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GAUGE THEORY ON NONCOMMUTATIVE RIEMANNIAN PRINCIPAL BUNDLES

BRANIMIR ĆAĆIĆ AND BRAM MESLAND

Abstract. We present a new, general approach to gauge theory on principal G-spectral
triples, where G is a compact connected Lie group. We introduce a notion of vertical Rie-
mannian geometry forG-C∗-algebras and prove that the resulting noncommutative orbit-
wise family of Kostant’s cubic Dirac operators defines a natural unbounded KKG -cycle in
the case of a principal G-action. Then, we introduce a notion of principal G-spectral triple
and prove, in particular, that any such spectral triple admits a canonical factorisation in
unbounded KKG -theory with respect to such a cycle: up to a remainder, the total geome-
try is the twisting of the basic geometry by a noncommutative superconnection encoding
the vertical geometry and underlying principal connection. Using these notions, we for-
mulate an approach to gauge theory that explicitly generalises the classical case up to a
groupoid cocycle and is compatible in general with this factorisation; in the unital case, it
correctly yields a real affine space of noncommutative principal connections with affine
gauge action. Our definitions cover all locally compact classical principal G-bundles and
are compatible with �-deformation; in particular, they cover the �-deformed quaternionic
Hopf fibration C∞(S7� ) ↩ C∞(S4� ) as a noncommutative principal SU(2)-bundle.
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What is noncommutative gauge theory? From one perspective, it should be the di-
rect generalisation of the differential-geometric framework of principal connections on
smooth principal bundles to a suitable category of noncommutative manifolds: when
applied to noncommutative differential geometry in terms of noncommutative algebras
endowed with noncommutative differential calculi, this results in the theory of princi-
pal comodule algebras and strong connections as pioneered by Brzeziński–Majid [24] and
Hajac [55]. By contrast, Connes has proposed a radically different vision, the spectral
action principle [35]: gauge theory should emerge from the spectral action as noncom-
mutative Einstein–Hilbert action on spectral triples as noncommutative spin manifolds.
However, the full noncommutative de Rham calculus of a spectral triple poses compu-
tational and conceptual difficulties [60, §12.3], while the spectral action framework uses
almost-commutative spectral triples, in particular, to access the adjoint bundle without
invoking the underlying principal bundle at all [29]. As a result, these two approaches
appear to be practically irreconcilable.

Since Connes’s general framework [34] of noncommutative Riemannian geometry via
spectral triples is applicable well beyond the context of the spectral action principle, a rich
literature has nonetheless emerged from the gap between these two approaches. On the
one hand, the �-deformed quaternionic Hopf fibration C∞(S7� ) ↩ C∞(S4� ) of Landi–Van
Suijlekom [72] readily lends itself to construction of noncommutative instantons [71,73];
however, these can only be constructed implicitly in terms of a consistent choice of Her-
mitian connection on the various noncommutative associated vector bundles. On the
other hand, Dąbrowski–Sitarz [39], together also with Zucca [42], have developed an
extensive theory of noncommutative Riemannian principal U(1)-bundles with noncom-
mutative principal connections in terms of spectral triples; however, its index-theoretic
implications have hitherto remained completely elusive. In both cases, the lack of a cohe-
sive theory of noncommutative principal connections on noncommutative principal bun-
dles within the theory of spectral triples presents a fundamental theoretical obstacle—it
is also the very first obstacle to putting the framework of strong connections on principal
comodule algebras and the spectral action principle on a theoretical level footing.

In this work, we generalise the differential-geometric framework of principal connec-
tions and global gauge transformations on smooth principal bundles to noncommuta-
tive Riemannian geometry via spectral triples in a manner explicitly compatible with its
interplay of noncommutative differential calculus, noncommutative spectral geometry,
and noncommutative index theory. Following Brain–Mesland–Van Suijlekom’s pioneer-
ing analysis [20] of the noncommutative principal U(1)-bundles C∞(T2� ) ↩ C∞(T1) andC∞(S3� ) ↩ C∞(S2), we use the technical framework of unboundedKK -theory. First devel-
oped by Baaj–Julg [11] and Kučerovský [69] as a technical tool for computations in Kas-
parov’s KK -theory [66], it readily accommodates Connes’s general procedure [33, §§6.1,
6.3] for twisting spectral triples by a connection on an arbitrary finitely generated pro-
jective module. However, it has only come to full fruition in the last decade.

Themain novel geometric ingredient of this renewal, as pioneered byMesland [77] and
Kaad–Lesch [63], is the introduction of module connections compatible with the data of
unbounded KK -cycles, thereby facilitating an explicit geometric calculation of the Kas-
parov product in the noncommutative setting while providing a noncommutative gener-
alisation of Quillen’s superconnection formalism [88] as developed by Bismut [15]. This
development has allowed for the direct introduction into the realm of unbounded KK -
theory of such geometric tools as geodesic completeness [78], localisation [65], locally
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bounded perturbations [46], and homotopies [47, 61], all of which will be used exten-
sively in this work. The relevance of unbounded KK -theory to a context such as ours has
recently been confirmed by work of Kaad–Van Suijlekom on Riemannian spinC submer-
sions [64], of Forsyth–Rennie on TN -equivariant spectral triples [51], and of Mesland–
Rennie–Van Suijlekom on curvature for abstract noncommutative fibrations [79]. Our
results, however, are independent of theirs.

Overview of results. We begin in §1 by studying the orbitwise intrinsic geometry and in-
dex theory of noncommutative topological principal G-bundles. More precisely, let (A, �)
be a G-C∗-algebra whose G-action � is principal in the sense of Ellwood [48], and let � be
a vertical metric, i.e., a G-invariant positive-definite inner product on the dual of the Lie
algebra g of G valued in the self-adjoint elements of Z (M(A))G , which we view as a non-
commutative orbitwise bi-invariant vertical Riemannian metric. We construct a canon-
ical G-equivariant unbounded KK -cycle (A1;� , L2v (V�A), c ( /Dg,�); L2v(V��)) modelled on
Kostant’s cubic Dirac element [68] that encodes the orbitwise intrinsic geometry induced
by � and defines, independently of the choice of �, a noncommutative (twisted) wrong-
way class forA ↩ AG à la Connes [32] and Connes–Skandalis [37] in G-equivariant KK -
theory. This cycle can be interpreted as a noncommutative orbitwise family of Kostant’s
cubic Dirac operators for the noncommutative principal G-bundle A ↩ AG induced by
the vertical Riemannian metric �, and it yields a G-equivariant generalisation of earlier
constructions [28,51,99] to the case where G is non-Abelian, � has non-trivial transverse
dependence, and no vertical spinCcondition is assumed.

Next, in §2, we study the orbitwise extrinsic geometry, basic geometry, and index the-
ory of noncommutative Riemannian principal G-bundles. As a technical preliminary, we
introduce a flexible framework ofG-correspondences (, X , S,∇;U ) inspired by [62,77,78],
consisting of G-equivariant unbounded KK -cycles (, X , S) equipped with a compatibleG-representation U and a Hermitian connection ∇. AG-correspondence can be viewed as
a G-equivariant noncommutative correspondence à la Connes–Skandalis [37] equipped
with a G-equivariant noncommutative superconnection à la Bismut [15]. Our setup cov-
ers non-compact, complete noncommutative geometries, merging the results of [78] with
those in [46,65] to arrive at a definition of correspondence that is flexible enough to cover
all our examples.

We now define a principal G-spectral triple to be a G-spectral triple (, H , D;U ) for
a principal G-C∗-algebra (A, �) together with a vertical metric �, vertical Clifford ac-
tion c ∶ g∗ → L(H ) with respect to �, and locally bounded remainder Z satisfying
certain conditions, including a version of Hajac’s strong connection condition [55]; we
view (, H , D;U ; �, c; Z ) as encoding a noncommutative Riemannian principal G-bundle.
Given (�, c), there is a non-trivial canonical candidate for the remainder, which is required
in the commutative case and confirms the remainders observed by Brain–Mesland–Van
Suijlekom [20] and Kaad–Van Suijlekom [64]. We can now writeD − Z = Dv + Dℎ[Z ],
where the vertical Dirac operator Dv , which is modelled on the cubic Dirac operator, en-
codes the orbitwise intrinsic geometry, while the horizontal Dirac operator Dℎ[Z ] encodes:

(1) the orbitwise extrinsic geometry via the resulting orbitwise shape operator T [Z ];
(2) the basic geometry (in the absence of any vertical spinC assumption) via the re-

sulting basic spectral triple (V�G , HG , DG [Z ]);
(3) the noncommutative principal connection via a canonical Hermitian connection∇0, whose construction follows from a more general result in Appendix B that



4 BRANIMIR ĆAĆIĆ AND BRAM MESLAND

links the strong connection condition from the algebraic theory of principal co-
module algebras to the analytic theory of Hermitian connections.

This decomposition, in turn, yields a factorisation of (, H , D;U ) in G-equivariant un-
bounded KK -theory up to the explicit remainder Z :
(, H , D − Z ;U ) ≅ (, L2v(V�A), c ( /Dg,� ); L2v(V��); ∇0) ⊗̂V�G (V�G , HG , DG [Z ]; id).

This can be interpreted as a realising the total geometry as the twisting of the basic
geometry by a noncommutative superconnection encoding the vertical geometry and
principal connection. Moreover, when the adjoint representation of G lifts to Spin and(, H , D;U ) is even, this factorisation implies that the G-equivariant index of D must
vanish, thereby (partially) generalising a result of Atiyah–Hirzebruch [10] in the spirit of
Forsyth–Rennie [51].

At last, in §3, we address the most basic concepts of mathematical gauge theory: prin-
cipal connections, global gauge transformations, and the gauge action of the latter on the
former. We begin with a novel account of the commutative case, which leverages a result
of Prokhorenkov–Richardson [87] to re-express Atiyah’s characterisation [7] of principal
connections in relation to G-equivariant Dirac bundles on the total space of a Riemann-
ian principal G-bundle. This, in turn, permits us to define the following for a suitable
principal G-spectral triple (, H , D0;U ; �, c; Z ):

(1) itsAtiyah spaceAt of noncommutative principal connections, which is themetriz-
able space of all operatorsD, such that (, H , D;U ; �, c; 0) is a principalG-spectral
triple and D − (D0 − Z ) = Dℎ[0] − (D0)ℎ[Z ] is a relative gauge potential;

(2) its gauge group G of noncommutative global gauge transformations, which is a
certain metrizable group of G-invariant unitaries that acts continuously by con-
jugation on At.

This noncommutative framework generalises the commutative case up to an explicit
groupoid cocycle; moreover, using the factorisation of §2, we show that for all D ∈ At,

[D] = [D0] ∈ KKG∙ (A,C), [DG [0]] = [(D0)G[Z ]] ∈ KKG∙ (Clm ⊗̂(Cl(g∗) ⊗̂ A)G ,C),
so that noncommutative gauge theory is indeed invisible at the level of index theory
as would be required by a noncommutative Chern–Weil theory. We then restrict to the
unital case, where we use results of Lesch–Mesland [74] to show thatAt correctly defines
a topological R-affine space modelled on the normed R-vector space at of relative gauge
potentials for D0 in a naturally G-equivariant manner.

As a purely noncommutative test of our framework, we investigate the Tm-gauge the-
ory of the crossed product spectral triple (ZM ⋉ , H , D) à la Hawkins–Skalski–White–
Zacharias [56] of a unital spectral triple (, H0, D0) by a metrically equicontinuous action
of Zm. In this case, we find a canonical isomorphismZ 1(Zm ,Ω1D0,sa ∩ ′) ∼→ {A ∈ at | A|HTm = 0},
where Ω1D0,sa is the normed R-space of self-adjoint noncommutative de Rham 1-forms on(, H0, D0); in fact, this isomorphism descends to a canonical surjectionH 1(Zm,Ω1D0,sa ∩ ′) ։ at/(at ∩ L(H )).
Thus, the Tm-gauge theory of a crossed product by Zm reduces more or less to the first
group cohomology of Zm with certain geometrically relevant coefficients.

Finally, in §4, we relate our results to Connes–Landi deformation [36], the adaptation of
Rieffel’s strict deformation quantisation [91] to TN -equivariant spectral triples. We refine
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our earlier definitions to the TN -equivariant case and show that all TN -equivariant struc-
tures, when correctly defined, persist under Connes–Landi deformation; in particular,
it follows that the noncommutative principal U(1)-bundles studied by Brain–Mesland–
Van Suijlekom [20] and the �-deformed quaternionic Hopf fibration of Landi–Van Sui-
jlekom [72] are accommodated by our framework. Moreover, we show that the noncom-
mutative wrong-way class of §1 is natural with respect to the canonical KK -equivalences
between nuclear TN -C∗-algebras and their strict deformation quantisations. We then con-
clude in §5 by outlining several directions for future investigation, including the study of
vertical spinCstructures and noncommutative associated vector bundles and associated
connections, which we leave to future work.
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Notation. We fix, once and for all, a compact connected Lie groupG of dimensionmwith
normalised bi-invariant Haarmeasure dg and Lie algebra g; recall that g carries the adjoint
representation Ad ∶ G → GL(g) of G. Let us also fix an Ad-invariant positive-definite
inner product ⟨ ⋅ , ⋅ ⟩ on g, such that the volume form volG induced by the corresponding
bi-invariant Riemannian metric on G satisfies ∫G volG = 1; observe that any other Ad-
invariant positive definite inner product on g is of the form ⟨ ⋅ , K (⋅)⟩ for unique positive-
definite K ∈ End(g)G . By mild abuse of notation, we will also denote by ⟨ ⋅ , ⋅ ⟩ the dual
inner product on g∗ induced by � on g. Let Ĝ denote the dual of G, which is the set of
all equivalence classes of irreducible representations of G; for each class [� ] ∈ Ĝ , fix a
unitary representative � ∶ G → U (V� ), let �� ∶= Tr ◦� denote the character of � , and
let d� ∶= dimV� = �� (1). Finally, as a notational convenience, {�1,… , �m} will always
denote an arbitrary basis for g with corresponding dual basis {�1,… , �m} for g∗, and we
will always use Einstein summation. For details and further notation related to harmonic
analysis on G, we refer to Appendix A.

In what follows, we will systematically use the conventions of super linear algebra
as outlined, for instance, in [14, §1.2]. This means that [S, T ] will always denote the
supercommutator of operators S and T , so that for a subalgebra B of an algebra A, we
define the supercommutant of B in A to be B′ ∶= {b ∈ B | ∀a ∈ A, [a, b] = 0} and the
supercentre of B to be Z (B) ∶= B∩B′. If B is a Z2-graded C∗-algebra, we denote byAut+(B)
the group of all even ∗-automorphisms of B. Note that all algebra representations by
bounded operators will be Z2-graded and non-degenerate.

We will also make extensive use of Clifford algebra; in particular, the systematic use of
multigradings (cf. [58, §A.3]) will allow us to treat even- and odd-dimensional objects on
a completely equal footing and in a manner fully compatible with the formalism of KK -
theory. IfV is a finite-dimensional real Hilbert space, thenCl(V ) denotes the complexified
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Clifford algebra of V , which is the finite-dimensional C∗-algebra generated by V in odd
degree subject to the relations

∀v ∈ V , v2 = −⟨v, v⟩1Cl(V ), v∗ = −v;
if V is even-dimensional and oriented, we denote by /S(V ) the unique irreducible Z2-
graded ∗-representation of Cl(V ) whose Z2-grading is given by the Clifford action of the
chirality element in/2v1⋯ vn, where {v1,… , vn} is any positively oriented orthonormal
basis for V . In the case that V = Rn , which we will always endow with the Euclidean
inner product and positive orientation, we denote Cl(V ) by Cln . In the commutative case,
all Dirac bundles (E,∇E) will be n-multigraded for some n ∈ Z≥0 in the sense that E is
Z2-graded, ∇E is an odd operator, and E admits a smooth fibrewise ∗-representation of
Cln that supercommute with the Clifford action on E and is parallel with respect to ∇E .
In the noncommutative case, given a ∗-representation of Cln on a Z2-graded Hilbert C∗-
module E, we will say that a densely defined operator T on E is n-odd whenever T is
odd, Cln ⋅Dom(T ) ⊂ Dom(T ), and T supercommutes with Cln; note that this convention
differs from that of [58, §A.3], where Cln acts on the right, so that an n-odd operator T
must commute with Cln .

Finally, for notational convenience, we will only distinguish between a closable oper-
ator T and its minimal closure T when discussing domain-related issues.

1. Topological principal bundles

In the commutative case, a locally compact Polish space endowed with a locally free
action of a connected Lie group gives rise to a foliated space, thereby admitting fully
developed longitudinal geometry, global analysis, and index theory [31, 37, 81]. In this
section, we generalise these considerations to a C∗-algebra A endowed with a princi-
pal G-action, viewed as a noncommutative topological principal G-bundle A ↩ AG . In
particular, we construct an unbounded KKG-cycle modelled on Kostant’s cubic Dirac op-
erator [68] that encodes a choice of vertical Riemannian geometry and whose KKG-class
is the analogue of the canonical wrong-way class [37] of a topological principal bundle.
This generalises earlier constructions [28, 51, 99] in a canonically G-equivariant fashion
to the case where G is non-Abelian and the vertical Riemannian metric has non-trivial
transverse dependence.

1.1. Complete G-equivariant unbounded KK -cycles. The context of the present paper
is that of unbounded KK -theory. Here, we present the relevant definitions and assemble
them into a coherent geometric picture. This requires the theory of unbounded operators
on Hilbert C∗-algebras—an introductory account can be found in [70].

Let us first recall that if D is a homogeneous, densely-defined self-adjoint operator on
a Z2-graded Hilbert space H , then its Lipschitz algebra is defined to be

Lip(D) ∶= {S ∈ L(H ) | S Dom(D) ⊆ Dom(D), [D, S] ∈ L(H )},
where [D, S] is the supercommutator of D and S. The Lipschitz norm ‖ ⋅ ‖D defined by

∀S ∈ Lip(D), ‖S‖D ∶= ‖S‖L(H ) + ‖[D, S]‖L(H )
makes Lip(D) into a Banach ∗-algebra with contractive inclusion Lip(D) ↪ L(H ), closed
under the holomorphic functional calculus. In general, if E is a Hilbert C∗-module over
a C∗-algebra B and S is a self-adjoint regular operator on E, one defines Lip(S) ↪ LB(E)
with the same properties.
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Definition 1.1. Let A be a separable C∗-algebra and n ∈ Z≥0. An n-multigraded spectral
triple (, H , D) for A consists of:

(1) a faithful, graded, non-degenerate ∗-representation ofCln ⊗̂A on a Z2-graded sep-
arable Hilbert space H , such that A ⋅ H = H ;

(2) an n-odd densely-defined self-adjoint operator D on H ;
(3) a dense ∗-subalgebra  of A, such that  ⊂ Lip(D) and ⋅ (D + i)−1 ⊂ K(H ).

We call Cln the multigrading and  the differentiable algebra. We say that (, H , D) is
complete if it comes endowed with an approximate unit {�k}k∈N ⊂  for A, such that
supk∈N‖[D, �k]‖ < +∞, which we call the adequate approximate unit. We denote by [D] or
[(, H , D)] the class in KKn(A,C) ≅ Kn(A) with unbounded representative (, H , D).

Mutatis mutandis, given C∗-algebras A and B, one can define an unbounded KKn-cycle
(, E, S) for (A, B), where E is a Hilbert B-module and S is an n-odd densely-defined self-
adjoint regular B-linear operator on E, so that (, E, S) represents a class [S] ∈ KKn(A, B).
Remark 1.2. Suppose that (, H , D) is a complete spectral triple for a C∗-algebra A with
adequate approximate unit {�k}k∈N. Then the approximate unit {�k}k∈N is indeed ade-
quate in the sense ofMesland–Rennie [78, §2] and Van den Dungen [46], and the subspace
{�k | k ∈ N} ⋅ Dom(D) ⊂  ⋅ DomD is a core for D. In the case of a commutative (sym-
metric) spectral triple on a Riemannian manifoldM , an adequate approximate unit exists
if and only if M is geodesically complete [78, §2].

Note that an unbounded KK -cycle carries more than just the topological information
of its KK -class—it also carries more refined geometric information. Indeed, just as spec-
tral triples generalise Riemannian manifolds (and not just their fundamental class in K -
homology), unbounded KK -cycles should be viewed as generalised morphisms between
(Riemannian) manifolds.

Following Connes–Skandalis [37], given smooth manifolds M and N , one can repre-
sent elements of the groupKKn(C0(M), C0(N )) by geometric correspondences, i.e., diagrams
of the form M f

←− (Z , E) g
−→ N ,

where Z is a manifold, E → Z is a vector bundle, f ∶ Z → M is a proper smooth map,
and g ∶ Z → N is a smooth K -oriented map. For example, a smooth principal G-bundle� ∶ P ։ B gives rise to the canonical geometric correspondence

P idP←−−− (P,C × P) �−→ B,
and thus, in particular, defines an element in KKdimG (C0(P), C0(B)).

Roughly speaking, a geometric correspondence M f
←− (Z , E) g

−→ N gives rise an un-
bounded KKn-cycle (C∞c (M), X , S), where n = dim Z − dimN , where X is a completion of
the space of sections of a certain bundle of Hilbert spaces over Y , and where S is a family
of Dirac-type operators whose existence is guaranteed by K -orientability of the map g. In
this way, unbounded KK -cycles can be used to make sense of (sufficiently well-behaved)
noncommutative fibrations; together, spectral triples and unbounded KK -cycles will pro-
vide the mathematical setting for our theory of noncommutative principal bundles. We
now refine these definitions accordingly to the G-equivariant case.
Definition 1.3. Let (A, �) be a G-C∗-algebra; let n ∈ Z≥0. An n-multigraded G-spectral
triple for (A, �) is an n-multigraded spectral triple (, H , D) for A with a strongly contin-
uous unitary representation U ∶ G → U +(H ) of G on H by even operators supercom-
muting with the multigrading, such that:
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(1) the differentiable algebra is G-invariant and consists of C1 vectors for � ;
(2) the ∗-subalgebra G ∶=  ∩ AG is dense in AG ∶= {a ∈ A ∶ �g (a) = a};
(3) the representation U spatially implements � , in the sense that

∀g ∈ G, ∀a ∈ A, UgaU ∗g = �g (a);
(4) the operatorD isG-invariant, and theG-invariant coreDomD∩⋅H ⊇ ⋅DomD

for D consists of C1 vectors for U .

We say that (, H , D;U ) is complete if it comes endowed with an adequate approximate
unit {�k}k∈N ⊂ G for A. We denote by [D] or [(, H , D;U )] the class in the groupKKGn (A,C) ≅ KnG (A) with unbounded representative (, H , D;U ).

Mutatis mutandis, for G-C∗-algebras (A, �) and (B, �), one can define an unboundedKKGn -cycle (, E, S;W ) for the pair ((A, �), (B, �)), where (E,W ) is a G-Hilbert B-module,
so that it represents a class [S] ∈ KKGn (A, B).
Remark 1.4. Conditions 1 and 2 hold automatically whenever  is G-invariant and de-
fines a (G)-comodule algebra with respect to � , where (G) is the Hopf ∗-algebra of
matrix coefficients of G.
Remark 1.5. For m ≤ n ∈ N, we will fix, once and for all, an orthogonal decomposition
Rn ≅ Rm ⊕ Rn−m , thereby yielding a decomposition Cln ≅ Clm ⊗̂Cln−m .
1.2. Vertical Riemannian geometry on G-C∗-algebras. Let (A, �) be a G-C∗-algebra. In
this subsection, we will develop the noncommutative vertical Riemannian geometry of
(A, �) as a noncommutative G-space. We begin by defining a noncommutative generali-
sation of an orbitwise bi-invariant Riemannian metric on the vertical tangent bundle of a
locally free G-space; recall that we denote the supercentre of a C∗-algebra B by Z (B).
Definition 1.6. Let (A, �) be a G-C∗-algebra. A vertical metric on (A, �) is a positive
invertible element � ∈ Z (M(A))Geven ⊗̂ End(g∗C)G , such that

∀�, � ∈ g∗, ⟨�, ��⟩∗ = ⟨�, ��⟩ = ⟨��, �⟩.
Example 1.7. For every Ad-invariant inner product ⟨ ⋅ , ⋅ ⟩′ on g, there exists positive-
definite � ∈ End(g∗)G , such that ⟨ ⋅ , ⋅ ⟩′g = ⟨ ⋅ , �−T (⋅)⟩, where �−T ∶= (�−1)T = (�T )−1.
Conversely, for every positive-definite � ∈ End(g∗)G , the bilinear form ⟨⋅, ⋅⟩′ ∶= ⟨⋅, �−T (⋅)⟩
on g defines an Ad-invariant inner product on g.

