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A well-established result in condensed matter physics states that materials crystallizing in symmetry groups
containing glide reflection symmetries possess nodal lines on the energy bands. These nodal lines are topologi-
cally protected and appear on the fixed planes of the reflection in reciprocal space. In the presence of inversion
symmetry, the energy bands are degenerate and the band crossings on the fixed plane may be one-dimensional,
or may intersect in points, including the case of empty intersection. In the latter case, the crossing is partially or
totally avoided, thus producing lines on reciprocal space where the energy gap may be small, and in the former,
the nodal lines will endure, thus producing Dirac or double nodal lines. In addition, if the material crystallizes
in a ferromagnetic phase where the glide reflection symmetry is broken, the nodal lines hybridize, thus defining
lines in reciprocal space where the energy gap may be small. In this work, we concentrate our efforts on the study
of nodal lines that hybridize due to magnetization; we have coined the term of quasinodal lines for those lines in
reciprocal space where the energy gap is small (less than what can be detected experimentally ∼25 meV). We
study magnetic trifluorides and trioxides which crystallize in magnetic space groups 167.107 and 161.71 and we
show the existence of quasinodal lines on these materials. We furthermore show that whenever the quasinodal
lines are located around the Fermi level then interesting charge and spin transport effects are induced and can
be used to detect experimentally these lines. Of particular interest are the half-metallic ferromagnetic phases
of PdF3 and LiCuF3 where the large signal of the anomalous Hall conductance is due to the presence of the
quasinodal lines on the Fermi level.
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I. INTRODUCTION

Topological nontrivial states of matter have been investi-
gated intensively in recent years in condensed matter physics
and materials science [1–3]. The field has grown dramati-
cally after the discovery of topological insulators and it is
in continuous development with the prediction of diverse
topological semimetals phases [4,5]. Topological semimetals
are materials with gapless bulk states and can be classified
in Dirac, Weyl, and nodal-line semimetals [6–8]. In contrast
to Dirac and Weyl semimetals, which have zero-dimensional
band crossings, nodal line semimetals have prolonged band
crossings along unique lines in reciprocal space [9]. In partic-
ular, the nodal lines can cross the Brillouin zone in the shape
of a closed line or a ring [10,11]. These special band crossings
can induce exotic phenomena and effects such as ultrahigh
mobilities, extremely high conductivity, large magnetoresis-
tance and unusual anomalous and spin Hall effects [12–18].

It has been found that the manifestation of nodal lines
in magnetic and nonmagnetic materials is directly related to
the presence, absence or combination of symmetries as time-
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reversal, inversion, mirror, rotation, and partial translation
[19–23]. Depending on particular planes or lines in the re-
ciprocal space that are protected by a set of these symmetries,
nodal lines can also be categorized into Dirac and Weyl-type
[24–26]. In Dirac nodal lines both inversion symmetry and
time-reversal symmetry should be present to guarantee four-
fold degeneration along the band crossing [27–30]. On the
other side, in Weyl nodal lines the lack of either time-reversal
or inversion symmetry permits the band to split and the degen-
eracy is of degree two [24]. A recent discovery of protected
Weyl nodal lines in ferromagnetic materials has attracted
great attention because of their potential application in novel
spintronic devices [31–34]. Hence, the study of crystalline
symmetries that topologically predict nodal lines close to the
Fermi level is one of the most important goals in this field.

On the other hand, it is well known that valence and
conduction bands with the same symmetry eigenvalues can
hybridize, leading to anticrossing points in band structures
[35,36]. However, depending of the system symmetries, these
anticrossing points can be extended along the Brillouin zone
showing a pattern similar to a nodal line; therefore they have
been coined quasinodal line or nodal-line band anticross-
ings [37]. These quasinodal lines could also induce novel
electronic and spin transport phenomena and this interesting
behavior has been observed in half-metallic ferromagnets [38]
and in nodal line semimetals [37,39]. In this manuscript, We
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predict theoretically and detect computationally the forma-
tion of quasinodal lines in rhombohedral crystal structures, in
particular, IrF3, LaAgO3, PdF3, and LiCuF3, and we foresee
that this study can be extended to a large set of magnetic
and nonmagnetic rhombohedral materials based on Nos. 161
and 167 space groups such as XF3, ABF3, XO3, ABO3 and
AB(PO4)3. In addition, using the linear response formalism
[40,41], we find that the quasinodal lines are responsible for a
large signal of anomalous and spin Hall conductivity in these
materials. It is expected that this novel topological transport
behavior could lead to the design of novel spintronic devices.

II. NODAL AND QUASINODAL LINES ON GLIDE
REFLECTION INVARIANT PLANES

Nodal lines appear on the fixed planes of glide reflection
symmetries in reciprocal space [42]. They may hybridize
or cross in the presence of inversion symmetry, and they
hybridize in the ferromagnetic phases on which the glide
reflection symmetry is broken. In this section, we make a
summary of the different types of nodal and quasinodal lines
induced by glide reflection symmetries.

A. Nodal lines

Consider a system with spin-orbit coupling (SOC) which
is invariant under a glide mirror reflection on a plane G. In the
cartesian coordinate basis, we can write

G(x) = σn(x) + b, (1)

as the composition of the mirror reflection σn along the plane
perpendicular to the unit normal vector n and the partial trans-
lation by b. Since G is a glide reflection on the crystal, we have
that G2 is a translation by the Bravais vector σn(b) + b. Let us
split the vector b on its components parallel and perpendicular
to n:

b = bn + bn⊥ (2)

and note that 2bn⊥ = σn(b) + b and therefore bn⊥ is half a
Bravais lattice vector. Hence we have in momentum coordi-
nates

G2 = −e−i2k·bn⊥ . (3)

Let us consider two consecutive energy bands and let us
restrict them to the invariant planes of the operator G. On
these planes, we have G(k) = σn(k) = k. The band electron
energies restricted to these planes are both two-dimensional
and therefore they intersect generically on a one-dimensional
manifold (the intersection might be empty). Whenever they
intersect we obtain the so-called nodal lines. However, how
are these nodal lines protected?

