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We show that the exceptional surfaces of linear three-dimensional non-Hermitian parity-time-symmetric two-
band models attain the form of topologically stable tilted exceptional cones. By relating the exceptional cones
to energy cones of two-dimensional Hermitian parity-time-symmetric two-band models, we find a connection
between the exceptional cone and the light cone of an observer in the vicinity of a Schwarzschild black hole.
When the cone overtilts, light-like particle-antiparticle pairs are created resembling Hawking radiation. We also
investigate dissipative features of the non-Hermitian Hamiltonian related to the latter and comment on potential
realizations in laboratory setups.

I. INTRODUCTION

Since the experimental discovery of the quantum Hall ef-
fect in the 1980s [1], topology has played a prominent role in
condensed matter physics. A large part of the studies during
the last decades have been devoted to gapped topological insu-
lators [2, 3] and gapless semimetals, such as graphene [4] and
Weyl semimetals (WSMs) [5], whose Bloch bands are char-
acterized by distinct topological invariants [6]. The progress
in the latter led to the realization of the elusive Weyl fermions
which, despite evading discovery for nearly a century after be-
ing theoretically predicted [7], were realized as quasi-particles
near band crossings in WSMs [8–10]. Generically, such band
crossings occur in three dimensions (3D), but in the pres-
ence of discrete symmetries, e.g., parity-time (PT ) symme-
try, topologically stable symmetry-protected nodal points can
occur in 2D [11]. As a consequence, the nodal points in 3D
are enhanced to knotted nodal lines [12–17]. Furthermore, the
cone-like dispersion close to nodal points, both in 2D and 3D,
has suggested a possible relation to spacetime light cones [18].
In particular, recent works [16, 19–22] have proposed a rela-
tion between the transition from type I to type II WSMs (as
the Weyl cone overtilts) and the tilting of an observer’s light
cone when crossing the black hole horizon (in the infalling
coordinate frame).

Recently, many studies of topological phases have focused
on non-Hermitian (NH) Hamiltonians, which serve as an ef-
fective description of systems subject to gain and loss [23].
Naturally, these Hamiltonians are fundamentally different
from their Hermitian counterparts, the most prominent dis-
tinction being complex eigenvalues and separate sets of left
and right eigenvectors. Furthermore, the nodal structures of
NH systems consist of exceptional points (EPs) at which not
only the eigenvalues, but also the eigenvectors coalesce [24].
EPs are already topologically stable in 2D [25], and thus 3D
systems host knotted lines of EPs [26–32]. As for Hermi-
tian systems, the inclusion of symmetries, such as PT sym-
metry, generally enhances the dimension of the exceptional
nodal structures, making EPs generic already in 1D [33]. In
fact, PT symmetry has been suggested to replace the Her-
miticity constraint in quantum mechanics, motivated by the
fact that such systems include a region where the eigenvalues
are purely real, called the PT -unbroken phase, while the PT -
broken phase results in complex eigenvalues [34]. These two

phases are separated by EPs, at which the PT symmetry is
spontaneously broken.

In the spirit of this, we here set out to study the topology
of the exceptional nodal structures of NH PT -symmetric sys-
tems in 3D. We show that any linear model of this type hosts
cones of EPs, which we call exceptional cones (ECs). By
relating the model parameters to a PT symmetry-protected
energy cone of a 2D Hermitian Hamiltonian, we prove that
the ECs are topologically stable. We furthermore relate the
EC to an artificial light cone, and interpret the dissipative
behavior on the EC, where PT symmetry is spontaneously
broken, as the creation and emission of light-like particle-
antiparticle pairs. Intuitively, this spontaneous radiation of
particles resembles spontaneous Hawking radiation in station-
ary Schwarzschild black holes in 4D-spacetimes. We formal-
ize this intuition at the level of equations. Lastly, we discuss
potential realizations in certain laboratory setups and com-
ment on open questions and future research directions.

Throughout this article, we are working in units where ~ =
c = e = kB = GN = 1.

II. NODAL TOPOLOGY IN TWO-BAND MODELS

In this section, we start with a brief discussion on the topol-
ogy of nodal structures in general, covering both the Hermi-
tian and the NH cases. We also illustrate how the inclusion
of PT symmetry increases the dimension of the band inter-
sections in both regimes. Then, we specifically study 3D NH
models subject toPT symmetry, and show that the EPs gener-
ically constitute a symmetry-protected cone.