Example 1.8 (cf. Dąbrowski–Sitarz [39, Def. 4.3]). Consider U(1) ≅ R/2�Z, so that the
normalised inner product ⟨ ⋅ , ⋅ ⟩ on u(1) ≅ R ))� is necessarily given by ⟨ ))� , ))� ⟩ = (4�2)−1.
Then the datum of a vertical metric � on a U(1)-C∗-algebra (A, �) is equivalent to the

datum of a positive element � ∈ Z (M(A))U(1)even, the length of the U(1)-orbits, via

⟨d�, � d�⟩ = 4�2�−2, � = 2�⟨d�, � d�⟩−1/2.
Example 1.9. Let P be a locally compact Polish space endowed with a locally free G-
action, let � ∶ G → Aut+(C0(P)) be the induced G-action, and let VP be the longitudinal
tangent bundle of the foliation of P by G-orbits. For each p ∈ P , let p ∶ G ։ G ⋅ p ⊆ P
denote the orbit map G ∋ g ↦ g ⋅ p, and say that a G-invariant bundle metric gVP on VP
is orbitwise bi-invariant if

(1) the Riemannian metric ∗pgVP on TG is bi-invariant for each p ∈ P ;
(2) for all X, Y ∈ Γ(TG), the function p ↦ ∗pgVP (X, Y ) is bounded on P .
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Then the canonical G-equivariant vector bundle isomorphism g × P ∼→ VP defined by
mapping X ∈ g to the left fundamental vector field XP ∈ Γ(VP) induces a bijective cor-
respondence between the set of vertical metrics on (C0(P), �) and the set of orbitwise
bi-invariant bundle metrics on VP .

Although (A, �) is noncommutative, the transverse dependence of a vertical metric �
on (A, �) is nonetheless fully encoded by a certain commutative unital ∗-algebra(�) of
even G-invariant central multipliers of A, which yields a minimal commutative proxy for
the orbit space of (A, �). As such, the algebra (�) can be compared to the canonical
commutative complex ∗-algebra J of a real spectral triple (, H , D; J ), whose interpre-
tation as an emergent commutative base space has been explored by Van Suijlekom [96].

Definition 1.10. Let � be a vertical metric on (A, �). Its generalised coefficient algebra is
the unital ∗-subalgebra

(�) ∶= C[{⟨�,√��⟩ | �, � ∈ g∗} ∪ {det(√�)−1}],
of Z (M(A))Geven, where det denotes the formal determinant on Z (M(A))Geven ⊗̂End(g∗C). We
denote the C∗-closure of (�) by M(�).
Remark 1.11. By Gel’fand–Naı̆mark duality applied toM(�), a vertical metric � is a con-
tinuous family ofAd∗-invariant inner products on g∗ parameterised by M̂(�). Equivalently,�−T ∶= (�−1)T ∈ (�) ⊗̂ End(gC)G
defines a continuous family of Ad-invariant inner products on g parameterised by M̂(�).
Example 1.12. Suppose that G = U(1) and � = 2�⟨d�, � d�⟩−1/2. Then

(�) = C[� , �−1] ≅ { f |�M(A)(� ) | f ∈ C[z, z−1]}, M(�) ≅ C(�M(A)(� )).
That(�) is indeed a ∗-algebra follows from the self-adjointness of its generators.

Proposition 1.13. Let � be a vertical metric on (A, �). The elements�−1,√�,√�−1 ∈ (�) ⊗̂ End(g∗C)G ,
are positive and invertible, and for every �, � ∈ g∗, the matrix coefficients

⟨�, �−1�⟩, ⟨�,√��⟩, ⟨�,√�−1�⟩ ∈ Z (M(A))Geven
are self-adjoint. Moreover, the elements�T ,√�T = (√�)T , �−T ∶= (�−1)T ,√�−T = (√�)−T ∈ (�) ⊗̂ End(gC)G
are positive and invertible, and for every X, Y ∈ g, the matrix coefficients

⟨X, �T Y⟩, ⟨X,√�TY⟩, ⟨X, �−TY⟩, ⟨X,√�−TY⟩ ∈ Z (M(A))Geven
are self-adjoint.

Proof. By the holomorphic functional calculus on Z (M(A))Geven ⊗̂ End(g∗C)G , we can con-
struct �−1, √�, and √�−1 as positive invertible elements of Z (M(A))Geven ⊗̂ End(g∗C)G . By
the duality between g∗ and g as inner product spaces, it follows that �T is also positive and
invertible in Z (M(A))Geven⊗End(gC)G and ⟨X, �Y⟩ ∈ Z (M(A))Geven is self-adjoint for all vec-
torsX, Y ∈ g. By the holomorphic functional calculus on Z (M(A))Geven⊗End(gC)G , we can
construct �−T ,√�T , and√�−T as positive invertible elements of Z (M(A))Geven⊗End(gC)G .

Let us now check that �−1, √�, and √�−1 have self-adjoint matrix coefficients; the

same argument, mutatis mutandis, will also apply to �−T , √�T , and √�−T . In general, let
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f ∶ {z ∈ C | ℜz > 0} → C be holomorphic and satisfy f (z) = f (z) whenever ℜz > 0.
Let {�j}mj=1 be an orthonormal basis for g with respect to ⟨ ⋅ , ⋅ ⟩. By the holomorphic
functional calculus together with Cramer’s rule,

∀1 ≤ j, k ≤ m, ⟨�j , f (�)�k⟩ = ∫ f (z) cofkj (zI − �) (det(zI − �))−1 dz,
where  is any positively oriented closed curve in {z ∈ C |ℜz > 0} enclosing the spectrum
of �, and where cofkj denotes the (k, j)-cofactor with respect to {�j}mj=1. Since � is positive
and invertible, we can choose  to be a positively oriented circle with centre on the real
axis, so that for every 1 ≤ j, k ≤ m,

⟨�j , f (�)�k⟩∗ = (∫ f (z) cofkj (zI − �) (det(zI − �))−1 dz)∗

= ∫ f (z̄) cofkj (z̄I − �) (det(z̄I − �))−1 dz̄ = ⟨�j , f (�)�k⟩.
Finally, matrix multiplication and Cramer’s rule now imply that�, �−1, √�,√�−1 ∈ (�) ⊗̂ End(g∗C), �T , �−T , √�T , √�−T ∈ (�) ⊗̂ End(gC). �

Let � be a vertical metric on (A, �). We now develop Clifford algebra on the noncom-
mutative G-space (A, �) with respect to the G-invariant positive-definite (�)-valued
inner product on g∗ induced by �. This will provide a noncommutative generalisation of
the Clifford bundle of (the dual of the) vertical tangent bundle of a locally free G-space.

Let Ω0v(A; �) be the trivial Hilbert G-(A,A)-bimodule A. For 1 ≤ k ≤ m, let Ωkv(A; �) be
given by equipping⋀k g∗C ⊗̂ A with the A-valued inner product defined by

∀a, a′ ∈ A, ∀!1,… , !k , !′1,… , !′k ∈ g∗,
(!1 ∧ ⋯ ∧ !k ⊗ a, !′1 ∧⋯ ∧ !′k ⊗ a′)A ∶= det(⟨!i , �!′j ⟩)ki,j=1a∗a′,

and finally, let Ωv(A; �) ∶= ⨁mk=0Ωkv(A; �). By exact analogy with the commutative case,
the Hilbert G-(A,A)-bimodule Ωv(A; �) now admits a G-equivariant vertical Clifford ac-
tion with respect to the positive-definite (�)-valued inner product �.
Proposition 1.14. Define a map c ∶ g∗ → EndC(Ωv(A; �)) in degree 0 by

∀� ∈ g∗, ∀a ∈ A, c(�)a ∶= � ⊗̂ a,
and in degree 1 ≤ k ≤ m, for � ∈ g∗, a ∈ A, and !1,… , !k ∈ g∗, by
c(�)(!1 ∧ … ∧ !k ⊗̂ a) ∶= � ∧ !1 ∧⋯ ∧ !k ⊗̂ a + n∑j=1(−1)j!1 ∧ ⋯ ∧ !̂j ∧⋯ ∧ !k ⊗̂ ⟨�, �!j⟩a.,
where !̂j denotes omission of !j from the product. Then c defines a G-equivariant linear
map g∗ → LA(Ωv(A; �)), such that for every � ∈ g∗, the operator c(�) is odd, is skew-adjoint,
supercommutes with the left A-module structure, and satisfies the Clifford relation

(1.1) c(�)2 = −⟨�, ��⟩ id .
Thus, we can now define the Clifford algebra of g∗ with respect to �, and hence a non-
commutative analogue of the vertical Clifford bundle for the G-C∗-algebra (A, �).
Definition 1.15. Let � be a vertical metric on (A, �).

(1) The Clifford algebra of g∗ with respect to � is the G-invariant unital ∗-subalgebra
Cl(g∗; �) of LA(Ωv(A; �)) generated by(�) and c(g∗).



GAUGE THEORY ON NONCOMMUTATIVE RIEMANNIAN PRINCIPAL BUNDLES 11

(2) The vertical algebra of (A, �) with respect to � is the G-invariant ∗-subalgebraV�A ∶= Clm ⊗̂Cl(g∗; �) ⋅ A ⊆ Clm ⊗̂LA(Ωv(A; �)).
Note that the vertical algebra V�A contains an additional Clifford algebra Clm , which
is there solely to facilitate the consistent use of multigradings (and hence KK -theoretic
bookkeeping). Although it is not obvious from the definition, the ∗-subalgebra V�A of
Clm ⊗̂LA(Ωv(A; �)) turns out to be closed, thereby defining a G-C∗-algebra.
Proposition 1.16. Let � be a vertical metric on (A, �). Define c0 ∶ g∗ → Cl(g∗; �) by
(1.2) ∀� ∈ g∗, c0(�) ∶= (�−1/2�, �i) c(�i).
Then c0 extends to a G-equivariant even ∗-isomorphism Cl(g∗) ⊗̂ (�) ∼→ Cl(g∗; �), and
hence induces a G-equivariant even ∗-isomorphism

Clm ⊗̂Cl(g∗) ⊗̂ A ∼→ V�A,
so that V�A is closed in Clm ⊗̂LA(Ωv(A; �)). As a result, if V�� denotes the restriction of theG-action on Clm ⊗̂LA(Ωv(A; �)) to V�A, then (V�A, V��) defines a G-C∗-algebra.
Proof. Let �Clm ∶ Clm ↪ Clm ⊗̂LA(Ωv(A; �)) and �A ∶ A ↪ Clm ⊗̂LA(Ωv(A; �)) be the
obvious inclusions, which are trivially even and G-equivariant. Observe that for every� ∈ g∗, the operator c0(�) is odd and skew-adjoint and satisfies

c0(�)2 = 1
2 [1 ⊗̂ c0(�), 1 ⊗̂ c0(�)]

= 1
2 (�−1/2�, �i)(�−1/2�, �j )[1 ⊗̂ c(�i), 1 ⊗̂ c(�j )]

= −(�, (�−1/2)T �i)(�, (�−1/2)T �j )⟨�1/2�i , �1/2�j⟩1V�A
= −⟨�, �⟩1 ⊗̂ idΩv (A;�),

so that c0 ∶ g∗ → Cl(g∗; �) extends to an even G-equivariant ∗-monomorphism

Cl(g∗) → Cl(g∗; �) ⊂ LA(Ωv(A; �))
with closed range contained in Cl(g∗; �). Since Clm and Cl(g∗) are finite-dimensional and�Clm (Clm), (1 ⊗̂ c0)(Cl(g∗)), and �A(A) pairwise supercommute,c̃0 ∶= �Clm ⊗̂ (1 ⊗̂ c0) ⊗̂ �A ∶ Clm ⊗̂Cl(g∗) ⊗̂ A → V�A ⊂ Clm ⊗̂LA(Ωv(A; �)),
is an even G-equivariant ∗-monomorphism, which therefore has closed range contained
in V�A. Thus, it remains to show that Cl(g∗; �) is contained in the range of c0 and thatV�A is contained in the range of c̃0. To do so, it suffices to show that c(g∗) is contained in
the range of c0, and indeed, for all � ∈ g∗,c(�) = (�, �i)c(�i) = (�, (�1/2)T �j )(�−1/2�j , �i)c(�i) = c̃0 (1 ⊗̂ �j ⊗̂ (�, (�1/2)T �j )) .
Thus, c0 and c̃0 are even G-equivariant ∗-isomorphisms that are compatible in the sense
that c̃0((1 ⊗̂ ! ⊗ 1M(A))x) = (1 ⊗̂ c0(!))c̃0(x) for all ! ∈ Cl(g∗) and x ∈ Clm ⊗̂Cl(g∗) ⊗̂A. �

Example 1.17. Let P be a locally compact Polish space with a locally free G-action and a
orbitwise bi-invariant bundle metric on VP ; let � denote the resulting vertical metric onC0(P). The Serre–Swan theorem yields compatible Hilbert G-C0(P)-module and C0(P)-
module ∗-algebra isomorphisms

Ωv(C0(P), �) ≅ C0(P,⋀VP ∗), V�C0(P) ≅ C0(P,Clm ⊗̂Cl(VP ∗)),
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respectively, that intertwine the defining representation of Cl(g∗; �) ⋅ A on Ωv(C0(P), �)
with the Clifford action of C0(P,Cl(VP ∗)) on⋀VP ∗C. Note that C0(P,Cl(VP ∗)) = ClVP ∗ (P)
in the notation of [67, Def. 2.1] and that C0(P,Cl(VP ∗)) ≅ ClΓ(X ) for Γ ∶= VP ≅ g × P in
the notation of [67, Def. 7.1].

The algebras Cl(g∗; �) and V�A were defined in terms of the defining vertical Clifford
action g∗ → LA(Ωv(A; �)). More generally, we can consider vertical Clifford actions onG-equivariant ∗-representations of A on Hilbert C∗-modules.

Definition 1.18. Let (A, �) and (B, �) be G-C∗-algebras, (E, U ) a Hilbert G-(Cln ⊗̂A, B)-
bimodule for m ≤ n ∈ Z≥0 and � a vertical metric for (A, �). A vertical Clifford action on
(E, U )with respect to � is a G-equivariant linear map c ∶ g∗ → LB(E), such that for every� ∈ g∗, the operator c(�) is n-odd, skew-adjoint, and satisfiesc(�)2 = −⟨�, ��⟩ idLB(E) .
Example 1.19. Suppose that G = U(1) and � ∶= 2�⟨d�, � d�⟩−1/2. Then the datum of
a vertical Clifford action c ∶ g∗ → LB(H ) for � is equivalent to the datum of an odd
U(1)-invariant self-adjoint unitary Γv ∈ LB(H ) supercommuting with � viac(d�) = 2� i�−1Γv .
Moreover, isomorphisms Cl(u(1)∗) ⊗̂ C[� , �−1] ∼→ Cl(g∗; �) and Cl(u(1)∗) ⊗̂ A ∼→ V�A are
induced by the mapping u(1)∗ → M(V�A) defined by

d� ↦ �d� ∈ M(V�A).
By the proof of Proposition 1.16,mutatis mutandis, vertical Clifford action c ∶ g∗ → LB(E)
extends canonically to a G-equivariant ∗-homomorphism Cl(g∗; �) → LB(E). In other
words, the Clifford algebra Cl(g∗; �) satisfies the appropriate universal property. In fact,
so too does the vertical algebra V�A.
Proposition 1.20. Let (A, �) and (B, �) be G-C∗-algebras, (E, U ) a G-(Cln ⊗̂A, B)-module forn ≥ m and � a vertical metric for (A, �). Any vertical Clifford action c ∶ g∗ → LB(E) for �
extends to a G-equivariant ∗-monomorphism V�A → LB(E) via

∀x ∈ Clm , ∀� ∈ g∗, ∀a ∈ A, ∀� ∈ E, c(x ⊗̂ � ⋅ a)� ∶= x ⋅ c(�) ⋅ a ⋅ � ,
thereby making (E, U ) into a Hilbert G-(Cln−m ⊗̂V�A,C)-bimodule.

Proof. Define a map c′ ∶ g∗ → LB(E) by g∗ ∋ � ↦ c′(�) ∶= (�−1/2�, �i)c(�i), and let c̃0 ∶
Clm ⊗̂Cl(g∗) ⊗̂ A ∼→ V�A be the canonical even G-equivariant ∗-isomorphism of Propo-
sition 1.16. By the proof of Proposition 1.16, mutatis mutandis, together with the defini-
tion of the algebra V�, the map c′ extends to an even G-equivariant ∗-monomorphismc̃′ ∶ Clm ⊗̂Cl(g∗) ⊗̂ A ↪ LB(E), such that c̃0−1◦c̃′ ∶ V�A ↪ LB(E) yields the de-
sired extension of c, which is unique by the universal property of the Clifford algebra
Clm ⊗̂Cl(g∗) ≅ Cl(Rm ⊕ g∗) applied to c̃′ = c̃0◦(c̃0−1◦c̃′). �

Finally, observe that, by analogy with the commutative case, one can define the orbit-
wise volume of (A, �) with respect to a vertical metric � by

VolG,� ∶= det√�−T = (det√�)−1 ∈ (�).
By Jacobi’s formula applied to (�) with the universal differential calculus, it follows
that the (universal) logarithmic differential of Vol� is given by

Vol−1G,� du VolG,� = −12 (det �)−1 du det � = −12⟨�i , �−T �j⟩ du⟨�i , ��j⟩ ∈ Ω1u((�)),
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so that VolG,� is constant if and only if ⟨�i , �−T �j⟩ du⟨�i , ��j⟩ = 0.

Example 1.21. Suppose that G = U(1) and � ∶= 2�⟨d�, � d�⟩−1/2. Then
VolG,� = � , Vol−1G,� dVolG,� = �−1d� .

1.3. Vertical global analysis on G-C∗-algebras. Wewill now use the quantumWeil alge-
bra of Alekseev–Meinrenken [2] as a suitable algebra of vertical differential operators on
a G-C∗-algebra (A, �), e.g., orbitwise Casimir and cubic Dirac operators. Together with
non-Abelian harmonic analysis, this will provide for practicable vertical global analysis
on the noncommutative G-space (A, �) in a way compatible with unbounded KK -theory.
For a brief review of the relevant non-Abelian harmonic analysis (together with our no-
tations and conventions), see Appendix A.

First, recall that the universal enveloping algebra  (g) of the Lie algebra g is the quo-
tient of the tensor algebra of g by the ideal generated by {X ⊗Y −Y ⊗X −[X, Y ] |X , Y ∈ g},
endowed with the coproduct Δ and counit � defined by

∀X ∈ g, Δ(X ) ∶= X ⊗ 1 + 1 ⊗ X, �(X ) ∶= 0.
We endow theHopf algebra (g)with the trivial even Z2-grading and the ∗-algebra struc-
ture with respect to which elements of g are skew-adjoint; as a result, the adjoint repre-
sentation Ad ∶ G → End(g) extends to an action G → Aut( (g)) of G on  (g) by even
Hopf ∗-automorphisms.

By abuse of notation, if � is a vertical metric on (A, �), let ad∗ ∶ g → Der(Cl(g∗; �))
be the differential of Ad∗ ∶ G → Aut(Cl(g∗; �)), which canonically extends to a G-
equivariant action of  (g) on Cl(g∗; �) by (�)-linear operators. If we view Cl(g∗; �) as
consisting of order 0 abstract vertical differential operators and g as consisting of order
1 abstract vertical differential operators, then we can view Cl(g∗; �) and g as generating
the following algebra of abstract vertical differential operators of all orders.

Definition 1.22 (Alekseev–Meinrenken [2, §3.2]). Let � be a vertical metric on (A, �). The
quantum Weil algebra of g with respect to � is the algebraic crossed product

(g; �) ∶=  (g) ⋉algad∗ Cl(g∗; �)
of the Z2-gradedG-∗-algebraCl(g; �) by the Z2-gradedHopfG-∗-algebra (g). Moreover,
we define the analytic filtration on (g; �) by declaring elements of Cl(g∗; �) to have
filtration degree 0 and generators in g to have filtration degree 1; we denote the analytic
filtration degree of x ∈ (g; �) by |x |.
Remark 1.23. This filtration is different from that used by Alekseev–Meinrenken.

Since we are nowdealing in tandemwith g and g∗, which carry the compatible positive-
definite(�)-valued inner products � and �−T respectively, wewill find it useful to define
appropriate versions of the musical isomorphisms.

Proposition-Definition 1.24. Let � be a vertical metric on (A, �). The musical isomor-
phisms are the G-equivariant C-linear maps♯ ∶ (�) ⊗̂ g∗C → (�) ⊗̂ gC, ♭ ∶ (�) ⊗̂ gC → (�) ⊗̂ g∗C,
defined by

∀f ∈ (�), ∀� ∈ g∗, (f ⊗̂ �)♯ ∶= f ⟨�, ��i⟩ ⊗̂ �i ,(1.3)

∀f ∈ (�), ∀X ∈ g, (f ⊗̂ X )♭ ∶= f ⟨X , �−T �i⟩ ⊗̂ �i ,(1.4)

which are invertible with ♯−1 = ♭.
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We can now define abstract orbitwise Casimir and cubic Dirac operators for (A, �)with
respect to a vertical metric � and summarise their properties.

Proposition-Definition 1.25 (Alekseev–Meinrenken [2, §3.2], Kostant [68, §2]). Let (A, �)
be a G-C∗-algebra with vertical metric �. The Casimir element with respect to � is the evenG-invariant self-adjoint element

(1.5) Δg,� ∶= −⟨�i , ��j⟩�i�j ∈ (�) ⋅ (g) ⊂ (g; �),
of analytic filtration degree 2, and the cubic Dirac element with respect to � is the oddG-invariant self-adjoint element

(1.6) /Dg,� ∶= �i�i − 1
6⟨�i , �−T [�j , �k]⟩�i�j�k ∈ (g; �)

of analytic filtration degree 1. Both Δg,� and /Dg,� supercommute with (�), and the
difference /D2

g,� − Δg,� has analytic filtration degree 1. Moreover,

∀X ∈ g, [ /Dg,� , X ] = 0,(1.7)

∀� ∈ g∗, [ /Dg,� , �] = −2�♯,(1.8)

∀! ∈ (g; �), [ /D2
g,� , !] = 0.(1.9)

Proof. Because this presentation of the formalism differs considerably from the standard
presentation in the literature, we will derive (1.7), (1.8), and (1.9) from the corresponding

results in [76, §7.2.2]. By working pointwise in M̂(�), we may assume that � ∈ End(g∗C)G ;
by replacing the Ad-invariant inner product ⟨ ⋅ , ⋅ ⟩ on g with ⟨ ⋅ , �−T (⋅)⟩, we may further
assume that � = idg∗C .

Identify g with g ⊕ 0 ⊂ g ⊕ g, and for X ∈ g, let X ∶= (0, X ) ∈ g ⊕ g; let [⋅, ⋅]g denote
the Lie bracket in g. The quantum Weil algebra as defined in [76, §7.2.2] is the Z2-graded
unital G-∗-algebra W generated by g ⊕ g, where elements of g are odd and self-adjoint
and elements of {X | X ∈ g} = 0 ⊕ g are even and skew-adjoint, subject to the following
relations: for all X, Y ∈ g,

[X, Y ] = 2⟨X , Y⟩, [X, Y ] = 2[X, Y ]g, [X, Y ] = 2[X, Y ]g;
in particular, it follows that ig generates a copy of Cl(g). Now, define a G-equivariant
∗-preserving surjection � ∶ g ⊕ g → g∗ ⊕ g ⊂ (g; �) by

∀X, Y ∈ g, �(X + Y ) ∶= iX♭ + 2Y .
Then, for all X, Y ∈ g,

[�(X ), �(Y )] = [iX♭ , iY ♭] = −[X♭, Y ♭] = 2⟨X♭, Y ♭⟩ = 2⟨X , Y⟩,
[�(X ), �(Y )] = [2X, iY ♭] = 2i ad∗(X )(Y ♭) = 2i(ad(X )Y )♭ = �(2[X, Y ]g),

[�(X ), �(Y )] = [2X, 2Y ] = 4[X, Y ]g = 2�([X, Y ]g),
so that � extends to a surjective G-equivariant even ∗-homomorphism � ∶ W→ (g; �).
Since �−1 ∶ g∗ ⊕ g → g ⊕ g ⊂ W is given by

∀� ∈ g∗, ∀Y ∈ g, �−1(� + Y ) = −i�♯ + 12Y ,
one can similarly show that � ∶ W→ (g; �) is, in fact, an isomorphism.

