ON A NONINTEGRALITY CONJECTURE

FLORIAN LUCA AND CARL POMERANCE

Abstract. It is conjectured that the sum

$$
S_{r}(n)=\sum_{k=1}^{n} \frac{k}{k+r}\binom{n}{k}
$$

for positive integers r, n is never integral. This has been shown for $r \leq 22$. In this note we study the problem in the " n aspect" showing that the set of n such that $S_{r}(n) \in \mathbb{Z}$ for some $r \geq 1$ has asymptotic density 0 . Our principal tools are some deep results on the distribution of primes in short intervals.

1. Introduction

For positive integers r, n let

$$
S_{r}(n)=\sum_{k=1}^{n} \frac{k}{k+r}\binom{n}{k}
$$

Motivated by some cases with small r, López-Aguayo [4] asked if $S_{r}(n)$ is ever an integer, showing for $r \in\{1,2,3,4\}$ that $S_{r}(n)$ is not integral for all n. In [5] it was conjectured that $S_{r}(n)$ is never integral, and they proved the conjecture for $r \leq 6$. In 3 it was proved for $r \leq 22$. Also in 3, using a deep theorem of Montgomery and Vaughan [6], it was shown for a fixed r that the set of n such that $S_{r}(n) \in \mathbb{Z}$ has upper density bounded by $O_{k}\left(1 / r^{k}\right)$ for any $k \geq 1$. In fact, this density is 0 , as we shall show. Actually we prove a stronger result. Let

$$
\mathcal{S}:=\left\{n: S_{r}(n) \in \mathbb{Z} \text { for some } r \geq 1\right\} .
$$

Theorem 1. The set \mathcal{S} has zero density as a subset of the integers.
It follows from our argument that if we put $\mathcal{S}(x)=\mathcal{S} \cap[1, x]$ then $\# \mathcal{S}(x)=$ $O_{A}\left(x /(\log x)^{A}\right)$ for every fixed A. In particular, taking $A=2$, we see that the reciprocal sum of \mathcal{S} is finite.

2. The proof

We let x be large and $n \in \mathcal{S} \cap[x / 2, x)$. Thus, $S_{r}(n) \in \mathbb{Z}$ for some $r \geq 1$. Let

$$
S(r, n):=\sum_{k=0}^{n} \frac{r}{k+r}\binom{n}{k}
$$

[^0]so that $S(r, n)+S_{r}(n)=\sum_{k=0}^{n}\binom{n}{k}=2^{n} \in \mathbb{Z}$, so that $S(r, n) \in \mathbb{Z}$. It is shown in (5) that
\[

$$
\begin{equation*}
S(r, n)=\sum_{j=1}^{r}(-1)^{r-j} r\binom{r-1}{j-1} \frac{2^{n+j}-1}{n+j} . \tag{1}
\end{equation*}
$$

\]

Lemma 1. If there is a prime $p>n$ that divides one of $1+r, 2+r, \ldots, n+r$, then $S_{r}(n)$ is not integral.

Proof. Write p as $k_{0}+r$, where $1 \leq k_{0} \leq n$. Since $p>n$, we have that p does not divide any other $k+r$ for $1 \leq k \leq n$. So the term $\left(k_{0} /\left(k_{0}+r\right)\right)\binom{n}{k_{0}}$ in the definition of $S_{r}(n)$, in reduced form, has a factor p in the denominator, and no other terms $(k /(k+r))\binom{n}{k}$ have this property. We deduce that $S_{r}(n)$ is nonintegral, completing the proof.

We distinguish various cases.
Case 1. $r \geq n$.
By Sylvester's theorem, one of the integers $1+r, 2+r, \ldots, n+r$ is divisible by a prime $p>n$. It follows from Lemma that $S_{r}(n)$ is nonintegral. From now on, we assume that $n>r$.

