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Abstract

In order to robustly deploy object detectors across a wide
range of scenarios, they should be adaptable to shifts in
the input distribution without the need to constantly an-
notate new data. This has motivated research in Unsu-
pervised Domain Adaptation (UDA) algorithms for detec-
tion. UDA methods learn to adapt from labeled source do-
mains to unlabeled target domains, by inducing alignment
between detector features from source and target domains.
Yet, there is no consensus on what features to align and how
to do the alignment. In our work, we propose a framework
that generalizes the different components commonly used
by UDA methods laying the ground for an in-depth anal-
ysis of the UDA design space. Specifically, we propose a
novel UDA algorithm, ViSGA, a direct implementation of
our framework, that leverages the best design choices and
introduces a simple but effective method to aggregate fea-
tures at instance-level based on visual similarity before in-
ducing group alignment via adversarial training. We show
that both similarity-based grouping and adversarial train-
ing allows our model to focus on coarsely aligning feature
groups, without being forced to match all instances across
loosely aligned domains. Finally, we examine the applica-
bility of ViSGA to the setting where labeled data are gath-
ered from different sources. Experiments show that not only
our method outperforms previous single-source approaches
on Sim2Real and Adverse Weather, but also generalizes well
to the multi-source setting.

1. Introduction

Object detectors should be adaptable to “domain shift”
that can occur due to many factors including changes in
weather or camera, compared to the training data. Do-
main shifts can cause a significant drop in object de-
tector performance [5, 17]. Domain adaptation meth-
ods [10, 9, 38, 26, 27, 29] study this problem, casting it
as a task of learning models from a source domain and
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Figure 1. Depiction of visual similarity based grouping proposed
in our ViSGA method. Instance proposals from the detector are
aggregated based on visual similarity to create an adaptive number
of class-agnostic groups then they are aligned across the domains.

adapting to a target domain. In object detection, where
collecting bounding box annotations is expensive, it be-
comes critical that domain adaptation can be performed
without the need to annotate every new domain. This moti-
vates the challenging setting of unsupervised domain adap-
tation (UDA) [42, 39, 28, 2], where one has access to la-
beled source data and only unlabeled target data. Moreover,
training data itself could be gathered under different con-
ditions, a scenario typically referred to as a multi-source
domain adaptation [31, 45, 46, 47].

A dominant line in UDA works is to learn invariant rep-
resentations via aligning source and target domains, with
various proposed alignment strategies. Specifically in ob-
ject detection, the questions of what features to align and
how to induce the alignment have been the subject of recent
research. Early works [5, 20] propose aligning both image-
level features from the backbone network and all instance-
level features extracted from object proposals using adver-
sarial training [13]. A recent state-of-the-art approach [44]
argues that it is beneficial to aggregate object proposals be-
fore alignment and suggests condensing all proposals into a
single category prototype vector before inducing alignment
using a contrastive loss. This raises questions on what is the
right aggregation-level at which to do feature alignment and
what is the right mechanism to induce this alignment.

In this work, we propose a novel UDA method for object
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detection, called visually similar group alignment (ViSGA).
Our method harnesses the power of adversarial training,
while leveraging the visual similarity of the different pro-
posals as a basis for aggregating them. By relying on visual
similarity, we aggregate proposals from potentially differ-
ent spatial locations (Figure 1), increasing the effectiveness
of adversarial training. Doing so, we drive a more powerful
discriminator and hence better aligned features. To enhance
the flexibility of proposal aggregation and to avoid introduc-
ing unwanted noise in the alignment process as a result of a
preset fixed number of groups, we opt for dynamic cluster-
ing based on the distance at which proposals are aggregated.
This improves the adaptability of our method to a variable
number of objects present in the input.

Our method design choices are based on an in-depth
analysis of common components of UDA methods for de-
tection. In particular we study what is the right aggregation-
level to perform instance-level alignment, ranging from
considering all instances [5], multiple groups based on clus-
tering to single prototypes [44]. When aggregating object
proposals, we analyze whether including the predicted class
label is beneficial and which distance metric performs bet-
ter, including spatial overlap and visual similarity. We fur-
ther compare the effectiveness of using contrastive losses
versus adversarial training, as the alignment mechanism.

