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ON A NONINTEGRALITY CONJECTURE

FLORIAN LUCA AND CARL POMERANCE

Abstract. It is conjectured that the sum

Sr(n) =
n
∑

k=1

k

k + r

(n

k

)

for positive integers r, n is never integral. This has been shown for r ≤ 22. In
this note we study the problem in the “n aspect” showing that the set of n

such that Sr(n) ∈ Z for some r ≥ 1 has asymptotic density 0. Our principal
tools are some deep results on the distribution of primes in short intervals.

1. Introduction

For positive integers r, n let

Sr(n) =

n
∑

k=1

k

k + r

(

n

k

)

.

Motivated by some cases with small r, López-Aguayo [4] asked if Sr(n) is ever an
integer, showing for r ∈ {1, 2, 3, 4} that Sr(n) is not integral for all n. In [5] it was
conjectured that Sr(n) is never integral, and they proved the conjecture for r ≤ 6.
In [3] it was proved for r ≤ 22. Also in [3], using a deep theorem of Montgomery
and Vaughan [6], it was shown for a fixed r that the set of n such that Sr(n) ∈ Z

has upper density bounded by Ok(1/r
k) for any k ≥ 1. In fact, this density is 0, as

we shall show. Actually we prove a stronger result. Let

S := {n : Sr(n) ∈ Z for some r ≥ 1}.

Theorem 1. The set S has zero density as a subset of the integers.

It follows from our argument that if we put S(x) = S ∩ [1, x] then #S(x) =
OA(x/(log x)

A) for every fixed A. In particular, taking A = 2, we see that the
reciprocal sum of S is finite.

2. The proof

We let x be large and n ∈ S ∩ [x/2, x). Thus, Sr(n) ∈ Z for some r ≥ 1. Let

S(r, n) :=

n
∑

k=0

r

k + r

(

n

k

)

,
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so that S(r, n) + Sr(n) =
∑n

k=0

(

n
k

)

= 2n ∈ Z, so that S(r, n) ∈ Z. It is shown in
[5] that

(1) S(r, n) =
r

∑

j=1

(−1)r−jr

(

r − 1

j − 1

)

2n+j − 1

n+ j
.

Lemma 1. If there is a prime p > n that divides one of 1+ r, 2+ r, . . . , n+ r, then
Sr(n) is not integral.

Proof. Write p as k0 + r, where 1 ≤ k0 ≤ n. Since p > n, we have that p does not
divide any other k+ r for 1 ≤ k ≤ n. So the term (k0/(k0+ r))

(

n
k0

)

in the definition

of Sr(n), in reduced form, has a factor p in the denominator, and no other terms
(k/(k+ r))

(

n
k

)

have this property. We deduce that Sr(n) is nonintegral, completing
the proof. �

We distinguish various cases.

Case 1. r ≥ n.

By Sylvester’s theorem, one of the integers 1 + r, 2 + r, . . . , n+ r is divisible by
a prime p > n. It follows from Lemma 1 that Sr(n) is nonintegral. From now on,
we assume that n > r.

Case 2. n > r > (x/2)1/10.

By a result of Jia (see [2]) for every fixed ε > 0, the interval [n+ 1, n+ n1/20+ε]
contains a prime number p for almost all n, with the number of exceptional values
of n ≤ x being ≪ǫ,A x/(log x)A for every fixed A > 0. If r > (x/2)1/10 ≥ (n/2)1/10,

then r > n1/11 holds for all x > x0. If n is not exceptional in the sense of Jia’s
theorem, then the interval [n, n + r] contains the interval [n + 1, n + n1/11] and
hence a prime p > n > r, so Sr(n) cannot be an integer by Lemma 1. Hence, n
must be exceptional in the sense of Jia’s theorem and the set of such n has counting
function OA(x/(log x)

A) for any fixed A > 0.

Case 3. y ≤ r ≤ (x/2)1/10, where y := x1/ log log x.

This is the most interesting part. We prove the following lemma. For an odd
prime p we write ℓ2(p) for the order of 2 modulo p.

Lemma 2. There exists r0 such that if r > r0, then the interval I = [r, r + r0.61]
contains 6 primes p1, . . . , p6 such that each ℓ2(pi) > r0.3 for 1 ≤ i ≤ 6 and each

gcd(pi − 1, pj − 1) < r0.001 for 1 ≤ i < j ≤ 6.

Proof. Let π(I) be the number of primes in I. From Baker, Harman, and Pintz [1]
we have for large r that

π(I) ≫ r0.61/ log r.

(Actually, this follows from earlier results, but [1] holds the record currently for
primes in short intervals.) Let Q be the subset of primes p ∈ I such that ℓ2(p) ≤
r0.3. By a classical argument, #Q ≪ r0.6/ log r. Indeed,

r#Q ≤
∏

p∈Q

p ≤
∏

t≤r0.3

(2t − 1) < 2
∑

t≤r0.3
t < 2r

0.6

,

from which we deduce the desired upper bound on #Q. Since

r0.6/ log r = o(r0.61/ log r) = o(π(I)), as r → ∞,
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we deduce that most primes p in I have ℓ2(p) ≥ r0.3. Let P denote this set of
primes in I, so that #P ≫ r0.61/ log r. For any positive integer d the number of
pairs of primes p, q in P with d | p− 1 and d | q − 1 is ≪ r2×0.61/d2 even ignoring
the primality condition. Summing over d ≥ r0.001 we see that the number of pairs
p, q ∈ P with gcd(p − 1, q − 1) ≥ r0.001 is ≪ r2×0.61−0.001, so that most pairs of
primes p, q ∈ P have gcd(p − 1, q − 1) < r0.001. In fact, the number of 6-tuples
of primes p1, . . . , p6 ∈ P with some gcd(pi − 1, pj − 1) ≥ r0.001 is ≪ r6×0.61−0.001,
so we may deduce that most 6-tuples of primes in P satisfy the gcd condition of
the lemma. Of course “6” may be replaced with any fixed positive integer, only
affecting the choice of r0. �

