))

G // Mapc(G,E∗S(1)) // E∗S(1).

(3.2)

The first vertical isomorphism is from Corollary 2.18, whereas the second is the
isomorphism of Lemma 2.14. In the bottom row, the first map is the inclusion
of fixed points and the second map is evaluation at the unit e ∈ G. The fixed
points on the bottom left are exactly the constant functions, so the composite is an
isomorphism as claimed. �

This yields the following practical invariance result.

Corollary 3.11. If K is a closed subgroup of G which is in the kernel of the deter-
minant, then EhK ∧ S〈det〉 ≃ EhK.

Proof. We use Theorem 3.10. When we restrict the G-action on the Tate sphere
S(1) to K, we get that K acts trivially, so S(1) is K-equivariantly equivalent to S0.
We have

EhK ∧ S〈det〉 ≃ (E ∧ S〈det〉)hK ≃ (E ∧ S(1))hK ≃ EhK,

where the first equivalence follows since S〈det〉 is a K-locally dualizable spectrum
with trivial K-action. �

Remark 3.12. The specifics of the determinant homomorphism are not relevant
for this construction and its immediate properties. Indeed, for any continuous
homomorphism φ : G → Z×

p , we may define a K-local φ-twisted sphere by the
formula

S〈φ〉 = (E ∧ S(1))hG,

where on the right hand side G acts diagonally, and through φ on S(1). The proof
of Proposition 3.9 generalizes to compute the corresponding Morava module as

E∗S〈φ〉 ∼= E∗〈φ〉,
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where the right hand side denotes the action on E∗ obtained by twisting the stan-
dard action with φ. This construction amounts to giving the dashed lift as indi-
cated in the following diagram involving the group Pic0n of K-local spectra X with
E∗X ∼= E∗ and the algebraic Picard group (Picn)

0
alg of invertible G-E0-modules:

Pic0n

��

H1
c (G,Z

×
p ) //

66
❧

❧

❧

❧

❧

❧

❧

❧

(Picn)
0
alg

∼= H1
c (G,E

×
0 ).

The bottom horizontal map is induced by the inclusion Z×
p → E×

0 .

We note that the determinant homomorphism topologically generates most of
the image of the depicted horizontal arrow, so we are not losing much information
by restricting our attention to its study. In particular, Westerland’s version of the
determinant [Wes17] and ours have the same image in the algebraic Picard group.
Indeed, they agree on S ⊆ G and the map from H1

c (G,Z
×
p ) to (Picn)

0
alg factors

through
H1
c (G,W

×) ∼= H1
c (S,W

×)Gal.

4. Deconstructing the determinant sphere

Let SG ⊆ G be the kernel of the determinant. Then we can form the fixed point
spectrum EhSG. This will have a residual action of G/SG ∼= Z×

p . (See the paragraph
before Theorem 4 in [DH04].) Furthermore

(E ∧ S(1))hSG ≃ EhSG ∧ S(1),

where the right hand side has a diagonal Z×
p -action.

At odd primes we get a simple description of S〈det〉 directly from Devinatz–
Hopkins fixed point theory.

Proposition 4.1. Let p > 2 and let φ ∈ G be any element so that det(φ) topologi-
cally generates Z×

p . Then there is a fiber sequence

S〈det〉 // EhSG
det(φ)φ−1

// EhSG.

Proof. By construction, the action of g ∈ G on S(1) is given, up to homotopy, by
multiplication by det(g) ∈ Z×

p . Thus, the diagonal action of φ on EhSG ∧ S(1) is,
up to homotopy, given by

φ ∧ det(φ) : EhSG ∧ S(1) −→ EhSG ∧ S(1).

Using that S(1) is non-equivariantly the sphere S0, we have a homotopy commu-
tative diagram

EhSG ∧ S(1)
φ∧det(φ)−1

//

≃

��

EhSG ∧ S(1)

≃

��

EhSG
det(φ)φ−1

// EhSG.

Let F be fiber of the bottom map. The composition

S〈det〉 = (E ∧ S(1))hG // EhSG ∧ S(1)
φ∧det(φ)−1

// EhSG ∧ S(1)
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is null-homotopic, so we get a map f : S〈det〉 → F . Using the fact that

E∗E
hSG ∼= Mapc(G/SG,E∗) ∼= Mapc(Z×

p ,E∗)

we compute that f induces an isomorphism of Morava modules. �

We can refine the fiber sequence of Proposition 4.1. We still have p > 2 and we
have a splitting

µ × (1 + pZp) ∼= Z×
p .

The group µ ∼= F×
p is cyclic of order p− 1 and (1 + pZp) is isomorphic to Zp itself.

Let α ∈ W× ⊆ G be a primitve (pn − 1)st root of unity; then det(α) ∈ µ is
a generator. The group µ ⊆ Z×

p acts on EhSG and, since this group is abstractly

isomorphic to Cp−1, the spectrum EhSG splits as a wedge of the eingenspectra for
this action. Let EhSG

χ be the summand defined by the equations

π∗E
hSG
χ = { x ∈ π∗E

hSG | α∗x = det(α)−1x }.

Note that the spectrum EhSG
χ corresponds to (EhSG∧S(1))hµ. Indeed, forgetting the

µ-action and remembering that the underlying spectrum of S(1) is the p-complete
sphere, the map which sends x ∈ π∗(E

hSG) to x ∧ 1 ∈ π∗(E
hSG ∧ S(1)) is a non-

equivariant isomorphism. Now note that if α∗(x) = det(α)−1x in π∗E
hSG then

α∗(x ∧ 1) = α∗(x) ∧ det(α) = x ∧ 1 in π∗(E
hSG ∧ S(1)) so that

x ∧ 1 ∈ (π∗(E
hSG ∧ S(1)))µ ∼= π∗(E

hSG ∧ S(1))hµ.