In summary, our key contributions are as follows: 1) We
propose a novel, simple yet effective, UDA method for ob-
ject detection via adversarial training and dynamic visual
similarity-based grouping of proposals from the source and
target domains. 2) We perform an in-depth analysis answer-
ing questions on what is the right level of alignment and
how to induce alignment. 3) We evaluate our proposed ap-
proach on three different domain shift scenarios including:
Adverse weather, Synthetic to Real data, and Cross camera
and show state-of-the-art results. 4) We are the first to con-
sider the important setting of multi-source domain adapta-
tion for object detection where annotated data are gathered
from different sources. We show that our method continues
to improve in this highly relevant scenario, another evidence
for the effectiveness of our approach.

2. Related Work

Object detection. Classical object detection methods were
based on sliding window classification using hand-crafted
features [7, 41, 12]. However, deep convolutional networks
(CNNs) [24, 19, 37] trained on large scale data [4, 11] have
become popular recently. These can be categorized into
one- [25, 32, 33] and two-stage frameworks [16, 15, 18, 34].
Among them Faster R-CNN [34] is widely adopted due to
good performance and good open implementations. Faster
R-CNN extends prior works [16, 15] with a Region Pro-
posal Network (RPN). A second detection head classifies
regions of interest (RoI) and is trained end-to-end with

RPN. In our work, we use Faster R-CNN as our base de-
tector.
Unsupervised domain adaptation for object detection.
Chen et al. [5] is an early UDA method for object detection.
It proposes to learn domain-invariant features at both im-
age and instance-level using adversarial training (AT) [13]
on top of the Faster R-CNN detector. This idea motivates
other works, that focus on selecting the right features and
right level of aggregation for alignment [35, 20, 49, 43, 3].
Both [35, 20] adapt adversarial strategy to align image-level
features. while, He et al. [20], employ multiple domain dis-
criminators and they also encode class information together
with features for the instance level alignment. Xu et al.
[43] add a categorical classifier for image-level alignment
to weakly learn class features with source domain supervi-
sion. On the other hand, some recent works have proposed
applying different alignment mechanisms [50, 48, 44]. Xu
et al. [44] employ a geometry-based prototype construction
and use contrastive losses instead of AT for learning domain
invariant features. Similar contrastive losses were applied
in training domain adaptive classifiers in [22]. Zheng et al.
[48], propose a hybrid framework to minimize L2 distance
between single-class specific prototypes across domains at
instance-level and using adversarial training at image-level.

In this paper, we propose a novel framework ViSGA by
leveraging the best design practices from prior work. Un-
like [44, 48], our approach uses a similarity-based grouping
scheme to aggregate information into multiple groups in a
class agnostic manner. In addition, we purely use an adver-
sarial strategy unlike a hybrid framework used by [48] or
Contrastive losses used by [44].

Moreover, to the best of our knowledge, existing UDA
methods for detection, only consider the single-source
UDA. Recently, a line of work using deep models is pro-
posed for multi-source setting, where the training data are
collected from multiple sources [31, 45, 46, 47]. These
works mainly consider image classification, except [31]
which is proposed for semantic segmentation. The gen-
eral idea of these works is to consider additional compo-
nents or computations to align each source domain to the
target [45, 46, 47] or aggregate information from all of the
sources into one before adapting to the target domain [31].
In this work, besides single-source UDA, we consider the
generalization of our method to multi-source to further ex-
amine the effectiveness of our general framework.

3. Our General Framework for UDA
In this section we discuss our general framework for an-

alyzing several aspects of unsupervised domain adaptation
methods for object detection. Starting from the problem
formulation, we present the main ingredients of our UDA
framework (in 3.2 and 3.3) which represent a generaliza-
tion of the different components presented in the state-of-
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Figure 2. Components of our general unsupervised domain adaptation framework, for object detection. Here the boxes in blue are compo-
nents of Faster R-CNN. They share parameters in both domains.

the-art. For each part, we discuss the existing alternatives
that we later compare in Section 4.2. We then introduce a
novel algorithm (in 3.4), ViSGA, a direct implementation of
our framework combining the best performing components
with a novel strategy for a dynamic aggregation of propos-
als based on their visual similarity.
Problem formulation. In Unsupervised Domain Adapta-
tion (UDA) for object detection, we are given NS labeled
images for the source domain S = {(xS

i , y
S
i , B

S
i )}

NS
i=1,

where ySi and BS
i are the class labels and bounding box

coordinates respectively. For the target domain T =
{xT

i }
NT
i=1, only NT unlabeled images are available. Both

domains share an identical label space but their visual dis-
tributions do not match. The goal of UDA approaches is
to learn object detectors which perform well on the target
domain, despite the domain shift.

