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QUESTIONS ON THE STRUCTURE OF PERFECT

MATCHINGS INSPIRED BY QUANTUM PHYSICS
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Abstract. We state a number of related questions on the structure
of perfect matchings. Those questions are inspired by and directly
connected to Quantum Physics. In particular, they concern the con-
structability of general quantum states using modern photonic technol-
ogy. For that we introduce a new concept, denoted as inherited vertex
coloring. It is a vertex coloring for every perfect matching. The colors are
inherited from the color of the incident edge for each perfect matching.
First, we formulate the concepts and questions in pure graph-theoretical
language, and finally we explain the physical context of every mathemat-
ical object that we use. Importantly, every progress towards answering
these questions can directly be translated into new understanding in
quantum physics.
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1. Motivation

A bridge between quantum physics and graph theory has been uncovered
recently [1, 2, 3]. It allows to translate questions from quantum physics –
in particular about photonic quantum physical experiments – into a purely
graph theoretical language. The question can then be analysed using tools
from graph theory and the results can be translated back and interpreted
in terms of quantum physics. The purpose of this manuscript is to collect
and formulate a large class of questions that concern the generation of pure
quantum states with photons with modern technology. This will hopefully
allow and motivate experts in the field to think about these issues.
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More concrete, the problems that we present here are concerned with the
design of quantum experiments for producing high-dimensional and multi-
partite entangled quantum states using state-of-the-art photonic technology
[4]. We start by asking for the generation of Greenberger-Horne-Zeilinger
(GHZ) states [5], and their high-dimensional generalizations [6, 7, 8, 9], and
further generalize the questions to cover arbitrary pure quantum states.

The paper is organized as follows. In Section 2, we rigorously define the
graph theoretic questions that turn out to be relevant in quantum physics.
In Section 3 we discuss the correspondence between the all mathematical
objects used in Section 2 and quantum experiments.

2. Concepts and Questions

The type of quantum experiments, that we are interested in, correspond to
so-called bi-colored graphs, that are defined as follows.

Definition 2.1 (Edge bi-colored weighted graph). Let C “ tc1, . . . , cdu
be the set of d ě 2 distinct colors. An edge bi-colored weighted graph
G=(V(G),E(G)), on n vertices with d ě 2 colors is an undirected, loopless
graph where there is a fixed ordering of the vertices v1, . . . , vn P V pGq and
to each edge e P EpGq a complex weight we and an ordered pair of (not
necessarily different) colors from C is associated. We say that an edge is
monochromatic if two associated colors are not different, otherwise the edge
is bi-chromatic. Moreover, if e is an edge incident to the vertices vi, vj P V pGq
with i ă j and the associated ordered pair of colors to e is pc1peq, c2peqq then
we say that e is colored c1 at at the endpoint vi and c2 at the endpoint vj .

For simplicity, for the rest of the manuscript we abbreviate edge bi-colored
weighted graph by bi-colored graph.

The unusual property of bi-colored graphs (compared to other edge-colorings
in graph theory) is that edges are allowed to have different colors at different
endpoints. The next definition will establish a connection between perfect
matchings and vertex colorings of a bi-colored graph.

Definition 2.2 (Inherited Vertex Coloring). Let G be a bi-colored graph
and let PM denote a perfect matching in G. We associate a coloring of the
vertices of G with PM in the natural way: for every vertex vi there is a
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single edge epviq P PM that is incident to vi, let the color of vi be the color
of epviq at vi. We call this coloring the inherited vertex coloring (IVC) of
the perfect matching PM and denote it by c. When all vertices in IVC are
colored with only one color, we call c a monochromatic coloring.

Now we are ready to define how constructive and destructive interference
during an experiment is governed by perfect matchings of a bi-colored graph.

Definition 2.3 (Weight of Vertex Coloring). Let G be a bi-colored graph.
Let M be the set of perfect matchings of G which have the coloring c as
their inherited vertex coloring. We define the weight of c as

wpcq :“
ÿ

PMPM

ź

ePPM

we.