Now, fix an orthonormal basis {�1,… , �m} for gwith respect to ⟨ ⋅ , ⋅ ⟩, so that the dual
basis {�1,… , �m} is given by �i = (�i)♭ for i ∈ {1,… , m}. Following [76, §7.2.3], one can



GAUGE THEORY ON NONCOMMUTATIVE RIEMANNIAN PRINCIPAL BUNDLES 15

now construct the Casimir element Δ ∶= � ij�i�j ∈ Wand cubic Dirac element D ∈ Wby

D = 1
2� ij�i�j + 1

6� il� jm�kn⟨[�i , �j ], �k⟩�l�m�n
= 1
2� ij�i�j + 1

6� il� jm�kn⟨�i , [�j , �k]⟩�l�m�n
which, by [76, Thm. 7.1], satisfy D

2 − 14Δ ∈ Cl(g) ⋅{X |X ∈ g} together with the following
relations: for all X ∈ g and ! ∈ W,

[D, X ] = 0, [D, X ] = X , [D2, !] = 0.
But now, �(Δ) = � ij2�i2�j = 4⟨�i , �j⟩�i�j = −4Δg;� , while

�(D) = 1
2� ij i(�i)♭2�j + 1

6� il� jm�kn⟨�i , [�j , �k]⟩i(�l )♭i(�m)♭i(�n)♭
= i�i�j − i

6⟨�i , [�j , �k]⟩�i�j�k
= i /Dg;� ,

so that /D2
g;� − Δg;� = −�(D2 − 14Δ) has analytic degree 1, while for all X ∈ g, � ∈ g∗, and! ∈ (g; �), by the above relations,

[ /Dg;� , X ] = [−i�(D), �( 12X )] = − i
2�([D, X ]) = 0,

[ /Dg;� , �] = [−i�(D), −i�(�♯)] = −�([D, �♯]) = −�(�♯) = −2�♯,
[ /D2

g;� , !] = [−�(D2), �(�−1(!))] = −�([D2, �−1(!)]) = 0,
which proves (1.7), (1.8), and (1.9). �

Example 1.26. Suppose that G = U(1) and � ∶= 2�⟨d�, �d�⟩−1/2. Then (g; �) is the
Z2-graded commutative unital ∗-algebra generated by the even self-adjoint element � and�−1, the odd skew-adjoint element d� , and the even skew-adjoint element ))� , subject to
the relations �−1� = � �−1 = 1 and d�2 = −4�2�−2. Moreover,

d�♯ = 4�2�−2 ))� , ( ))� )♭ = (4�2)−1� 2d�, /Dg,� = d� ))� , Δg,� = −4�2�−2 ( ))� )2 .
Now suppose that (E, U ) is a Hilbert G-(V�A, B)-bimodule, i.e., a Hilbert G-(Cln ⊗̂A, B)-

bimodule for m ≤ n ∈ Z≥0 together with a vertical Clifford action c ∶ g∗ → LB(E). We
will define a G-equivariant ∗-representation of (g; �) on E by adjointable unboundedB-linear operators with domain the right B-submodule Ealg ⊂ E of algebraic vectors

Ealg ∶= Ealg;U ∶=
alg⨁�∈Ĝ E�

for the representation U ∶ G → GL(E) (see Equation A.1), so that we can represent the
abstract cubic Dirac element /Dg,� as a concrete noncommutative family of cubic Dirac

operators c( /Dg,�) on Ealg. Consider the unital algebra of B-linear operators
SRB(Ealg) ∶= {S ∶ Ealg → Ealg ∶ Ealg ⊂ Dom S∗} .

Every element of SRB(Ealg) is a densely defined closable B-linear operator on the HilbertB-module E with semiregular minimal closure [62, Lem. 2.1]. We G-equivariantly extend
the differential dU ∶ g → SRB(Ealg) of the G-action U to (�) ⊗ g → SRB(Ealg) by
(1.10) ∀f ∈ (�), ∀X ∈ g, ∀e ∈ E, dU (f ⊗ X )(e) ∶= f dU (X )(e).
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Then left multiplication by c(1Clm ⊗̂ Cl(g∗; �)) and the map dU ∶ (�) ⊗ g → SRB(Ealg)
together define an even map c ∶ (g; �) → SRB(Ealg), satisfying

∀�, � ∈ C, ∀x , y ∈ (g; �), c(�x + �y) = �c(x) + �c(y),(1.11)

∀x , y ∈ (g; �), c(xy) = c(x)c(y),(1.12)

∀x ∈ (g; �), c(x∗) ⊆ c(x)∗,(1.13)

∀g ∈ G, ∀x ∈ (g; �), Ugc(x) = c(x) Ug ||Ealg .(1.14)

We can view c as an even G-equivariant ∗-representation of (g; �) on the Hilbert B-
module E with dense G- and (g; �)-invariant common domain Ealg. Note that such
∗-representations of ∗-algebras by unbounded operators have already been considered by
Pierrot [84] and Meyer [80].

Example 1.27. In the context of Example 1.17, let L2v(V�C0(P)) denote the right HilbertV�C0(P)G-module completion ofV�C0(P)with respect to the conditional expectation ontoV�C0(P)G defined by averaging over the G-action—for details, see Appendix A. Then the
operators c(Δg,� ) and c( /Dg,�) on

L2v (V�C0(P))alg = V�C0(P)alg ≅ C0(P,Cl(VP ∗))alg
can be identified with the G-orbitwise Casimir operator and cubic Dirac operator on
Cl(VP ∗), respectively.

Next, we use harmonic analysis to construct a noncommutative vertical Sobolev theory
that controls the analytic behaviour of this unbounded ∗-representation of(g; �) usingc(Δg;�), and hence the analytic behaviour of the represented cubic Dirac element c( /Dg,�).
Before continuing, fix a Cartan subalgebra t ≤ gwith correspondingmaximal torus T ≤ G,
and for any finite-dimensional representation � ∶ G → GL(V�) of G, letW� ∶= {� ∈ t∗ | ∀H ∈ t, d� (H ) − i�(H ) idV� ∉ GL(V� )}
be the set of weights of � ; in particular, let  ∶= WAd be the set of roots corresponding to
this choice of t, i.e., the set of weights of the adjoint representation G → GL(g). Choose
a half-space t∗+ ⊂ t∗, such that  ∩ )t+ = ∅, let + ∶=  ∩ t∗+ be the corresponding set of
positive roots, and let �+ ∶= 12 ∑�∈+ � be the corresponding half sum of positive roots.
With respect to these fixed choices of Cartan subalgebra t and suitable half-space t∗+ of t∗,
every irreducible representation � ∈ Ĝ now admits a unique highest weight �� , i.e., the
unique weight �� ∈ W� , such thatW� = �� −+. Observe that all of these choices can be
made independently of any choice of Ad-invariant inner product on g (cf. [5, §2.5]). As
a result, for any Ad-invariant inner product ⟨ ⋅ , ⋅ ⟩′ on g, the eigenvalue of the positive
Casimir operator corresponding to ⟨ ⋅ , ⋅ ⟩′ on the eigenspace in L2(G, dg) consisting of
matrix coefficients for some � ∈ Ĝ is simply ⟨�� + �+, ��⟩′ ≥ 0, which is non-zero if and
only if � is non-trivial.

Remark 1.28. If G = T ≅ Tm is Abelian, then  = + = ∅, so that � ↦ �� recovers the
canonical isomorphism of the Pontrjagin dual group Ĝ with the full rank lattice

{� ∈ g∗ | ∀X ∈ ker exp, (�, X ) ∈ 2�Z} ≅ Zm,
where exp ∶ g ։ G is the exponential map.

First, we block-diagonalise c(Δg,�) in terms of orbitwise Casimir eigenvalues.
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Lemma 1.29. For each � ∈ Ĝ, let
(1.15) Ω�,� ∶= ⟨�� + �+, ���⟩ ∈ (�).
Then Ω�,� is strictly positive for any non-trivial irreducible representation � and vanishes
for � the trivial irreducible representation, and

∀� ∈ Ĝ, c(Δg,� )||E� = Ω�,� .
Proof. By the independence of the choices of root system and set of positive roots from
any choice of Ad-invariant inner product on g, by the G-equivariant unitary equivalenceVA� ≃ V� ⊗HomG (V� , V�A) ≃ (V� ⊗M(�))⊗M(�)HomG (V� , V�A), and by Serre–Swan ap-
plied to theM(�)-module V� ⊗M(�), we can apply the usual calculation of the eigenvalues
of the Casimir operator of g pointwise in M̂(�). �

Example 1.30. Suppose that G = U(1) and that � ∶= 2�⟨d�, � d�⟩−1/2; recall that Û(1) ≅ Z
by Pontrjagin duality, i.e., via Z ∋ n ↦ (C, (� ↦ � n idC)) ∈ Û(1). Then,

∀n ∈ Z, Ωn,� = 4�2n2�−2.
Next, we use the orbitwise Casimir eigenvalues to control the operator norms of the
derivatives of the irreducible representations of G.
Lemma 1.31. For every X ∈ g, � ∈ Ĝ, and v ∈ V� , the operator estimate‖d� (X )v‖21Z (A) ≤ (1 + Ω�,�)‖�−T ‖‖X ‖2‖v‖2,
holds inM(�). Consequently, we have the norm estimate

(1.16) ‖d� (X )‖B(V� ) ≤ ‖(1 + Ω�,�)−1/2‖−1‖�−T ‖1/2‖X ‖.
Proof. Fix X ∈ g and � ∈ Ĝ. Without loss of generality, we can assume that X ∈ t. Let
{v1,… , vd� } be an orthonormal basis for V� consisting of eigenvectors for d�|t and let
{�1,… , �d� } ⊂ t∗ be the corresponding set of weights for V� , so that

∀Y ∈ t, ∀v ∈ V� , d� (Y )(v) = d�∑k=1 i�k(Y )⟨vk , v⟩vk .
By uniqueness of highest weights (see [5, Proof of Thm. 2.5.3]), we can compute pointwise

on M̂(�) to find that

max1≤i≤d�⟨�i , ��i⟩ = ⟨�� , ���⟩ ≤ ⟨�� , ���⟩ + ⟨�+, ���⟩ = Ω�,� ≤ 1 + Ω�,� .
Thus, for any v ∈ V� ,

‖d� (X )v‖21A =
d�∑k=1‖�k(X )‖2‖⟨vk , v⟩‖21A

≤
d�∑k=1(1 + Ω�,�)⟨X , (�−1)TX⟩‖⟨vk , v⟩‖2

= (1 + Ω�,�)⟨X , �−TX⟩‖v‖2
in the commutative unital C∗-algebraM(�), so that‖d� (X )v‖ ≤ min�∈Ẑ (M(A))G+ �((1 + Ω�,�)1/2)‖�−T ‖1/2‖X ‖‖v‖ = ‖(1 + Ω�,�)−1/2‖−1‖�−T ‖1/2‖X ‖‖v‖.�
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We can now use the represented Casimir element c(Δg;�) to control the analytic behaviour
of the unbounded ∗-representation of(g; �), and hence, in particular, of c( /Dg,�).
Proposition 1.32. Let (A, �) be a G-C∗-algebra with vertical Riemannian metric �, let B
be a C∗-algebra, and let (E, U ) be a Hilbert G-(V�A, B)-bimodule. Then c(Δg,� ) is a positiveG-invariant regular essentially self-adjoint operator on E, such that

∀x ∈ (g; �), c(x) (1 + c(Δg,�))−|x|/2 ∈ LB(E).
Proof. First, let us show that the operator c(Δg,�) is G-invariant, regular, and essentially
self-adjoint. By G-invariance of Δg,� ∈ (g∗; �) and G-equivariance of c, the operatorc(Δg,�) ∶ Ealg → Ealg is G-invariant; in fact, by Lemma 1.29, it is actually block diagonal
in the sense that c(Δg,� )||Ealg =⨁�∈Ĝ Ω�,� idE� , where eachΩ�,� ∈ (�) is positive. Thus,
the operator c(Δg) is a countable direct sum of positive self-adjoint regular operators, and
as such is positive, regular, and essentially self-adjoint [20, Lemma 2.28].

Now, let us show that for any x ∈ (g; �), the operator c(x)(1+c(Δg,� ))−|x|/2 extends to a
bounded adjointable operator on E. Without loss of generality, suppose that x = X1⋯X|x |
for X1,… , X|x | ∈ g. Then the operators c(x) (1 + c(Δg,�))−|x|/2 and (1 + c(Δg,� ))−|x|/2 c(x∗)
are block diagonal on Ealg withc(x) (1 + c(Δg,�))−|x|/2|||E� = (1 + Ω�,�)−|x|/2 dU (X1)|E� ⋯ dU (X|x |)|||E� ,(1 + c(Δg,�))−|x|/2 c(x)∗|||E� = (−1)|x |(1 + Ω� ,�)−|x|/2 dU (X|x |)|||E� ⋯ dU (X1)|E� ,
so that by Lemma 1.31 together with the G-equivariant unitary equivalencesE� ≅ V� ⊗HomG (V� , E) ≅ (V� ⊗M(�)) ⊗M(�) HomG (V� , E),
and the fact that Ω�,� ∈ M(�), we derive the estimates‖‖‖‖ c(x) (1 + c(Δg,� ))−|x|/2|||E� ‖‖‖‖2op ≤ ‖�−T ‖|x |‖X1‖2⋯ ‖X|x |‖2,

‖‖‖‖(1 + c(Δg,� ))−|x|/2 c(x)∗|||E� ‖‖‖‖2op ≤ ‖�−T ‖|x |‖X1‖2⋯ ‖X|x |‖2,
and hence that the block diagonal operator c(x) (1 + c(Δg,�))−|x|/2 on Ealg extends to a
bounded adjointable operator on E. �

In particular, we can conclude that any G-invariant element of (g; �), e.g., the cubic
Dirac element /Dg,� , really does give rise to a regular operator on E.
Corollary 1.33. Let (A, �) be a G-C∗-algebra with vertical Riemannian metric �, B a unitalC∗-algebra, and (E, U ) a HilbertG-(V�A, B)-bimodule. For every x ∈ (g; �)G , the minimal
closure of c(x) is regular.
Proof. By G-invariance of x and G-equivariance of c together with Proposition 1.32, the
operator c(x) ∶ Ealg → Ealg is G-invariant and hence block-diagonal with respect to
the decomposition Ealg = ⨁�∈Ĝ E� , with c(x)|E� ∈ LB(E� ) for every � ∈ Ĝ . Thus, the
closable operator c(x) is a countable direct sum of regular operators, so that its minimal
closure is indeed regular [20, Lemma 2.28]. �

Let us now restrict our attention to the represented cubic Dirac element c( /Dg,�), which
should define an orbitwise cubic Dirac operator on the noncommutative G-space (A, �).
We first establish its basic analytic properties; in particular, we record the compatibility
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of c( /Dg,�) and c(Δg,� ) with the abstract vertical Sobolev theory on a Hilbert G-(V�A, B)-
bimodule (E, U ) induced by the G-representation U , cf. [99, §4]. In what follows, given a
strongly continuous representation � ∶ G → V on a Banach space, we denote by V k theG-invariant subspace of Ck -vectors for � , as defined in Equation A.2.

Proposition 1.34. Let (A, �) be a G-C∗-algebra with vertical Riemannian metric �, let B be
a C∗-algebra with trivial G-action, and let (E, U ) be a Hilbert G-(V�A, B)-bimodule. Then

Dom c( /Dg,� ) = Dom(1 + c(Δg,�))1/2 = E1,
Dom c( /D2

g,�) = Dom c(Δg,� ) = E2.
Moreover

∀a ∈ , [c( /Dg,�), a] = c(�i)d�(�i)(a),(1.17)

∀� ∈ g∗, [c( /Dg,�), c(�)] = −2dU (�♯),(1.18)

where d� ∶ g → L(A1, A) and dU ∶ g → L(E1, E) denote the differentials of � and U ,
respectively.

Proof. Let us first prove the results about domains. For notational convenience, letS ∶= c( /Dg,� ), Δ = c(Δg,�), M ∶= c( /D2
g,� − Δg,�),

and note that S and S2 = c( /D2
g,�) are essentially self-adjoint on Ealg by Corollary 1.33.

Observe that by [54, proof of Prop. 1.3], mutatis mutandis,

∀k ∈ N, Ek = Dom(1 + Δ)k/2,
so that by proposition-definition 1.25, it suffices to show that

Dom S = Dom(1 + Δ)1/2, Dom S2 = DomΔ.
First, by Proposition 1.32, since /Dg,� and /D2

g,� − Δg,� have analytic filtration degree 1,
it follows that (S ± i)(1 + Δ)−1/2, M(1 + Δ)−1/2, (1 + S2)(1 + Δ)−1 ∈ LB(E). By working on
the common core Ealg, one can check that

(1 + S2)−1 = (1 + Δ)−1 − (1 + S2)−1M(1 + Δ)−1,
and hence that (S ± i)−1 = Φ±(1 + Δ)−1/2, where

Φ± ∶= (S ∓ i)(1 + Δ)−1/2 − (S ± i)−1M(1 + Δ)−1/2 ∈ LB(E);
by taking adjoints, it follows that (1 + Δ)1/2(S ± i)−1 = Φ∗∓ ∈ LB(E), so that

(S ± i)(1 + Δ)−1/2 ∈ GLB(E), (1 + Δ)1/2(S ± i)−1 = ((S ± i)(1 + Δ)−1/2)−1 ∈ GLB(E),
and hence Dom S = Dom(1 + Δ)1/2 with equivalent norms.

Finally, observe that (1 + Δ)1/2(S ± i)−1|||E1 ∈ GLB(E1) by G-invariance, so that

(1 + Δ)(1 + S2)−1 = (1 + Δ)1/2 ⋅ (1 + Δ)1/2(S + i)−1 ⋅ (S − i)−1 ∈ LB(E),
and hence that Dom S2 = DomΔ.

Let us now prove equations 1.17 and 1.18. Since c(g∗) and consist of smooth vectors
for the induced G-action on L(E) in the sense of Appendix A, it follows that Dom S = E1
is invariant under both c(g∗) and . On the one hand, for all a ∈ A,
[c( /Dg,�), a] = [c(�i)dU (�i) − 16⟨�i , �−T [�j , �k]⟩c(�i)c(�j )c(�k), a] = c(�i)[dU (�i), a]

= c(�i) d�(�i)(a)
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on E1, so that (1.17) holds. On the other hand, for all � ∈ g∗,
[c( /Dg,�), c(�)] = c([ /Dg,� , �]) = c(�♯) = dU (�♯)

on E1, so that (1.18) also holds. �

The represented Casimir element c(Δg,�) and cubic Dirac element c( /Dg,�) define an
orbitwise Casimir operator and cubic Dirac operator, respectively, on the noncommuta-
tive G-space (A, �). Ideally, one expects them to be elliptic in the appropriate sense, in
which case, one further expects c( /Dg,�) to give rise to a class in KKGn (A, B). As it turns
out, it suffices for c(Δg,� ) to have locally compact resolvent. In the following, recall thatA1 denotes the dense ∗-subalgebra of C1-vectors of the G-C∗-algebra (A, �), and observe
that any approximate unit {vk}k∈N for A gives rise to a G-invariant approximate unit
{∫G �g (vk) dg}k∈N ⊂ AG for A.
Theorem 1.35 (cf. Wahl [99, §9], Carey–Neshveyev–Nest–Rennie [28, Prop. 2.9], Kas-
parov [67], Forsyth–Rennie [51, Prop. 2.14]). Let (A, �) be a G-C∗-algebra with vertical
metric �, B be a C∗-algebra, (E, U ) a Hilbert G-(Cln−m ⊗̂V�A, B)-bimodule for m ≤ n ∈ N.
If, for some approximate unit {uk}k∈N ⊂ AG for A, the operator c(Δg,�) satisfies

∀k ∈ N, uk(1 + c(Δg,�))−1/2 ∈ KB(E),
then (A1, E, c( /Dg,�);U ) defines a complete unbounded KKGn -cycle for ((A, �), (B, id)) with
adequate approximate unit {uk}k∈N.
Proof. First, recall that /Dg,� ∈ (g; �) is odd, G-invariant, self-adjoint and has analytic
filtration degree 1, so that by Corollary 1.33, the unbounded operator c( /Dg,�) on L2v(V�A)
is odd, G-invariant, essentially self-adjoint and regular. Moreover, by construction, the
operator c( /Dg,�) supercommutes with left multiplication by Clm ⊗̂1 ⊂ M(V�A), whilst for
every a ∈ A1, we find that [c( /Dg,�), a] = c(�i)d�(�i)a ∈ LB(E). Since [ /Dg,� , a] = 0 for alla ∈ AG , it follows that {uk} is adequate. Thus, it remains to check that c( /Dg,� ) has locally
compact resolvent.

Observe that for any a ∈ A,‖(1 + c( /Dg,�)2)−1/2(una − a)‖ ≤ ‖una − a‖ ⋅ ‖(1 + c( /Dg,�)2)−1/2‖ → 0, n → +∞
so that it suffices to show that (1 + c( /Dg,�)2)−1/2un ∈ KB(E) for all n ∈ N. Let n ∈ N. LetM ∶= /D2

g,� − Δg,� , which has analytic filtration degree 1, so that for every e ∈ Ealg,
((1 + c( /Dg,�)2)−1une = (((1 + c(Δg,�))−1 − (1 + c( /Dg,�)2)−1c(M)(1 + c(Δg,�))−1)une.

On the one hand, by our hypothesis on c(Δg,� ),
(1 + c(Δg,� ))−1/2un ∈ KB(E), c(M)(1 + c(Δg,�))−1/2 ∈ LB(E);

on the other hand, since c( /Dg,�) is essentially self-adjoint and regular, it follows that

(1 + c( /Dg,�)2)−1 ∈ LB(E). Thus, we find that (1 + c( /Dg,�)2)−1 un ∈ KB(E). �

1.4. Vertical index theory on principalG-C∗-algebras. At last, we specialise to noncom-
mutative topological principal G-bundles, i.e., to G-C∗-algebras, such that the G-action
is principal in the appropriate sense. Given a principal G-C∗-algebra (A, �) with verti-
cal metric �, we can complete V�A to a Hilbert G-(V�A, V�AG )-bimodule satisfying the

hypotheses of Theorem 1.35, and hence construct a canonical unbounded KKGm -cycle for
((A, �), (V�AG , id)), which can be interpreted as a noncommutative orbitwise family of

Kostant’s cubic Dirac operators on the noncommutative principal G-bundle A ↩ AG
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with vertical Riemannian metric �; the resulting class (A ↩ AG )! ∈ KKG(A, V1AG ),
which turns out to be independent of the choice of �, will then serve as the noncommu-
tative wrong-way class à la Connes [32] and Connes–Skandalis [37] of (A, �).

We begin by recalling Ellwood’s generalisation of the notion of principal G-action toG-C∗-algebras [48]; since G is a compact Lie group, this is equivalent to Rieffel’s notion
of saturation [90] by a result of Wahl [99, Prop. 9.8] and to Brzeziński–Hajac’s Hopf-
algebraic generalisation of the notion of principal G-action [23] by a result of Baum–De
Commer–Hajac [12, Thm. 0.4].

Definition 1.36 (Ellwood [48, Def. 2.4]). A G-C∗-algebra (A, �) is called principal if the
map ΦA ∶ A ⊗̂alg A → C(G,A) defined by

(1.19) ∀a1, a2 ∈ A, ΦA(a1 ⊗̂ a2)(g) ∶= �g (a1) ⋅ a2
has norm-dense range.

Example 1.37 (Ellwood [48, Thm. 2.9]). Let P be a locally compact Hausdorff G-space
and let � ∶ G → Aut(C0(P)) denote the induced action. Then (C0(P), �) is principal if
and only if the G-action on P is free (and hence principal [52, Thm. 3.6]).

Example 1.38 (Ellwood [48, Thm. 2.14]). Let B be a C∗-algebra equippedwith a Zm-action� ∶ Zm → Aut+(B), and let �̂ ∶ Tm → Aut+(B⋊r Zm) denote the dual action of Tm = Ẑm
on B ⋊r Zm . Then (B ⋊r Zm, �̂ ) is a principal Tm-C∗algebra.
Example 1.39 (Baum–De Commer–Hajac [12, p. 830]). Let (A, �) be a unital and trivially
Z2-gradedG-C∗-algebra. Suppose thatA contains aG-invariant dense unital ∗-subalgebra
, such that (,(G),G) defines a Hopf–Galois extension. Then (A, �) is principal.

We will need the fact that a principal G-C∗-algebra remains principal after tensoring
with a unital C∗-algebra
Proposition 1.40. Let (A, �) be a principal G-C∗-algebra. For every unital G-C∗-algebra
(F , �), the G-C∗-algebra (A ⊗̂min F , � ⊗̂ �) is also principal.
Proof. Observe that for any f ∈ F and any a1, a2 ∈ A,

ΦA⊗̂minF ((a1 ⊗̂ 1F) ⊗̂ (a2 ⊗̂ f )) (g) = �(g)(a1)a2 ⊗̂ f = (ΦA(a1 ⊗ a2)(g)) ⊗̂ f ,
so that ΦA⊗̂minF ((A ⊗̂alg F) ⊗̂ (A ⊗̂alg F)) ⊇ � (ΦA (A ⊗̂alg A) ⊗̂alg F), where the ∗-iso-
morphism � ∶ C(G, A) ⊗̂min F ∼→ F ⊗̂min C(G,A) permutes the factors F and C(G,A). �

We will also need the following result, which, in particular, guarantees that all “non-
commutative vector bundles” associated to a unital principalG-C∗-algebra (A, �) are actu-
ally finitely-generated and projective as right AG -modules; the following statement will
suffice for our purposes.

Theorem 1.41 (De Commer–Yamashita [44, Thm. 3.3, Prop. 4.1]). Let (A, �) be a principalG-C∗-algebra. For any � ∈ Ĝ , left multiplication by AG on A� defines a non-degenerate ∗-
representation AG → KAG (A� ); in particular, the right Hilbert AG -module A� is countably
generated.