3.1. Overview

Our generalized UDA framework comprises of three
main components. First is a standard object detection net-
work, Faster R-CNN, which takes an input image and pro-
duces bounding boxes and labels for all object instances
present in the image. The second component is an image-
level domain adaptation loss which encourages alignment
of the global image representation in the backbone network.
The third component is an instance-level domain adaptation
loss which induces alignment of representations of each ob-
ject instance. This is illustrated in Figure 2. Thus, the over-
all training objective of the method can be written as:

L = Ldet + λ1Limg + λ2Linst, (1)

where, Ldet is the supervised training loss for the detec-
tor, Limg and Linst are the image-level and instance-level
domain adaptation (DA) losses respectively, λ1 and λ2 are
trade-off parameters. For methods that do not apply instant
level alignment λ2 is set to zero. Note that Ldet is only ap-
plicable in the source domain where ground-truth bounding
box annotations are available.
Detection network. Following the convention set by early
work on cross-domain object detection, we deploy Faster

R-CNN [5] as the object detection network in both, our
method and the analysis. It consists of a Region Pro-
posal Network (RPN) and a detection head. Both networks
are trained with two loss terms each, a regression loss for
bounding box estimation and a classification loss for label
prediction. Thus the detection loss Ldet for Faster R-CNN
is composed of LRPN and Lhead.

3.2. How to Induce Alignment?

The role of the domain adaptation losses (Limg,Linst) is
to induce alignment between the model’s representation of
source and target domain inputs. Downstream blocks that
use such invariant representation (here for example RPN
and the detection heads), would be domain-agnostic and
perform equally well in both domains. While adversar-
ial training has been the dominant paradigm for reducing
the discrepancy between feature distributions [5, 35, 49],
recently contrastive losses have been proposed to match
source and target features [44, 22]. We present these ap-
proaches in this subsection and compare them in our exper-
imental analysis (Section 4.2).
Adversarial training. The key idea in Adversarial Train-
ing (AT) based UDA methods is to learn domain invariant
representations by fooling a discriminator which is trained
to predict the input data domain based on the detector fea-
tures. This approach is usually class-agnostic, ignoring
the features class information and focusing on domain-level
alignment. Specifically, the features Fd of domain d (d = 0
for source and d = 1 for target) is fed to the discriminator
D which predicts the domain of the extracted features. The
discriminator is trained by minimizing the cross-entropy
loss as below.

Ldisc = −d log(D(Fd))− (1− d) log(1−D(Fd)). (2)

Since we want to adapt the features of the two domains to
be indistinguishable by the discriminator, we have to max-
imize the loss in Equations (2) w.r.t the features Fd. This
is achieved by incorporating a gradient reverse layer (GRL)
[13], before features are input to the discriminator.
Contrastive learning. As an alternative to AT, one can ap-
ply max-margin contrastive losses to align source and tar-
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get features by leveraging the class information. The main
idea here is to push features from the same class closer and
push apart features belonging to different classes across do-
mains. When matching a single feature vector F i

d per class i
in each domain d ∈ (0, 1), the max-margin contrastive loss
takes the form:

LCL =

C∑
i

||F i
0 − F i

1 ||22 +
C∑

j,j ̸=i

max{0,m− ||F i
0 − F j

1 ||
2
2}


(3)

where C is the number of classes and m is the margin.
Since target data is unlabeled, the class prediction by the
detector is used as a pseudo-label in [44] to apply Equa-
tion (3). In our analysis, we also study the effect of ignoring
this class information. This can be achieved by considering
only two sets of vectors of cardinality N0 and N1, possibly
unequal number (N0 ̸= N1), from source and target do-
mains to align. To apply contrastive losses here, we make
a simple modification. Instead of matching class-specific
features across domains, we match the proposals from one
domain to the closest features (nn) of the other domain (4)
and minimize the distance between their representations (5),
as shown below.

nn(i) = argminj<N1
||F i

0 − F j
1 || (4)

LCL =

N0∑
i

[
||F i

0 − F
nn(i)
1 ||22

+

N1∑
j,j ̸=nn(i)

max{0,m− ||F i
0 − F j

1 ||
2
2}
]
.