Whenever the system preserves the time-reversal sym-
metry T we may focus our attention on the time-reversal
invariant points in momentum space (TRIMs) located on the
fixed plane by G. Note that G permutes the TRIMs, leaving
always at least four fixed. If all TRIMs are fixed by G, then n
is one of the following three unit vectors:

(1, 0, 0), (0, 1, 0), (0, 0, 1). (4)

Now, if not all TRIMs are fixed by G, then there are � and
�′ different TRIMs with �′ = σn(�). Hence we know that n
is parallel to � − �′. Checking the possibilities of σn(π, 0, 0)
we see that the only possible unit vectors for n are then the
following:

1√
2

(1,±1, 0),
1√
2

(0, 1,±1),
1√
2

(±1, 0, 1). (5)

In this case, there is only one fixed plane which include four
TRIMs and the other four TRIMs get swapped by σn. In
particular we have just shown that there are only two types
of reflections that matter. Either the reflection σn fixes two
disconnected planes in momentum space and n is one of the
vectors presented in (4), i.e., the fixed planes are kl = 0 and
kl = π for l ∈ {x, y, z}, or it fixes only one connected plane
and n is one of the vectors presented in (5), i.e., the fixed plane
is kl ± km = 0 for l �= m and both in {x, y, z}.

The existence of a nodal line along the fixed plane by G
can be predicted whenever there is an eigenfunction of the
Hamiltonian �, and two different TRIMs � and �′ inside the
fixed reflection plane, such that the G eigenvalues of � local-
ized at � and �′ are different. If this is the case, the energy
band diagrams of any path joining � and �′ will produce an
hourglass, and hence a band intersection along the path as it is
shown schematically in the right-hand panel of Fig. 1(a). Now
since this argument works for any path between � and �′,
then a nodal line must exist. The only requirement for this to
happen is that bn⊥ �= 0, namely that the mirror reflection has
a glide. If � is fixed by G, then there must exist �′ also fixed
by G such that (�′ − �) · bn⊥ �= 0 (this because G fixes four
TRIMs spanning the plane and bn⊥ belongs to the plane) and
such that (�′ − �) · 2bn⊥ ≡ π mod 2π ; this because bn⊥ is
half Bravais vector and 2(�′ − �) is a reciprocal lattice vector.

On � and �′ the time-reversal operator T conjugates the
eigenvalues of G, and since the eigenvalues of G differ by a
sign, the only options for the eigenvalues of G at � and �′
are {1,−1} and {i,−i}. Hence any path from � to �′ on the
fixed plane by G induces an hourglass combinatorial diagram
on the energy bands. The intersection of the middle bands is
enforced because the eigenvalues of G at that point differ by
a sign, and therefore hybridization (or repulsion) is avoided
[43]. A schematic diagram of the nodal line thus formed is
presented in Fig. 1(a).

Let us see some explicit examples.
(a) Consider G(x, y, z) = (−x, y, z + 1

2 ) with n = (1, 0, 0)
and b = bn⊥ = (0, 0, 1

2 ). We have G2 = −eikz and the fixed
planes are kx = 0 and kx = π . In both planes, we get nodal
lines that must intersect any path joining TRIMs with kz =
0 to TRIMs with kz = π ; therefore these nodal lines should
cross the fixed plane along the ky direction.

(b) Note that the previous argument can be applied with-
out any change to the operator G(x, y, z) = (−x + 1

2 , y, z + 1
2 ),

where bn = ( 1
2 , 0, 0) and bn⊥ = (0, 0, 1

2 ). The component of
the translation along the direction of n plays no role on the
existence of the nodal lines protected by the hourglasses. This
symmetry appears in the space group No. 14 (P21/c).

(c) Consider G(x, y, z) = (y + 1
2 , x + 1

2 , z + 1
2 ) with

n = 1√
2
(1,−1, 0) and b = bn⊥ = ( 1

2 ,
1
2 ,

1
2 ). We have

G2 = −e−i(kx+ky+kz ) and the fixed plane is kx = ky. The
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FIG. 1. Schematic representation of nodal lines and quasinodal
lines on glide reflection symmetry planes. (a) The hourglass defined
by the energy bands on any path between the TRIMs � and �′ forces
the existence of a nodal line on the symmetry plane. In the presence
of inversion, the energy bands degenerate and the two bands have the
same G eigenvalue (b) or eigenvalues of opposite sign (c). Whenever
the degenerate bands have same G eigenvalue, then the existence of a
double nodal line is enforced (b). Whenever the degenerate bands
have G eigenvalues of opposite sign, the bands hybridize and the
crossing is avoided (c). In the latter case, whenever the energy gap
is small (∼25 meV), we call the anticrossings quasinodal lines. In
all three panels, the colored bar parametrizes the G eigenvalues of
the energy bands. In (b) and (c), the bands are degenerate but for the
sketch’s clarity the bands have been separated.

nodal lines must meet all paths joining TRIMs along kz = 0
with TRIMs along kz = π

Note that whenever the translation vector b is parallel to
the reflection vector n (there is no glide), the G eigenvalues are
constant ±i along the fixed planes. Therefore the formation of
hour-glass shape energy bands is not enforced and hence the
energy crossings are not protected. Nevertheless, if the energy
bands with different G eigenvalues intersect, then there cannot
be hybridization and the intersection will make a nodal line.
Nodal lines of this type are not protected by the reflection
symmetry but may be protected by other symmetries of the
crystal.