A. Dimension of Nodal Structures

A non-interacting Hermitian two-band model in its most
general form is given by the following Bloch Hamiltonian in
reciprocal space

H(k) = d0(k)σ0 + d(k) · σ, (1)

where k is the lattice momentum in the appropriate dimen-
sion, σ0 is the 2 × 2 identity matrix, σ = (σx, σy, σz)
are the Pauli matrices, d(k) = [dx(k), dy(k), dz(k)], and
dµ, µ = 0, x, y, z are continuously differentiable real-valued
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functions of k. From here, we use the notation dµ(k) =: dµ
for simplicity, restoring the k-dependence when appropriate.
We furthermore restrict ourselves to 2D and 3D systems. The
corresponding energy eigenvalues are

E± = d0 ±
√
d2x + d2y + d2z, (2)

and the nodal points are given by the intersections of the
eigenvalues, which arise from solutions to√

d2x + d2y + d2z = 0. (3)

Nodal points are generically of codimension 3, meaning that
they occur in D = 3 or higher. There are, however, several
ways of reducing the codimension of the nodal structures. The
most obvious is if the system of equations in Eq. (3) is under-
determined, but such a case is often not stable and thus relies
on fine-tuning. Another option is to impose a symmetry on the
system. For the sake of illustration, we consider the effects of
PT symmetry on the nodal structure. We use the following
representation,

P = σz, T = σy, (4)

such that

PT = −iσx. (5)

Imposing PT symmetry on a generic two-band Hamiltonian,
i.e., in Eq. (1),

HPT = PT H∗PT (PT )
−1
, (6)

implies that d0, dx, dy ∈ R and dz = 0. Since dz = 0 is sat-
isfied for all k as a consequence of the symmetry, the nodal
structure is determined by a system of merely two equations.
Therefore, PT -symmetric 2D systems generically host topo-
logically stable nodal points, while 3D systems host nodal
lines [11–17].

So far, we have restricted the discussion to Hermitian sys-
tems. However, in recent years, many studies of NH Hamil-

tonians have been conducted [23]. The mathematical descrip-
tion of systems with such an effective description is very sim-
ilar, and in its most general form, a non-interacting, NH two-
band system is given by

H = d0σ
0 + d · σ, (7)

where now dµ denote complex valued continuously differen-
tiable functions of the lattice momentum k. Decomposing
d = dR + idI, the corresponding complex eigenvalues are

E± = d0 ±
√
d2R − d2I + 2idR · dI. (8)

Hence, the nodal structure is given by the following system of
equations,

d2R − d2I = 0, dR · dI = 0. (9)
At this point we set d0 = 0, since we study the topology
of the nodal structure, which is not affected by d0. In con-
trast to the eigenvalue degeneracies in Hermitian systems, the
nodal points in NH systems are exceptional (except for when
|d| = 0), meaning that not only the eigenvalues, but also the
eigenstates coalesce [24]. Also, the exceptional nodal struc-
ture is determined by the simultaneous solution of two equa-
tions, meaning that stable EPs occur already in 2D systems,
while in 3D, they attain the form of closed lines [23]. No-
tably, as in the case of Hermitian systems, symmetries can be
imposed to increase the dimension of the nodal structure. Let
us again consider the case of PT symmetry. Fulfilling Eq. (6)
constrains d as dx, dy ∈ R, dz ∈ iR. Clearly, this results in
that dR · dI = 0 for all k, and the EPs are determined by the
solution of only one equation (d2R − d2I = 0). Hence, stable
EPs occur already in symmetric 1D systems, exceptional lines
in 2D and exceptional surfaces in 3D [33].

B. Cones of Exceptional Points in PT -symmetric Systems

Let us now focus on the topology of the nodal structure
of linear, NH PT -symmetric systems in 3D. A completely
general such model with d0 = 0 and with the appropriate
choice of coordinates can be put in the form

H = (axkx + ayky + azkz + a0)σx + (bxkx + byky + bzkz + b0)σy + i (cxkx + cyky + czkz + c0)σz, (10)

with all parameters being real. Explicitly, the corresponding EPs are given by

a20 + b20 − c20 +
(
a2x + b2x − c2x

)
k2x +

(
a2y + b2y − c2y

)
k2y − c2zk2z + 2kxky (axay + bxby − cxcy)

− 2cyczkykz − 2cxczkxkz + 2kx (a0ax + b0bx − c0cx)− 2kzc0cz + 2ky (a0ay + b0by − c0cy) = 0. (11)

Not surprisingly, we can only say that the exceptional nodal structure defines a quadratic surface in momentum space. However,
the specific geometry of the exceptional surface can be determined for any choice of parameters. To this end, we consider a
linear 2D Hermitian PT -symmetric two-band model