(5)

In our method, we utilize AT, avoiding potential noise as
a result of the reliance on unstable pseudo-labels during
the alignment process. Our aggregation strategy can lever-
age proposals similarities and possible embedded class-
information as we explain in the sequel.

3.3. What Features to Align?

In detection, two main levels of feature alignment can be
considered: 1) image-level features output by the backbone
network and 2) instance-level or object-level features ob-
tained after pooling each region-of-interest proposed by the
RPN network. The predominant approach aims for com-
plete alignment at instance-level, i.e. the representation of
every proposed object, in source or target domain, should
be domain agnostic. This might be difficult to achieve,
especially when complete alignment is challenging for the
model, and when the source or target data during alignment
contains some domain-specific outliers, e.g. specific back-
grounds only found in a simulation domain. To address this,
recent works aggregate the proposals on each of the source
and target before applying feature alignment [44, 48, 49].
Both [44] and [48] take it to the other extreme, by col-
lapsing the instances into a single prototype per category.

While [44] merges prototypes based on spatial overlap us-
ing intersection-over-union (IoU) and class labels, [48] only
uses class labels to mean pool proposals into prototypes. In
contrast [49] treads a middle ground by merging proposals
into many discriminative regions, but still only using spatial
overlap as the merging criteria.

In our analysis in Section 4.2, we compare the effective-
ness of different components of this aggregation including
1) spatial grouping vs similarity based grouping (discussed
in Section 3.4) 2) using class information vs class agnostic
and 3) single prototypes vs multiple groups.

3.4. Similarity-based Group Alignment

In this section, we propose a novel similarity-based
grouping to aggregate object proposals before performing
alignment. We first aggregate proposals based on visual
similarity into varying number of feature groups. AT is
then applied to align the mean embeddings of the groups
extracted from the source and target domains. This simple
yet effective change brings three key benefits. First, adver-
sarial training at group level enables our model to coarsely
align the main feature clusters, instead of attempting com-
plete alignment of all instances which might be infeasible.
Second, in contrast to the spatial overlap used in [44, 49],
visual similarity-based clustering allows our model to group
objects which are located far away in the image, but look
similar. Note that this still groups heavily overlapping pro-
posals, since they tend to also be visually similar. Hence, it
avoids producing duplicate visually similar groups. By us-
ing visual similarity, we do not depend on the pseudo-labels
different from previous approaches [44, 48]. The pseudo-
labels tend to be noisy, thus avoiding such dependency can
be beneficial especially in early training. Moreover, when
similar proposals are aggregated, we can implicitly leverage
class information since the aggregated proposals are likely
to be of the same class. Finally, by adaptively varying the
number of groups, instead of using single prototypes, our
model retains sufficient capacity to represent intra-domain
variance.
Similarity-based clustering. To perform similarity-based
clustering, we take as input the N proposals generated by
RPN and their fixed feature vectors denoted by f ∈ RN×m.
In order to discover the main feature groups, we cluster
these features using hierarchical agglomerative clustering.
Starting bottom-up, each proposal is considered as an indi-
vidual cluster. Then, at each step, the two closest clusters
according to a distance metric are merged together. We uti-
lize cosine distance as our merging metric:

distance(zi, zj) = 1− zi.zj
||zi|| ||zj ||

, (6)

where zi and zj show i-th and j-th proposal’s feature em-
beddings. In contrast to recent work [44], which uses spatial
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overlap (measure by IoU) to group together instances, using
cosine similarity enables us to pair instances which are lo-
cated far from each other, but are visually similar. Merging
is stopped when dissimilarity within a cluster, as defined by
a linkage function, exceeds the cluster radius parameter τ .
We apply the complete-linkage heuristic [8], which ensures
that the farthest distance of two members is smaller than τ .