Recall that if (B, �) is a G-C∗-algebra, then (L2v(B), L2v (�)) denotes its completion to
a Hilbert G-(B, BG )-bimodule with respect to the canonical conditional expectation ofB onto BG defined by averaging with respect to the G-action �; for more details, see
Appendix A. For our purposes, the primary consequence of Theorem 1.41 is that Theo-
rem 1.35 applies to (L2v (V�A), L2v (V��)), so that the represented cubic Dirac element c( /Dg,�)
on L2v (V��)) correctly defines an unbounded KKGm -cycle (A1, L2(V�A), c( /Dg,�), L2v (V��)).
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Corollary 1.42. Let (A, �) be a principal G-C∗-algebra with vertical metric �. The HilbertG-(V�A, V�AG )-bimodule (L2v (V�A), L2v (V��)) satisfies the hypotheses of Theorem 1.35.

Proof. Let {un}n∈N ⊂ AG be any G-invariant approximate unit for A, e.g., {EA(vn)}n∈N
for {vn}n∈N any approximate unit forA, and fix n ∈ N. Let � ∈ Ĝ; observe that (V�A, V��)
is principal by Propositions 1.16 and 1.40, so that

un(1 + c(Δg,�))−1/2|||V�A� = un(1 + Ω�,�)−1/2 ∈ AG ⊂ KV�AG (L2v(V�A)� ).
by Theorem 1.41. By computing pointwise on M̂(�), we can conclude that‖�−1‖−1⟨�� + �+, ��⟩1A ≤ Ω�,� ≤ ‖�‖⟨�� + �+, ��⟩1
in the commutative unital C∗-algebra M(�). Since {⟨�� + �+, ��⟩}�∈Ĝ is the spectrum of
the positive Casimir operator Δg,1 on G induced by the fixed Ad-invariant inner product⟨ ⋅ , ⋅ ⟩, Proposition 1.32 and ellipticity of the Laplace-type operator Δg,1 on L2(G, dg)
together imply that‖‖‖‖ un(1 + c(Δg,�))−1/2|||V�A� ‖‖‖‖ = ‖un(1 + Ω�,�)−1/2‖ ≤ (1 + ‖�−1‖−1⟨�� + �+, ��⟩)−1/2 → 0,
as ‖�� ‖→ +∞, and hence that un(1 + c(Δg,�))−1/2 ∈ KV�AG (L2v (V�A)). �

What is more, the class in KKGm (A, V�AG ) represented by this cycle turns out to be
independent (up to canonical G-equivariant ∗-isomorphism) of the choice of �.
Proposition 1.43. Let (A, �) be a principalG-C∗-algebra. For any vertical metric � on (A, �),

(c0,�)∗[(L2v (V1A), c( /Dg,1))] = [(L2v(V�A), c( /Dg,� ))] ∈ KKGm (A, V�AG ),
where c0,� ∶ V1A = Cl(Rm) ⊗̂ Cl(g∗) ⊗̂ A ∼→ V�A is the isomorphism of Proposition 1.16.

Proof. The G-equivariant ∗-isomorphism c0,� ∶ V1A = Cl(Rm) ⊗̂ Cl(g∗) ⊗̂ A ∼→ V�A of

Proposition 1.16 extends to a G-equivariant isomorphism L2v (V1A) ∼→ L2v (V�A) of Banach
spaces that intertwines left Clm ⊗̂A-module structures and is unitary in the sense that

∀! ∈ L2v(V1A), ∀� ∈ V1AG , c0,�(!�) = c0,�(!)c0,�(�),
∀!1, !2 ∈ L2v (V1A), (c0,�(!1, c0,�(!2))V�AG = c0,�((!1, !1)V1AG );

in particular, it follows that

c0,�◦c( /Dg,�)◦c−10,� = c ((�−1/2�i , �j )�j�i − 1
6⟨�i , �−T [�j , �k]⟩�i�j�k) .

But now, since � is positive definite and M(�) is closed under the holomorphic func-
tional calculus, we define a continuous family [0, 1] ∋ t ↦ �t ∶= exp(t log �) of ver-
tical Riemannian metrics that interpolates 1 = �0 with � = �1; it then follows that
[0, 1] ∋ t ↦ c0,�t ◦c( /Dg,�t )◦c−10,�t defines a G-equivariant homotopy of unbounded KKGm-
cycles (see [47,61]) from c( /Dg,1) at t = 0 to c0,�◦c( /Dg,�)◦c−10,� at t = 1 that demonstrates the

equality (c−10,�)∗[(L2v (V�A), c( /Dg,�))] = [(L2v(V1A), c( /Dg,1))]. �

Thus, any principalG-C∗-algebra gives rise to a noncommutative (twisted) wrong-way
class in G-equivariant KK -theory, which admits a canonical G-equivariant unbounded
representative for each choice of vertical metric defined in terms of a canonical noncom-
mutative orbitwise family of Kostant’s cubic Dirac operators.
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Definition 1.44 (cf. Wahl [99, §9], Carey–Neshveyev–Nest–Rennie [28, §2.1], Forsyth–
Rennie [51, §2.1]). The wrong-way cycle of a principal G-C∗-algebra (A, �) with vertical
metric � is the complete unbounded KKGm -cycle

(A1, L2v (V�A), c( /Dg,� ); L2v(V��))
for (A, V�AG ), and its wrong-way class is (A ↩ AG)! ∈ KKGm (A, V1AG ) defined by

(1.20) (A ↩ AG)! ∶= (c−10,�)∗[(L2v(V�A), c( /Dg,�))] = [(L2v(V1A), c( /Dg,1))].
Note that the factor Clm in the algebra V�A ensures, in particular, that that the wrong-

way cycle correctly defines an unbounded KKGm-cycle, where m ∶= dimG is the fibre
dimension of the noncommutative fibration.

Remark 1.45. One can replace A1 by any G-invariant dense ∗-subalgebra  ⊆ A1 of A,
such that G is dense in AG and contains an approximate identity for A.
Question 1.46. If G has torsion-free fundamental group, then (A, �) gives rise to a natural
class in KKG∗ (A,AG ) ≅ KKG∗ (A, V1AG ) by a general result of Goffeng [53]. How does this

class relate to (A ↩ AG )!?
Example 1.47. Let (P, g) be a complete Riemannian G-manifold, such that the G-action
is free (and hence principal); let � ∶ P ։ P/G denote the canonical map, and let �! ∈KKGm (C0(P), C0(P/G)) denote the resulting wrong-way class [32, 37]. Suppose that VP isG-equivariantly spinC and that the bundle metric g |VP is orbitwise bi-invariant, so thatC0(P) and C0(P,Clm ⊗̂Cl(VP ∗)) are G-equivariantly strongly Morita equivalent [85]; let
MV�C0(P)G ,C0(P/G) ∈ KKG0 (V�C0(P)G , C0(P/G)) be the resulting KK -equivalence. Then

(c0,�)∗(C0(P) ↩ C0(P/G))! ⊗̂V�AG MV�C0(P)G ,C0(P/G) = �!.
Moreover, the wrong-way class (C0(P) ↩ C0(P/G))! recovers the class of Kasparov’s or-
bital Dirac operatorDΓ [67, Def. 8.3] up toG-equivariantMorita equivalence and algebraic
Bott periodicity. Indeed, in the case of a free action of a compact Lie group, DΓ recovers
the operator /DE considered by Wahl [99, §5], which, by [99, Prop. 9.4], recovers c( /Dg,1)
up to G-equivariant Morita equivalence and bounded perturbation.

Example 1.48 (cf. Carey–Neshveyev–Nest–Rennie [28, §2.1], Arici–Kaad–Landi [6, §2.2]).
Let (A, �) be a principal U(1)-C∗-algebra with vertical metric �; let � ∶= 2�⟨d�, �d�⟩−1/2.
Then, up to the relevant G-equivariant isomorphisms, the wrong-way cycle of (A, �)with
respect to � is given by

(A1,Cl1 ⊗̂Cl(u(1)∗) ⊗̂ L2v (A), 1 ⊗̂ d� ⊗̂ �−1d�( ))� ); id ⊗̂ id ⊗̂L2v (�)).
Moreover, by a result of Rennie–Robertson–Sims [89, Thm. 3.1] together with Theo-
rem 1.41 and Proposition 1.43, it follows that the image in KK1(A,AU(1)) of

(A ↩ AU(1))! ∈ KKU(1)1 (A,Cl1 ⊗̂Cl(u(1)∗) ⊗̂ AU(1)) ≅ KKU(1)1 (A,AU(1))
is equal to the extension class [)] ∈ KK1(A,AU(1)) of A as a Pimsner algebra.

We will view the wrong-way cycle of a principal G-C∗-algebra with given vertical
metric as encoding the vertical Riemannian geometry and index theory of the underlying
noncommutative principal G-bundle.
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2. Riemannian principal bundles

In the commutative case, a complete oriented Riemannian manifold P endowed with a
locally free orientation-preserving isometric action of the compact connected Lie groupG
also admits well-defined horizontal geometry, global analysis, and even index theory [3,
21, 49, 87]. Moreover, if the G-action is actually free, then P ։ P/G canonically defines a
Riemannian principal G-bundle, and the Riemannian metric on P precisely decomposes
into a metric on the vertical tangent bundle, a Riemannian metric on the base, and a
principal (Ehresmann) connection. In this section, we generalise these considerations to
spectral triples endowed with appropriate notions of locally free and principal G-action,
respectively. In particular, we will use the framework of G-equivariant unbounded KK -
theory to yield a precise decomposition of a principal G-spectral triple into a wrong-way
cycle (encoding the vertical intrinsic geometry and index theory), a basic spectral triple
(encoding the basic geometry and index theory), and a module connection (encoding the
underlying principal connection and orbitwise extrinsic geometry).

2.1. Factorisation via G-correspondences. We now outline a set of definitions amount-
ing to the notion of equivariant correspondence along the lines of [63, 77–79]. Such a
correspondence should be thought of as encoding the vertical geometry and index the-
ory of a noncommutative fibration via a noncommutative generalisation of a geometric
correspondence à la Connes–Skandalis [37] equipped with Quillen superconnection [88]
à la Bismut [15]. Our definition of principalG-spectral triples will yield the prime example
of a noncommutative G-correspondence.

In Section 1, we focussed on describing the vertical geometry of a principal G-C∗-
algebra. Our goal for this section is to relate this vertical geometry to the total and basic
geometry and index theory, respectively, in amanner compatible with index theory. More
precisely, given a G-spectral triple (, H , D;U ) for the total space of a noncommutative
Riemannian principal bundle, wish to decompose D as a sumD = Dv + Dℎ + Z ,
where Dv is a vertical term induced by the vertical geometry, where Dℎ is a horizontal
term representing a horizontal lift of the basic geometry, and where Z is a remainder
carrying curvature information. Such a decomposition will permit us to view D − Z as
representing the twisting of the basic geometry by a noncommutative superconnection
comprising the noncommutative orbitwise family of Kostant’s cubic Dirac operators en-
coding the vertical geometry and a horizontal covariant derivative encoding the under-
lying principal connection.

First, we give a technical definition characterizing the analytic interaction of the ver-
tical geometry with the horizontal lift of the basic geometry.

Definition 2.1. Let X be a Z2-graded Hilbert C∗-module over a C∗-algebra B, let  ⊂LB(X ), and let S and T be densely-defined odd symmetric operators on X . We say that
(S, T ) is a  -vertically form-anticommuting pair if:

(1) Dom S ∩ DomT is dense in X and  ⋅ (Dom S ∩ Dom T ) ⊆ Dom S ∩ Dom T ;
(2) for every a ∈  and every " > 0, there exists C",a > 0, such that

∀x ∈ Dom(S) ∩ Dom(T ), ± (⟨Sax , Tax⟩B + ⟨Tax , Sax⟩B ) ≤ "⟨Sax , Sax⟩B + C",a⟨x , x⟩B .
Next, we recall the relevant notion of connection, which will permit us to form the

horizontal lift of the basic geometry with respect to a choice of principal connection. In
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what follows, given aZ2-graded vector space V , let V denote theZ2-grading on V ; where
there is no confusion, we will denote V by  .

Let X be a Hilbert C∗-module over a C∗-algebra B. Let (, H0, T ) be a spectral triple

for B, and write Ω1T ∶= B[T ,]L(H0). Denote by ⊗̂ℎB the Haagerup module tensor product

(see, for instance, [18, §3.4]), and note that for Hilbert modulesX and Y , X ⊗̂BY ≃ X ⊗̂ℎBY
[17, Thm. 4.3]. Recall [79, Def. 2.3] that a Hermitian T -connection on X is a C-linear map

∇ ∶  → X ⊗̂ℎB Ω1T , defined on a dense -submodule  ⊂ X satisfying

∀x ∈  , ∀b ∈ , ∇(xb) = ∇(x)b + X (x) ⊗ [T , b],
∀x ∈  , ∇(X (x)) = −( ⊗ L(H0))∇(x),

∀x , y ∈  , [T , (x , y)B] = (X (x),∇(y)) − (∇(X (x)), y)B.
By [79, Lemma 2.4], the operator

1 ⊗̂∇ T ∶  ⊗alg


Dom T → X ⊗̂B H0, x ⊗ � ↦ X (x) ⊗ T� + ∇(x)� ,
is well-defined, odd and symmetric. If (B, �) is a G-C∗-algebra, (X, U ) a G-Hilbert C∗-
module, and (, H0, T ;V ) a G-spectral triple, then we say that ∇ is G-equivariant if 
is G-invariant and if ∇ is G-equivariant as a map  → X ⊗̂ℎB Ω1T ; it follows that the
operator 1 ⊗̂∇ T ∶  ⊗alg


DomT → X ⊗̂B H0 is also G-equivariant. In the context of

noncommutative principal bundles, if T encodes the basic geometry and ∇ encodes the
principal connection, then 1 ⊗̂∇ T will represent the horizontal lift of the basic geometry.

Finally, we recall the basics of Van den Dungen’s framework of locally bounded per-
turbations. This will permit us to work with noncommutative geodesically complete (but
not necessarily compact) Riemannian principal G-bundles in almost complete generality;
in particular, this will provide the correct technical framework for remainder terms.

Definition 2.2 (cf. Van den Dungen [46]). Let (, H , D) be a spectral triple. A locally
bounded operator is an operatorM ∶  ⋅H → H , such thatM ⋅ a ∈ L(H ) for every a ∈ .

The following lemma establishes the basic properties of locally bounded operators.

Lemma 2.3 (Van den Dungen [46, Lemma 3.2]). Let (, H , D) be a spectral triple. Suppose
thatM is a densely-defined operator on H , such that ⋅DomM ⊆ DomM andM ⋅ a ∈ L(H )
for every a ∈ . Then its closure M is locally bounded and satisfies

∀a ∈ , M ⋅ a = M ⋅ a = a∗ ⋅M ∗.
Moreover, if M is symmetric, then

∀a ∈ , [M, a] = [M, a] = M ⋅ a − (M ∗ ⋅ a∗)∗.
Correcting the G-spectral triple of a total space by a suitable remainder will require a

well-defined theory of perturbation of complete spectral triples by locally bounded oper-
ators. The following will provide a tractable class of locally bounded operators together
with a suitable analogue of the Kato–Rellich theorem.

Definition 2.4. Let (, H , D) be a complete spectral triple with adequate approximate
unit {�k}k∈N. We say that a symmetric or skew-symmetric locally bounded operator M
is adequate if supk∈N‖[M, �k]‖ < +∞.

Theorem 2.5 (Van den Dungen [46]). Let (, H , D) be an n-multigraded complete spectral
triple for aC∗-algebraAwith adequate approximate identity {�k}k∈N. LetM be an adequate
locally bounded odd symmetric operator on H supercommuting with the multigrading. Then
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(, H , D +M) is an n-multigraded complete spectral triple forAwith adequate approximate
identity {�k}k∈N, such that [D +M] = [D] in KKn(A,C).

Without the benefit of the classical Kato–Rellich theorem, such perturbations need not
preserve operator domains, but they will preserve a certain canonical operator core.

Proposition 2.6. Under the hypotheses of Theorem 2.5

DomD ∩ ⋅ H = DomD +M ∩ ⋅ H,
and this subspace is a core for both D and D +M .

Proof. On the one hand, by construction of D +M ,

 ⋅ DomD ⊆  ⋅ H,  ⋅ DomD ⊆ DomD ∩ DomM ⊆ DomD +M ;

on the other hand, by the same argument applied to (, H , D +M) and D +M −M ,

 ⋅ DomD +M ⊆  ⋅ H,  ⋅ DomD +M ⊆ DomD +M −M,
where D +M −M = D on the core  ⋅ DomD ⊂ DomD +M ∩ ⋅ H of D. �

Remark 2.7. IfM is bounded, then D +M is self-adjoint on Dom(D +M) = DomD by the
Kato–Rellich theorem.

At last, we can give the main definition and result of this sub-section.

Definition 2.8. Let (A, �) and (B, �) be separable G-C∗-algebras, (, H , D, U ) an n-multi-
graded complete G-spectral triple for (A, �) with adequate approximate unit {�k}k∈N ⊂
G , and (, H0, T , V ) a complete k-multigraded G-spectral triple for (B, �), with n ≥ k. AG-correspondence for (, H , D, U ) and (, H0, T , V ) is a quintuple (, X , S,W ; ∇), where

(1) (, X , S,W ) is an unbounded KKGn−k-cycle for ((A, �), (B, �)), such that

∀k ∈ N, [S, �k] = 0;

(2) the map ∇ ∶  → X ⊗̂ℎB Ω1T is a G-equivariant Hermitian connection defined
on a dense -submodule  ⊂ Dom S, such that  ⋅  ⊂  and (S ⊗̂ 1, 1 ⊗̂∇ T ) is a
{�k}k∈N-vertically form-anticommuting pair on X ⊗̂B H0;

(3) there is a G-equivariant unitary isomorphism u ∶ H ∼→ X ⊗̂B H0 interwining theA-representations and Clifford multigradings, such that:
(a) for every k ∈ N, we have DomD ∩ �k ⋅ H ⊆ u∗(Dom S ⊗̂ 1);
(b) the subspace DomD ∩ u∗(Dom S ⊗̂ 1 ∩ Dom1 ⊗̂∇ T ) is dense in H , and
(c) the operator M ∶= D − u∗ (S ⊗̂ 1 + 1 ⊗̂∇ T) u satisfies

∀a ∈ , M ⋅ a ∈ L(H ), supk∈N‖[M, �k]‖ < +∞.

In the above definition, (, X , S,W ; ∇) can be viewed as a G-equivariant noncom-
mutative fibration equipped with G-equivariant noncommutative superconnection (S,∇),
such that the total geometry (, H , D;U ) factorizes as the twisting of the basic geometry
(, H0, T ;V ) by the noncommutative superconnection S +∇ encoding the vertical geome-
try (through S) and noncommutative Ehresmann connection (through ∇). The following
theorem guarantees that this factorisation correctly yields an index-theoretic factorisa-
tion at the level of KK -theory.



GAUGE THEORY ON NONCOMMUTATIVE RIEMANNIAN PRINCIPAL BUNDLES 27

Theorem 2.9. Let (, X , S,∇,W ) be a G-correspondence for the complete G-equivariant
spectral triples (, H , D, U ) and (, H0, T , V ) for (A, �) and (B, �) respectively. Then

[(, X , S;W )] ⊗B [(, H0, T ;V )] = [(, H , D;U )] ∈ KKG (A,C),
that is, (, H , D;U ) represents the Kasparov product of (, X , S;W ) and (, H0, T ;V ).
Proof. By Proposition 2.6 applied toM and Theorem 2.5, (, X ⊗̂BH0, u(D −M)u∗) defines
a spectral triple in the same KK -class as (, H , D), where u(D −M)u∗ restricts to S ⊗̂
1 + 1 ⊗̂∇ T on Dom S ⊗̂ 1 ∩ Dom 1 ⊗̂∇ T . We will apply [65, Thm. 34] to deduce that

(, X ⊗̂B H0, u(D −M )u∗) represents the Kasparov product of (A, X , S) and (B, H0, T ). In
what follows, given x ∈ X , let |�⟩ ∶ H0 → X ⊗̂B H0 be the operator defined by � ↦ x ⊗ � .

First, observe that for all x ∈  , the operator Dom T → H defined byu∗ ⋅ ((S ⊗̂ 1 + 1 ⊗̂∇ T )|x⟩ − | (x)⟩T) = u∗ ⋅ (|Sx⟩ + ∇(x))
extends to a bounded operatorH0 → H , so that the connection condition of [65, Thm. 34]
is satisfied. Next, observe that {�k}k∈N is a localizing subset in the sense of [65, Def. 29]
by Definition 2.8.1 and the fact that it forms an approximate unit for A. Finally, for any
fixed 0 < " < 2, Definition 2.1.2 implies that for any k ∈ N and � ∈ Dom S ⊗̂1∩Dom1 ⊗̂∇T ,
⟨(S ⊗̂ 1)�k� , (S ⊗̂ 1 + 1 ⊗̂∇ T )�k�⟩ + ⟨(S ⊗̂ 1 + 1 ⊗̂∇ T )�k� , (S ⊗̂ 1)�k�⟩
= 2⟨(S ⊗̂ 1)�k� , (S ⊗̂ 1)�k�⟩ + ⟨(S ⊗̂ 1)�k� , (1 ⊗̂∇ T )�k�⟩ + ⟨(1 ⊗̂∇ T )�k� , (S ⊗̂ 1)�k�⟩
≥ (2 − ")⟨(S ⊗̂ 1)�k� , (S ⊗̂ 1)�k�⟩ − Ck,"⟨� , �⟩
≥ −Ck,"⟨� , �⟩,

where Ck," > 0 is a constant depending only on k and ". Thus, [65, Def. 29] is satisfied for
(A,H , u(D −M)u∗) and (A, X , S), so that the hypotheses of [65, Thm. 34] are satisfied, and

hence (A,H , u(D −M )u∗) represents the Kasparov product of (A, X , S) and (B, H0, T ). �

2.2. Vertical and horizontal Riemannian geometry on G-spectral triples. In this sub-
section, we will effectively define a locally free G-spectral triple to be a G-spectral triple
together with a vertical geometry and a remainder ; given a choice of these additional
data, the Dirac operator of the G-spectral triple—after correction by the remainder—will
correctly decompose into vertical and horizontal components. In the case of commutative
and noncommutative unitalU(1)-spectral triples, some of these considerations are already
implicit, at least at a formal level, in the work of Ammann–Bär [4, §4] and of Dąbrowski–
Sitarz [39, §4], respectively.

In what follows, let {�i}mi=1 be a basis for g with dual basis {�i}mi=1 for g∗. Note that all
constructions involving {�i}mi=1 will always be independent of the choice of basis for g.

First, in the commutative case of a complete oriented Riemannian G-manifold with lo-
cally free G-action and orbitwise bi-invariant metric together with a G-equivariant Dirac
bundle, the vertical metric and Clifford action by vertical 1-forms will satisfy certain al-
gebraic and analytic compatibility conditions in relation to the resulting G-equivariant
generalised Dirac operator. The significance of the vertical Clifford action to the noncom-
mutative context was already observed by Forsyth–Rennie [51, Def. 2.18]; the complete
picture can be generalised as follows.

Definition 2.10. Let (, H , D;U ) be an n-multigraded complete G-spectral triple for aG-C∗-algebra (A, �) with m ≤ n ∈ N. A vertical geometry on (, H , D;U ) is a pair (�, c),
where � is a vertical metric for (A, �) and c ∶ g∗ → L(H ) is a vertical Clifford action with
respect to �, such that:
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(1) (�) ⋅ =  ⋅(�) ⊆ ;
(2) (�) ⋅ (DomD ∩ ⋅ H ) ⊆ DomD, and for every f ∈ (�), the operator [D, f ] is

locally bounded and adequate and supercommutes with (�);
(3) c(g∗)⋅(DomD∩⋅H ) ⊆ DomD, and for every X ∈ g, the skew-symmetric operator

(2.1) �(X ) ∶= −12[D, c(X♭)] − dU (X )
is locally bounded and adequate and supercommutes with (�).

We call (�, c) bounded if [D, f ] ∈ L(H ) for all f ∈ (�), c(g∗) ⋅ DomD ⊆ DomD, and�(X ) ∈ L(H ) for all X ∈ g.

Note that, a priori, a vertical geometry need not exist or, if it does exist, be unique.