H = (ηxkx + ηyky + η0)σ0 + (Axkx +Ayky +A0)σx + (Bxkx +Byky +B0)σy, (12)
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where all the parameters are real as before. The band structure of this Hamiltonian is necessarily a cone. The eigenvalue equation
determining the band structure reads

A2
0 +B2

0 − η20 +
(
A2
x +B2

x − η2x
)
k2x +

(
A2
y +B2

y − η2y
)
k2y − λ2 + 2kxky (AxAy +BxBy − ηxηy)

+ 2kxληx + 2kyληy + 2kx (A0Ax +B0Bx − η0ηx) + 2ky (A0Ay +B0By − η0ηy) + 2η0λ = 0, (13)

where λ denotes the eigenvalues. Remarkably, this equation
is of the same form as Eq. (11). By identifying parameters as
λ := ±czkz , Aµ = aµ, Bµ = bµ and ηµ = ∓cµ, we see that
they exactly coincide. Thus, Eq. (11) is a cone in momen-
tum space. Hence, the exceptional surface of a general 3D
NH PT -symmetric linear two-band model attains the form of
a stable cone protected by PT symmetry, from now on re-
ferred to as the exceptional cone (EC) in momentum space.
By stability we mean, just as in the Hermitian case, that an ar-
bitrary symmetry preserving perturbation will merely deform
the EC, but will not make it disappear. Interestingly, the tilt-
ing of the cone, which in Hermitian systems is governed by
the term proportional to σ0, is in NH PT -symmetric systems
controlled by the dissipative term proportional to σz . Further-
more, since the EC naturally consists of EPs, PT symmetry
is spontaneously broken exactly on the cone.

Lastly, we want to stress that the relation between the NH
EC and the Hermitian energy cone is crucial for the construc-
tion of the analogy, which will become clear below.

III. CONES IN BAND STRUCTURES AND LIGHT CONES

The cone-like band structure of certain condensed matter
systems, e.g., graphene and WSMs, has in recent years trig-
gered speculations about a possible relation to light cones of
observers in the vicinity of a black hole [18]. Concrete studies
of such relations have been carried out using different tech-
niques [16, 19–22]. Here, we briefly review the method re-
lating the dispersion of a Dirac operator to a field theory in
curved spacetime. We refer the interested reader to Refs. 35
and 36 for a more thorough treatment. What is new is that we
also extend this relation to include NH systems by relating the
ECs arising in PT -symmetric systems to light cones.

A. Energy Cones and Light Cones

For the sake of illustration, let us consider a tilted Weyl
Hamiltonian of the form

H = κkxσ
0 + k · σ, (14)

where κ ∈ R is the tilting parameter and k := (kx, ky, kz).
The corresponding energy eigenvalues are given by

E± = κkx ±
√
k2x + k2y + k2z . (15)

As we mentioned in Section II, E± constitute an upper (+)
and a lower (−) part of a cone in energy-momentum space,

which touch when E+ = E−. In Fig. 1, this is illustrated
for particular choices of κ. At |κ| > 1, the energy cone
tips over, meaning that E± not only touch, but also cross the
Fermi level, forming dimensionful Fermi pockets [which in
this case will be infinite as a consequence of Eq. (14) being
linear in momentum]. This phenomenon is familiar from the
study of Schwarzschild black holes, and made more rigorous
by expressing a Dirac-like operator, e.g., the Hamiltonian in
Eq. (14) in terms of vielbeins, which are related to the metric
of a curved spacetime [36]. Explicitly, this yields

H = eiakiσ
a + ei0kiσ

0 (16)

with eµα the vielbeins, µ, α = 0, x, y, z and i, a = x, y, z.
The corresponding inverse curved spacetime metric is then
given by

gµν = eµαe
ν
βη

αβ , (17)

where ηαβ = diag (−1, 1, 1, 1) is the Minkowski metric,
e00 = 1 [35], and the other eµα are defined by writing Eq. (14)
in the form of Eq. (16). The line element arising from Eq. (17)
is

ds2 = −
(
1− κ2

)
dt2 + (dx)

2
+ 2κdx dt, (18)

where dx = (dx, dy, dz) and |dx|2 = dx2 + dy2 + dz2.
Eq. (18) describes an event horizon at |κ| = 1, which coin-
cides exactly with the value of κ where the energy cone de-
scribed by Eq. (15) is tipped over, cf. Fig. 1.