Case 2. $n>r>(x / 2)^{1 / 10}$.
By a result of Jia (see [2]) for every fixed $\varepsilon>0$, the interval $\left[n+1, n+n^{1 / 20+\varepsilon}\right]$ contains a prime number p for almost all n, with the number of exceptional values of $n \leq x$ being $<_{\epsilon, A} x /(\log x)^{A}$ for every fixed $A>0$. If $r>(x / 2)^{1 / 10} \geq(n / 2)^{1 / 10}$, then $r>n^{1 / 11}$ holds for all $x>x_{0}$. If n is not exceptional in the sense of Jia's theorem, then the interval $[n, n+r]$ contains the interval $\left[n+1, n+n^{1 / 11}\right]$ and hence a prime $p>n>r$, so $S_{r}(n)$ cannot be an integer by Lemma 1. Hence, n must be exceptional in the sense of Jia's theorem and the set of such n has counting function $O_{A}\left(x /(\log x)^{A}\right)$ for any fixed $A>0$.

Case 3. $y \leq r \leq(x / 2)^{1 / 10}$, where $y:=x^{1 / \log \log x}$.
This is the most interesting part. We prove the following lemma. For an odd prime p we write $\ell_{2}(p)$ for the order of 2 modulo p.
Lemma 2. There exists r_{0} such that if $r>r_{0}$, then the interval $I=\left[r, r+r^{0.61}\right]$ contains 6 primes p_{1}, \ldots, p_{6} such that each $\ell_{2}\left(p_{i}\right)>r^{0.3}$ for $1 \leq i \leq 6$ and each $\operatorname{gcd}\left(p_{i}-1, p_{j}-1\right)<r^{0.001}$ for $1 \leq i<j \leq 6$.

Proof. Let $\pi(I)$ be the number of primes in I. From Baker, Harman, and Pintz [1] we have for large r that

$$
\pi(I) \gg r^{0.61} / \log r
$$

(Actually, this follows from earlier results, but [1] holds the record currently for primes in short intervals.) Let \mathcal{Q} be the subset of primes $p \in I$ such that $\ell_{2}(p) \leq$ $r^{0.3}$. By a classical argument, $\# \mathcal{Q} \ll r^{0.6} / \log r$. Indeed,

$$
r^{\# \mathcal{Q}} \leq \prod_{p \in \mathcal{Q}} p \leq \prod_{t \leq r^{0.3}}\left(2^{t}-1\right)<2^{\sum_{t \leq r^{0.3} t}}<2^{r^{0.6}}
$$

from which we deduce the desired upper bound on $\# \mathcal{Q}$. Since

$$
r^{0.6} / \log r=o\left(r^{0.61} / \log r\right)=o(\pi(I)), \quad \text { as } \quad r \rightarrow \infty
$$

we deduce that most primes p in I have $\ell_{2}(p) \geq r^{0.3}$. Let \mathcal{P} denote this set of primes in I, so that $\# \mathcal{P} \gg r^{0.61} / \log r$. For any positive integer d the number of pairs of primes p, q in \mathcal{P} with $d \mid p-1$ and $d \mid q-1$ is $\ll r^{2 \times 0.61} / d^{2}$ even ignoring the primality condition. Summing over $d \geq r^{0.001}$ we see that the number of pairs $p, q \in \mathcal{P}$ with $\operatorname{gcd}(p-1, q-1) \geq r^{0.001}$ is $\ll r^{2 \times 0.61-0.001}$, so that most pairs of primes $p, q \in \mathcal{P}$ have $\operatorname{gcd}(p-1, q-1)<r^{0.001}$. In fact, the number of 6 -tuples of primes $p_{1}, \ldots, p_{6} \in \mathcal{P}$ with some $\operatorname{gcd}\left(p_{i}-1, p_{j}-1\right) \geq r^{0.001}$ is $\ll r^{6 \times 0.61-0.001}$, so we may deduce that most 6 -tuples of primes in \mathcal{P} satisfy the gcd condition of the lemma. Of course " 6 " may be replaced with any fixed positive integer, only affecting the choice of r_{0}.