Example 2.11. Let (P, g) be an n-dimensional complete oriented RiemannianG-manifold,
such that the G-action is locally free and g |VP is orbitwise bi-invariant; let � denote the
resulting G-action on C0(P). Note that the foliation of P by G-orbits is a Riemannian fo-
liation with tangent bundle VP and normal bundle HP ∶= VP⟂ [97, Chapters 25, 26]. Let
(E,∇E) be a G-equivariant n-multigraded Dirac bundle on P , let DE denote the resultingG-equivariant Dirac operator on E, and let U E ∶ G → U (L2(P, E)) be the induced unitary
representation ofG, so that (C∞c (P), L2(P, E), DE ;U E) defines an n-multigradedG-spectral
triple for (C0(P), �). Then the canonical vertical geometry for (C∞c (P), L2(P, E), DE ;U E) is
the vertical geometry (�, c), where � is the vertical metric on (C0(P), �) induced by g |VP
and where c ∶ g∗ → L(L2(P, E)) is induced by the Clifford action on E. In particular,

∀X ∈ g, �(X ) = (�E , XP ) + 1
2 cE (�XP�VP ) − cE (TVP (⋅, XP , ⋅)) + cE (AVP (⋅, ⋅, XP )),

where �E ∈ Γ(VP ∗ ⊗̂ End(E))G is defined by

∀X ∈ g, (�E , XP ) ∶= ∇EXP − dU E(X ),
where �VP ∈ Γ(⋀3 VP ∗)G is the orbitwise Cartan 3-form defined by

∀X, Y , Z ∈ g, �VP (XP , YP , ZP ) ∶= g(XP , [YP , ZP ]),
and where TVP ∈ Γ(VP ∗ ⊗⋀2 T ∗P)G and AVP ∈ Γ(HP ∗ ⊗⋀2 T ∗P)G are, respectively, the
first and second O’Neill tensors [83; 97, Chapters 5, 6] of VP , so that, in particular,

∀X ∈ g, TVP (⋅, XP , ⋅) ∈ Ω2(P)G , AVP (⋅, ⋅, XP ) ∈ Ω2(P)G .
As a result, the canonical vertical geometry is boundedwhenever �E is uniformly bounded
and the Riemannian foliation VP has bounded geometry [3], e.g., whenever P is compact.

Example 2.12. Suppose that G = U(1); let � ∶= 2�⟨d�, � d�⟩−1/2 and Γ ∶= (2� i)−1�c(d�).
Then (�, c) is a vertical geometry for (, H , D;U ) only if (, H , D;U ) endowed with the
additional Z2-grading Γ is projectable à la Dąbrowski–Sitarz [39, §4.1] (mutatis mutandis)
with fibres of length 2�� .
Remark 2.13. Since (�) and c(g∗) supercommute with , conditions 2 and 3 imply, in
particular, that

(�) ⋅ (DomD ∩ ⋅ H ) ⊆ DomD ∩ ⋅ H, c(g∗) ⋅ (DomD ∩ ⋅ H ) ⊆ DomD ∩ ⋅ H.
Remark 2.14. If (�, c) is bounded, e.g., if A is unital, then conditions 2 and 3 together with
the closed graph theorem imply that {c(!)|DomD | ! ∈ Cl(g∗; �)} ⊂ L(DomD), so that

∀X ∈ g, dU (X )|DomD = −12[D, c(X♭)] − �(X ) ∈ L(DomD,H ).
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Remark 2.15. By the super-Jacobi identity applied on the dense subspace DomD ∩ ⋅H ,

(2.2) ∀a ∈ , ∀X ∈ g, d�(X )(a) = [�(X ), a] − 1
2 [[D, a], c(X♭)],

where [�(X ), a] ∈ L(H ); similarly, since �(g) supercommutes with (�), it follows, mu-
tatis mutandis, that Cl(g∗; �) supercommutes with [D,(�)].

Note that the combination ofG-spectral triple (, H , D;U ) and vertical geometry (c, �)
gives rise to a natural dense ∗-subalgebra of V�A.
Definition 2.16. The differentiable vertical algebra is the image V� of Clm ⊗̂Cl(g∗) ⊗̂

under the canonical isomorphism Clm ⊗̂Cl(g∗) ⊗̂ A ∼→ V�A.
It follows that V� defines a G-invariant dense ∗-subalgebra of V�A consisting of C1-

vectors for V�� and satisfying V� ⋅ DomD ⊆ DomD and V� ⋅ ( ⋅ H ) ⊆  ⋅ H . Again,
note that the factor Clm is there to facilitate the consistent use of multigradings.

For the remainder of this subsection, let (, H , D;U ) be an n-multigraded completeG-spectral triple for a G-C∗-algebra (A, �) with vertical geometry (�, c) and adequate ap-
proximate unit {�k}k∈N ⊂ G . By the discussion following Proposition-Definition 1.25,
the vertical Clifford action c extends to an even G-equivariant ∗-representationc ∶ (g; �) → SRC(H alg) = {S ∈ EndC(H alg) | H alg ⊂ Dom S∗},
where H alg is the dense subspace of algebraic vectors for the strongly continuous unitary
representation U ∶ G → U(H ). Hence, we can once again define an orbitwise cubic Dirac
operator by c( /Dg,�), which will be our candidate for the vertical part of D.
Definition 2.17. We define the vertical Dirac operator to be the n-odd G-invariant self-
adjoint operator Dv ∶= c( /Dg,�), i.e.,
(2.3) Dv |H alg ∶= c( /Dg,�) = c(�i)dU (�i) − 1

6⟨�i , �−T [�j , �k]⟩c(�i�j�k).
By Proposition 1.34, Dv spatially implements the differential d� ∶ g → HomC(, A)

of � in the sense that
∀a ∈ , [Dv , a] = c(�i) d�(�i)(a),

so that, in particular,

∀X ∈ g, ∀a ∈ , d�(X )(a) = −12[[Dv , a], c(X♭)].
One may now be tempted to take D−Dv to be the horizontal part of the Dirac operatorD. However, the commutative case shows that this is not quite correct.

Example 2.18 (Prokhorenkov–Richardson [87, Prop. 2.2, Thm. 3.1], cf. Ammann–Bär [4,
§4], Kaad–Van Suijlekom [64, Thm. 22]). In the context of Example 2.11, so that VP de-
fines a Riemannian foliation of (P, g) with normal bundle HP ∶= VP⟂, let DEℎ be the
resulting transverse Dirac operator for VP à la Brüning–Kamber [21], cf. [87, §3]. ThenDE − Dv = DEℎ + ZE ,
where

(2.4) ZE ∶= cE (�E) + cE (�VP ) + 1
2 cE (�VP ) + 1

2cE (ΩVP )
for �VP ∈ Γ(HP ∗)G the mean curvature of VP and ΩVP ∈ Γ(VP ∗ ⊗ ⋀2 HP ∗)G ⊂ Ω3(P)G
given by

∀X ∈ Γ(VP), ∀Y , Z ∈ Γ(HP), ΩVP (X, Y , Z ) ∶= g(X, [Y , Z ]) = 2AVP (Y , Z , X ),



30 BRANIMIR ĆAĆIĆ AND BRAM MESLAND

whereAVP is the obstruction to integrability of the horizontal distribution HP , and hence,
when the G-action is free, the curvature of the principal Ehresmann connection on P
induced by g. Thus, ZE will typically be non-zero whenever HP is non-integrable.

We view ZE in (2.4) above as the obstruction to an exact geometric factorisation of DE
into natural horizontal and vertical components. We now formalise this notion.

Definition 2.19. A remainder with respect to (�, c) is an n-odd G-invariant adequate lo-
cally bounded symmetric operator Z on H that supercommutes with (�); its corre-
sponding horizontal Dirac operator for (, H , D;U ) is the closureDℎ[Z ] ∶= D − Dv − Z
of the densely-defined symmetric operator D −Dv − Z on DomD ∩ ⋅H ; we will denoteDℎ[Z ] by Dℎ wherever there is no ambiguity.

Note that the conditions defining a remainder are all R-linear, so that the set(�, c) of
all remainders with respect to (�, c) is a R-linear subspace of L(H ); however, a priori, the
space (�, c) depends on the choice of adequate approximate unit {�k}k∈N. One might
expect the trivial remainder 0 to be the canonical element of (�, c), but the above dis-
cussion of the commutative case suggests the following element induced by (, H , D;U ):
Proposition-Definition 2.20. The canonical remainder for (, H , D;U ) is the remainderZ(�,c) with respect to (�, c) given by
(2.5)Z(�,c)[D]|||DomD∩⋅H ∶= c(�i)�(�i)−14⟨�i , �−T �j⟩[D, ⟨�i , ��j⟩]− 1

12⟨�i , �−T [�j , �k]⟩c(�i�j�k),
and the canonical horizontal Dirac operator is Dℎ[Z(�,c)].
Proof. The only non-trivial property of Z(�,c) is symmetry; since ⟨�i , �−T [�j , �k]⟩c(�i�j�k)
is self-adjoint, it suffices to check that Z̃ ∶= c(�i)�(�i) satisfiesZ̃ ∗ = Z̃ + 1

2⟨�i , �−T �j⟩[D, ⟨�i , ��j⟩]
on DomD ∩ ⋅ H . For convenience, define

∀1 ≤ i, j ≤ m, �ij ∶= ⟨�i , ��j⟩ ∈ (�), �ij ∶= ⟨�i , �−T �j⟩ ∈ (�),
so that, in particular,

∀X ∈ g, ∀� ∈ g∗, X♭ = �ij (�i , X )�j , �♯ = �ij (�, �i)�j ,
∀i, k ∈ {1,… , m}, �ij�ik = �ji�ik = �kj .

First, observe that for any X ∈ (�) ⊗̂ gC ⊂ (g; �), the operator
�(X ) ∶= −12[D, c(X♭)] − c(X )

is well-defined on DomD ∩ ⋅ H and reduces to the operator of (2.1) in the case whereX ∈ g; in particular, for any f ∈ (�) and X ∈ (�) ⊗̂ gC, it follows that�(f X ) = −12 [D, f ]c(X♭) + f �(X ).
Now, by G-equivariance of ♯ and ♭, for all i, j ∈ {1,… , m},

[�i , �j ] = −[�j , (�i)♯]♭ = −�ik[�j , �k]♭ = �ik[�k , �♭j ] = −[�♭j , (�i)♯],
in (g; �), so that, more generally,

∀X ∈ g, ∀� ∈ g∗, [�, X ] = −[X♭, �♯].



GAUGE THEORY ON NONCOMMUTATIVE RIEMANNIAN PRINCIPAL BUNDLES 31

in (g; �). Hence, for all X ∈ g and � ∈ g∗, on DomD ∩ ⋅ H (by Remark 2.13),

[c(�), �(X )] = −12 [c(�), [D, c(X♭)]] − [c(�), dU (X )]
= 1
2 [D, [c(X♭), c(�)]] + 1

2 [c(X♭), [c(�), D]] − c([�, X ])
= 1
2 [D, (�, X )1] + 1

2 [c(X♭), [D, c((�♯)♭)] + c([X♭, �♯])
= [�(�♯), c(X♭)]
= −[c(X♭), �(�♯)].

Thus, if K ∶= 1
2�ij[D, �ij ], then, on DomD ∩ ⋅ H ,

[c(�i), �(�i)] = −[c(�♭i ), �((�i)♯)] = −[c(�ij�j ), �(�ik�k)]
= −�ij[c(ej ), −12[D, �ik]c(�♭k ) + �ik�(�k)]
= −12�ij (−[c(�j ), [D, �ik]]c(�♭k ) + [D, �ik][c(�j ), c(�♭k )] + 2�ik[c(ej ), �(�k)])
= (�ij [D, �ik]�kj − �ij�jk [c(�j ), �(�k)])
= 2K − [c(�i), �(�i)],

so that [c(�i), �(�i)] = K , and henceZ̃ ∗ = �(�i)∗c(�i)∗ = �(�i)c(�i) = −[c(�i), �(�i)] + c(�i)�(�i) = −K + Z̃ . �

Remark 2.21. If (�, c) is bounded, then Z(�,c) ∈ L(H ).

Example 2.22 (Prokhorenkov–Richardson [87, Prop. 2.2, Thm. 3.1]). Continuing from
Example 2.18, we see that Z(�,c) = ZE , so that the canonical horizontal Dirac operatorDE[Z(�,c)] = DEℎ correctly recovers the relevant tranverse Dirac operator, which is a sym-
metric transversally elliptic first-order differential operator on E, satisfying

∀f ∈ C∞c (M), [DEℎ , f ] = cE (ProjHP ∗ df ) = n
∑j=m+1

ej (f )cE (ej ) ∈ Γc(HP ∗),
∀! ∈ C∞(P, V P ∗), [DEℎ , cE (!)] = −

n
∑j=m+1

cE(ej ⋅ ∇VP ∗ej !) ∈ Γ(Cl(T ∗P)),
where ∇VP ∗ is the connection on VP ∗ induced by the compression of the Levi-Civita con-
nection on TP to VP , and where {ej}nj=m+1 is any local frame for HP with dual frame

{ej}nj=m+1 for HP ∗.
Example 2.23. Suppose that G = U(1); let � ∶= 2�⟨d�, � d�⟩−1/2 and Γ ∶= (2� i)−1�c(d�).
Then Dℎ[Z(�,c)] = 1

2Γ(ΓD − DΓ) recovers the horizontal Dirac operator à la Dąbrowski–
Sitarz [39, §4.1].

We now check that we can freely correct D by a remainder Z without changing the
(intrinsic) vertical geometry or index theory.

Proposition 2.24. Let Z ∈ (�, c). The data (, H , D − Z ;U ) define an n-multigraded G-
spectral triple for (A, �) that admits the same adequate approximate identity as (, H , D;U ),
admits the same vertical geometry (�, c), and represents the same class [D] ∈ KKGn (A,C).
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Proof. Let {�k}k∈N be the adequate approximate identity of (, H , D;U ). First, observe
that (, H , D−Z ) is a spectral triple forAwith adequate approximate identity {�k}k∈N by
Theorem 2.5. Next, since Z is G-invariant, the operator D − Z is G-invariant; moreover,
by Proposition 2.6, it follows that DomD ∩  ⋅ H = DomD − Z ∩  ⋅ H . Thus, the
data (, H , D;U ) define a G-spectral triple for (A, �) with adequate approximate identity
{�k}k∈N, such that [D − Z ] = [D] in KKGn (A,C). Finally, since

Dom(D − Z ) ∩ ⋅ H = DomD ∩ ⋅ H,
and Z supercommutes with (�), it follows that (�, c) is a vertical geometry for the G-
spectral triple (, H , D − Z ;U ). �

We now establish the basic properties of a horizontal Dirac operator Dℎ[Z ], including
its analytic interaction with the vertical Dirac operator Dv .
Proposition 2.25. Let Z ∈ (�, c). Then the corresponding horizontal Dirac operator Dℎ[Z ]
is an n-odd, G-invariant self-adjoint operator that satisfies [Dℎ[Z ], V�] ⊂ L(H ), and for

any G-invariant adequate approximate unit {�k}k∈N ⊂ G for (, H , D −Z ;U ), the opera-
tors Dv and Dℎ[Z ] form a {�k}k∈N-vertically form anticommuting pair. Moreover, if (�, c) is
bounded and Z is bounded (e.g, if A is unital), then (Dv , Dℎ[Z ]) is a vertically anticommut-
ing pair in the sense of Mesland–Rennie–Van Suijlekom [79] and a weakly anticommuting
pair in the sense of Lesch–Mesland [74].

Proof. By Proposition 2.24 together with the observation that Dℎ[Z ] = (D − Z )ℎ[0], we
may assume without loss of generality that Z = 0.

Since D and Dv are G-invariant, n-odd, and symmetric on  ⋅ DomD, it follows thatDℎ ∶= Dℎ[0] = D −Dv is G-invariant, n-odd, and symmetric on ⋅DomD; once we know
that D −Dv is essentially self-adjoint on ⋅DomD ⊂ DomD ∩ ⋅H , this will imply that
the unique self-adjoint closure Dℎ of D − Dv is also G-invariant and n-odd.

Now, since D is G-invariant, it follows that U ∶ G → U (L(H )) restricts to a strongly
continuous unitary representation on the Hilbert spaceDom(D); moreover, it follows that
for each � ∈ Ĝ, the restriction D|H� of D to H� with domain Dom(D)� = Dom(D) ∩H� is
self-adjoint [51, Proof of Lemma 2.16]. Since Dv restricts to a bounded self-adjoint oper-
ators on each isotypic subspace H� , the Kato–Rellich theorem implies that the operatorD − Dv |H� = D|H� − Dv |H� is essentially self-adjoint onDom(D)� . As a result [20, Lemma

2.28], it follows that D − Dv is essentially self-adjoint on Dom(D)alg ∶= ⨁alg�∈Ĝ Dom(D)� .
But now, since the adequate approximate identity {�k}k∈N ⊂ G for (, H , D;U ) satisfies

supk∈N‖[D − Dv , �k]‖ = supk∈N‖[D, �k]‖ < +∞,

in L(H ), it follows by remark 1.2, mutatis mutandis, thatG ⋅Dom(D)alg ⊆  ⋅Dom(D) is
a core for D − Dv , so that D − Dv is, a fortiori, essentially self-adjoint on ⋅ DomD.

Next, by working on the dense subspace Dom(D) ∩ ⋅ H , we see that for every X ∈ g,

[Dℎ, c(X♭)] = [D, c(X♭)] − [Dv , c(X♭)] = −2dU (X ) − 2�(X ) + 2dU (X ) = −2�(X ),
so that

{
[Dℎ, !] ⋅ a ||| ! ∈ Cl(g∗; �), a ∈ 

} ⊂ L(H ), and hence [Dℎ, V�] ⊂ L(H ).
Finally, let {�k}k∈N ⊂ G be an adequate approximate unit for (, H , D); let us show

that Dv and Dℎ define a {�k}k∈N-vertically form anticommuting pair. First, observe that
DomDv ∩ DomDℎ ⊃  ⋅ DomD is dense in H and satisfies


G ⋅ (DomDv ∩ DomDℎ) ⊂ DomDv ∩ DomDℎ,
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so that definition 2.1.1 holds. Next, since c ∶ g∗ → L(H ) is G-equivariant andc(g∗) ⋅G ⋅ Dom(D) = 
G ⋅ c(g∗) ⋅G ⋅ Dom(D) ⊆ 

G ⋅ DomD,
it follows that Dv (G ⋅ Dom(D)alg) ⊂ 

G ⋅ Dom(D)alg, while by G-invariance of Dℎ,
Dℎ (G ⋅ Dom(D)alg) ⊂ H alg =

alg

⨁�∈Ĝ H� ⊂ Dom(Dv),
so that the anticommutator [Dv , Dℎ] is defined on the coreG ⋅Dom(D)alg for Dℎ. More-
over, since the G-invariant operator Dv restricts to a bounded symmetric operator on the
dense subspace G ⋅ Dom(D)� of H� for each � ∈ Ĝ , it follows that G ⋅ Dom(D)alg is a
core for Dv as well as for Dℎ. But now, on this joint coreG ⋅Dom(D)alg ⊂ Dom[Dv , Dℎ]
for Dv and Dℎ,
(2.6) [Dv , Dℎ] = [Dℎ, c(�i)]dU (�i) − [Dℎ, 16⟨�i , �−T [�j , �k]⟩c(�i�j�k)],
where the [Dℎ, c(�i)] =∶ � i and −[Dℎ, 16⟨�i , �−T [�j , �k]⟩c(�i�j�k)] =∶ T are locally bounded
and L(DomDv , H ) ∋ dU (�i) =∶ )i by propositions 1.32 and 1.34; choose C > 0, such that

∀i ∈ {1,… , m}, ∀� ∈ DomDv , ⟨)i� , )i�⟩ ≤ 2Cm ⟨Dv� , Dv�⟩.
Then for every " > 0, k ∈ N, and � ∈ G ⋅ Dom(D)alg we have

±(⟨Dv�k� , Dℎ�k�⟩ + ⟨Dℎ�k� , Dv�k�⟩)
= ±12 (⟨�k� , [Dv , Dℎ]�k�⟩ + ⟨[Dv , Dℎ]�k� , �k�⟩)
= ±12 (⟨�k� , � i)i�k�⟩ + ⟨� i)i�k� , �k�⟩) ± 1

2 (⟨�k� , T�k�⟩ + ⟨T�k� , �k�⟩)
≤ �
2C m

∑i=1⟨)i�k� , )i�k�⟩ + C
2� m

∑i=1⟨� i�k� , � i�k�⟩ + 1
2⟨�k� , �k�⟩ + 1

2⟨T�k� , T�k�⟩
≤ �⟨Dv�k� , Dv�k�⟩ + 1

2 (mC� m∑i=1‖� i�k ‖2L(H ) + ‖�k‖2L(H ) + ‖T�k ‖2L(H ))⟨� , �⟩,
so that condition 2 of definition 2.1 is also satisfied.

Finally, suppose that (�, c) is bounded and Z is bounded. On the one hand, sinceDv |H� ∈ L(H� ) for every � ∈ Ĝ, we have (Dv ± i) (Dom(D)alg) = Dom(D)alg, so that

(Dv ± i)−1 (Dom(D)alg) = Dom(D)alg.
On the other hand, by (2.6), it follows that [Dv , Dℎ] ∈ L(DomDv , H ). It now follows that
(Dv , Dℎ) is a vertically anticommuting pair in the sense of [79, Def. 2.10] and hence, in
particular, a weakly anticommuting pair in the sense of [74, Def. 2.1]. �

2.3. Orbitwise extrinsic geometry in G-spectral triples. We can now view a G-spectral
triple with vertical geometry and remainder as a locally free G-spectral triple with well-
defined vertical and horizontal Dirac operators. We will proceed to make sense of its
orbitwise extrinsic geometry in complete noncommutative generality.

Recall that (�, c) denotes the R-vector space of all remainders with respect to (�, c)
that are compatible with a fixed adequate approximate unit for (, H , D;U ).
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Definition 2.26. Let Z ∈ (�, c). We define the orbitwise shape operator to be the mapT [Z ] ∶ g → {f ∈ HomC(DomD ∩ ⋅ H,H ) | f locally bounded and adequate},
∀X ∈ g, T [D; Z ](X ) ∶= [Dℎ[Z ], c(X♭)] = −2�(X ) − [Z , c(X♭)],

and we define the orbitwise mean curvature to be the adequate locally bounded operator

�[Z ] ∶= 1
2⟨�i , ��j⟩[c(�♭i ), T [Z ](�j)].

Finally, we say that (, H , D;U ) is orbitwise totally geodesic with respect to Z (or that Z isD-geodesicwith respect to D) whenever T [Z ] = 0 and, more generally, that (, H , D;U ) is
orbitwise totally umbilic with respect to Z (or that Z is D-umbilic) whenever there exists
even �[Z ] ∈ L(H ) supercommuting with Cl(g∗; �), such that

∀X ∈ g, T [Z ](X ) = �[Z ]�[Z ]c(X♭).
Remark 2.27. Given Z ∈ (�, c), the pair (�, c) is bounded as a vertical geometry for the
perturbed G-spectral triple (, H , D − Z ;U ) if and only if T [Z ] is valued in L(H ).

We now establish the basic properties of the orbitwise shape operator and the orbitwise
mean curvature, which will make the relation to the commutative case even clearer.

Proposition 2.28. Let Z ∈ (�, c).
(1) The orbitwise mean curvature �[Z ] satisfies

�[Z ] = −12⟨�i , �−T �j⟩[D, ⟨�i , ��j⟩] = Vol−1G,�[D,VolG,�],
where VolG,� ∶= det(√�−T ) = det(√�)−1 ∈ (�) is the orbitwise volume, so that� ∶= �[Z ] is independent of the remainder Z .

(2) For every � ∈ g∗,

[Dℎ[Z ], c(�)] = ⟨�, ��i⟩ (T [Z ](�i) − 1
2([c(�♭i ), T [Z ](�j)] + [c(�♭j ), T [Z ](�i)])c(ej )) ,

so that Z is D-geodesic if and only if [Dℎ[Z ], c(g∗)] = {0}.
(3) If Z is D-umbilic, then �[Z ] = 1m 1L(H ) without any loss of generality, and

∀� ∈ g∗, [Dℎ[Z ], c(�)] = − 1m�c(�) = 1mc(�)�.
Proof. Let us use the notational conventions of the proof of Proposition-Definition 2.20.
First, observe that by the super-Jacobi identity applied on the dense domainDomD∩⋅H ,

0 = �ij ([c(�♭i ), [Dℎ[Z ], c(�♭j )]] + [Dℎ[Z ], [c(�♭i ), c(�♭j )]] + [c(�♭j ), [c(�♭i ), Dℎ[Z ]]])
= 2�ij[c(�♭i ), [Dℎ[Z ], c(�♭j )] − 2�ij[D, �ij ]
= 4�[Z ] + 2�ij [D, �ij],

so that by Jacobi’s formula applied to (�) with the differential calculus induced by D,
�[Z ] = −12⟨�i , �−T �j⟩[D, ⟨�i , ��j⟩] = Vol−1G,�[D,VolG,�].