A natural question to ask at this point is whether or not the
resulting artificial event horizon is emitting radiation and, if
that is the case, if this can be related to something that can be
measured in a laboratory setup. Here we want to make clear
that we do not claim that a WSM constitutes a full analogue
gravity model. Up to this point, we are noting intuitive simi-
larities between concepts, and we are agnostic about if mea-
surements on WSMs could provide new insights into black
hole physics. Interestingly enough, this is something that
splits the community. On the one hand, there are works claim-
ing that artificial spontaneous Hawking radiation is present in
WSMs [16, 20], while other works claim that there is no radia-
tive process [22]. Intuitively NH systems seem better suited to
describe these type of phenomena, due to their natural inclu-
sion of, e.g., gain and loss [23]. Motivated by this, we below
suggest an extension of the analogy between Weyl cones and
light cones to NH systems.
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Figure 1. Illustration of the eigenvalues corresponding to Eq. (14) (kz = 0) and Eq. (23) for different values of κ. For κ > 1, the cone overtilts
meaning that the upper and lower band intersect, and not only touch, the Fermi level (brown plane) such that dimensionful Fermi pockets are
formed as opposed to the Fermi points that exist when κ < 1.

B. Exceptional Cones and Light Cones

For the sake of illustration, let us consider the following
PT -symmetric two-band toy model

H = kxσ
x + kyσ

y + i (kz − κkx)σz. (19)

This system hosts an EC tilted in the kx-direction with the
tilting parameter κ described by

k2x + k2y − (kz − κkx)
2

= 0, (20)

which is seen by solving for kz

kz = κkx ±
√
k2x + k2y. (21)

On the other hand, consider the Hermitian PT -symmetric
Hamiltonian

H = κkxσ
0 + kxσ

x + kyσ
y (22)

with eigenvalues

E± = κkx ±
√
k2x + k2y. (23)

Noting that Eqs. (21) and (23) are similar, the EC attains the
exact same form as the energy cone, which can be seen by
substituting E± for kz on the vertical axes in Fig. 1. The
quantity kz can be thought of as the eigenvalue of some Dirac-
like operator, e.g.,

k̂z = κkxσ
0 + kxσ

x + kyσ
y. (24)

Then, k̂z can be expressed in terms of vielbeins by using
Eq. (16)

k̂z = eiakiσ
a + ei0kiσ

0, (25)

with i, a = x, y. This reasoning can be applied straight for-
wardly to more general PT -symmetric systems, which can be
seen by comparing Eqs. (11) and (13), and again thinking of
kz as the eigenvalue of some Dirac-like operator. The artificial
light cone is governed by

ds2 = −
(
1− κ2

)
dt2 + dx2 + dy2 + 2κdxdt, (26)

which is obtained by identifying Eqs. (24) and (25), and re-
calling Eq. (17). This metric has the same form as the one
describing the spacetime of a radially infalling observer in the
vicinity of a Schwarzschild black hole in Painleveé-Gullstrand
coordinates [37]

ds2 = −
(

1− 2M0

r

)
dT 2 + 2

√
2M0

r
drdT + dr2, (27)

whereM0 is the mass of the black hole, r the radial coordinate
and T the Painlevé time. Considering Eq. (26) in a slice of
constant y, and making the identifications x := r, t := T and

κ :=
√

2M0

r , the two metrics indeed coincide.
We need to comment on two caveats before moving on.

First, we assume that dy = 0, i.e., we consider a slice of con-
stant y. For the analysis in the rest of this work, this amounts
to no loss of generality, which will become clear in Section IV.
Second, the tilting parameter is promoted to a function with
explicit spatial dependence κ = κ(r), which in principle gives
commutator contributions of the form [H,κ(r)] ∝ ∂κ(r)

∂r to
the eigenvalues of the Hamiltonian in Eq. (19). In the fol-
lowing, we ignore those contributions, and provide a rigorous
discussion on the consequences of this assumption in Section
VI.

So far, we have indeed been able to relate ECs in NH PT -
symmetric systems to artificial light cones of observers in the
vicinity of a black hole, thus extending the relation previously
only valid for Hermitian systems to include NH systems. This
was made possible by the relation between NH ECs and Her-
mitian energy cones, presented in Section II B. The question
to ask at this point is: Does the NH system hosting the EC
[Eq. (20)] exhibit some dissipative behavior that intuitively
can be thought of as artificial Hawking radiation from a sta-
tionary Schwarzschild black hole? This question is addressed
below.