MaxLink(A,B) = max{dist(a, b) : a ∈ A, b ∈ B}, (7)

where A, B are two sets of proposals’ features in two clus-
ters and dist is the cosine distance. This hierarchical clus-
tering approach allows our model to adaptively change the
number of feature groups during training, instead of having
a fixed number of cluster like in k-means. Once the clus-
tering has converged, instances assigned to each cluster are
pooled to construct a representative embedding Zci :

Zci =

∑Nci
i=0 zi
Nci

, (8)

where Nci is the number of instances assigned to the clus-
ter ci. The group representative Zci is fed to a group-level
discriminator and adversarial training is applied to align
groups from the two domains using Equation (2).

Finally, our method (ViSGA) combines image and
instance-level alignment of aggregated proposals via adver-
sarial training as illustrated in Fig.1.

4. Experiments
Based on Section 3, we conduct ablation studies to an-

alyze these design choices in (4.2) 1) AT vs CL for in-
ducing feature alignment and 2) different feature levels for
alignment. Then we compare our method, that combines
the best performing components with a novel similarity-
based grouping strategy, to SOTA results in (4.3). First, we
present the datasets and the baselines used in the remainder
of the paper.

4.1. Experimental Setup

We now present the datasets used for the experiments in
the three domain shift scenarios.
Adverse weather. For this scenario, we use Cityscapes [6]
as the source dataset. It contains 3,475 real urban images,
with 2,975 images used for training and 500 for the valida-
tion. Foggy version of Cityscapes [36] is used as the target
dataset. Highest fog intensity (least visibility) images are
used in our experiments, matching prior work [44]. Both
datasets have 8 different categories. Following [5], we used
the tightest bounding box of an instance segmentation mask
as ground truth box. This scenario is referred to as Foggy.
Synthetic to real. SIM10k [21] is a simulated dataset that
contains 10,000 synthetic images. In this dataset, we use

all 58,701 car bounding boxes available as the source data
during training. For the target data and evaluation, we use
Cityscapes [6] and only consider the car instances. This
scenario is referred to as Sim2Real.
Cross camera. In this scenario, we use real the dataset of
KITTI [14] as our source data. KITTI contains 7,481 im-
ages and we use all of them for training. Similar to the
previous scenarios, we use Cityscapes [6] as target data.

In all experiments, we use mean average precision
(mAP) with IoU threshold of 0.5 for evaluation. We com-
pare our approach with the following prior works: DA [5],
DivMatch [23], SW-DA [35], SC-DA [49] and MTOR [1].
Implementation details. We set the shorter side of the
image to 600 pixels, following the Faster R-CNN imple-
mentation [34]. Our Faster R-CNN network, as well as all
the prior works we compare to, utilize ResNet-50 [19] as
the backbone. Models using adversarial training are first
trained with learning rate 0.001 for 50K iterations, then with
learning rate 0.0001 for 20K more iterations and we report
the final performance. Each batch is composed of 2 images,
one from each domain. A momentum of 0.9 and a weight
decay of 0.0005 is used. With the mentioned setting, max-
imum 10k MB of memory needed and one NVIDIA Tesla
V100-PCIE GPU is used. For training contrastive learning
models, we employ the code provided by [44] and we fol-
low its exact settings for running experiments. Both meth-
ods are implemented with PyTorch [30].

4.2. Analysis of UDA Components

In this section we analyze the various design choices
of alignment mechanisms (Table 1), image-level align-
ment (Table 2), aggregation levels and aggregation mech-
anisms (Table 3) when bulding UDA models.

In Table 1, we compare CL and AT domain alignment
paradigms in the Sim2Real scenario. Faster R-CNN is the
baseline model which is only trained on the source and
tested on the target. Single and Multiple Group(s) are
shown as SG and MG. CA represents Class Agnostic, which
means that class information is not used when construct-
ing the groups. CL using SG as aggregation level, im-
proves the performance over the source-only model (33.2%
vs 31.9%). Similarly, applying CL with MG (36.9%) or
MG+CA (42.6%) setup further improves model perfor-
mance. AT outperforms CL in each of these three scenarios
(fifth to seventh rows of Table 1). Applying AT on the SG
results in a large improvements over the baseline (40.8%
vs 31.9%). Similarly, AT heavily outperforms CL for the
MG setting (43.1% vs 36.9%). Same trend is observed
in MG+CA as well, with AT outperforming CL (45.6% vs
42.6%). This large margin reveals that allowing the network
to freely align the group representatives with AT, leads to
a larger performance gain compared to explicitly matching
the groups to nearest neighbors across domains using CL.
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Method Agg. Levels car AP