In the presence of the inversion symmetry, all the energy
bands are degenerate by Kramer’s rule. Some of the nodal
lines previously described survive meanwhile in other cases
the bands hybridize thus avoiding the nodal line. In the latter
case, we get what is known as anticrossings and they are of
interest whenever the energy gap is small (<25 meV).

B. Double nodal lines

Let us now suppose that we have time-reversal symmetry
T , inversion symmetry I, and the glide reflection G as in
Eq. (1). In position coordinates, we have

G(I (x)) = I (G(x)) + 2b, (6)

implying thus that b is also half a Bravais lattice vector (hence
we have that all three vectors b, bn, and bn⊥ are half Bravais
vectors); therefore in momentum coordinates

e−i2k·bIG = GI. (7)

The composition of the inversion with the time-reversal
operator TI leaves momentum coordinates fixed and squares
to −1, thus endowing the energy eigenvalues of the Hamilto-
nian with a quaternionic structure. This implies that all energy
states come in degenerate pairs due to Kramer’s rule. Let us
see what happens to the G eigenvalues of a Kramer pair once
restricted to the fixed planes of G whose equations are

2n (k · n) ≡ 0 mod G (8)

with G reciprocal lattice vectors.
From Eq. (7), we obtain the commutation relation between

G and TI:

e−i2k·b(TI )G = G(TI ). (9)

Now let us consider an eigenfunction of the Hamiltonian �

and let us restrict it to the fixed point planes of the operator G
shown in Eq. (8). On these planes, we may diagonalize � as
follows:

G�(k) = ±ie−ik·bn⊥ �(k). (10)

Replacing � in Eq. (9), we obtain the G eigenvalues for
(TI )� on the fixed planes:

G((TI )�(k)) = ∓(e−i2k·bn )ie−ik·bn⊥ ((TI )�(k)). (11)

We see that the G eigenvalues of both � and its Kramer
pair (TI )� differ by the phase factor −e−i2k·bn . This phase
is always −1 except in the case that bn �= 0,the unit normal
vector n is in the list of (4) and the fixed plane is kl = π ; in
this case the phase factor is 1.

Therefore the pair of bands � and (TI )� have always
opposite sign G eigenvalues, except on the case that bn �= 0, n
is in (4) and the fixed plane is kl = π . In this case, we have that
2k · bn = k · n = π and therefore the bands � and it (TI )�
have the same G eigenvalue.

We may therefore infer that unless bn �= 0, n is in (4) and
the fixed plane is kl = π , the energy crossing between a pair
of double bands along the fixed planes of G is avoided due
to hybridization. Each double band has both G eigenvalues,
therefore energy repulsion (hybridization) occurs at all points
where the double bands get closer in energy [see Fig. 1(c)
for a schematic diagram of this hybridization]. This effect is
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TABLE I. Nodal lines, double nodal lines and hybridizations
occurring in glide reflection fixed planes with and without SOC (NO-
SOC). Here we consider a glide reflection G(x) = σn(x) + bn + bn⊥
with bn⊥ �= 0. The possible fixed planes of the glide reflection appear
on the first column. The second column indicates that in all planes in
momentum space fixed by the reflection, nodal lines will be protected
in both NO-SOC and SOC environments. These nodal lines appear
due to the hour-glass shape of the energy bands presented in Fig. 1(a).
In the presence of inversion symmetry, the energy bands are always
degenerate, except whenever there is NO-SOC and bn = 0. The
energy bands will cross or hybridize according to the information
in the third and fourth columns. The double nodal lines appearing
are due to the hour-glass shape of the degenerate bands presented in
Fig. 1(b). Whenever the degenerate bands hybridize, as it is presented
in Fig. 1(c), quasinodal lines may appear depending on the size of the
energy gap.

Glide reflection with inversion
Fixed Glide
plane reflection (NO-SOC red), (SOC blue)

Any bn bn = 0 bn �= 0

Nodal line Double nodal linekl = 0 Nodal line
Hibridization Hibridization

Nodal line Hybridizationkl = π Nodal line
Hibridization Double Nodal Line

Nodal Line Double Nodal Linekl = k j Nodal Line
Hibridization Hibridization

also called anticrossing of bands since the energy gap thus
formed between the bands may be very small and therefore
a nodal line might be computational and experimentally de-
tected. The gap thus formed depends on the intensity of the
SOC and therefore it may be small. Whenever the energy gap
of these anticrossings is small the physical effects are relevant
and therefore we may call these anticrossings with the name
quasinodal line. The rhombohedral trifluorides and trioxides
fall into this category of materials.

Whenever bn �= 0, n is in (4) and the fixed plane is kl = π ,
the G eigenvalues of the Kramer degenerate pairs are equal.
Therefore if the reflection symmetry G predicted nodal lines
as presented before, the presence of the inversion symmetry
keeps the nodal lines but they are nodal lines of double degen-
erate Kramer’s pairs. Originally the nodal lines were protected
by the hourglass argument that produces G, and since the
Kramer’s pairs have the same G eigenvalues, the hourglasses
are now double degenerate and also protected [see Fig. 1(b)
for a schematic diagram of these double nodal lines].

A summary of the analysis just carried, both in the absence
and presence of inversion symmetry, may be found on Table I.