IV. SPONTANEOUS PARTICLE EMISSION FROM
QUANTUM TUNNELING

Classically, black holes only absorb particles. However,
when taking quantum mechanical effects close to the horizon
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into account, black holes also emit particles, as first shown
and interpreted by Hawking [38]. The leading contribution to
Hawking radiation comes from light-like (anti) particles tun-
neling out from (into) the interior of the black hole, as shown
by Parikh and Wilczek [39]. The latter is an approximate
method accounting only for the leading massless contribu-
tions. However, in the semi-classical limit, i.e., when the mass
M0 of the black hole is very large, contributions from massive
modes [44] are subleading. For such black holes, the evapo-
ration is slow enough to neglect backreaction effects from the
radiation on the metric.

In this section, we apply the techniques developed by
Parikh and Wilczek to the NH system given by Eq. (19) to
show that there is indeed a non-trivial contribution that can be
interpreted as artificial spontaneous Hawking radiation. Con-
sistently, we only consider modes on the EC (in analogy to
massless particles propagating along the light cone). To this
end, we need to identify the possible particle and antiparticle
channels contributing to the total radiation process. Note that
the calculations below are carried out in what corresponds to
a semi-classical limit, which formally means M0 � 1 in the
chosen system of units.

A. Legendre Transformation in Non-Hermitian Systems

The quantum tunneling method requires a Lagrangian. For
conventional Hermitian systems, the Lagrangian is given by a
Legendre transformation of the Hamiltonian

L = p · q̇−H, (28)

where p denotes the generalized momentum, q the general-
ized canonical coordinates and ḟ = df

dt . This transformation
cannot be naively extended to include NH systems. However,
using that a general NH Hamiltonian can be decomposed as

H = H1 + iH2, (29)

where, for the specific model considered in Eq. (19), H1 =
kxσ

x + kyσ
y and H2 = (kz − κkx)σz are Hermitian, for

each Hi, the conventional Legendre transformation,

Li = k · q̇−Hi, (30)

holds. Furthermore, the generalized momenta are the same
in both H1 and H2. Hence, the generalized coordinates and
their corresponding time derivative are the same in L1 and L2.
Thus, the total Lagrangian corresponding to the Hamiltonian
in Eq. (19) is given by,

L = (1 + i)k · q̇−H. (31)

B. Identifying Particle and Antiparticle Channels

When using the quantum tunneling method, the total spon-
taneous emission is given by the sum of two processes: a par-
ticle tunneling out from the interior of the black hole, and an

antiparticle tunneling into the interior of the black hole. The
quantity of interest, describing classically forbidden trajecto-
ries, is the imaginary part of the action of a light-like (anti)
particle [39]. Hence, we need to consider the region in mo-
mentum space corresponding to the EC [Eq. (20)]. Since the
spatial dependence imposed is taken to be in the x-coordinate,
we solve Eq. (20) for kx. Recalling the identification x := r,
we get

k±r = −
√

2M0r kz
r − 2M0

±

√
r2k2z

(r − 2M0)
2 −

rk2y
r − 2M0

. (32)

Since the quantum tunneling takes place close to the horizon
r = 2M0, we need not to worry about Eq. (32) taking complex
values.

To determine which solution corresponds to (anti) particles,
we investigate the behavior of Eq. (32) when r → 2M0. The
dominant term is the singular term in the Laurent expansion
of Eq. (32),

k±r =
−2M0kz ± r|kz|

r − 2M0
+O (r − 2M0)

0
. (33)

Explicitly, we find

lim
r→2M−0

k−r =

{
+∞, kz > 0,

0, kz ≤ 0,
(34)

indicating that k−r is the momentum of a particle trying to
escape from the black hole. Analogously, k+r describes the
momentum of an antiparticle trying to fall into the black hole,

lim
r→2M+

0

k+r =

{
0, kz > 0,

+∞, kz ≤ 0.
(35)

The singularities indicate that these processes are classically
forbidden, and hence quantum tunneling is required to cross
the horizon.