Let $\left\{p_{1}, \ldots, p_{6}\right\}$ be the 6 primes in I which exist for $x>x_{0}$ (such that $y>r_{0}$). Either there are 4 of these primes such that the interval $[n+1, n+r]$ contains a multiple of each, or there are 3 of these primes which do not have multiples in $[n+1, n+r]$. Take the case of 4 of the primes having a multiple in $[n+1, n+r]$ and without essential loss of generality, say they are $p_{1}, p_{2}, p_{3}, p_{4}$. They determine integers $j_{1}, j_{2}, j_{3}, j_{4}$ with $1 \leq j_{i} \leq r$ and $p_{i} \mid n+j_{i}$. However, there is another restriction on n caused by $S(r, n)$ being integral. We have each $\ell_{2}\left(p_{i}\right) \mid n+j_{i}$, since otherwise the j_{i} term in (1) in reduced form contains a factor of p_{i} in the denominator, a property not shared with any other term. This would imply that $S(r, n)$ is nonintegral, a contradiction. Thus, we have $\ell_{2}\left(p_{i}\right) \mid n+j_{i}$ as claimed for $i=1,2,3,4$. We conclude that n is in a residue class modulo

$$
M:=\operatorname{lcm}\left\{p_{1}, p_{2}, p_{3}, p_{4}, \ell_{2}\left(p_{1}\right), \ell_{2}\left(p_{2}\right), \ell_{2}\left(p_{3}\right), \ell_{2}\left(p_{4}\right)\right\}
$$

Now $p_{1}, p_{2}, p_{3}, p_{4}$ are distinct primes in $\left[r+1, r+r^{0.61}\right]$, and each $\ell_{2}\left(p_{i}\right)$, since it divides $p_{i}-1$, has all prime factors $\leq r$, so is coprime to the other p_{j} 's. Moreover, each $\ell_{2}\left(p_{i}\right)>r^{0.3}$ and being a divisor of $p_{i}-1$, each $\operatorname{gcd}\left(\ell_{2}\left(p_{i}\right), \ell_{2}\left(p_{j}\right)\right) \leq r^{0.001}$. Thus,

$$
M>r^{4} r^{1.2} r^{-0.006}=r^{5.194}
$$

Further, $M \ll r^{8}<x$. Thus, the number of n in this residue class is $\ll x / M<$ $x / r^{5.194}$. Summing over the different possibilities for $j_{1}, j_{2}, j_{3}, j_{4}$, our count is \ll $x / r^{1.194}$. Now summing over $r>y$, we have that the number of n in this case is $\ll x / y^{0.194}$.

We also must consider the possibility that 3 of our 6 primes do not divide any $n+j$ with $1 \leq j \leq r$. Again without essential loss of generality, assume they are p_{1}, p_{2}, p_{3}. Since each is in $\left[r+1, r+r^{0.61}\right]$, it follows that each p_{i} corners n in a set of $O\left(r^{0.61}\right)$ residue classes mod p_{i}. With the Chinese Remainder Theorem, such n 's are in a set of $O\left(r^{1.83}\right)$ residues classes modulo $p_{1} p_{2} p_{3}$. Note that the modulus is small, at most $O\left(r^{3}\right)=o(x)$. Thus, the number of such n is at most

$$
O\left(\frac{r^{1.83} x}{p_{1} p_{2} p_{3}}\right)=O\left(\frac{x}{r^{1.17}}\right)
$$

Varying the 3 primes in $\binom{6}{3}=20$ ways multiplies the above count by a constant factor. Summing on $r>y$ we deduce that the number of n in $(x / 2, x]$ is $\ll x / y^{0.17}$. With our above estimate, this puts the count in Case 3 at $O\left(x / y^{0.17}\right)=o(x)$ as $x \rightarrow \infty$.

Case 4. We assume that $r \in(22, y]$.