Let us see what happens to the examples we presented
in the previous section whenever the system also preserves
the inversion symmetry. For the reflections considered in (a)
and (c), namely, G(x, y, z) = (−x, y, z + 1

2 ) and G(x, y, z) =
(y + 1

2 , x + 1
2 , z + 1

2 ), respectively, the absence of translation
on the normal direction implies that the Kramer pairs of en-
ergy bands along the fixed planes have opposite G eigenvalues.
Therefore the energy crossings induced by the operator G
hybridize and we obtain nodal line anticrossings as the ones
presented in Fig. 1(c). The energy gap on these anticrossings

depends on the intensity of the SOC, hence if the energy gap
is small, these anticrossing may well behave like nodal lines
(quasinodal lines). Nevertheless, they will not be topologi-
cally protected.

For the glide reflection considered in (b) with G(x, y, z) =
(−x + 1

2 , y, z + 1
2 ), we will have a nodal line anticrossings on

the plane kx = 0 like the one in Fig. 1(c), meanwhile the
double nodal lines appear on the plane kx = π as presented
in Fig. 1(b). On kx = 0, the Kramer pair of energy bands
possesses opposite G eigenvalues, meanwhile on kx = π , the
eigenvalues are the same.

C. Quasinodal lines

We have seen in the previous sections how nodal lines
appear and are topologically protected whenever there is a
glide reflection symmetry and time-reversal symmetry on the
system. These nodal lines posses different properties in the
presence of the inversion symmetry. The composition of the
inversion with time reversal induces Kramer’s degeneracy on
the energy bands localized on the fixed planes of the glide
reflection and depending on the type of glide reflection, the
Kramer’s pairs may have equal eigenvalues for the glide re-
flection operator or eigenvalues with opposite sign. In the
former case, the double nodal lines that appear are topolog-
ically protected and they are also known as Dirac nodal lines
[27]; in the latter case, the bands hybridize and the band
crossing is avoided.

The existence of protected nodal lines and double nodal
lines close to the Fermi level induce exotic spin and elec-
tronic transport properties [39] on the material, among them
resonant spin-flipped reflection [44] and anomalously Hall
currents [45]. Therefore the existence of protected nodal lines
has been extensively studied in the last years [26,42]. On the
other hand, nodal lines that hybridize due to the presence of
the inversion symmetry have seldomly been studied [24]. The
energy gap that appears due to the hybridization makes them
of less interest. Nevertheless, whenever the gap that is opened
due to hybridization is small, interesting electronic properties
are induced on the material.

We have therefore coined the name of quasinodal lines
for the lines on fixed G planes that exist whenever there is
a hybridization of nodal lines and whose energy gap is very
small (comparable to room temperature ∼25 meV). It could
be argued that since these quasinodal lines are not topologi-
cally protected, their existence may not have any implication
on the electronic properties of the materials. We would like
to argue otherwise: since the energy gap opened due to hy-
bridization is very small, the electronic properties detected are
similar to the ones observed on nodal lines. Furthermore, if
the quasinodal lines are close to the Fermi level, interesting
phenomena on charge and spin transport are observed such
as large anomalous and Nernst Hall effect, spin Hall effect,
among others [37,39,46].

Rhombohedral materials crystallizing on symmetry group
Nos. 161 and 167 and ferromagnetic group Nos. 161.71 and
167.107 show the presence of quasinodal lines on their elec-
tronic structure. The calculations on explicit materials will be
presented on the next chapter. We would like to note here
that the ferromagnetic group Nos. 161.71 and 167.107 break
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the glide reflection symmetry. There is a priori no reason
to expect that these ferromagnetic materials have quasinodal
lines. Nevertheless, the quasinodal lines exist as we will show
in the next chapter, and they are located on the fixed planes of
the glide reflections defined by the nonmagnetic group Nos.
161 and 167. In the next section, we analyze which type or
information could be obtained when the analysis is carried out
without SOC in both the nonmagnetic and the ferromagnetic
cases.

D. NO-SOC, SOC, and magnetization

A common feature in the study of quasinodal lines in the
literature is to carry out analysis without SOC (NO-SOC) to
detect nodal lines, to later measure the effect of the SOC
on these energy band crossings [47–49]. This procedure is
effective in the presence of the glide reflection symmetry, as
we will explain in what follows, but we will argue that this
procedure will not work in the case that the magnetic phase
of the material breaks the glide reflection symmetry. Let us
explain with further detail.

Whenever there is NO-SOC, Eqs. (10) and (11) become

G�(k) = ±e−ik·bn⊥ �(k), (12)

G((TI )�(k)) = ±(e−i2k·bn )e−ik·bn⊥ ((TI )�(k)). (13)

The second equation implies that whenever bn �= 0, the eigen-
functions � and (TI )� must be different on the fixed plane,
and therefore the energy bands on the fixed planes are degen-
erate. Whenever bn = 0 the operator TI can act simply by
complex conjugation and the states are nondegenerate.

In the latter case, i.e., bn = 0, if the energy bands cross,
the crossing will be protected by the hour-glass argument
presented in Fig. 1(a). Hence Weyl nodal lines will appear.
In the former case, i.e., bn �= 0, the G eigenvalues of �

and (TI )� coincide unless e−i2k·bn = −1. When both G-
eigenvalues coincide, the energy crossings cannot be avoided
as shown in Fig. 1(b) and a double nodal line appears. When-
ever e−i2k·bn = −1, the two G-eigenvalues differ by a sign
and the crossing is avoided due to hybridization as shown in
Fig. 1(c). In this last case, there will be quasinodal lines if the
band gap turns out to be small. These results are summarized
with the red text color in Table I.

From Table I, we can see that in the presence of inversion
symmetry, whenever there are nodal lines without SOC, the
presence of SOC induces hybridization. This argument is
commonly used to predict the presence of quasinodal lines
in environments on which SOC is not negligible. It is a quite
robust procedure, but unfortunately, it is not suited for predict-
ing quasinodal lines on materials that crystalize on a magnetic
phase which breaks the glide reflection symmetry.