C. Quantum Tunneling

We are now ready to calculate the imaginary part of the ac-
tion for the two-band system. From the Legendre transforma-
tion of the Hamiltonian in Eq. (19), the action of the system
reads

I =

∫
(1 + i) krdr −

∫
Hdt, (36)

which we want to evaluate on the EC. There, the eigenval-
ues of Eq. (19) coalesce at zero and the last term in Eq. (36)
vanishes. Hence, the action on the EC is given by

I =

∫
dr (1 + i)×[
−
√

2M0r kz
r − 2M0

±

√
r2k2z

(r − 2M0)
2 −

rk2y
r − 2M0

]
, (37)
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where an implicit sum over the two channels k±r is assumed.
From Section IV B, we know that these solutions correspond
to the momentum of a particle (−) and antiparticle (+), re-
spectively. For the momentum of a particle, we consider a
spontaneous radiation process in which a positive energy ω is
assumed to radiate out from the interior of the black hole such
that the mass of the black hole changes from M0 to M0 − ω.
The antiparticle case, on the other hand, can be interpreted as
a particle propagating backwards in time with a negative en-
ergy ω′ tunneling inwards such that the mass changes from
M0 to M0 + ω′. We start by considering the contribution
from particle tunneling. A particle (with positive energy ω)
contributes by tunneling from slightly inside the horizon to
outside. Hence the contribution from k−r to the action is

IP =

∫ 2(M0−ω)

2M0

dr×[
−
√

2M0r kz
r − 2M0

−

√
r2k2z

(r − 2M0)
2 −

rk2y
r − 2M0

]
. (38)

Second, to compute the contribution from the antiparticle, we
use that the antiparticle is interpreted as a particle with nega-
tive energy, ω′, that propagates backwards in time. We may
thus consider the time-reversed process of a particle with neg-
ative energy tunneling into the black hole. A time-reversal
transformation sends ki to −ki, and the contribution to the
action from the antiparticle channel is therefore

IAP =

∫ 2(M0+ω
′)

2M0

dr×[√
2M0r kz
r − 2M0

+

√
r2k2z

(r − 2M0)
2 −

rk2y
r − 2M0

]
. (39)

The full action of the system is then given by

I = (1 + i) (IP + IAP) . (40)

Now, we expand the integrand around the horizon, r = 2M0,
and consider the contribution from the singular terms in the
Laurent series. After shifting the integration variable, we get,

−
∫ −2ω
0

4M0|kz|
r′

dr′ +

∫ 2ω′

0

4M0|kz|
r′

dr′. (41)

To regularize these integrals we use the Feynman iε prescrip-
tion as in Ref. 39. The positive energy ω is sent to ω − iε,
and hence r′ → r′ − iε in the first integral, while the negative
energy ω′ is sent to ω′ + iε and r′ → r′ + iε in the second
integral. The singular terms then read

4M0|kz| lim
ε→0

(∫ 2ω′

0

dr′

r′ + iε
−
∫ −2ω
0

dr′

r′ − iε

)

= 4M0|kz| lim
ε→0

∫ +2ω

−2ω

dr′

r′ − iε
, (42)

where we in the last step used that ω = −ω′. Remarkably,
all the non-singular terms in the Laurent series of IP exactly

cancel those in the Laurent series of IAP. As we hinted on
in Section III B, the imaginary part of the action is inde-
pendent of ky , which justifies setting dy = 0 in the metric
[Eq. (26)], identifying the initial NH band structure to the
light cone of a radially infalling observer in the vicinity of
an artificial (3 + 1)-dimensional Schwarzschild black hole in
Painlevé-Gullstrand coordinates.

Since the only contribution to the action comes from
Eq. (42), the action can be evaluated by dividing the contour
of integration into two pieces,

I = (1 + i) 4M0|kz| lim
ε→0

∫ 2ω

−2ω

dr′

r′ − iε

= (1 + i) 4M0|kz|
(

P.V.
∫ 2ω

−2ω

dr′

r′
+ iπ

∫ 2ω

−2ω
δ (r′) dr′

)
= (1 + i) 4πiM0|kz|, (43)

giving the imaginary part

Im (I) = 4πM0|kz|. (44)

This indicates that there is indeed a non-vanishing contribu-
tion to the classically forbidden imaginary part of the action,
and that quantum mechanical effects, such as tunneling, can
take place. The probability of a tunneling event can be esti-
mated by the semi-classical emission rate,

Γ ∼ exp (−4πM0|kz|). (45)

Recalling that M0 � 1, Γ decays fast with increasing |kz|,
which means that a tunneling process is not likely unless |kz|
is small, which we discuss in the following section.

V. INTERPRETATION OF PARTICLE EMISSION AS
DISSIPATION

In this section we relate the spontaneous particle emission
to the appearance of bulk Fermi states (BFSs) in the initial
Hamiltonian (19). This means that we are able to explicitly
quantify the dissipation of the NH Hamiltonian in terms of
artificial Hawking radiation. Naturally, such a quantification
is not possible for Hermitian band structures.