Faster R-CNN — 31.9

Contrastive
losses

SG 33.2
MG 36.9

MG+CA 42.6

Adversarial
training

SG 40.8
MG 43.1

MG+CA 45.6

Table 1. Sim2Real: Analyzing the choice of alignment mecha-
nism, comparing adversarial training against contrastive learning
across different aggregation conditions (SG: Single Group, MG:
Multiple Groups, CA: Class Agnostic ). Note that all results here
only use instance level alignment.

Image-level SG MG MG+CA

✗ 40.8 43.1 45.6
✓ 39.5 44.9 49.3

Table 2. Sim2Real: Analyzing the effect of image-level align-
ment.

Aggr. levels Aggr. mechanism Foggy Sim2Real

Proposals No grouping 38.5 39.0

SG

Cosine

33.7 39.5
MG (adaptive) 41.8 44.9

MG+CA (adaptive) 43.3 49.3
MG+CA (fixed) 42.5 49.0

MG+CA (adaptive) IoU 41.9 44.8

Table 3. Sim2Real & Foggy: Analyzing the choice of different
aggregation levels and mechanisms.

Based on these results, we use AT for the rest of experi-
ments.
Do we need image-level alignment? Table 2 presents the
comparison of model performance with image-level align-
ment added on top of the instance-level alignment presented
before. This comparison is done using AT across differ-
ent aggregation levels. We see that image-level alignment
brings clear added improvement on both multi-group mod-
els, while degrading slightly on the single group model.
On the single group model, the instance-level alignment
is happening at a global level since all the instances are
aggregated into a single group before inducing alignment.
Adding an extra alignment will not help further and could
possibly induce noise, as seen in the results (40.8% vs
39.5%). However, on models with multiple groups, in-
stance level AT focuses on local feature alignment, and
hence adding global alignment with image-level AT is ben-
eficial. Thus, we use image-level alignment for the remain-
ing of the experimental section.
Aggregation levels & mechanisms. Next, we study the

process of aggregating instance proposals into groups be-
fore performing alignment. We compare the effect of both
the number of groups as well as the mechanism used to ag-
gregate proposals into groups. Table 3, first row shows re-
sults using original proposals without any grouping for the
instance level alignment. Aggregating instances into a SG
per category causes a significant drop in performance, indi-
cating that the condensing features into one vector may not
be a useful approach. However, MG setup based on visual
similarity (Cosine), is beneficial (41.8% vs 38.5% on Foggy
and 44.9% vs 39.0% on Sim2real ). Performance is further
improved by ignoring the predicted class-label (43.3% on
Foggy and 49.3% on Sim2real) and compared to the last set
with MG, this shows that noisy pseudo labels (in MG) can
be harmful to the clustering process and may have nega-
tive impact on the alignment. Both the above models use
cluster radius parameter to let the model vary the number
of groups adaptively over the course of training. Here, we
do not compare different clustering methods directly. How-
ever, we also experiment with fixing the number of clus-
ters, as shown in MG+CA (fixed). we perform a sweep of
the number of clusters hyper-parameter and report the best
numbers here (full results can be found in supplementary,
figure 4). This model performs slightly worse than MG+CA
(adaptive), indicating that the flexibility from adaptive num-
ber of clusters is beneficial.

Finally in the last row, by using spatial overlap (using
IoU) to cluster instances (as proposed in [44, 48]), we see
that the performance drops by 1.4% and 4.5% on Foggy and
Sim2Real respectively, compared to using visual similarity
based clustering (MG+CA (adaptive)). These large drops
show that our visual similarity based grouping is a better
way to accumulates proposals, since it allows grouping dis-
tant instances and avoids redundant group representatives.