Whenever a material crystallizes on a magnetic phase on
which the glide reflection symmetry is broken, the energy
bands will not possess properties associated to the fixed planes
of the glide reflection. This implies that no symmetry on
the glide reflection fixed planes protects the crossings and
therefore the bands will hybridize. The hybridization will hap-
pen independently of the presence or absence of SOC in the
system, and therefore no nodal lines will be present in either
case. This is the reason why we focus our analysis including

TABLE II. Rhombohedric crystals with quasinodal lines on the
planes fixed by the glide reflection G. The highlighted materials in
red have nodal lines crossing the Fermi level. The group with the
most symmetries is No. 167, which includes the threefold rotation C,
inversion I, time reversal T , and the glide reflection G; whenever
the inversion symmetry is broken we obtain the group No. 161.
In the presence of magnetization along the axis of rotation of the
threefold symmetry C, time reversal T is broken together with the
glide reflection G. The symmetry that is kept is the composition
TG thus defining the magnetic symmetry groups No. 167.107 in
the presence of inversion, and No. 161.71 whenever the inversion
is broken. The quasinodal lines appear on the planes fixed by G; their
multiplicity is calculated as the number of total symmetries divided
by the number of symmetries that fix the planes. In all four cases, the
multiplicity is 6.

Rhombohedric crystals with quasinodal lines

No Magnetic Ferromagnetic

SG No. 167 161 167.107 161.71

Generators G,I,T , C G,T , C TG,I, C TG, C
Symmetries 24 12 12 6
Fixing planes TI, G G ITG
Multiplicity of 6 6 6 6
quasinodal line

IrF3 LaAgO3 PdF3, MnF3 LiCuF3

InF3 LaCuO3 MnBO3, NiF3 LiVF3Materials RhF3 NaCdF3 LaMnO3, VF3

GaF3 CaTlF3 TiBO3, RuF3

AlF3 CsPbF3 LaNiO3, MoF3

ScF3 CoF3, RuF3

FeF3, CrF3

the spin-orbit interaction; the analysis without SOC would
bring equivalent information with regards to the existence of
quasinodal lines.

What is very interesting is that quasinodal lines may exist
on the fixed reflection planes, even though the glide reflection
symmetry is broken by the magnetization. Zeeman’s splitting
will separate the spin up and down channels, and in some
cases, will keep the shape of the energy bands. In this manner,
if quasinodal lines could be predicted in the nonmagnetic
phase, then it is likely that quasinodal lines will appear in the
magnetic phase (cf. Ref. [38]). In the next chapter, we present
two ferromagnetic rhombohedral materials which break the
glide reflection symmetry of the nonmagnetic group, with the
property that quasinodal lines are present in the energy bands.

III. QUASINODAL LINES ON RHOMBOHEDRAL
MATERIALS

Quasinodal lines are present on rhombohedral materials
crystallizing on the symmetry group Nos. 161 and 167 and on
their ferromagnetic phases, Nos. 161.71 and 167.107. Among
the many materials crystallizing on these symmetry groups,
the rhombohedral trifluorides and trioxides make a pair of
interesting families of compounds to study. In both fami-
lies, there are compounds crystallizing in all four symmetry
groups. In Table II, we have summarized the properties of the
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FIG. 2. Schematic representation of quasinodal lines on the four symmetry groups 167, 161, 167.107 and 161.71. (a) On the SG No. 167,
the bands are degenerate and the eigenvalues of the operator G have opposite sign which permits the bands to hybridize. (b) On the SG No.
161, the inversion symmetry is broken and the degenerate bands unfold. The bands with same color hybridize and the bands with opposite
color intersect. Here we observe a pair of accidental nodal lines and a pair of quasinodal lines. In these two cases the red and blue bands have
opposite G eigenvalue. (c) On the magnetic SG Nos. 167.107 and 161.71, the glide reflection G symmetry is broken and therefore there is
no restriction on the bands for their hybridization. In all four symmetry groups, the quasinodal lines appear on the planes fixed by the glide
reflection G. These quasinodal lines have been detected on the nonmagnetic and ferromagnetic rhombohedral trifluorides presented in Fig. 3.

symmetry groups and the materials with quasinodal lines on
glide reflection planes.

The crystal symmetries that generate these four groups are

C(x, y, z) = (y, z, x), (14)

I (x, y, z) = (−x,−y,−z), (15)

G(x, y, z) = (
y + 1

2 , x + 1
2 , z + 1

2

)
, , (16)

R(x, y, z) = ( − y + 1
2 ,−x + 1

2 ,−z + 1
2

)
(17)

with C a threefold rotation, I inversion, G a glide reflection,
and R = GI. In momentum coordinates, we have

G(kx, ky, kz ) = (ky, kx, kz ), (18)

R(kx, ky, kz ) = (−ky,−kx,−kz ), (19)

and the nontrivial relations (including SOC) among the gen-
erators are the following:

I2 = 1, C3 = − 1, R2 = −1, CG = GC−1, (20)

C(TG) = (TG)C−1, (21)

G2 = −e−i(kx+ky+kz ), (22)

(TG)2 = e−i(kx+ky+kz ), (23)

RI = ei(kx+ky+kz )IR, (24)

GI = e−i(kx+ky+kz )IG, (25)

(TG)I = e−i(kx+ky+kz )I (TG). (26)

Here we have bn⊥ = ( 1
2 ,

1
2 ,

1
2 ), bn = (1,−1, 0) and the G fixed

planes are kx = ky, ky = kz and kz = kx. The quasinodal lines
appear on the planes fixed by G and for all the four symmetry
groups they have a multiplicity of 6 on the whole Brillouin
zone. This is shown in Table II.