A. Bulk Fermi States and Dissipation

Dissipation in NH Hamiltonians is indicated by topolog-
ically protected bulk states, namely BFSs [23]. In general,
these are defined by the momentum satisfying

Re (E) = 0⇒ Im
(
E2
)

= 0, Re
(
E2
)
≤ 0. (46)

Using the Hamiltonian Eq. (19), such dissipative states corre-
spond to

k2x + k2y − (kz − κkx)
2 ≤ 0. (47)
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Figure 2. (a)-(e) Bulk Fermi states of the model given by Eq. (19) at kz = 0 for different values of κ. For κ < 1, the bulk Fermi states are
point-like, but as soon as the EC is overtilted, κ > 1, they form 2D surfaces. This indicates that at kz = 0, there is no dissipative behavior
unless κ > 1. This is due to the formation of a particle-antiparticle pair close to the critical point (κ = 1). To contrast this, bulk Fermi states
of the same model, but at kz = π

2
, are displayed in (f)-(j), for the same values of κ. For finite kz , bulk Fermi states are present for all κ, which

makes the transition between the regions less clear.

Let us consider Eq. (47) for constant slices of kz . In Figs. 2
(a)-(e), the BFSs at kz = 0 are displayed for different val-
ues of κ. Notably, the BFSs appear when κ > 1, indicat-
ing that dissipative features are present when the EC overtilts.
Recalling the expression for the semi-classical emission rate,
Eq. (45), we note that we can regard the dissipation at kz = 0
as spontaneous tunneling of light-like particles, which is the
leading order contribution to Hawking radiation. We further
note that the Hamiltonian Eq. (19) is dissipative also for fi-
nite kz , which is indicated by the existence of BFSs for any
value of κ when kz is non-zero, cf. Figs. 2 (f)-(j). This region
is not covered by the quantification in terms of spontaneous
emission of light-like particles, cf. Eq. (45) for M0 � 1.
An interpretation in terms of black-hole physics in this region
of momentum space is beyond the scope of this project and
hence left as an open question.

B. Artificial Hawking Radiation in Tight-Binding Models

A potential obstacle of the reasoning applied in Section V A
is that the BFSs appearing when κ > 1 for kz = 0 im-
mediately become infinite. This is a direct consequence of
Eq. (19) being linear in the momentum components. One way
to resolve this is to consider a tight-binding model whose lin-
earized version corresponds to Eq. (19), e.g.,

HTB = sin kxσ
x + sin kyσ

y + i (sin kz − κ sin kx)σz. (48)

Interestingly, the BFSs of this particular model, at kz = 0,
are also absent when κ < 1, cf. Figs. 3 (a)-(c), and they ap-
pear as soon κ > 1, cf. Figs. 3 (d)-(e). This means that the
dissipation of the Hamiltonian Eq. (48) at kz = 0 is also ex-
plicitly quantified as artificial Hawking radiation, by the rea-

soning in Section IV. At kz = π
2 , the BFSs appear rather

different than in the linearized model, in particular away from
(kx, ky) = (0, 0), which is indeed expected, see Figs. 3 (f)-(j).
Thus, just as in the linearized model, the dissipation at finite
kz is not quantified as tunneling of light-like particles. Fur-
thermore, for finite kz there is no clear transition when the EC
is overtilted, which can be seen by comparing Figs. 3 (h) and
(i), indicating that the interesting change of behavior occurs at
kz = 0.

The fact that the tight-binding model in Eq. (48) requires
only nearest-neighbor hopping opens the door to possible re-
alizations of systems with ECs in various experimental setups.
Potential candidates include disordered and non-equilibrium
systems, but also photonic lattices [40, 41], which have re-
cently been used to realize dissipative systems of more com-
plicated nature [42]. Since Hawking radiation in stationary
Schwarzschild black holes appears as quantum fluctuations of
an otherwise classical system, it would be intriguing to inves-
tigate photonic crystals and see if similar phenomena related
to spontaneous emission of particles can be observed. Sug-
gestive methods include ARPES measurements to image the
BFSs at kz = 0 and around κ = 1. Tuning κ to vary slowly
with respect to space around κ = 1, the transition illustrated
in Figs. 3 (c) and (d) should be observable.