Next, by the super-Jacobi identity applied on the dense domain DomD ∩ ⋅ H ,

∀j, k ∈ {1,… , m}, [Dℎ, �jk] = −12[Dℎ[Z ], [c(�♭j ), c(�♭k )]]
= 1
2 ([c(�♭j ), T [Z ](�k)] + [c(�♭k ), T [Z ](�j )]),
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so that for every i ∈ {1,… , m},

[Dℎ[Z ], c(�i)] = [Dℎ[Z ], c(�ij�♭j )]
= [Dℎ[Z ], �ij]c(�♭j )] + �ij[Dℎ[Z ], c(�♭j )]
= −�ij[Dℎ[Z ], �jk]c(�k ) + �ijT [Z ](�j )
= �ij (T [Z ](�j) − 1

2([c(�♭j ), T [Z ](�k)] + [c(�♭k ), T [Z ](�j)])c(�k)) ;

conversely, the same computation, mutatis mutandis, shows that for every i ∈ {1,… , m},T [Z ](�i) = [Dℎ[Z ], c(�ij�j )]
= �ij ([D, c(�j )] − 1

2 ([c(�j ), [Dℎ[Z ], c(�k)] + [c(�k ), [Dℎ[Z ], c(�j )])c(�♭k )) ,
so that T [Z ] = 0 if and only if [Dℎ, c(g∗)] = {0}.

Finally, suppose that Z is D-umbilic. Observe that [�[D; Z ],Cl(g∗; �)] = {0} by the first
part combined with Remark 2.15, so that

1m�[Z ] = 1
2m�ij[c(�♭i ), �[Z ]�[Z ]c(�♭j )] = − 1

2m�ij�[Z ]�[Z ][c(�♭i ), c(�♭j )] = �[Z ]�[Z ],
and hence, for every i ∈ {1,… , m},

[Dℎ, c(�i)] = �ij ( 1m�[Z ]c(�♭j ) − 1
2 ([c(�♭j ), 1m�[Z ]c(�♭k )] + [c(�♭k ), 1m�[Z ]c(�♭j )]) c(�k))

= − 1m�[Z ]c(�i). �

Example 2.29. Continuing from Example 2.22, one can show (cf. [97, §6]) that

∀X ∈ g, T [Z(�,c)](X ) = [DEℎ , cE (X♭)] = cE (TVP (⋅, XP , ⋅)),
where TVP (⋅, XP , ⋅) ∈ C∞(P, V P ∗ ⊗̂ HP ∗) ⊂ Ω2(P) for X ∈ g, so that T [Z(�,c)] completely
encodes the first O’Neill tensor TVP of the Riemannian foliation VP , whose restriction to
each G-orbit yields its shape operator as a submanifold of P . Moreover,�[Z(�,c)] = cE (�VP ) = cE (d logVolVP ),
where VolVP ∈ C∞(P)G is the map whose restriction to each G-orbit yields its volume
as a Riemannian manifold. Thus, (C∞c (P), L2(P, E), DE ;U E) endowed with the canonical
vertical geometry (�, c) and the canonical remainder Z(�,c) is orbitwise totally geodesic if
and only if the G-action on P has totally geodesic orbits [97, Thm. 5.23] and orbitwise
totally umbilic if and only if the G-action on P has totally umbilic orbits (cf. [49, §1]).

Example 2.30. Suppose thatG = U(1); let � ∶= 2�⟨d�, � d�⟩−1/2. The canonical remainderZ(�,c) is totally umbilic and � = �−1[D, � ].
Remark 2.31. Suppose that [D,(�)] = {0}, e.g., � ∈ End(g∗)G . By part 1 of Proposi-
tion 2.28, it follows that Z ∈ (�, c) is D-umbilic if and only if it is geodesic.

Remark 2.32. By part 2 of Proposition 2.28 together with the proof of Proposition 1.13, it
follows that Z is D-geodesic if and only if [Dℎ[Z ],Cl(g∗; �)] = {0}. Indeed, suppose thatZ is D-geodesic. Let j, k ∈ {1,… , m}, so that⟨�j ,√��k⟩ = ∫ √z cofj,k (zI − �) det(zI − �)−1dz,
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where  is a suitable positively oriented circle in {z ∈ C | ℜz > 0} with centre on the
real axis. Since [Dℎ[Z ], c(g∗)] = {0}, for every z ∈ C, the self-adjoint operator Dℎ[Z ]
commutes with the even polynomials cofj,k (zI − �) and det(zI − �) in c(g∗) ⊂ Lip(Dℎ[Z ]).
Thus, Dℎ[Z ] commutes with every Riemann sum for ⟨�j ,√��k⟩, and hence ⟨�j ,√��k⟩
defines an element of Lip(Dℎ[Z ]) that commutes with Dℎ[Z ].
Remark 2.33. In general, the mean curvature � is an extrinsic invariant of the vertical
geometry (�, c). Moreover, if there exists D-umbilic Z ∈ (�, c), then the orbitwise shape
operatorX ↦ 1m�c(X♭) of anyD-umbilic remainder is also an extrinsic invariant of (�, c).
Finally, for any Z , Z ′ ∈ (�, c), one can check that T [Z ′] = T [Z ] if and only if Z ′ − Z
supercommutes with c(g∗).

We can now immediately use Proposition 2.28 to gain a better qualitative understand-
ing of the supercommutator [Dv , Dℎ[Z ]]; this is of direct analytic significance since

(D − Z )2 = D2v + Dℎ[Z ]2 + [Dv , Dℎ[Z ]].
Corollary 2.34. Let Z ∈ (�, c). Then, on the joint coreG ⋅ Dom(D)alg for Dv and Dℎ,
[Dv , Dℎ[Z ]] = ⟨�i , ��j⟩ (T [D; Z ](�j) − [D, ⟨�j , �−T �k⟩]c(�k )) dU (�i)

− 1
6 (�l , [�j , �k])[Dℎ[Z ], ⟨�i , �−T �l⟩c(�i�j�k)],

where each term of the form [D, ⟨�j , �−T �k⟩] or [Dℎ[Z ], ⟨�i , �−T �l⟩c(�i�j�k)] is a real poly-
nomial in {T [Z ](�p)}mp=1, {c(�p)}mp=1, and {c(�♭p )}mp=1. In particular, if Z is D-geodesic, then
[Dv , Dℎ[Z ]] = 0, and if Z is D-umbilic, then [Dv , Dℎ[Z ]] = − 1m� ⋅ Dv .

Finally, let us record an index-theoretic consequence of these considerations, a non-
commutative variant of a classical result of Atiyah–Hirzebruch [10, §1] in the spirit of
Forsyth–Rennie [51, §7]. It is based on the following simple observation.

Proposition 2.35 (cf. Forsyth–Rennie [51, Proof of Prop. 7.1]). Let (B, �) be a separable G-C∗-algebra, let n ∈ N ∪ {0}, and let (C, E, S;U ) be an unbounded KKGn -cycle for (C, id) and
(B, �). Suppose that S2 has closed range and that there exists an n-odd G-invariant unitary
Υ on E supercommuting with S2. Then [(C, E, S;U )] = 0 in the group KKGn (C, B).
Proof. Since S2 has closed range, its restriction to ran(S2) = ker(S2)⟂ = ker(S)⟂ is bijective,
so that the bounded transform F ∶= S(1 + S2)−1/2|ran(S2) of S |ran(S2) is invertible by the

closed graph theorem, and hence F̃ ∶= F |F |−1 is an n-odd G-invariant self-adjoint unitary
satisfying [F̃ , F ] = 2F 2|F |−1 = 2|F | ≥ 0. Thus, by [95, Lemma 11] the bounded transform
of (C, ran(S2), S |ran(S2) ;U |ran(S2)) is G-equivariantly homotopic to the degenerate cycle(C, ran(S2), F̃ ;U |ran(S2)). Thus, in the group KKGn (C, B),

[(C, E, S;U )] = [(C, ker(S2), 0;U |ker(S2))] + [(C, ran(S2), S |ran(S2) ;U |ran(S2))]
= [(C, ker(S2), 0;U |ker(S2))] .

Now, let ker(S2)opp denote the Hilbert G-(C, B)-module ker(S2) with the opposite Z2-
grading and the opposite n-multigrading. Since the G-invariant B-linear unitary Υ on E
is n-odd and supercommutes with S2, it restricts to a G-equivariant even B-linear unitary
ker(S2) → ker(S2)opp intertwining the respective n-multigradings, so that in KKGn (C, B),[(C, ker(S2), 0;U(⋅)|ker(S2))] = [(C, ker(S2)opp, −0;U(⋅)|ker(S2))]

= − [(C, ker(S2), 0;U(⋅)|ker(S2))] . �
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Recall that if (, H , D;U ) is n-multigraded for n even, then its equivariant index is the
image indexG (D) ∈ R(G) of [(C, H , D)] under the natural isomorphismKKGn (C,C) ∶= KKG

0 (Cln ,C) ∼→ R(G).
Proposition 2.36. Let (, H , D;U ) be an n-multigraded G-spectral triple for a unital sep-
arable G-C∗-algebra (A, �). Suppose that it admits a D-geodesic remainder Z with respect

to some vertical geometry (�, c). Then [(C, H , D;U )] = 0 in KKGn (C,C); in particular, if n is
even, then indexG (D) = 0.
Proof. First, since (A, �) is unital, by Proposition 2.25, (Dv , Dℎ[Z ]) form a weakly anti-
commuting pair in the sense of Lesch–Mesland [74, Thm. 1.1], so that, by [74, Thm. 5.1],
it follows that D2v + Dℎ[Z ]2 is self-adjoint on Dom(D2v ) ∩ Dom(Dℎ[Z ]2) = Dom((D − Z )2).
Next, since Z is D-geodesic, Corollary 2.34 implies that (D − Z )2 = D2v + Dℎ[Z ]2. Finally,
since Dv = c( /D2

g,�) for /D2
g,� even and central in (g∗; �) and since Z is D-geodesic, it

follows that (D − Z )2 actually commutes with Cl(g∗; �). Thus, it suffices to find an oddG-invariant unitary Υ ∈ c(Cl(g∗; �))Lip((D−Z )2), for then Υ will satisfy the hypotheses of
Proposition 2.35.

On the one hand, if G is Abelian, we can take Υ to be the normalisation (with respect
to �) of any non-zero vector in c(g∗). On the other hand, if G is non-Abelian, so that
the adjoint representation is non-trivial, then, by [76, Prop. 7.2], we can take Υ to be the
appropriate multiple of 1

6⟨�i , �−T [�j , �k]⟩c(�i�j�k) ∈ Cl(g∗; �)G by an invertible element

of (�)Lip((D−Z )2). Either way, by Proposition 2.35, it now follows that [(C, H , D;U )] =
[(C, H , D − Z ;U )] = 0. �

Thus, if (, H , D;U ) is an G-spectral triple for a unital G-C∗-algebra (A, �), then the
class [(C, H , D;U )] ∈ KKGn (C,C), which is just indexG (D) in the even case, is an obstruc-
tion to the existence of a D-geodesic remainder with respect to any vertical geometry.

2.4. Principal G-spectral triples and their factorisation. At last, we define principal G-
spectral triples and use unbounded KK -theory to decompose a principal G-spectral triple
into its noncommutative vertical geometry, noncommutative basic geometry, and non-
commutative principal connection. In what follows, let (A, �) be a principalG-C∗-algebra.

Definition 2.37. A complete G-spectral triple (, H , D;U ) for (A, �) is called principal
with respect to a vertical geometry (�, c) and remainder Z if:

(1) the ∗-subalgebra V�G of V�AG is norm-dense;
(2) the G-equivariant ∗-representation V�A → L(H ) satisfiesV�Aalg ⋅ HG = H, {! ∈ V�A | !|HG = 0} = {0};
(3) the resulting horizontal Dirac operator Dℎ[Z ] satisfies

[Dℎ[Z ],] ⊂ A ⋅ [D − Z ,G]L(H ),(2.7)

[Dℎ[Z ], V�] ⊂ V�A ⋅ [Dℎ[Z ], V�G]L(H ).(2.8)

In the case that Z = Z(�,c) is the canonical remainder, we say that (, H , D;U ) is canon-
ically principal with respect to (�, c); in the case that Z = 0, we say that (, H , D;U ) is
exactly principal with respect to (�, c).
Remark 2.38. For any remainder Z , since Dv supercommutes with G , it follows that

∀a ∈ 
G , [D − Z , a] = [Dℎ[Z ], a].
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Remark 2.39. Suppose that the remainder Z satisfies

(2.9) ∀a ∈ , limk→∞
‖[D − Z , �k]a‖ = 0,

where {�k}k∈N ⊂ G is the adequate approximate unit of (, H , D;U ). If G is Abelian or
if Z is D-umbilic, then (2.7) implies (2.8). Moreover, even without assuming (2.9), if Z isD-geodesic, then (2.7) implies (2.8).

Example 2.40. Continuing from Examples 2.18 and 2.22, suppose that the G-action on P
is free (and hence principal). Using a partition of unity for P/G subordinate to an atlas
of local trivialisations for T (P/G) ≅ HP/G, one can show that (C∞c (P), L2(P, E), DE ;U E) is
canonically principal; in particular, it follows that (C∞c (P), L2(P, E), DE ;U E) is orbitwise
totally geodesic with respect to the canonical remainder if and only if the principal G-
action on P has totally geodesic orbits, if and only if gVP is induced by a single bi-invariant
metric on G [57].

We first show that a principal G-spectral triple naturally gives rise to a spectral triple
encoding the “base” of the noncommutative principal G-bundle; in the absence of any
vertical spinC structure, this spectral triple will be analogous to an “almost-commutative”
spectral triple (in themore general sense of Ćaćić [25] and Boeijink–Van denDungen [19])
over the true noncommutative base.

Proposition 2.41. Suppose that (, H , D;U ) is principal with respect to (�, c) and Z . LetDG[Z ] be the closure of the restriction of Dℎ[Z ] to the domain Dom(Dℎ[Z ])G . Then DG[Z ]
is self-adjoint on Dom(Dℎ[Z ])G = Dom(D − Z )G , the data (VG�, HG , DG [Z ]; id) define
an (n − m)-multigraded G-spectral triple for (V�AG ; id), and the class that it represents inKKGn−m(V�AG ,C) is independent of the choice of Z .
Proof. By Proposition 2.25 and its proof, the operator DG [Z ] is essentially self-adjoint
on Dom(D − Z )G and satisfies [DG [Z ], V�G ] ⊆ L(HG ). Observe that V�G is dense inV�AG by condition 1 and that the restricted ∗-representation V�AG → L(HG) is faithful
and nondegenerate by condition 2 of definition 2.37.

Let us now show that DG [Z ] is self-adjoint on Dom(Dℎ[Z ])G = Dom(D − Z )G and
has locally compact resolvent. Let DG [Z ]′ be the closure of the restriction of D − Z
to the domain Dom(D − Z )G ⊆ Dom(Dℎ[Z ])G . By the proof of Proposition 2.25, it fol-
lows that DG[Z ]′ is self-adjoint on Dom(D − Z )G and that DG [Z ]′ − DG [Z ] = Dv |HG on
Dom(D − Z )G , so DG [Z ]′ and DG[Z ] are both self-adjoint on Dom(D − Z )G by bounded-
ness of Dv |HG together with the Kato–Rellich theorem; since

∀� ∈ C ⧵ R, (DG[Z ] − �)−1 = (DG [Z ]′ − �)−1 + (DG[Z ] − �)−1 Dv |HG (DG[Z ]′ − �)−1,
it therefore suffices to show that that DG[Z ]′ has locally compact resolvent. On the one
hand, since V�A = Clm ⋅c(Cl(g∗; �)) ⋅ A, it follows that

∀! ∈ V�A, ∀� ∈ C ⧵ R, !(D − Z − �)−1 ∈ K(H ).
On the other hand, sinceD−Z is G-invariant, it commutes with the orthogonal projectionPHG ∈ U (G)′′ onto HG . Hence,

∀� ∈ C ⧵ R, ∀! ∈ V�AG , !(DG [Z ]′ − �)−1 = !(D − Z − �)−1PHG |||HG ∈ K(HG ).
Finally, observe that any adequate approximate unit {�k}k∈N ⊂ G for (, H , D − Z )

still defines an adequate approximate unit for (V�, HG , DG [Z ]); since all G-actions are
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now trivial, independence of [DG [Z ]] of the choice of Z follows by Theorem 2.5 sinceZ |
G ⋅HG remains locally bounded and adequate. �

Example 2.42. In the context of example 2.40, the G-equivariant Dirac bundle struc-
ture on E induces a Dirac bundle structure (cE/G ,∇E/G ) on E/G [87, Prop. 2.2], such that
(V�C∞c (P)G , L2(P, E)G , (DE)0; id) can be identified with(Γc(Cl(VP ∗/G)), L2(P/G, E/G), DE/G ; id) ;
this, in turn, is an almost-commutative spectral triple with base P/G in the sense of
Ćaćić [25] and Boeijink–Van den Dungen [19].

We now show how the horizontal Dirac operator Dℎ[Z ] encodes the underlying non-
commutative principal connection.

Proposition 2.43. The densely defined G-equivariant ∗-derivation
[Dℎ[Z ], ⋅] ∶ V� → V�A ⋅ [Dℎ[Z ], V�G]L(H ) ⊂ L(H ),

canonically induces a densely defined G-equivariant Hermitian connection

∇ℎ ∶ V� → L2v(V�A) ⊗̂ℎV�AG Ω1DG [Z ],
on the Hilbert V�AG -module L2v(V�A).
Proof. Let us apply Theorem B.3 to the ∗-derivation [Dℎ[Z ], ⋅]; for relevant definitions,
see Appendix B. Let EV�A ∶ V�A → V�AG denote the canonical faithful conditional
expectation, which is given by

∀! ∈ V�A, EV�A(!) ∶= ∫G V��g (!) dg.
We first claim that (V�A,EV�AV�) defines a noncommutative fibration over the com-

plete spectral triple (V�G , HG , DG [Z ]) for V�AG . Let {�k}k∈N ⊂ G be the G-invariant
adequate approximate identity for (, H , D;U ), which therefore defines the adequate ap-
proximate identity for (V�G , HG , DG [Z ]). First, the inclusion V�AG ↪ V�A is a non-
degenerate ∗-monomorphism precisely since {�k}k∈N continues to define an approximate
identity forV�A. Next, by Theorem1.41, the rightHilbertV�AG-module L2v(V�A) is count-
ably generated and admits a frame in V�Aalg ⊂ V�A. Finally, V� is a dense ∗-subalgebra
of V�A that contains V�G .

Now, recall that LU (H ) denotes the unital G-C∗-algebra of G-continuous elements ofL(H ) with respect to the G-action induced by U (see Equation A.4 in Appendix A). LetELU (H ) ∶ LU (H ) → L(HG ) be the positive contraction defined by defined by

∀T ∈ LU (H ), ∀� ∈ HG , ELU (H )(T )� ∶= ∫G UgTU ∗g� dg.
Finally, by G-invariance of Dℎ[Z ], define ∇0 ∶ V� → LU (H ) by

∀! ∈ V�, ∇0(!) ∶= [Dℎ, !].
We claim that (LU (H ),EL(H ),∇0) is a horizontal differential calculus for (V�A,EV�AV�)
satisfying the strong connection condition; by Theorem B.3, this will complete the proof
of this proposition. First, the inclusion of V�A as a C∗-subalgebra of LU (H ) provides the
required monomorphism V�A ↪ LU (H ). Next, by point 2 together with the fact that U
spatially implements � and hence V�� , it follows that ELU (H )

|||V�A = EV�A; the fact that
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V�AG consists of G-invariant operators now implies that LLU (H ) is left and right V�AG-
linear. Next, since DG[Z ] = DH [Z ]|||Dom(Dℎ[Z ])G , it follows that for all ! ∈ V�A, � ∈ V�G ,
and � ∈ DomDG[Z ],ELU (H )(! ∇0(�))� = ∫G Ug! [Dℎ[Z ], �]U ∗g� dg

= ∫G Ug!U ∗g [DG[Z ], �]� dg = ELU (H )(!)[DG [Z ], �]� ,
it follows that ELU (H ) satisifies (B.1). Finally, by construction of ∇0, (B.2) in this context
is simply a restatement of (2.8) in Definition 2.37. �

Finally, we record the unbounded KK -theoretic decomposition of a principal G-spec-
tral triple into its noncommutative vertical geometry (in the form of the relevant wrong-
way cycle), noncommutative basic geometry (in the form of the “basic” spectral triple
of Proposition 2.41), and noncommutative principal connection and orbitwise extrinsic
geometry (in the form of a suitable module connection).

Theorem 2.44. Let (, H , D;U ) be a principal G-spectral triple for (A, �) with respect to

(�, c) and Z . Let ∇ℎ ∶ V� → L2v(V�A) ⊗̂ℎV�AG Ω1DG [Z ] be the G-equivariant Hermitian

connection induced via Proposition 2.43. Then(, L2v (V�A), c( /Dg,�),∇ℎ; L2v(V��))
defines anm-multigradedG-equivariant-V�G correspondence from theG-spectral triple
(, H , D;U ) to theG-spectral triple (V�G , HG , DG [Z ]; id). In particular, themultiplication

map M ∶ L2v(V�A) ⊗̂ℎV�AG HG → H defines a G-equivariant unitary intertwiner of V�A-
modules, such thatM(c( /Dg,�) ⊗̂ 1)M ∗ = Dv , M (1 ⊗̂∇ℎ DG[Z ])M ∗ = Dℎ[Z ],

∀! ∈ V�, M∇ℎ(!)M ∗ = [Dℎ[Z ], !].
As a result,

(, H , D − Z ;U ) ≅ (, L2v (V�A), c( /Dg,�),∇ℎ; L2v(V��)) ⊗̂V�G (V�G , HG , DG [Z ]; id)
is a constructive factorisation in G-equivariant unbounded KK -theory, where the requiredG-equivariant unitary equivalence is given by the multiplication map M .

Proof. Let us first check the main properties of the multiplication map M . A straight-
forward calculation shows that M is isometric, while Definition 2.37.2 implies that M is
surjective; hence, M is unitary. Next, by construction, M is a G-equivariant intertwiner
for the ∗-representations of V�A + Cl(g∗; �), so that Dv = M (c( /Dg,�) ⊗̂ 1)M ∗ on

M (V�A1 ⊗̂algV�AG HG) = V�A1 ⋅ HG .
Finally, by construction of ∇ℎ and 1 ⊗̂∇ℎ Dℎ[Z ], we see that Dℎ[Z ] = M (1 ⊗̂∇ℎ DG[Z ])M ∗

on the subspace

 ∶= M (V� ⊗̂algV�G DomDG[Z ]) = V� ⋅ DomDG[Z ] ⊂ M (V�A1 ⊗̂algV�AG HG) ;

indeed, for every ! ∈ V� and � ∈ DomDG [Z ], since DG [Z ] = Dℎ[Z ]|Dom(D−Z )G ,M (1 ⊗̂∇ℎ DG [Z ])M ∗(! ⋅ � ) = M (1 ⊗̂∇ℎ DG[Z ]) (! ⊗̂ � )
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= M ([Dℎ[Z ], !] ⊗̂ � + (−1)|!|! ⊗̂ DG [Z ]�)
= [Dℎ[Z ], !] ⋅ � + (−1)|!|! ⋅ Dℎ[Z ]�
= Dℎ[Z ](! ⋅ � ).

We can now proceed to checking conditions 1-3 of Definition 2.8 in turn. First, since
 consists of C1-vectors for � , the data (, L2v(V�A), c( /Dg,�); L2v(�)) define a complete un-

bounded KKGm-cycle by Proposition 1.34, Theorem 1.35 and Corollary 1.42, so that con-
dition 1 is satisfied. Next, condition 2 follows from Propositions 2.25 and 2.43 and the
observation that M(Dv ⊗̂ 1)M ∗ = Dv andM(1 ⊗̂∇ℎ DG [Z ])M ∗ = Dℎ[Z ] on. Finally, con-
dition 3 follows by using M as the required unitary and noting that the adequate locally
bounded operator Z restricts to D −M(Dv ⊗̂ 1 + 1 ⊗̂∇ℎ DG [Z ])M ∗ on ⊂  ⋅DomD. �

As a more-or-less immediate corollary, we obtain a final noncommutative variant of
Atiyah–Hirzebruch’s classical result on the vanishing of theG-equivariant index on com-
pact spin manifolds in the spirit of Forsyth–Rennie. We will need the following lemma.

Lemma 2.45 (cf. Forsyth–Rennie [51, Prop. 7.1]). Let (A, �) be a principal unital G-C∗-
algebra. Suppose thatAd ∶ G → SO(g) lifts to Spin. Then, inKKGm (C, V1AG ) ≅ KKGm (C, AG ),

[(C, A, 0; �)] ⊗̂A (A ↩ AG )! = 0.
Proof. Fix a lift Ãd∗ ∶ G → Spin(Rm⊕g∗) ofAd∗ ∶ G → SO(g∗), so that /S(Rm⊕g∗) defines
a G-equivariant faithful irreducible ∗-representation of Cl(Rm) ⊗̂ Cl(g∗) satisfying

∀X ∈ g, ∀� ∈ /S(Rm ⊕ g∗), dÃd∗(X )� = 1
4⟨X, [�i , �j ]⟩�i�j ⋅ �.