4.3. Comparison with SOTA

In this section, we evaluate the best design choices em-
bedded in our ViSGA and compare it to prior works in each
of these domains in Section 2. ViSGA incorporates image-
level alignment and adversarial training framework along
with the novel group alignment of visual similarity based
class-agnostic clusters.

Table 4 shows the results for the Sim2Real and Cross
Camera scenarios on Car class. The adaption is challenging
on Sim2Real due to relatively large domain shift between
source and target. However, as shown in the table, our ap-
proach outperforms other methods by a fair margin (49.3%
vs 47.6% by the closest model, GPA). For Cross Camera
scenario, our approach has competitive performance com-
pared to GPA[44], while out-performing other approaches.
In Table 5, ViSGA achieves SOTA results, with large im-
provements over other recent work. It outperforms the GPA
method [44] (43.3% vs 39.5%) based on prototype match-
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Figure 3. Qualitative results. Sim2Real scenario. First row: Faster R-CNN, second row: ViSGA (iou) and, last row: ViSGA (cosine).
True positives and missed objects are shown as cyan and red boxes respectively. We can clearly see that Faster R-CNN model misses
many objects. This improves in the second row, with the model based on grouping proposals with spatial overlap. However, ViSGA model
powered by similarity-based aggregation does even better, recovering almost all missed objects.

Methods Cross Camera Sim2Real

Faster R-CNN 32.5 31.9

DA-Faster [5] 41.8 41.9
DivMatch [23] 42.7 43.9
SW-DA [35] 43.2 44.6
SC-DA [49] 43.6 45.1
MTOR [1] - 46.6

GPA (Only RCNN) [44] 46.1 44.8
GPA [44] 47.9 47.6

Ours 47.6 49.3

Table 4. Experimental results (%) of Sim2Real & Cross Camera.

Methods prsn rider car truck bus train mcycle bicycle mAP
Faster R-CNN 27.2 31.8 32.5 16.0 25.5 5.6 19.9 27 22.8
DA-Faster [5] 29.2 40.4 43.4 19.7 38.3 28.5 23.7 32.7 32.0
DivMatch [23] 31.8 40.5 51.0 20.9 41.8 34.3 26.6 32.4 34.9
SW-DA [35] 31.8 44.3 48.9 21.0 43.8 28.0 28.9 35.8 35.3
SC-DA [49] 33.8 42.1 52.1 26.8 42.5 26.5 29.2 34.5 35.9
MTOR [1] 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6 35.1
GPA [44] 32.9 46.7 54.1 24.7 45.7 41.1 32.4 38.7 39.5

Ours 38.8 45.9 57.2 29.9 50.2 51.9 31.9 40.9 43.3

Table 5. Experimental results of (%) Foggy.

ing, highlighting the importance of our design choices —
multiple similarity based class-agnostic groups and adver-
sarial training. In summary, the good performance shown
by our model across three datasets with state-of-the-art re-
sults in two of them, provides evidence that our similarity-
based method is successful in aligning instance level repre-
sentations.

Qualitative analysis of ViSGA. Figure 3 compares the de-
tection outputs of Faster R-CNN and ViSGA models with
different aggregation mechanisms, on Sim2Real scenario.
Figure 4 shows the evolution of the number of groups dur-

Figure 4. Evolution of number of groups during training for our
ViSGA model. Orange and blue dashed lines show the best train-
ing stops for Foggy and Sim2Real respectively.

ing ViSGA training, on Foggy and Sim2Real.While the
number of initial groups are similar in both cases, the num-
ber of clusters on Sim2Real drops-off quickly and settles
around 50 clusters when the best model performance is
achieved. In contrast, in Foggy, the number of clusters in-
creases and is plateaus around 180, where the best perfor-
mance is achieved. This difference can be understood by
noting that the Foggy scenario has 8 categories compared
to only one category in Sim2real. Hence the model needs
more clusters in Foggy. In figure 5 shows experimental re-
sults measuring the sensitivity of the cluster radius param-
eter. We can observe that for Sim2Real the network per-
forms well when the threshold is low but it is relatively sen-
sitive to high or very low radius values (no grouping). This
might be due to the large shift between synthetic images
and real images. In addition, a low cluster radius creates
many single member clusters, reducing information aggre-
gation. In contrast, the performance is not very sensitive
to various radius values on Foggy, where the domain gap is
smaller. Additionally, figure 6 in the supplement presents
a tSNE [40] visualizations of source and target feature dis-
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Figure 5. Sensitivity analysis of cluster radius parameter.