Moreover, if wpcq=1 we say that the coloring gets unit weight, and if wpcq=0
we say that the coloring cancels out.

An example for a bi-colored graph where some colorings of the vertices get
unit weight and some other colorings cancel out can be seen in Figure 1.

Question 1: monochromatic graph

For which values of n and d are there bi-colored graphs on n vertices
and d different colors with the property that all the d monochromatic
colorings have unit weight, and every other coloring cancels out? We
call such a graph monochromatic.

The only known values of n and d, for which the answer for Question 1 is
affirmative, are d “ 2 and n arbitrary even, and d “ 3 ,n “ 4. For d “ 2
and n even an alternately colored (all edges are monochromatic) even cycle
Cn suffices with all edge weights being one. For d “ 3, n “ 4 a suitable
bi-colored graph can be constructed as follows. Decompose the edges of the
complete graph K4 into three disjoint perfect matchings, and let the edges of
these matchings be monochromatic, and colored with different color, finally
assign weight we “1 to each edge. It is easy to check that the resulting
graph satisfies the conditions of Question 1, see Figure 2. Observe that in
all known cases we can use weight 1 for each edge. It was shown by Ilya
Bogdanov that no other examples are possible with the restriction that all
edge weights are positive [10]. The graph in Figure 1 is not monochromatic.
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Figure 1. Example for inherited vertex coloring and coloring weight. A
bi-chromatic weighted edge with one double edge between vertex 4 and 6 is
shown on the top left, the edge weights Eij are shown below. On the right
top, its eight perfect matchings are shown, and wpPMiq denotes the product
of the edge weights of the perfect matching PMi. The perfect matching 4 and
5 have the same inherited vertex coloring. As wpcq “ wpPM4q `wpPM5q “

0, we say this coloring cancels out. There are six remaining IVCs with
nonzero weights.

In quantum experiments, one can use additional heralding photons in order
to produce a certain state. This concept can be formulated in the following
way.

Figure 2. A bi-coloring and weight assignment of the edges of K4 that
demonstrated that the answer to Question 1 is affirmative for d “ 3, n “ 4.
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Definition 2.4 (k-monochromatic colorings). A coloring c is called k-mono-
chromatic, if the first k ď |V | vertices have the same color, and all other
vertices are colored (without loss of generality) red.

Question 2: k-monochromatic Graph

For which values of n, d and k are there bi-colored graphs on n
vertices and d different colors with the property that all the d k-
monochromatic colorings have unit weight, and every other coloring
cancels out? We call such a graph k-monochromatic.

The only known example of a k-monochromatic graph with k ą 4 and d ě 3
is shown in Figure 3. There are three 6-monochromatic colorings, where
each has wpcq “ 1. All other colorings are non-6-monochromatic, and have
a weight of wpcq “ 0. We call this graph Erhard graph1. Note that increas-
ing the number n while keeping k constant can be done straight forwardly.
However, increasing k or d seems to be very difficult.

Since it is possible that for large values of n and d, there are no monochro-
matic graphs, we introduce a measure of monochromaticness on bi-colored
graphs as follows.

Definition 2.5 (monochromatic Fidelity). Let N be

N “
ÿ

c

|wpcq|2 ,

let Cmono be the set of all monochromatic IVC of G, and d be the number
of different colors of G. The monochromatic fidelity is defined as

Fmono :“
1

d

1

N

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

cPCmono

wpcq

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

As an example, we can calculate the monochromatic fidelity of the graph in
Figure 1. It has d=3 monochromatic inherited vertex colorings and N “ 6.
Then we find that Fmono “ 3

6 “ 0.5. Furthermore, all monochromatic graphs
reach the maximum of Fmono “ 1.

1It is named after Manuel Erhard, who discovered the quantum mechanical technique
which has inspired the construction of this graph.
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Figure 3. The Erhard graph is 6 ´monochromatic. It is the only known
example for k ą 4 and d ě 3 satisfying Question 2.