VI. DISCUSSION AND OUTLOOK

One of the first assumptions we made when modelling the
artificial Schwarzschild event horizon, was to neglect the com-
mutator contributions occurring when the tilting parameter κ
was assigned an explicit spatial dependence. Let us now in-
vestigate what this means. The neglected commutators turn
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Figure 3. (a)-(e) Bulk Fermi states of the model given by Eq. (48) at kz = 0 for different values of κ. As in Fig. 2, the bulk Fermi states are
point-like when κ < 1, but attain the form of 2D surfaces when the EC is overtilted. In the regime where the linear approximation is motivated,
this can be interpreted as a spontaneous creation and emission of a particle-antiparticle pair around κ = 1. For finite kz , illustrated for kz = π

2
in (f)-(j), there is no clear difference between the cases when κ < 1 and κ > 1, which indicates kz = 0 is indeed the point of interest.

out to be proportional to a more simple commutator. This can
be seen by explicitly plugging in the expression for the Hamil-
tonian from Eq. (19) and recalling the identification x := r.
This yields

[H,κ(r)] ∝ [kr, κ(r)] , (49)

and

[H, kr] ∝ [kr, κ(r)] , (50)

and evaluates to

[kr, κ(r)] ∝ ∂κ(r)

∂r
∝ M0

r2
√

2M0

r

. (51)

When moving away from the horizon this goes as r−3/2, and
thus decays for increasing r. However, the quantum tunneling
occurs close to the horizon, and therefore, we also have to
make sure that it is well motivated to neglect the commutator
there. At the horizon, the commutator is

[kr, κ(r)]|r=2M0
∝M−10 . (52)

As we assumed M0 � 1, this contribution indeed disappears.
We note that the current study exclusively deals with sta-

tionary phenomena, both in terms of black holes and in
terms of topological phases. Previous works in the Hermi-
tian realm have used a Lagrangian formalism to study the
time-dependence of solutions to the Euler-Lagrange equations
[22]. These are shown to not result in any radiative behavior
over time, indicating that Hermitian systems model artificial
black holes in equilibrium. Unfortunately, similar studies can-
not be extended in a straightforward manner to NH systems,

since the conventional stationary action principle is not appli-
cable. The action corresponding to a NH Hamiltonian neces-
sarily becomes complex, and hence one would have to choose
whether to minimize, e.g., its real part, imaginary part or ab-
solute value. Instead, we suggest that time dependence can
be introduced differently into NH Hamiltonians through dis-
sipation. Including time as an explicit variable in the Hamilto-
nian requires a more thorough relation to the gravitational side
[21, 36]. In principle, in such an analogy, the time-dependent
dissipation could be used to mimic black hole evaporation.
The latter remains an open question in the current setup.

We also note that the creation (and emission) of the particle-
antiparticle pair occurs exactly on the EC, where PT symme-
try is spontaneously broken. This has, to our knowledge, not
been observed before and should be investigated in other se-
tups to see whether or not it is a generic feature. However, this
is beyond the scope of this article.

In recent works, the importance of additional bands in sim-
ilar NH models has been studied [45, 46]. In particular, the
appearance of higher order EPs is investigated. To this point,
we note that considering additional bands, the ECs of order
two can be accompanied by third order exceptional lines and
fourth order EPs in 3D PT -symmetric systems. The impact
of the higher order exceptional structure is something that we
find interesting, but nothing that we intend to investigate at
this point. Here we assume the additional bands to be located
far away from the ones considered in this work, and leave fur-
ther investigation for future studies.

VII. CONCLUSION

In this work, we have studied the topology of the excep-
tional nodal structures in linear 3D NH two-band models sub-
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ject to PT symmetry. We showed that the EPs constitute a
symmetry-protected EC in momentum space by relating the
EC to the energy cone of a 2D Hermitian PT -symmetric
Hamiltonian. By using what was already known for Hermitian
systems, we were able to find a relation between the EC and
the light cone of a radially infalling observer in the vicinity
of a stationary Schwarzschild black hole. Notably, the exact
same light cone was obtained from the Hermitian Hamilto-
nian. By applying the quantum tunneling method [39] to the
NH system, we explicitly showed that a light-like particle-
antiparticle pair was created on and emitted from the EC,
where PT symmetry is spontaneously broken, at the point of
critical tilting. We then interpreted this spontaneous emission
in terms of the existence of BFSs.

We thus extended the previously known Hermitian rela-
tion to artificial light cones to include NH systems. This al-
lowed for the interpretation of spontaneous Hawking radia-
tion as dissipative features, which was not possible for Her-
mitian systems. Interestingly, recent studies show that NH
systems can be related to general features of quantum grav-

ity [47, 48], indicating further interpretations and applications
of non-Hermiticity in the study of the nature of spacetime.
Hopefully, further studies will sharpen and clarify the anal-
ogy between dissipative NH systems and black hole physics.
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