Here, we do the "regular" thing, where we distinguish between smooth numbers and numbers with a large prime factor. Let $P(m)$ denote the largest prime factor of m. If $P(n+1) \leq y$, this puts n in a set of size $x /(\log x)^{(1+o(1)) \log \log \log x}$ as $x \rightarrow \infty$, by standard estimates for smooth numbers. So, assume that $p=P(n+1)>y$. Since $r \leq y$, it follows that p does not divide any other $n+j$ with $j \leq r$, so that (11) and $S(r, n)$ integral imply that $\ell_{2}(p) \mid n+1$.

The number of primes $2<q \leq t$ with $\ell_{2}(q) \leq q^{0.3}$ is by the argument in the previous case at most $t^{0.6}$. By a partial summation argument, the number of $n \in(x / 2, x]$ with $n+1$ divisible by such a prime $q>y$ is $O\left(x / y^{0.4}\right)$. So, assume that $\ell_{2}(p)>p^{0.3}$. The number of integers $n \in(x / 2, x]$ with $n+1$ divisible by $p \ell_{2}(p)$ is $\leq x /\left(p \ell_{2}(p)\right) \leq x / p^{1.3}$. Summing on $p>y$ our count is $\ll x / y^{0.3}$.

Putting together everything, we get that $\# \mathcal{S}(x)$ is $O_{A}\left(x /(\log x)^{A}\right)$ for every fixed $A>0$. This completes the proof of the theorem.
Remarks. Note that assuming Cramér's conjecture that for some constant c and for large x there is a prime in $\left[x, x+c(\log x)^{2}\right]$, the estimate in Case 2 is eliminated. By then optimizing the choice of y, our final count for $\mathcal{S}(x)$ would be of the shape $O(x / \exp (c \sqrt{\log x \log \log x}))$ for some $c>0$. The hardest cases to try and do better seem to be $r=O(1)$.

Let $s_{r}(m)$ be the largest r-smooth divisor of m and let $M_{r}(n)=\min \left\{s_{r}(n+j)\right.$: $1 \leq j \leq r\}$. It follows from [3, Proposition 3.1] that if $M_{r}(n) \leq \log _{2} r$, then $S_{r}(n)$ is nonintegral. Unfortunately, as discussed in [3, Remark 2], it is not always the case that $M_{r}(n) \leq \log _{2} r$. Nevertheless, it seems interesting to get estimates for $M(r):=\max \left\{M_{r}(n): n>0\right\}$.

References

[1] R. C. Baker, G. Harman, and J. Pintz, "The difference between consecutive primes. II", Proc. London Math. Soc. (3) 83 (2001), 532-562.
[2] C. Jia, "Almost all short intervals containing prime numbers", Acta Arith. 76 (1996), 21-84.
[3] S. Laishram, D. López-Aguayo, C. Pomerance and T. Thongjunthug, "Progress towards a non-integrality conjecture", Eur. J. Math. 6 (2020), 1496-1504.
[4] D. López-Aguayo, "Nonintergarlity of binomial sums and Fermat's Little Theorem", Math. Mag. 88 (2015), 231-234.
[5] F. López Aguayo and F. Luca, "Sylvester's theorem and the non-integrality of a certain binomial sum", The Fibonaci Quart. 54 (2016), 44-48.
[6] H. L. Montgomery and R. C. Vaughan, "On the distribution of reduced residues", Ann. of Math. 123 (1986), 311-333.

School of Maths, Wits University, South Africa, Max Planck Institute for Mathematics, Bonn, Germany, Research Group in Algebraic Structures and Applications, King Abdulaziz University, Jeddah, Saudi Arabia

Email address: florian.luca@wits.ac.za
Mathematics Department, Dartmouth College, 27 N. Main Street, 6188 Kemeny Hall, Hanover, Hanover NH 03755-3551, USA

Email address: carlp@math.dartmouth.edu

[^0]: Date: June 16, 2021.
 2010 Mathematics Subject Classification. 11N37.
 Key words and phrases. Primes in short intervals.