Question 3: approximative monochromatic graph

For every value of n and d, which bi-colored graphs G with n vertices
and d different colors maximizes the monochromatic fidelity Fmono?
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Even if one has access to n´k heralding particles, it is possible that there are
no k-monochromatic graphs with d different colors, therefore we can define
a fidelity as follows.

Definition 2.6 (k-monochromatic Fidelity). Let N be

N “
ÿ

c

|wpcq|2 ,

let Ck´mono be the set of all k-monochromatic IVC of G, and d be the number
of different colors of G. The k-monochromatic fidelity is defined as

F k´mono :“
1

d

1

N

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

cPCk´mono

wpcq

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

For k-monochromatic states, the fidelity is F k´mono “ 1. Naturally, we can
ask what graph is closest to monochromatic.

Question 4: approximative k-monochromatic graph

For every value of n, d and k, which bi-colored graphs G with n
vertices and d different colors minimizes the k-monochromatic fidelity
F k´mono?

Until now, we considered only monochromatic colorings, as they correspond
to an important class of quantum states. However, in general we are in-
terested in the total capability of photonic quantum experiments to create
quantum states. For that, we generalize our questions such that we cover
every pure quantum state.

Question 5: general inherited vertex colorings

Let Cp “ tCiu
t
i“1 be a set of (prescribed) different colorings of n

vertices and Wp “ twiu
t
i“1 be the set of (prescribed) weights. For

every Cp and Wp, is there a bi-colored graph G on the same n vertices
as the colorings in Cp so that for each i, wpCiq “ wi, and every coloring
not in Cp cancels out?
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A particularly interesting special case of this question is the case where Cp
is restricted to contain only d “ 2 colors. As an example, we consider the
set of colorings Cp “ ppg, r, r, rq, pr, g, r, rq, pr, r, g, rq, pr, r, r, gqq and weights
Wp “ p1, 1, 2, iq. Is there a graph which is affirmative to Question 5 with
these colorings and weights? We answer this question affirmatively, and
show the solution in Figure 4.

Figure 4. This multi-edge graph answers the Question 5 for a given Cp and
Wp.

Again, it might be the case that not every set of coloring and weight can
be constructed, thus we define a fidelity that gives us a notion of distance
between the target and the graph.

Definition 2.7 (general fidelity). Let Cp “ tCiu
t
i“1 be a set of (prescribed)

different colorings (with up to d different colors), and Wp “ twiu
t
i“1 be the

set of (prescribed) weights, let G be a bi-colored graph. Let N1 and N2 be

N1 “

t
ÿ

i“1

|wi|
2 , N2 “

ÿ

@c

|wpcq|2 .

The general fidelity is defined as

F general :“
1

N1N2

ˇ

ˇ

ˇ

ˇ

ˇ

t
ÿ

i“1

wi ¨ wpCiq

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Now a natural and most general question can be stated as follows.
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Question 6: approximative general graph

For every Cp and Wp, which bi-colored graphs G with n vertices min-

imizes the general fidelity F general?

Question 6 contains Question 1-5 as special cases. Thus its resolution would
resolve the question about the power of modern photonic quantum entan-
glement sources.

3. Quantum Mechanical Formulation

All of the concepts, questions and partial results in this paper can directly
be translated into the language of quantum mechanics [1, 2, 3].

Undirected Graphs correspond to quantum optical experiments, us-
ing probabilistic photon-pair sources and linear optics.

Vertices correspond to single photon detectors in the output of some
photon path.

Edges correspond to photon pairs that emerge from two photon paths.

Edge weights correspond to the amplitude of the corresponding pho-
ton pair.

Edge colors correspond to the mode number of the two photons in the
path defined by the vertices at the endpoint of the edge. They can
be bi-colored, as the two photons can have different mode numbers.
A monochromatic edge corresponds to a photon pair with the same
mode number.