Proposition 4.2. Let p > 2 and let ψ ∈ G be any element so that det(ψ) topolog-
ically generates 1 + pZp ⊆ Z×

p . Then there is a fiber sequence

S〈det〉 // EhSG
χ

det(ψ)ψ−1
// EhSG

χ .

The proof is very similar to that of Proposition 4.1. This fiber sequence appears
in [GHMR15, Rem. 2.5] although there is a typo there: the factor of det(ψp+1)
should be replaced by det(ψ)−(p+1) in Equation (2.6).

At the prime 2 we have Z×
2
∼= µ×(1+4Zp) for µ = {±1} and the decomposition is

more subtle. In particular, EhSG does not decompose as a wedge of µ-eigenspectra,
where µ acts on EhSG through Z×

2
∼= G/SG. Thus we need a replacement. The

following construction expands on ideas of Hans-Werner Henn.

It follows from its construction in Proposition 3.1 that, as a µ-spectrum, S(1)
is Sσ−1 where σ is the one-dimensional sign representation of µ. We have a fiber
sequence of µ-spectra

Sσ−1 → S0 ∧ µ+ → S0

where S0 has the trivial action. This is a fiber sequence of Z×
2 -spectra by restriction

along the quotient map Z×
2 → µ with kernel 1 + 4Z2.

We smash this sequence with EhSG and use the diagonal action to obtain a fiber
sequence of Z×

2 -spectra

EhSG ∧ Sσ−1 → EhSG ∧ µ+ → EhSG.

Now take µ-homotopy fixed points to get a fiber sequence of Z2
∼= Z×

2 /µ-spectra.
We give a special name to the fiber, i.e., we denote by EhSG

− the spectrum

EhSG
− = (EhSG ∧ Sσ−1)hµ,
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where µ acts diagonally on the right-hand side. Thus, we have the fiber sequence

(4.1) EhSG
− −→ EhSG tr

−−→ (EhSG)hµ,

where tr is the transfer.

Now let ψ ∈ G is any element so that det(ψ) topologically generates 1 + 4Z2.
Since (4.1) is a cofiber sequence of Z×

2 /µ-spectra there is an extension of the map
ψ : EhSG → EhSG to a commutative diagram

EhSG
−

ψ

��

// EhSG

ψ

��

EhSG
−

// EhSG.

Proposition 4.3. Let p = 2. Then there is a fiber sequence

S〈det〉 // EhSG
−

det(ψ)ψ−1
// EhSG

− .

Proof. The argument is essentially the same as in Proposition 4.1. Here is more
detail. By construction

S〈det〉 = (E ∧ S(1))hG ≃ (EhSG ∧ S(1))hZ×

2 .

Using the decomposition Z×
2 = (1 + 4Z2)× µ we obtain a fiber sequence

S〈det〉 // (EhSG ∧ S(1))hµ
(ψ∧det(ψ)−1)hµ

// (EhSG ∧ S(1))hµ.

Here we are again using that, up to homotopy, g ∈ G, acts on S(1) = S0 by
multiplication by det(g). Since EhSG ∧ S(1) ≃ EhSG ∧ Sσ−1 as µ-spectra, we have
a commutative diagram

(EhSG ∧ S(1))hµ
(ψ∧det(ψ)−1)hµ

//

≃

��

(EhSG ∧ S(1))hµ

≃

��

EhSG
−

det(φ)φ−1
// EhSG

− .

The result follows. �

Example 4.4. At height 1, the determinant map G → Z×
p is the identity. We can

also choose E = K, the p-completion on complex theory. We have that

K∗S
2 ∼= K∗〈det〉

so the K-localization of S2 is a valid model for the determinant sphere. If p > 2, this
must be the same as ours, but at p = 2 there is a possibility that S〈det〉 ≃ S2 ∧ P ,
where P = DQ is the dual of the ‘question mark complex’. By [HMS94], P is the
unique element in the K-local Picard group so that K∗P ∼= K∗S

0 as Z×
2 -modules

but KO ∧ P ≃ Σ4KO. This possibility turns out to be the case.

To see this, we observe that KO = Khµ. We can use Theorem 3.10 to de-
duce that Z×

2 -equivariantly, and therefore µ-equivariantly, we have an equivalence
K ∧ S〈det〉 ≃ K ∧ S(1), where the action on the right hand side is diagonal. As
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mentioned above, µ-equivariantly S(1) is the representation sphere Sσ−1, so we
conclude that

(K ∧ S〈det〉)hµ ≃ (K ∧ Sσ−1)hµ.

By Proposition 2.17, we get that the left-hand side is KO ∧ S〈det〉. For the right-
hand side, we can use the µ-equivariant Bott periodicity equivalence K∧Sσ+1 ≃ K
to conclude, altogether, that

KO ∧ S〈det〉 ≃ (K ∧ S−2)hµ ≃ Σ−2KO.

Thus S〈det〉 ≃ S2 ∧ P .

Note that in this case we have shown that EhSG
− = Σ−2KO, and the fiber se-

quence of Proposition 4.3 is a shifted version of that given by P in [GHMR15,
Ex. 5.1].
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