Define the G-equivariant Hilbert (Clm ⊗̂A, AG )-correspondence
( /SA, /S�) ∶= (L2v( /S(Rm ⊕ g∗) ⊗̂ A), L2v(Ãd∗ ⊗̂ �)) = ( /S(Rm ⊕ g∗) ⊗̂ L2v(A), Ãd∗ ⊗̂ L2v (�)) ,

which admits the vertical Clifford action  ∶ g∗ → LAG ( /SA) given by

∀� ∈ g∗, ∀� ∈ /S(Rm ⊕ g∗), ∀a ∈ A,  (�)(� ⊗̂ a) ∶= ((1 ⊗̂ �) ⋅ �) ⊗̂ a.
By Corollary 1.42 and its proof, mutatis mutandis, it follows that ( /SA, /S�) satisfies the
hypotheses of Theorem 1.35, so that (A1, /SA,  ( /Dg,1); /S�) defines an unbounded KKGm-
cycle for ((A, �), (AG , id)). What is more, the quintuple (A1, L2v(V1A), c( /Dg,1), 0; L2v(V1�))
now defines anm-multigraded G-(A, V1AG )-correspondence from (A1, /SA,  ( /Dg,1); /S�) to
(V1AG , /SAG , 0; id), so that

[(A1, /SA,  ( /Dg,�); /S�)] = (A ↩ AG )! ⊗̂V1AG [(V1AG , /SAG , 0; id)] ∈ KKGm (A,AG ),
where [(V1AG , /SAG , 0)] ∈ KKG

0 (V1AG , AG ) is a KKG-equivalence by Proposition 1.16 to-
gether with the construction of /SA. We will use Proposition 2.35 to prove the vanishing
in KKGm (C, AG ) of the class

[(C, A, 0; �)] ⊗̂A [(A1, /SA,  ( /Dg,1); /S�)] = [(C, /SA,  ( /Dg,1); /S�)].
In order to apply Proposition 2.35, we must show that  ( /Dg,1)2 =  ( /D2

g,1) has closed
range. First, by applying the proof of Definition-Proposition 1.25 to the explicit compu-
tation of /D2

g,1 provided by [76, Thm. 7.1 and Prop. 8.4], we find that ( /D2
g,1) = −� ij (d/S�(�i) − dÃd∗(�i) ⊗̂ 1) (d/S�(�j ) − dÃd∗(�j ) ⊗̂ 1) + ‖�+‖2g∗ id

= id ⊗̂d�(Δg,1 + ‖�+‖2g∗1),
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on the core V1Aalg = Cl(Rm ⊕ g∗) ⊗̂ Aalg, where �+ ∈ g∗ denotes the half-sum of positive
weights of g. Next, we can apply Proposition A.6 to G-equivariantly decompose /SA as an
orthogonal direct sum ⨁�∈Ĝ /S(Rm ⊕ g∗) ⊗̂ A� , where, for each � ∈ Ĝ, the G-equivariant
orthogonal projection onto /S(Rm ⊕ g∗) ⊗̂ A� is given by id ⊗̂P� for P� ∶ L2v (A) → L2v (A)
the orthogonal projection onto A� of Proposition A.2. But now, by above calculation of ( /D2

g,1) together with the standard calculation of the eigenvalues of Δg,1 (see, e.g., [76,
Prop. 8.1]), it follows that

∀� ∈ Ĝ,  ( /D2
g,1)||| /S(Rm⊕g∗)⊗̂A� = (‖�� ‖2g∗ + ⟨�� , �+⟩ + ‖�+‖2g∗ ) id /S(Rm⊕g∗)⊗̂A� ,

where for each � ∈ Ĝ, �� ∈ g∗ denotes the highest weight of � per §1.3, so that, in
particular, ‖�� ‖2g∗ + ⟨�� , �+⟩ + ‖�+‖2g∗ = 0 vanishes if and only if �� = 0 and �+ = 0, if and
only if � is trivial and G is Abelian. Finally, define

Q ∶= ∑�∈Ĝ��≠0,�+≠0
(‖�� ‖2g∗ + ⟨�� , �+⟩ + ‖�+‖2g∗ )−1 id ⊗̂P� ∈ LAG ( /SA),

which converges strongly by ellipticity of /D2
g,1 as a positive Laplace-type operator on the

compact Lie group G. Then, by the above diagonalisation of  ( /Dg,1)2, it follows that
 ( /Dg,1)2 ⋅ Q|||ker( ( /Dg,1)2)⟂ = idker( ( /Dg,1)2)⟂ ,

so that ran( ( /Dg,1)2) = ker( ( /Dg,1)2)⟂ is indeed closed.
By Proposition 2.35, it now suffices to find an n-odd G-invariant unitary Y on /SA that

supercommutes with  ( /Dg,1)2 =  ( /D2
g,1). Since /D2

g,1 is an even central element of(g; 1),
it suffices to take Y =  (!) for a non-zero odd G-invariant unitary ! ∈ Cl(g∗). If G
is Abelian, take ! ∈ g∗ ⊂ Cl(g∗)G to be a unit vector; if G is not, so that the adjoint
representation is non-trivial, by [76, Prop. 7.2], take ! to be the appropriate non-zero
scalar multiple of 1

6⟨�i , [�j , �k]⟩�i�j�k ∈ Cl(g∗)G . �

Corollary 2.46 (cf. Atiyah–Hirzebruch [10, §1], Forsyth–Rennie [51, §7]). Suppose that
Ad ∶ G → SO(g) lifts to Spin(g). Let (, H , D;U ) be an n-multigraded G-spectral triple for
a principal unital G-C∗-algebra (A, �), and suppose that it is principal with respect to some

choice of vertical geometry (�, c) and remainder Z . Then [(C, H , D;U )] = 0 in KKGn (C,C);
in particular, if n is even, then indexG (D) = 0.

Proof. By Theorem 2.44 and Proposition 1.43,

[(C, H , D;U )] = [(C, A, 0; �)] ⊗̂A [(, H , D;U )]
= [(C, A, 0; �)] ⊗̂A (c0,�)∗(A ↩ AG )! ⊗̂V�AG [(V�G , HG , DG ; id)]
= [(C, A, 0; �)] ⊗̂A (A ↩ AG )! ⊗̂V1AG (c0,�)∗[(V�G , HG , DG ; id)],

where [(C, A, 0; �)] ⊗̂A (A ↩ AG )! = 0 by Lemma 2.45. �

Example 2.47 (cf. Atiyah–Hirzebruch [10, §1]). In the case of Example 2.40, suppose that
Ad ∶ G → SO(g) lifts to Spin(g), e.g., thatG is a finite product of tori and compact simply-
connected Lie groups, and that P is compact. If the Dirac bundle (E,∇E) is n-multigraded
for n-even, as generally occurs when P is even-dimensional, then indexG (DE) = 0.
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Thus, ifAd ∶ G → SO(g) lifts to Spin, (A, �) is unital, and (, H , D;U ) is n-multigraded
for n even, then IndexG (D) is an obstruction to the existence of any vertical geometry (c, �)
and remainder Z making (, H , D;U ) into a principal G-spectral triple.

3. Foundations for noncommutative gauge theory

In this section, we present a framework for gauge theory on noncommutative Rie-
mannian principal bundles. Given a suitable principalG-spectral triple (, H , D0;U )with
vertical geometry (�, c) and remainder Z , we view (�, c) as encoding a fixed vertical Rie-
mannian geometry, while we view the gauge comparability class of D0 − Z as encoding
a fixed basic geometry. We can now define a noncommutative principal connection to be
a choice of noncommutative Dirac operator D within this class, which admits a gauge
action by the appropriate group of noncommutative gauge transformations. We show that
all these constructions are compatible with the canonical KK -factorisation established in
Theorem 2.44. Moreover, in the unital case, we show that the resulting space of noncom-
mutative principal connections is a R-affine space and that the gauge action is by affine
transformations. To motivate our definitions, we first review the case of gauge theory
on commutative principal bundles. As a noncommutative application, we give a full de-
scription of the gauge theory of crossed products by Zn , viewed as a noncommutative
principal Tn-bundles via the dual action.
3.1. The commutative case revisited. Let P be an n-dimensional oriented principal leftG-manifold; suppose that B ∶= G⧵P is given a complete Riemannian metric gB, and fix an
orbitwise bi-invariant metric gP/B on VP ; let � ∶ P → B be the canonical map, let G(P)
be the group of all gauge transformations of P ։ B, and let A(P) be the R-affine space
of all principal connections on P ։ B. Given these data, we will construct a canonicalG- and G(P)-equivariant metric connection on VP ⊕ � ∗TB that will serve as a principal
connection-independent proxy for the Levi-Civita connection on TP ≅ VP⊕� ∗TB induced
by a choice of principal connection. This, in turn, will let us make precise how the affine
space of principal connections A(P) together with the gauge action of G(P) manifests
itself at the level of generalised Dirac operators.

Recall Atiyah’s observation [7] that a principal connection for � ∶ P ։ B can be
characterized as a splitting of the short exact sequence

(3.1) 0 → VP �−→ TP �∗−−→ � ∗TB → 0
ofG-equivariant vector bundles. Let � = (�, �) be any such splitting, where � is the corre-
sponding left splitting and � is the corresponding right splitting, so that theG-equivariant
isomorphism � ⊕ �∗ ∶ TP ∼→ VP ⊕ � ∗TB induces a G-invariant metricgP,� ∶= (� ⊕ �∗)∗ (gP/B ⊕ � ∗gB)
on P that restricts to gP/B on VP and descends to gB on TB. By duality, we get a splitting� ∗ = (�t , �t ) of the short exact sequence
(3.2) 0 → � ∗T ∗B � ∗−−→ T ∗P �∗−→ VP ∗ → 0

of G-equivariant vector bundles, so that �t ⊕�t = (�⊕�∗)−t ∶ T ∗P ∼→ VP ∗ ⊕� ∗T ∗B inducesg−1P ,� = (�t ⊕ � ∗)∗ (g−1P/B ⊕ � ∗g−1B ) .
on T ∗P . Finally, observe that if � ′ = (�′, �′) is another splitting of (3.1), then

im((�′)t − �t ) ⊂ im � ∗,
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so that gP ,� and gP,� ′ define the same Riemannian volume form (cf. [82, §3.4.5]). Thus, we
treat (T⊕P, g⊕) ∶= (VP ⊕ � ∗TB, gP/B ⊕ � ∗gB) as a principal connection-independent proxy
for TP endowed with a G-invariant Riemannian metric compatible with gB and gP/B .
Remark 3.1. For any � ∈ A(P), the metric gP,� is complete. Indeed, if  ∶ [0, +∞) → P is
a smooth, divergent parametrized curve (i.e., for every K ⊂ P compact, there exists t > 0
such that  (t) ∉ K ), then �◦ ∶ [0, +∞) → B is still smooth and divergent, and hence

∫ ∞

0

√gP,� ( ′(t),  ′(t)) dt ≥ ∫ ∞

0

√gB((�◦ )′(t), (�◦ )′(t)) dt = +∞.
Now, recall that the gauge action of G(P) on the R-affine space A(P) is given by

∀f ∈ G(P), ∀� = (�, �) ∈ A(P), f ⋅ � ∶= (�◦(f∗)−1, f∗◦�).
Let f ∈ G(P). On the one hand, since �◦f = � , it follows that df ∶ TP → TP restricts to aG-equivariant bundle isomorphism VP → VP covering f ; in fact, since f ∶ P → P is G-
equivariant, it follows that f∗(XP ) = XP for every X ∈ g, so that f ∗gP/B = gP/B by orbitwise
bi-invariance of gP/B . On the other hand, since �◦f = � , it follows that f canonically lifts
to a G-equivariant bundle morphism � ∗TB → � ∗TB covering f , such that f ∗� ∗gB = � ∗gB
and the induced map f∗ ∶ Γ(� ∗TB) → Γ(� ∗TB) acts as the identity on � ∗X(B) = Γ(� ∗TB)G .
Thus, the Riemannian vector bundle (T⊕P, g⊕) is not only G-equivariant but also G(P)-
equivariant; indeed, we now endow it with a canonical G- and G(P)-equivariant metric
connection ∇⊕ that will serve as a principal connection-independent proxy for the Levi-
Civita connection.

Proposition 3.2. Let � = (�, �) ∈ A(P), and define ∇⊕ on T⊕P ∶= VP ⊕ � ∗TB by

∀X ∈ X(P), ∀V ,W ∈ Γ(VP), gP/B(∇⊕XV ,W ) ∶= gP/B(�∇TP,�X �V ,W ),
∀X ∈ X(P), ∀H, K ∈ Γ(� ∗TB), � ∗gB(∇⊕XH, K ) ∶= � ∗gB(�∗∇TP,�X �H , K )

+ 1
2gP/B(�[�H , �K ], �X ),

where∇TP,� is the Levi-Civita connection of gP,� . Then ∇⊕ defines aG- and G(P)-equivariant
metric connection on (T⊕P, g⊕) that is independent of the choice of � .
Proof. Observe that ∇⊕ is a direct sum of connections on VP and � ∗TB, respectively;
hence, it suffices to check the properties of ∇⊕ on VP and � ∗TB separately. Note that ∇⊕
is already a G-equivariant metric connection on (T⊕P, g⊕) by its construction from the
Levi-Civita connection for a G-equivariant Riemannian metric on P .

First, let X ∈ X(P) and let V ,W ∈ Γ(VP); without loss of generality, suppose that X
is G-invariant and that V = vP , W = wP for v,w ∈ g. Then, by Koszul’s identity and
orbitwise bi-invariance of gP/B ,

2gP/B(�∇TP,�X �V ,W ) = XgP/B(V ,W ) + (�V )gP/B(�X ,W ) − (�W )gP/B(�X , V )
= XgP/B(V ,W ) + gP/B(�X , [V ,W ]) − gP/B(�X , [W,V ])
= XgP/B(V ,W ),

so that the restriction of ∇⊕ to VP is independent of � ; moreover, for any f ∈ G(P), sincef∗V = V , f∗W = W , and f∗X ∈ X(P)G , it therefore follows that
gP/B(f∗∇⊕XV ,W ) = 1

2 (f −1)∗ (XgP/B(vP ,wP )) = 1
2(f∗X )gP/B(vP ,wP ) = gP/B(∇⊕f∗X f∗V ,W ),

so that the restriction of ∇⊕ to VP is G(P)-equivariant.
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Now, let X ∈ X(P) and let H, K ∈ Γ(� ∗TB); without loss of generality, suppose that X ,H , and K are all G-invariant, so that �∗X, H , K are lifts of X,H,K ∈ X(B), respectively.
Before continuing, note thatgP,� ([�H , �K ], X ) = (� ∗gB)(�∗[�H , �K ], �∗X ) + gP/B(�[�H , �K ], �X )

= � ∗gB([H,K],X) + gP/B(�[�H , �K ], �X ),
and that [�X , �H ], [�X , �K ] ∈ Γ(VP) by G-invariance of �H and �K , respectively. Then,
by Koszul’s identity,

2� ∗gB(�∗∇TP,�X �H , K ) = 2gP,� (∇TP,�X �H , �K )
= XgP,� (�H , �K ) + (�H )gP,� (X, �K ) − (�K )gP,� (X, �H )
+ gP,� ([X, �H ], K ) − gP,� ([X, �H ], �K ) − g([�H , �K ], X )

= � ∗XgB(H,K) + � ∗HgB(X,K) − � ∗KgB(X,X)
+ (� ∗gB([X,H],K) + gP,� ([�X , �H ], �K ))
− (� ∗gB([X,K],H) + gP,� ([�X , �K ], �H ))

− (� ∗gB([H,K],X) + gP/B(�[�H , �K ], �X ))
= 2� ∗gB(∇TBX H,K) − gP/B(�[�H , �K ], �X ),

so that the restriction of ∇⊕ to � ∗TB is independent of � ; moreover, for any f ∈ G(P),
since f∗H = H , f∗K = K , and f∗X ∈ X(P)G with �∗(f∗X ) = �∗X = X, it follows that� ∗gB(f∗∇⊕XH, K ) = (f −1)∗� ∗gB(∇TBX H,K) = � ∗gB(∇TBX H,K) = � ∗gB(∇⊕f∗X f∗H, K ),
so that ∇⊕ is indeed G(P)-equivariant. �

Now, by abuse of notation, let ∇⊕ also denote the dual connection on VP ∗ ⊕� ∗T ∗B. For
convenience, we say that a Hermitian vector bundle E is n-multigraded if it is Z2-graded
and admits a smooth fibrewise ∗-representation of Cln . We can finally define a principal
connection-independent analogue of Dirac bundle on P .
Definition 3.3. Let E → P be a G-equivarant n-multigraded Hermitian vector bundle.
We define a pre-Dirac bundle structure on E to consist of the following:

(1) a G-equivariant Clifford action c⊕ ∶ (T⊕P ∗, g−1⊕ ) → End(E) by odd skew-adjoint
bundle endomorphisms supercommuting with Cln;

(2) an evenG-equivariant Hermitian connection ∇E,⊕ on E supercommutingwithCln
and satisfying

∀! ∈ Γ(P, T⊕P ∗), ∀X ∈ X(P), [∇E,⊕X , c⊕(!)] = c⊕(∇⊕X!);
in which case, we call E endowed with a (c⊕,∇E,⊕) a pre-Dirac bundle.

Let us now see how gauge transformations interact with a pre-Dirac bundle. For eachf ∈ G(P), let �f ∶ P → G be the unique smooth function, such that

∀p ∈ P, f (p) = �f (p) ⋅ p;
since f is G-equivariant, it follows that �f is G-equivariant with respect to the adjoint
action on G. Now, if E → P is a G-equivariant Hermitian vector bundle, then eachf ∈ G(P) yields a G-equivariant unitary bundle isomorphism ΣEf ∶ E → f ∗E given by

∀p ∈ P, ∀e ∈ Ep , ΣEf (e) ∶= �f (p) ⋅ e ∈ Ef (p) = (f ∗E)p ,
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which, in turn, induces a G-invariant unitary SEf ∈ U (L2(P, E)) by
∀� ∈ C∞c (P, E), SEf � ∶= ΣEf ◦�◦f −1 = (f −1)∗(ΣEf ◦�).

In the case that E admits a pre-Dirac bundle structure, the lifted action of G(P) on E
interacts with that structure as follows.

Proposition 3.4. Let (E, c⊕,∇E,⊕) be a pre-Dirac bundle. For any f ∈ G(P), the operator SEf
supercommutes with c⊕(!) whenever ! = (XP )♭ for X ∈ g or ! ∈ � ∗Ω1(B) and gives rise to

a pre-Dirac bundle structure (c⊕,∇E,⊕;f ) on E, where
∀X ∈ X(P), ∀� ∈ Γ(E), ∇E,⊕;fX � ∶= SEf ∇E,⊕(f −1)∗X (SEf )∗�.

Proof. Fix f ∈ G(P). Let ∇f ∗E denote the pullback connection on f ∗E and let ∇Hom(E,f ∗E)
denote the induced connection on Hom(E, f ∗E). Then, for any � ∈ Γ(E),
SEf ∇EX = (f −1)∗ΣEf ∇EX � = (f −1)(∇f ∗EX (ΣEf �) − ∇Hom(E,f ∗E)X ΣEf �)

= ∇E,⊕f∗X SEf � − (∇Hom(E,f ∗E)X ΣEf ◦(ΣEf )−1) SEf �,
which shows that ∇E,⊕;f is a connection; since f and �f are G-equivariant and ∇E,⊕ is G-
equivariant andHermitian, it now follows that ∇E,⊕;f is alsoG-equivariant andHermitian.
It remains to show compatibility of ∇E,⊕;f with the metric connection ∇⊕ on T⊕P .

Now, by the defining properties of f together with G-equivariance of c⊕,
∀! ∈ Γ(T⊕P ∗), SEf c⊕(!)(SEf )∗ = c⊕(f ∗!);

now, if ! = (XP )♭ for X ∈ g or ! ∈ � ∗Ω1(B), then f ∗! = ! by the proof of Proposition 3.2,
so that SEf actually supercommutes with c⊕(!), and hence

∀X ∈ X(P), ∀! ∈ Γ(T⊕P ∗), [∇E,⊕;fX , c⊕(!)] = c⊕(f ∗∇⊕f∗X!) = c⊕(∇⊕X f ∗!) = c⊕(∇⊕X!).
Since [∇E,⊕;fX , c⊕(!)] − c⊕(∇⊕X!) is tensorial in X ∈ X(P) and ! ∈ Γ(T⊕P ∗), it now follows

that ∇E,⊕;f is indeed compatible with ∇⊕ on VP ∗ ⊕ � ∗T ∗B. �

Finally, if E → P is a G-equivariant n-multigraded Hermitian vector bundle, any prin-
cipal connection � induces a canonical bijection between Dirac bundle structures and
pre-Dirac bundle structures on E; in what follows, for any principal connection � = (�, �),
let ∇TP,� denote the Levi-Civita connection on TP with respect to gP,� .
Proposition 3.5 (Prokhorenkov–Richardson [87, Prop. 2.2 and §3]). Let E → P be an n-
multigraded G-equivariant Hermitian vector bundle. Then every principal connection � =
(�, �) on P ։ B defines a bijection

{Dirac bundle structures on E with respect to gP,�} ∼→ {pre-Dirac bundle structures on E},
(cE ,∇E) ↦ (c⊕,∇E,⊕),

where c⊕ ∶= cE◦(�t ⊕ � ∗) and where ∇E,⊕ is defined by

(3.3) ∀X ∈ X(P), ∇E,⊕X ∶= ∇EX − 12
m∑i=1 c⊕ (�t (∇TP,�X ei)♭ ⋅ ei)+ 14c⊕(gP/B(�[�(⋅), �(⋅)], �X )),
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for {ei}mi=1 any local frame for VP . Moreover, for any Dirac bundle structure (cE ,∇E ) on E
with resulting Dirac operator DE , the canonical horizontal Dirac operator DEℎ is given by

(3.4) DEℎ =
n∑j=m+1

c⊕(ej )∇E,⊕�(ej ),
where {ej}nj=m+1 is any local frame for � ∗TB.
Remark 3.6. As observed in Example 2.18, for any principal connection � , the horizontal
Dirac operator DEℎ of a Dirac bundle structure on E with respect to gP,� is precisely the
transversal Dirac operator on E of the isoparametric Riemannian foliation VP of (P, gP,� ).
Remark 3.7. Prokhorenkov–Richardson formulate Proposition 3.2 differently in the con-
text of transverse Dirac operators for Riemannian foliations. Let ∇̃TP,� be the compression
of ∇TP,� to a block-diagonal connection on TP = VP ⊕ �� ∗TB. Then, in fact, they correct
∇E to a connection ∇̃E on E compatible with ∇̃TP,� by setting

∀X ∈ X(P), ∇̃EX ∶= ∇EX − 1
2

m∑i=1 c⊕ (�t (∇TP,�X ei)♭ ⋅ ei) .
Now, the connection ∇TP,⊕ of Proposition 3.2 is related to ∇̃TP,� by

∀X, Y , Z ∈ X(P), gP,� (∇TP,⊕X Y − ∇̃TP,�X Y , Z ) = 1
2gP/B(�[��∗Y , ��∗Z ], �X );

hence, by the proof of [87, Prop. 2.2], mutatis mutandis, we can further correct ∇̃E to a
connection ∇E,⊕ compatible with ∇⊕ by setting

∀X ∈ X(P), ∇E⊕X ∶= ∇̃EX + 1
4c⊕(gP/B(�[�(⋅), �(⋅)], �X )).

Given a pre-Dirac bundle (E, c⊕,∇E,⊕), each principal connection � gives rise to the
generalised Dirac operator DE� of the Dirac bundle structure induced by � , and hence to
a principal G-spectral triple (C∞c (P), L2(P, E), DE� ;U E) with canonical vertical geometry
and canonical remainder ZE� ; let DEℎ,� denote the resulting canonical horizontal Dirac
operator. The affine space of principal connections A(P) together with the gauge action
of G(P)manifests itself at the level of commutative principal G-spectral triples as follows.
Theorem 3.8. Let (E, c⊕,∇E,⊕) be an n-multigraded pre-Dirac bundle.

(1) For any �1 = (�1, �1), �2 = (�2, �2) ∈ A(P), the commutative principal G-spectral
triples defined by DE�1 and DE�2 have the same canonical vertical geometry, which
depends only on gP/B , and hence the same vertical Dirac operator, while

(3.5) DEℎ,�2 − DEℎ,�1 = n∑j=m+1
c⊕(ej )∇E,⊕(�2−�1)(ej ),

where {ej}nj=m+1 is any local frame for � ∗TB; moreover,

(3.6) ∀X ∈ g, [DEℎ,�2 − DEℎ,�1 , c⊕((XP )♭)] = 0.
(2) For any f ∈ G(P) and � ∈ A(P), the operator SEf [DEℎ,� , (SEf )∗] supercommutes with

{c⊕((XP )♭) | X ∈ g} and satisfies

(3.7) SEf [DEℎ,� , (SEf )∗] − (DEℎ,f ⋅� − DEℎ,� ) = SEf DEℎ,� (SEf )∗ − DEℎ,f ⋅� ∈ Γ(End(E)).
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Proof. First, for i = 1, 2, the vertical Clifford action ci ∶ g∗ → B(L2(P, E)) is induced by

composing the isomorphism g∗ × P ∼→ VP ∗ with cEi ◦�ti = c⊕◦(�ti ⊕ �ti )◦�ti = c⊕||VP ∗ , so
that DE�1 and DE�2 do indeed admit the same canonical vertical geometry. In particular, it

follows that DE�1 and DE�2 admit the same vertical Dirac operator. Hence, by (3.4),

DEℎ,�2 − DEℎ,�1 = n∑j=m+1
c⊕(ej )∇E,⊕�2(ej) − n∑j=m+1

c⊕(ej )∇E,⊕�1(ej ) = n∑j=m+1
c⊕(ej )∇E,⊕(�2−�1)(ej).