Due to the presence of the composition of inversion with
time reversal on the materials with SG No. 167, the quasinodal
lines appearing are Dirac quasinodal lines or double quasin-
odal lines. Whenever inversion is broken, as in the materials
with SG No. 161, the Dirac quasinodal lines unfold in a pair of
quasinodal lines and a pair of accidental nodal lines. In Fig. 2,
a schematic diagram of each of the quasinodal lines on the
four symmetry groups has been presented.

In the ferromagnetic rhombohedric trifluorides LiCuF3 and
PdF3 (see Fig. 3), which we present in the next section,
the presence of the quasinodal lines has been observed. The
valence and conduction bands restricted to the G fixed plane
can be seen in Fig. 4(a) and 4(a′), the quasinodal lines on the
G plane in Figs. 4(c) and 4(c′), the graph of the nodal line
versus the energy in Figs. 4(f) and 4(f′), the hybridization of
the energy bands on the anticrossings in Figs. 2(c), 4(d), and
4(d′), and the sixfold multiplicity of the quasinodal lines on
the whole Brillouin zone in Figs. 4(e) and 4(e′).

The energy gaps along the quasinodal lines presented in
Figs. 4(e) and 4(e′) are less than 0.6 meV in the case of LiCuF3

and less of 3.0 meV in the case of PdF3. In both cases, the
quasinodal lines include Weyl points lying on the line �-T is
fixed by the C rotation. These Weyl points lie close to the point
T and their existence can be deduced from the fact that the C
eigenvalues are different on the bands close to the Fermi level.
Since the C eigenvalues are different, the hybridization cannot
be carried out and the crossing is topologically protected.
These energy crossings along the symmetry line �-T close
to the point T can be observed at the right hand side of all
four panels in Fig. 3. Here the colors on the energy bands
represent different C eigenvalues. The fact that the quasinodal
lines include Weyl points implies that the band-gap energy
along the quasinodal lines remains small. The existence of the
Weyl points along the line �-T protects the quasinodal lines
from being completely gapped.

Let us finish this section with an analysis of the corepre-
sentations that appear on the points invariant by the inversion
operator, i.e., �(0, 0, 0), L(0, 0, π )F(0, π, π ) and T(π, π, π ),
and on the lines fixed by C and TG.
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FIG. 3. Rhombohedral crystal structure and electronic band structure calculated for (a) IrF3 (space group No. 167), (b) LaAgO3 (space
group No. 161), (c) PdF3 (magnetic space group No. 167.107), and (d) LiCuF3 (magnetic space group No. 161.71). Eigenvalues of the rotation
〈C〉 and the spin-z 〈Sz〉 operators projected on the electronic bands are shown. The zoom-in band structures near to the T point show the band
crossings along the symmetry line �-T. (e) Brillouin zone of the rhombohedral structure with the labels of the high-symmetry points. (f) (11̄0)
plane on the reciprocal space of the rhombohedral structure.

FIG. 4. Quasinodal lines and anomalous Hall conductance for the rhombohedric trifluorides LiCuF3 and PdF3. [(a) and (a′)] Energy of the
valence and conduction bands restricted to the fixed G plane kx = ky, [(c) and (c′)] contour of the band-gap energy (difference between the
conduction and the valence bands) and [(f) and (f′)] quasinodal lines in the energy vs the plane kx (=ky) and kz space for the plane (11̄0) shown
in Fig. 3(f). [(d) and (d′)] Calculated band structure for the T1-�-T2 k path, and zoom around the anticrossing point showing the band-gap
energy. [(e) and (e′)] Structure of the 3D quasinodal lines in momentum space in which it is noted the C3 symmetry around the T-T axis. [(b),
(b′), (g), and (g′)] Anomalous Hall conductivity as a function of the Fermi level for LiCuF3 in the magnetic space group No. 161.71 and for
PdF3 in the magnetic space group No. 167.107. The peaks of the AHC close to the Fermi level in diagrams (b) and (b′) are located on the
energy intervals where the quasinodal lines are defined. This fact can be appreciated in diagrams (f) and (g) for LiCuF3 and (g′) and (f′) for
PdF3 where the location of the quasinodal lines on the energy level is compared to the AHC on the same energy.
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The operator TG has for fixed points the lines kx + ky = 0
on the planes kz = 0 and kz = π . By Eq. (23) we see that
(TG) = 1 on � and F and (TG) = −1 on L and T. The
kx = ky = kz axis is fixed by the rotation operator C and the
eigenvalues of C are e

ilπ
3 with l = 1, 3, 5. From the commuta-

tion relations presented in Eqs. (21) and (26), we deduce that
on the points � and F the antiunitary operator TG behaves
like the complex conjugation operator K, the inversion oper-
ator like multiplication by ±1, and on �, the operator C is
multiplication by e

ilπ
3 with l = 1, 3, 5. Hence on � and F the

corepresentations are one-dimensional.
On T and L, Eq. (26) implies that TG changes the sign

of the I eigenvalue and therefore the corepresentations are
two-dimensional with the following matrix representation:

I =
(+1 0

0 −1

)
, TG =

(
0 1

−1 0

)
K. (27)

On T, because of Eq. (21), the C eigenvalues are repeated
and its matrix representation is

C =
(

e
ilπ
3 0

0 e
ilπ
3

)
. (28)

On the right-hand side of all four panels of Fig. 3, it can be
observed that the energy bands with same C eigenvalue join at
T, thus agreeing with the previous matrix description, and that
the energy crossings close to T with different C eigenvalues
define Weyl points [43].