Let {p1, . . . , p6} be the 6 primes in I which exist for x > x0 (such that y > r0).
Either there are 4 of these primes such that the interval [n + 1, n + r] contains
a multiple of each, or there are 3 of these primes which do not have multiples in
[n + 1, n+ r]. Take the case of 4 of the primes having a multiple in [n + 1, n+ r]
and without essential loss of generality, say they are p1, p2, p3, p4. They determine
integers j1, j2, j3, j4 with 1 ≤ ji ≤ r and pi | n + ji. However, there is another
restriction on n caused by S(r, n) being integral. We have each ℓ2(pi) | n + ji,
since otherwise the ji term in (1) in reduced form contains a factor of pi in the
denominator, a property not shared with any other term. This would imply that
S(r, n) is nonintegral, a contradiction. Thus, we have ℓ2(pi) | n+ ji as claimed for
i = 1, 2, 3, 4. We conclude that n is in a residue class modulo

M := lcm{p1, p2, p3, p4, ℓ2(p1), ℓ2(p2), ℓ2(p3), ℓ2(p4)}.

Now p1, p2, p3, p4 are distinct primes in [r + 1, r + r0.61], and each ℓ2(pi), since it
divides pi − 1, has all prime factors ≤ r, so is coprime to the other pj ’s. Moreover,
each ℓ2(pi) > r0.3 and being a divisor of pi − 1, each gcd(ℓ2(pi), ℓ2(pj)) ≤ r0.001.
Thus,

M > r4r1.2r−0.006 = r5.194.

Further, M ≪ r8 < x. Thus, the number of n in this residue class is ≪ x/M <
x/r5.194. Summing over the different possibilities for j1, j2, j3, j4, our count is ≪
x/r1.194. Now summing over r > y, we have that the number of n in this case is
≪ x/y0.194.

We also must consider the possibility that 3 of our 6 primes do not divide any
n + j with 1 ≤ j ≤ r. Again without essential loss of generality, assume they are
p1, p2, p3. Since each is in [r + 1, r + r0.61], it follows that each pi corners n in a
set of O(r0.61) residue classes mod pi. With the Chinese Remainder Theorem, such
n’s are in a set of O(r1.83) residues classes modulo p1p2p3. Note that the modulus
is small, at most O(r3) = o(x). Thus, the number of such n is at most

O

(

r1.83x

p1p2p3

)

= O
( x

r1.17

)

.

Varying the 3 primes in
(

6
3

)

= 20 ways multiplies the above count by a constant

factor. Summing on r > y we deduce that the number of n in (x/2, x] is ≪ x/y0.17.
With our above estimate, this puts the count in Case 3 at O(x/y0.17) = o(x) as
x → ∞.

Case 4. We assume that r ∈ (22, y].
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Here, we do the “regular” thing, where we distinguish between smooth numbers
and numbers with a large prime factor. Let P (m) denote the largest prime factor of
m. If P (n+1) ≤ y, this puts n in a set of size x/(log x)(1+o(1)) log log log x as x → ∞,
by standard estimates for smooth numbers. So, assume that p = P (n + 1) > y.
Since r ≤ y, it follows that p does not divide any other n + j with j ≤ r, so that
(1) and S(r, n) integral imply that ℓ2(p) | n+ 1.

The number of primes 2 < q ≤ t with ℓ2(q) ≤ q0.3 is by the argument in
the previous case at most t0.6. By a partial summation argument, the number of
n ∈ (x/2, x] with n + 1 divisible by such a prime q > y is O(x/y0.4). So, assume
that ℓ2(p) > p0.3. The number of integers n ∈ (x/2, x] with n+1 divisible by pℓ2(p)
is ≤ x/(pℓ2(p)) ≤ x/p1.3. Summing on p > y our count is ≪ x/y0.3.

Putting together everything, we get that #S(x) is OA(x/(log x)
A) for every fixed

A > 0. This completes the proof of the theorem.

Remarks. Note that assuming Cramér’s conjecture that for some constant c and
for large x there is a prime in [x, x+c(log x)2], the estimate in Case 2 is eliminated.
By then optimizing the choice of y, our final count for S(x) would be of the shape
O(x/ exp(c

√
log x log log x)) for some c > 0. The hardest cases to try and do better

seem to be r = O(1).
Let sr(m) be the largest r-smooth divisor of m and let Mr(n) = min{sr(n+ j) :

1 ≤ j ≤ r}. It follows from [3, Proposition 3.1] that if Mr(n) ≤ log2 r, then Sr(n)
is nonintegral. Unfortunately, as discussed in [3, Remark 2], it is not always the
case that Mr(n) ≤ log2 r. Nevertheless, it seems interesting to get estimates for
M(r) := max{Mr(n) : n > 0}.
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