Perfect matchings correspond to a multi-photon event where each
single photon detector detects a photon. The coherent sum of all
perfect matchings leads to the quantum state (conditioning on the
click of each detector). Not every perfect matching necessarily leads
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to an unique term in the quantum state. Different perfect matchings
can lead to the same inherited vertex colorings, thus coherently sum
up and constructively or destructively interfere.

Inherited vertex colorings corresponds to multi-photonic terms with
different mode numbers in the quantum state. Terms with different
IVCs are orthogonal.

Weights of vertex colorings wpcq correspond to the amplitude of
terms with mode numbers described by the inherited vertex color-
ings. More than one perfect matching can lead to the same inher-
ited vertex colorings. As these terms can have opposite weights, it
could be that the weight of an inherited vertex coloring is zero even
though there are several perfect matchings leading to that coloring
with nonzero weights.

Monochromatic vertex colorings lead to terms where every pho-
ton carries the same mode number. A graph with only monochro-
matic vertex colorings (with d different colors) corresponds to d-
dimensional Greenberger-Horne-Zeilinger state. These states are of
significant importance in quantum physics.

Question 1 asks which high-dimensional Greenberger-Horne-Zeilinger
states can be created if general amplitudes wi P C can be used, but
without trigger photons.

Monochromatic Graph corresponds to a high-dimensional multi-
-photonic Greenberger-Horne-Zeilinger state.

Bogdanov’s Lemma states that Greenberger-Horne-Zeilinger states
can be created only with d “ 3 dimensions with n “ 4 photons,
or d “ 2 dimensions for arbitrary even number of n photons, if all
amplitudes are real valued (i.e. no destructive interference happens)
and no additional trigger photons are used [10].
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Figure 2 corresponds to a 4-photon 3-dimensional Greenberger-Horne-
Zeilinger state.

k-monochromatic colorings correspond to quantum states where the
first k photons have the same mode number, and the remaining
pn´ kq photons have mode number zero (we can define red to be an
arbitrary mode number). The pn ´ kq red vertices can be used as
trigger photons that herald an k-photon state where every photon
has the same mode number.

Question 2 asks which high-dimensional Greenberger-Horne-Zeilinger
states can be created if general amplitudes wi P C can be used, and
(n´ k) trigger photons can be used.

Erhard graph is the only known example which corresponds to a
quantum state that goes beyond Bogdanov’s limit – it can pro-
duce a 6-photon 3-dimensional entangled GHZ state. Four herald-
ing photons and complex weights are used to cancel out all non-
monochromatic colorings. It is created using two copies of the graph
in Figure 2, which are merged using a quantum technique discovered
by Manuel Erhard.

Monochromatic fidelity stands for a quantum fidelity to a high-
dimensional n-particle GHZ state.

Question 3 asks for every d-dimensional and n-particle state, what is
the state that comes closest to the GHZ state, allowing only linear
optics and probabilistic pair sources.

k-monochromatic fidelity stands for a quantum fidelity to a high-
dimensional k-particle GHZ state, using (n´ k) trigger photons.

Question 4 asks for every d-dimensional and k-particle state with (n´
k) triggers, what is the state that comes closest to the GHZ state,
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allowing only linear optics, probabilistic pair sources and heralding
photons.

Question 5 asks in general, which high-dimensional multipartite pure
quantum states can be created using these techniques?

Figure 4 is an example to produce a 4-particle W state.

General fidelity corresponds to a fidelity between a prescribed quan-
tum state, and a quantum state that originates from a bi-colored
graph.

Question 6 asks for an arbitrary pure quantum state, with which fi-
delity can it maximally be created?

4. Conclusion

Every progress in any of these purely graph theoretical questions can be
immediately translated to new understandings in quantum physics. Apart
from the intrinsic beauty of answering purely mathematical questions, we
hope that the link to natural science gives additional motivation for having
a deeper look on the questions raised above.

Acknowledgements

The authors thank Manuel Erhard, Anton Zeilinger, Tomislav Došlić and
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