Let us finally note that whenever we have the presence
of time reversal and inversion, all bands are degenerate and
the corepresentations defined above will appear with their
Kramer’s dual. On T and L points for the symmetry group
No. 167, the energy bands have degeneracy four.

IV. MATERIALS REALIZATION

Rhombohedral crystals are structures that fit into rhombo-
hedral Bravais lattices with space group Nos. 146, 148, 155,
160, 161, 166, or 167. Materials with these crystal lattices can
present a layered structure with a hexagonal order within each
layer, which is common in topological insulators as Bi2Te3,
Bi2Se3, and Sb2Te3 [50]. A broad kind of insulators and
semiconductor materials as XF3-type, ABF3-type, ABO3-type,
and AB(PO4)3-type, crystallize in these rhombohedral phases
with space group Nos. 161 (R3c) and No. 167 (R3̄c).

In particular, IrF3 presents the most stable phase in the
space group No. 167 with an indirect energy gap of 0.9 eV
and an electronic band structure as it is shown in Fig. 3(a).
The first conduction bands have a particular shape which is
common in other materials with space group NoS. 167 and
No. 161. This electronic band structure presents two close
bands in the L-T high-symmetry line of the Brillouin zone,
see Fig. 3(e), and depending on the material, the Fermi level
can cross these close bands generating unique electronic and
spin transport properties. This is the case of the trifluoride
LaAgF3, which crystallizes in the space group No. 161 as it
is shown in Fig. 3(b). The material LaAgF3 has two LaAgF3
molecules per unit cell and every molecule has five atoms.
In this case, due to the loss of the inversion symmetry with
respect to the space group No. 167, the energy bands are

no longer degenerate but they appear in pairs with similar
energies.

On the other hand, it was recently discovered that magnetic
topological insulators may prefer the rhombohedral phases
as is the case of the material MnBi2Te4 [51]. Among the
materials that can crystallize in the magnetic rhombohedral-
type structure we may find the conductive transition-metal
(TM) fluorides and oxides such as MnF3, CoF3, PdF3,
FeF3, LiCuF3, MnBO3, LaMnO3, TiBO3, and LaNiO3

(see Table II). For the case of XF3, the primitive unit cell con-
tains two transition-metal atoms surrounded by six F atoms
that form an octahedron as it is shown in Figs. 3(c) and 3(d).
Recently, it was found that the TM atoms can exhibit a ferro-
magnetic order in the z direction as it is shown in Fig. 3(c),
where the local magnetic moments are indicated by arrows
[52–56]. Figure 3 also shows the band structure along high-
symmetry lines including the spin-orbit coupling interaction.
Similar behavior is observed for LiCuF3 materials, which also
present a ferromagnetic stable structure oriented parallel to the
z axis, as it is shown in Fig. 3(d).

The projection of the z-spin component is also shown in
the band structure for the ferromagnetic cases. It can be seen
in Fig. 3(c) a metallic behavior is presented for the spin-up
channel in PdF3 and Fig. 3(d) a metallic behavior of the spin-
down channel in LiCuF3 at the Fermi energy. However, the
Fermi energy also falls into the band gap for the opposite spin
channel in each case, which indicates an insulator behavior.
Consequently, the spin band polarization of the conduction of
electrons is 100% at the Fermi energy, and therefore the lon-
gitudinal and transverse currents will be full spin-polarized.
For PdF3 and LiCuF3 is obtained an opposite spin band gap
of around 2.14 and 4.10 eV, respectively. These results are
in agreement with previous theoretical data [55–57]. It is
worth remarking that the spin-polarized band structure at the
Fermi level shows a similar shape as in the nonmagnetic case.
In these cases, the Fermi level crosses the nearby bands in
the L-T path, which generates band energies and band-gap
contours at the plane kx = ky as is shown in Figs. 4(a), 4(a′),
4(c), and 4(c′). It is also observed a band crossing between
valence and conduction bands close to the T point. This spe-
cial feature of the band structure can induce a large anomalous
Hall conductivity (AHC) and spin Hall conductivity (SHC) at
the Fermi level for the ferromagnetic and nonmagnetic cases,
respectively.

In the presence of SOC, the band structure and the sym-
metry group of the materials depend on the direction of the
total magnetization. In the PdF3 and LiCuF3 cases, the lowest
energy was found for the magnetization in the z direction. For
the XF3 case with m ‖ z, the No. 167 systems present the
167.107 magnetic space group with symmetries generated by
I, C and the antiunitary symmetry TG. In the ABF3 case with
m ‖ z, the No. 161 systems present the 161.71 magnetic space
group with symmetries generated by C and the antiunitary
symmetry TG.

In the cases of XF3 and ABF3 with magnetic space groups
167.107 and 161.71, the multiple symmetries prohibits the
anomalous Hall effect (AHE) in x and y components. The only
component which is not constrained is bz(k) �= 0, so the AHE
should be observed with σxy �= 0 as it is shown in Figs. 4(b)
and 4(b′). These graphs show the variation of AHC for PdF3
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and LiCuF3 with respect to the position of the Fermi energy.
It is worth noting that the AHC peaks close to the Fermi
energy are around 180 S/cm, whereas the density of states
almost vanishes at this energy range. This suggests that a
large anomalous Hall angle can be expected in these materials,
which could be comparable with typical ferromagnetic Weyl
semimetals [58]. As it was pointed out before, close to the
Fermi energy we have a full spin-polarized charge current and
therefore we can consider the z-spin component as a good
quantum number [59]. So the Hall current carriers are one
spin-polarized electron and the SHC can be calculated from
the AHC by a factor of 2h̄/e, i.e., ∼90(h̄/e) S/cm. These
results were corroborated with the direct calculation of the
SHC tensor.