tribution, to visually illustrate how ViSGA prioritizes fore-
ground alignment. This is also supported by figure 4 in the
supplement, which shows that foreground objects get allo-
cated more clusters and hence are prioritized for alignment.
Computational Overhead. The extra training time cost of
our method, from computing the distances between the fea-
tures of each proposal, is relatively small (eg. one batch
runtime is 0.79 for ViSGA compared 0.62 for w/o ViSGA).
ViSGA has no overhead during inference. Note that con-
trastive learning based methods, e.g., GPA, also compute
the distance between proposals in each domain.

5. Generalization to Multi-Source
As mentioned in section (2), existing UDA detector

methods focus only on the single-source in which train-
ing data are gathered from one input domain guaranteeing
homogeneity withing the training data. However, in real
world annotated data is available or could be gathered un-
der different conditions comprising different input domains,
a scenario usually referred to as multi-source domain adap-
tation. In this section, we examine the applicability of our
framework to operate in a multi-source UDA scenario. For
the presented experiments, SIM10k and KITTI are used as
source datasets and Cityscapes as the target.

In the first set of experiment, we combine all sources
into one training dataset and use shared discriminators at
both image and instance levels for all different sources (Fig-
ure 6, part (a)). We repeat the same analysis, carried on the
single source setting, to examine the right level of aggre-
gation. As shown in Table 6, learning on multi-source data
without any UDA components achieves 42.5%. When com-
bining the image and instance-level alignments it reaches to
49.6% (Proposals). Using our full ViSGA method, we can
further improve the performance on multi-source (51.3%).
This confirms our method’s scalability to multi-source set-
ting. We also perform an ablation regarding the discrim-
inator deployed in AT and modify the network design by
We also perform an ablation regarding the discriminator de-
ployed in AT and modify the network design by consider-
ing a separate set of discriminators for each pair of source-
target (Fig. 6, b to d, illustrates the different combinations).

Source Faster Proposals SG MG MG+CA

Single-Source (KITTI) 32.5 41.5 35.8 45.5 47.6
Single-Source (SIM10k) 31.9 39.5 39.5 44.9 49.3

Multi-Source 42.5 49.6 48.9 51.3 51.3

Table 6. Multi-Source ViSGA vs Single-Source ViSGA. ‘Faster’:
No UDA; ‘Proposals’: UDA with proposal-level alignment;
‘SG’,‘MG’,‘MG+CA’: UDA with group-level alignment.
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Multi-Source 51.3 49.1 49.3 50.0

(e)
Figure 6. Multi-Source ViSGA Ablation: Shared/Separated dis-
criminators between sources. (a) Shared. (b) Ins: separated image-
level disc. (c) Img: separated instance-level disc. (d) Separated. (e)
Results on (a to d).

As we can see in (Fig. 6, e), our simple yet effective method
with shared discriminators brings the largest gain to the fi-
nal detection performance (51.3%) compared to 50.0% with
separate discriminators at both instance and image level.

In summary, the good performance shown here provides
further evidence that our method is able to generalize to
multi-source setting without applying any modifications in
its design. This leaves the door open for exploring any al-
ternatives that could further leverage the multi-source infor-
mation in UDA object detection.

6. Conclusions
We present an analysis of various design choices when

building UDA models for detection. Our experiments
comparing the alignment mechanisms revealed that adver-
sarial training works better than max-margin contrastive
losses across different feature aggregation-levels. Regard-
ing instance-level alignment, our analysis shows that aggre-
gating proposals into multiple visually similar groups be-
fore alignment is beneficial. It significantly outperforms
both options previously investigated in prior work; no ag-
gregation [5] or collapsing everything to a single cate-
gory prototype vector [44, 48]. We also show that con-
structing these groups without considering pseudo labels
improves performance in single-source setting. Our best
model ViSGA, incorporating adversarial training and vi-
sual class-agnostic group not only achieves SOTA results on
Sim2Real and Foggy, it also generalizes to multi-source.
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