In addition, it is found that the main contribution to the
AHC at the Fermi level is due to the existence of the quasin-
odal lines close to the Fermi level. The main contribution to
the AHC at top and bottom values of the Fermi energy is
the electronic states generated by the quasinodal lines as it
is shown in Figs. 4(g) and 4(g′). In Figs. 4(f) and 4(f′), it
is shown the energy distribution of the quasinodal lines as a
function of kx(= ky) and kz; these energies match the strong
signal of the AHC in the energy window. The reciprocal space
distribution of the quasinodal lines is shown in Fig. 4(e) and
(e′), which shows clearly the sixfold multiplicity as indicated
in the Table II and C3 rotation symmetry around the T-T k
path. This corresponds to the main axis of C3 symmetry in real
space that characterizes the rhombohedral lattice structures.
Finally, it is noted the anticrossing band gap between the
energy bands in Figs. 4(d) and 4(d′) along the quasinodal line
on the kx(=ky) and kz plane for the LiCuF3 (0.6 meV) and
PdF3 (3.0 meV).

V. COMPUTATIONAL METHOD

We have carried out ab init io calculations within the
density-functional theory (DFT) framework to study the for-
mation of quasinodal lines in magnetic and nonmagnetic
rhombohedral materials. Exchange and correlation effects
were treated with generalized gradient approximation (GGA)
[60], as implemented in the vienna ab initio simulation
package (VASP) [61]. The GGA+U (U = 4.0 eV) method
was employed for the PdF3 material as presented in a re-
cent report [56]. Spin orbit coupling (SOC) were included
self-consistently in all the calculation. The electron wave
function was expanded in plane waves up to a cutoff en-
ergy of 520 eV. A k mesh of 0.02 (2π/Å) k-space resolution
was used to sample the Brillouin zone. DFT calculations
of rhombohedral materials were performed using the re-
fined lattice constants from the Materials project database
[62]. In addition, we calculated the symmetry eigenvalues
of the wave functions at the Brillouin zone using the irrep
code [63].

In order to evaluate the electronic transport properties, we
have used the WANNIER90 code [64,65] to construct an ef-
fective tight-binding Hamiltonian in the maximally localized
Wannier basis as a post-processing step of the DFT calcu-
lations. The intrinsic anomalous Hall conductivity (AHC)
components were calculated by integrating the Wannier in-
terpolated Berry curvature [66] on a dense 2303 k mesh of the

Brillouin zone, using the WANNIER-BERRI code [67]. Within
this model, the AHC can be written as

σxy = −e2

h̄

∑
n

∫
BZ

dk3

(2π )3
fn(k)�z

n(k), (29)

where fn(k) is the Fermi-Dirac distribution and the Berry
curvature �z

n(k) for the nth band can be calculated using the
Kubo formula:

�z
n(k) = −2h̄2Im

∑
m �=n

〈n, k |̂vx|m, k〉〈m, k |̂vy|n, k〉
(εn,k − εm,k )2 , (30)

where |n, k〉 are the Bloch functions of a single band n, k is
the Bloch wave vector, εn,k is the band energy, and v̂i is the
velocity operator in the i direction.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have put forward the concept of quasin-
odal lines. These are lines on the reciprocal space where the
energy gap is very small. They appear due to the hybridization
of the nodal lines that glide reflection symmetries induce. The
hybridization may be due to the degeneracy of the energy
bands that the inversion operator imposes, or to the magne-
tization which breaks the glide reflection symmetry. In both
cases, if the gap generated by the hybridization is small, the
quasinodal lines are present. In the family of rhombohedral
trifluorides and trioxides, both ferromagnetic and nonmag-
netic, we have shown the existence of these quasinodal lines.
Whenever the quasinodal lines are close to the Fermi level,
interesting electronic transport properties are induced. This is
the case of the ferromagnetic phase of PdF3 and of LiCuF3

where the presence of the quasinodal line on the Fermi level
induces a large signal in the anomalous Hall conductance.

Quasinodal lines are not topologically protected. By this
we mean that the energy gap could be adiabatically enlarged.
Nevertheless, in practice, the energy gap depends on the mate-
rial structure and on the intensity of the SOC. Herein, by using
ab initio calculations, we have shown that the energy gap
remains small for the materials mentioned above and therefore
they could be detected experimentally. For the ferromagnetic
phases, we have demonstrated a direct correspondence be-
tween the AHE (or SHE) signal and the existence of the
quasinodal lines.

It is interesting to determine other families of materials
on which quasinodal lines are also present. These families of
materials may not crystallize with symmetry groups on which
the nodal lines deem to exist, i.e., the symmetry groups may
not be on the list of symmetry groups with nodal lines. Nev-
ertheless, the presence of quasinodal lines induce interesting
electronic transport properties and therefore it is worth their
future experimental research.

Quasinodal lines in the ferromagnetic phases we have con-
sidered are due to the hybridization of nodal lines because the
glide reflection symmetry is broken. It is interesting to note
that the shape of the energy bands is similar to the one of the
material prior to the magnetization. This would mean that the
magnetization, even though it breaks symmetries, it still re-
members some of the information of the nonmagnetic group.
The reconstruction of quasinodal lines from the ferromagnetic
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symmetries is not straightforward; while the knowledge of
the nonmagnetic symmetries permits to infer the possible
existence of these quasinodal lines.

The general understanding of the relation between the
quasinodal lines and the transport properties on magnetic ma-
terials is thus a very intriguing subject. In this work, we have
outlined a correspondence between the two on the materials
PdF3 and of LiCuF3, but a comprehensive explanation of the
phenomenon is still due. We hope this task will be addressed
in future further research.
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