Now, for � = (�, �) a principal connection, define T� ∈ C∞(P, S2VP ∗ ⊗̂ � ∗T ∗B) by
∀X, Y ∈ Γ(VP), ∀Z ∈ Γ(� ∗TB), T� (X, Y , Z ) ∶= −12�(Z )gVP (X, Y ),

so that T� can be identified with the second fundamental form of the Riemannian foliationVP with respect to gP,� . Then, by Example 2.22, to prove (3.6), it suffices to show thatT�1 = T�2 . So, let Z ∈ Γ(� ∗TB)G . Then, for any X, Y ∈ g,

T�2 (XP , YP , Z ) − T�1 (XP , YP , Z ) = −12 ((�2−�1)(Z )gVP) (XP , YP )
= − 1

2(�2 − �1)(Z ) (gVP (XP , YP )) − gVP ([(�2 − �1)(Z ), XP ], YP )
− gVP (XP , [(�2 − �1)(Z ), YP ])

=0,
since gVP (XP , YP ) ∈ C∞b (P)G and (�2 − �1)(Z ) ∈ Γ(VP)G .

Finally, let f ∈ G(P) and � ∈ A(P). Observe that by Proposition 3.4, the operatorSEf DEℎ,� (SEf )∗ is simply the canonical horizontal Dirac operator on the Dirac bundle defined

by (E, c⊕,∇E,⊕;f ) together with the principal connection f ⋅ � ; hence SEf DEℎ,� (SEf )∗ − Dℎ,f ⋅�
is a bundle endomorphism supercommuting with c⊕((XP )♭) for any X ∈ g. The rest now
follows by applying our calculations above to DEℎ,f ⋅� − DEℎ,� . �

In conclusion, given a pre-Dirac bundle (E, c⊕,∇E,⊕), the map fromA(P) to the R-vector
space of first-order differential operators defined by � ↦ DE� −ZE� is an affine map that is
G(P)-equivariant at the level of principal symbols—at the level of differential operators,
it is G(P)-equivariant up to the groupoid 1-cocycle

G(P) ⋉A(P) ∋ (�, f ) ↦ SEf DEℎ,� (SEf )∗ − DEℎ,f ⋅� ∈ Γ(End(E)),
on the action groupoid G(P)⋉A(P). Moreover, the range of this map is an R-affine space
whose G(P)-invariant space of translations consists of first-order vertical differential op-
erators.

3.2. Noncommutative principal connections and gauge transformations. Let us now
generalise the above considerations to the noncommutative case. Fix a principal G-C∗-
algebra (A, �) as the underlying noncommutative topological principal G-bundle. Just as
we could extract a pre-Dirac bundle from aDirac bundle and vary the principal connection
in a manner that is gauge-equivariant up to a certain groupoid 1-cocycle, so too will we
be able to take a suitable principal G-spectral triple for (A, �) and vary the Dirac operator
in a manner that will be gauge-equivariant in the appropriate noncommutative sense.

First, let us make precise what we mean by a suitable principal G-spectral triple.
Definition 3.9. Let (, H , D;U ) be a principal G-spectral triple for (A, �)with vertical ge-
ometry (�, c) and remainder Z . We say that (, H , D;U ) is gauge-admissible with respect
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to Z (or that Z is gauge-admissible) if the G-invariant subspace Dom(D −Z ) ∩ ⋅DomDv
is a core for D − Z and

(3.8) ∀! ∈ V�, [Dℎ[Z ], !] ⊂ V�A ⋅ [D − Z ,G].
Remark 3.10. By Proposition 2.6, it follows that

Dom(D − Z ) ∩ ⋅ DomDv = (Dom(D − Z ) ∩ ⋅ H ) ∩ ⋅ DomDv
= (DomD ∩ ⋅ H ) ∩ ⋅ DomDv
= DomD ∩ ⋅ DomDv .

Thus, if  =  ⋅, then by [46, Thm. 3.5], the operator D − Z is essentially self-adjoint
on Dom(D − Z ) ∩ ⋅ DomDv = DomD ∩ ⋅ DomDv if and only if D is. Moreover, if A
is unital, then Dom(D − Z ) ∩ ⋅ DomDv = Dom(D − Z ) is vacuously a core for D − Z .
Remark 3.11. If D − Z is essentially self-adjoint on Dom(D − Z ) ∩  ⋅ DomDv , then
follows that Z is gauge-admissible whenever Z is totally umbilic, e.g., whenever Z is
totally geodesic.

Fix an n-multigraded gauge-admissible principal G-spectral triple (, H , D base;U ) for
(A, �)with vertical geometry (�, c), remainder Z , and adequate approximate unit {�k}k∈N;
by replacing D base with D base − Z , we may assume without any loss of generality that
(, H , D base;U ) is exactly principal. Let D denote the set of all densely-defined self-
adjoint operators D on H , such that (, H , D;U ) is an n-multigraded gauge-admissible
exactly principal G-spectral triple for (A, �) with the same n-multigrading on H , the
same vertical geometry (�, c), and the same adequate approximate unit {�k}k∈N; we de-
note their common vertical Dirac operator by /Dv and their commonG-invariant R-vector
space of all remainders supercommuting with Cl(g∗; �) andG byR. For notational sim-
plicity, if D ∈ D, then Dℎ ∶= Dℎ[0] and DG ∶= DG [0]; observe that

∀D1, D2 ∈ D, D2 − D1 = ( /Dv + (D2)ℎ) − ( /Dv + (D1)ℎ) = (D2)ℎ − (D1)ℎ,
so that a choice of D ∈ D is tantamount to a choice of horizontal Dirac operator Dℎ.
Definition 3.12. If D1, D2 ∈ D, then we call D1 and D2 gauge-comparable whenever:

(1) DomD1 ∩ DomD2 ∩ ⋅ Dom( /Dv ) is a joint core for D1, D2, and /Dv ;
(2) for every a ∈ , the operator (D1−D2) ⋅a extends to an element of L(Dom /Dv , H );
(3) D1 − D2 supercommutes with Cl(g∗; �) and G .

We call the resulting binary relation gauge comparability.

Remark 3.13. If A is unital, then by Proposition 2.25, for any D ∈ D, the pair ( /Dv , Dℎ) is
a weakly anticommuting pair in the sense of [74], and hence DomD = Dom /Dv ∩DomDℎ
with equivalent norms; as a result, condition 1 holds if and only if DomD1 ∩ DomD2 is a
joint core for D1 and D2.

Proposition 3.14. Gauge comparability is an equivalence relation.

Proof. The only non-trivial point is transitivity. Suppose that D1, D2 ∈ D are gauge com-
parable; it suffices, then, to show that DomD1 ∩ ⋅Dom /Dv = DomD2 ∩ ⋅Dom /Dv . For
convenience, let ! ∶= D2 − D1 and let  ∶= DomD1 ∩ DomD2 ∩ ⋅ Dom( /Dv ).

First, let us show that  ⋅ Dom /Dv ⊂ Dom!. Let a ∈  and let � ∈ Dom /Dv ; since
 is a core for /Dv , there exists a sequence {�k}k∈N ⊂ , such that limk→+∞ �k = � in
Dom /Dv , but now, by continuity of ! ⋅ a ∶ Dom /Dv → H ,

limk→+∞
!(a�k ) = limk→+∞

! ⋅ a(�k ) = ! ⋅ a(� ),
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so that a ⋅ � ∈ Dom! with !(a� ) = ! ⋅ a(� ).
Now, since  ⋅ Dom /Dv ⊆ Dom!, it follows that

 ⊂ DomD1 ∩ ⋅ Dom /Dv ⊂ DomD1 ∩ Dom! ⊂ DomD1 + !,
so that D2 = D1 + ! with DomD2 ∩ ⋅ Dom /Dv ⊇ DomD1 ∩ ⋅ Dom /Dv ; by symmetry,
the same argument also shows that DomD1 ∩ ⋅ Dom /Dv ⊇ DomD2 ∩  ⋅ Dom /Dv , so
that, indeed,

DomD1 ∩ ⋅ Dom /Dv = DomD2 ∩ ⋅ Dom /Dv .
Transitivity of gauge comparability is now immediate. �

At last, we define the Atiyah space At[D base] of D base to be the gauge comparability
class of D base in D endowed with the weak topology induced by the countable family
{�}k∈N of maps At → L(Dom /Dv , H ) defined by

∀k ∈ N, ∀D ∈ At, �(D) ∶= (D − D base) ⋅ �k |||Dom /Dv ;
here, L(DomDv , H ) is given the norm topology. Where there is no ambiguity, we will
denote At[D base] by At. Note that this topology on At is metrizable and independent of
the choice of base point in the gauge comparability class of D base. For the moment, At
is just a topological space, but when A is unital, it will, in fact, have the structure of a
topological R-affine space.

Example 3.15. Under the hypotheses of Subsection 3.1, fix an n-multigraded pre-Dirac
bundle (E, c⊕,∇E,⊕) on P . Let { k}k∈N ⊂ C∞c (P/G, [0, 1]) satisfy  k →k→+∞ 1 pointwise
and d k →k→+∞ 0 uniformly, and for each k ∈ N, let �k be the pullback of  k to P .
Thus, for any � ∈ A(P), the sequence {�k}k∈N defines an adequate approximate unit for
(C∞c (P), L2(P, E), DE� ;U E), which is gauge-admissible with respect to Z� , since DE� − Z� is
essentially self-adjoint on C∞c (P, E) ⊂ Dom(DE� − Z� ) ∩ C∞c (P) ⋅ Dom /Dv and

[(D� )ℎ[Z� ], C∞c (P,Cl(VP ∗))] ⊆ C∞c (P,Cl(VP ∗) ⊗̂ � ∗T ∗B) ⊆ C∞c (P,Cl(VP ∗)) ⋅ � ∗C∞c (B, T ∗B),
where the final inclusion follows by means of a local trivialisation atlas for TB together
with a subordinate partition of unity on B. In fact, by Chernoff’s criterion [30], the vertical
Dirac operator /Dv is also essentially self-adjoint on C∞c (P, E). Then for any �0 ∈ A(P), the
space At induced by DE�0 −Z�0 contains {DE� −Z� |� ∈ A(P)}, and so is independent of the
choice of �0; moreover, the inclusion A(P) ↪ At defined by � ↦ DE� − Z� is continuous
with respect to the topology on A(P) induced by the Montel topology on Ω1(P, g) via the
identification of a principal connection with its g-valued connection 1-form.

Since elements ofAt admit the same vertical geometry (�, c) and yield the same spectral
triple for V�AG up to a locally bounded and adequate perturbation supercommuting with

G , we can view At as encoding variation of principal connection with respect to a fixed
vertical geometry, basic geometry, and pre-Dirac bundle. Moreover, we can now check
that this noncommutative variation of principal connection is invisible at the level of G-
equivariant index theory. One would expect this, for instance, from the commutative
case, where the Chern–Weil homomorphism of a principal bundle is independent of the
choice of principal connection used.

Proposition 3.16. Let D1, D2 ∈ D be gauge-comparable. Then

[D1] = [D2] ∈ KKGn (A,C), [DG1 ] = [DG2 ] ∈ KKGn−m(V�AG ,C).
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Proof. Since /Dv |HG ∶ HG → HG is bounded and self-adjoint, the G-invariant operatorDG2 − DG1 = D1 − D2|Dom(D1)G∩Dom(D2)G∩G ⋅HG on

Dom(D1)G ∩ Dom(D2)G ∩G ⋅ HG = Dom(DG1 ) ∩G ⋅ HG = Dom(DG2 ) ∩G ⋅ HG
extends to a (trivially) G-invariant adequate symmetric locally bounded operator on HG
supercommuting with Cln−m , so that [DG1 ] = [DG2 ]. Hence, by Theorem 2.44 applied toD1 and D2, respectively,

[D1] = (A ↩ AG )! ⊗̂V�AG [DG1 ] = (A ↩ AG )! ⊗̂V�AG [DG2 ] = [D2]. �

Let us now generalise global gauge transformations to our noncommutative setting;
note that we are only considering global gauge transformations, as opposed to infinitesi-
mal gauge transformation, which have been recently been studied in a noncommutative
context by Brzeziński–Gaunt–Schenkel [22]. In light of (3.7), one should view our con-
structions asmorally generalising the gauge action up to anR-valued groupoid 1-cocycle.

Definition 3.17. Let D ∈ At. We define a gauge transformation of D to be an even G-
invariant unitary S ∈ U (H )G , supercommuting with Cln , Cl(g∗; �), and AG , such that

(1) SS∗ = ;
(2) S(DomD ∩ ⋅Dom /Dv) = DomD ∩ ⋅Dom /Dv , and for every a ∈ , the operator

[D, S] ⋅ a extends to an element of L(Dom /Dv , H );
(3) the operator [D, S] on DomD ∩ ⋅ Dom /Dv supercommutes with both Cl(g∗; �)

and G .
We denote the set of all gauge transformations of D by G(D).
Proposition 3.18. Let D ∈ At. Then:

(1) for every S ∈ G(D), the operator SDS∗ on S DomD defines an element of At;
(2) the subset G(D) ⊂ U (H ) is a subgroup;
(3) for every D′ ∈ D, we have G(D′) = G(D).

Proof. First, let S ∈ G(D); we wish to show that the operator D′ ∶= SDS∗ with domainS DomD defines an element of At. First, by point 1 together with supercommutation of
the G-invariant unitary S with Cln , Cl(g∗; �), and AG , it follows that (, H , D′;U ) still
defines an n-multigraded exactly principal G-spectral triple with vertical geometry (�, c).
Next, since S commutes with G and with /Dv , it follows that (, H , D′;U ) is still gauge
admissible, so that D′ defines an element of D. Now, by point 2 of Definition 3.17,

DomD′∩DomD∩⋅Dom /Dv = S DomD∩S(DomD∩⋅Dom /Dv) = S(DomD∩⋅Dom /Dv),
where, in turn,

DomD ∩ ⋅ Dom /Dv = S(DomD ∩ ⋅ Dom /Dv) = DomD′ ∩ ⋅ Dom /Dv ,
so that DomD′ ∩ DomD ∩  ⋅ Dom /Dv is a joint core for both D and D′. Thus, on this
joint core, we can safely computeD′ − D = SDS∗ − DSS∗ = −[D, S]S∗;
since SS∗ = , we can now conclude that point 2 of Definition 3.12 follows from point 2
ofDefinition 3.17 and that point 3 of Definition 3.12 follows from point 3 ofDefinition 3.17.

Let us show that G(D) is a subgroup of U (H ). Observe that 1 ∈ G(D). Now, suppose
that S, T ∈ G(D). Then ST−1 automatically satisfies all the conditions of Definition 3.17
except possibly 2 and 3. But now, since

[D, ST−1] = [D, S]T−1 + S[D, T−1] = [D, S]T−1 − ST−1[D, T ]T−1,
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on DomD ∩ ⋅ Dom /Dv , where S and T−1 both supercommute with G and Cl(g∗; �), it
follows that ST−1 also satisfies the remaining conditions.

Now, given D′ ∈ At, let us show that G(D′) = G(D); by symmetry, it suffices to show
that G(D) ⊂ G(D′). Now, let S ∈ G(D). Then S automatically satisfies all the conditions
of definition 3.17 for G(D2) except possibly 2 and 3. But now, since

[D′, S] = [D, S] + S(D′ − D1) − (D′ − D)S
on DomD ∩ ⋅ Dom /Dv = DomD′ ∩  ⋅ Dom /Dv , where S supercommutes with G +
(�) and satisfies SS∗ = , it follows that S also satisfies the remaining conditions for
membership of G(D′). �

Definition 3.19. We define the gauge group to be G ∶= G(D) for any D ∈ At, and we
define the gauge action to be the action of G on At defined by

G × At → At, (S, D) ↦ SDS∗.
We endow G with the weak topology induced by inclusion G ↪ U (H ) and the map

G → At, S ↦ SD baseS∗,
where U (H ) is endowed with the norm topology and At is topologised as above. This
topology makes G into a metrizable group and the gauge action a continuous group ac-
tion; moreover, this topology is independent of the choice of basepoint D base ∈ At.

Example 3.20. Continuing with Example 3.15, Proposition 3.4 and Corollary 3.8 imply
that the map G(P) ∋ f ↦ SEf defines a group monomorphism G(P) ↪ G that is contin-

uous with respect to the topology on G(P) induced by the Montel topology on C∞(P, G).
Moreover, by Corollary 3.8, the inclusion A(P) ↪ At intertwines the respective actions
of G(P) and G up to the groupoid cocycle

(3.9) G(P) ⋉A(P) ∋ (f , � ) ↦ SEf DE� (SEf )∗ − DEf ⋅� = SEf [DEℎ,� , (SEf )∗] − (DEf ⋅� − DE� ) ∈ R;

in particular, for all f ∈ G(P) and � ∈ A(P), the operators SEf DE� (SEf )∗ and DEf ⋅� have the

same principal symbol.

Remark 3.21. Let R be topologised by the family of seminorms R ∋ Z ↦ ‖Z�k‖L(H ) fork ∈ N, so that R defines a metrizable topological R-vector space admitting an isometricR-linear representation of G given by

G ×R ∋ (S, Z ) ↦ SZS∗ ∈ R.
By Proposition 2.24, it follows that R acts freely, continuously, and G-equivariantly as a
metrizable Abelian group on At via

At ×R ∋ (D, Z ) ↦ D + Z ∈ At.
Thus, the gauge action of G on At descends to a continuous action on At/R; indeed, in
the case of Example 3.20, the resulting map A(P) → At/R remains injective and now
exactly intertwines the respective actions of G(P) and G.

Question 3.22. When is the action of R on At proper? If it is proper, one could meaning-
fully view the induced action of G on At/R as the gauge action on the true space At/R of
noncommutative principal connections.
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3.3. Noncommutative relative gauge potentials. At last, we generalise relative connec-
tion 1-forms to our noncommutative setting, at least at the level of principal symbols. In
the case where (A, �) is unital, this will provide us with aG-equivariant realisation of At
as a real affine space of noncommutative relative gauge potentials.

Definition 3.23. Let D ∈ At. We define a relative gauge potential for D to be an n-
odd, symmetric, G-invariant operator ! on DomD ∩ ⋅Dom /Dv , supercommuting withCl(g∗; �) andG and satisfying the following:

(1) for every a ∈ , [!, a] extends to an element of A ⋅ [D,G ]L(H )
;

(2) for every a ∈ , ! ⋅ a extends to an element of L(Dom /Dv , H ).
We denote the set of all relative gauge potentials for D by at(D).

Observe that D1, D2 ∈ D are gauge-comparable if and only if D2−D1 is a relative gauge
potential for D1, if and only if D1 − D2 is a relative gauge potential for D2.

Proposition 3.24. For every D ∈ At, the set at(D) is an R-vector space, and
∀D1, D2 ∈ At, at(D1) = at(D2).

Proof. The only subtle point here is checking that

∀D1, D2 ∈ At, A ⋅ [D1,G]L(H )
= A ⋅ [D2,G]L(H ),

but D2 − D1 must supercommute with G by definition of gauge comparability. �

Definition 3.25. The space of relative gauge potentials is at ∶= at(D) for any D ∈ At.

Observe that at defines a metrizable topological vector space for the separating family
of seminorms {‖⋅‖at,k}k∈N defined by

∀k ∈ N, ∀! ∈ at, ‖!‖at,k ∶=
‖‖‖‖! ⋅ �k |||Dom /Dv

‖‖‖‖L(Dom /Dv ,H )
.

Note, moreover, that any bounded operator T ∈ L(H ) satisfying T Dom /Dv ⊆ Dom /Dv
and [T , /Dv] = 0 restricts to a bounded operator T |Dom /Dv ∈ L(Dom /Dv) with‖T |Dom /Dv ‖L(Dom /Dv ) ≤ ‖T ‖L(H ).
Thus, the gauge group G admits a strongly continuous isometric action on at defined by

∀S ∈ G, ∀! ∈ at, (S, !) ↦ S!S∗.
Remark 3.26. It follows thatR is a G- and G-invariant R-linear subspace of at, and that
the inclusion R ↪ at is continuous.

Remark 3.27. In the case of Example 3.15, for every �1 = (�1, �1), �2 = (�2, �2) ∈ A(P),
by (3.5), the operator

(DE�2 − Z�2 ) − (DE�1 − Z�1 ) = DEℎ,�2 − DEℎ,�1 = n−m∑j=1 c⊕(ej )∇E,⊕(�2−�1)(ej ),
has principal symbol c⊕◦ (�−1◦(�2 − �1))∗, which depends only on c⊕ and �2−�1. Moreover,

for every f ∈ G(P) and � = (�, �) ∈ A(P), the operators SEf DE� (SEf )∗−DE� andDEf ⋅� −DEf differ

by an element of at ∩ Γ(End(E)) and have the same principal symbol c⊕◦ (�−1◦(f∗◦� − �))∗.
Question 3.28. When is R closed in at? If it is closed, one could meaningfully view the
induced action of G on at/R as the gauge action on the true space at/R of noncommutative
relative gauge potentials.
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When (A, �) is unital, any element of At can be perturbed by an element of at to yield
another element of At. This will turn out to be the affine action of at qua vector space of
translations for the real affine space At.

Proposition 3.29. Suppose that (A, �) is unital. For every D ∈ At and ! ∈ at, the operatorD! ∶= D + ! defines an element of At.

Proof. Let us first show that (, H , D!) is a spectral triple for A. First, for each � ∈ Ĝ, the
bounded perturbation Dℎ|Dom(D)� + !|H� of the self-adjoint operator Dℎ|Dom(D)� on H� is

self-adjoint by Kato–Rellich, so that the closure D!ℎ of Dℎ +! on Dom(D)alg is self-adjoint
by [20, Lemma 2.27]; indeed, it follows that D!ℎ is G-invariant. Next, we have

[ /Dv , D!ℎ ] = [ /Dv , Dℎ] = [Dℎ, c(�i)]dU (�i) − [Dℎ, 16⟨�i , �−T [�j , �k]⟩c(�i�j�k )],
on the joint core Dom(D)alg for /Dv and D!ℎ , and ( /Dv + i)−1 Dom(D)alg = Dom(D)alg (cf.
the proof of Proposition 2.25). Hence, by G-invariance of D!ℎ , we haveD!ℎ ( /Dv + i)−1Dom(D)alg = D!ℎ Dom(D)alg ⊂ H alg ⊂ Dom /Dv ,

/Dv( /Dv + i)−1Dom(D)alg = /Dv Dom(D)alg ⊂ Dom(D)alg ⊂ Dom /D!ℎ .
Moreover [ /Dv , D!ℎ ] extends to an element of L(Dom /Dv , H ) by boundedness of [Dℎ, c(�i)]
and [Dℎ, 16⟨�i , �−T [�j , �k]⟩c(�i�j�k)] for each 1 ≤ i ≤ m. It follows by [74, Prop. 2.3]
that ( /Dv , D!ℎ ) define a weakly anticommuting pair in the sense of [74, Def. 2.1]. Hence
by [74, Thm. 1.1], D! = /Dv + D!ℎ is self-adjoint on DomD! = Dom /Dv ∩ DomD!ℎ (with

equivalent norms) and essentially self-adjoint on Dom(D)alg. Next, since ! is a relative
gauge potential,

∀a ∈ , [D! , a] = [D, a] + [!, a] ∈ L(H ).
Finally, since ! ∈ L(Dom /Dv , H ) and the inclusion

DomD! = Dom /Dv ∩ DomD!ℎ ↪ Dom /Dv
is continuous, it follows that

(D! + i)−1 − (D + i)−1 = −(D + i)−1 ⋅ (! ⋅ (D! + i)−1) ∈ K(H ),
so that (, H , D!) indeed defines an n-multigraded spectral triple for A.

Let us now show that D! defines an element of At. First, by the above discussion
together with the definition of relative gauge potentials, the operator D! is G-invariant
and DomD! ⊆ Dom /Dv consists of C1-vectors for U . Next, by definition, the operator !
supercommutes withCl(g∗; �), so that (�, c) remains a vertical geometry for (, H , D! ;U ).
Next, since D ∈ At and (D!)ℎ[0] = D!ℎ , it follows that

[(D!)ℎ[0],] ⊂ [Dℎ,] + [!,] ⊂ A ⋅ [D,G] = A ⋅ [D! ,G ],
[(D!)ℎ[0],Cl(g∗; �)] = [Dℎ,Cl(g∗; �)] ⊂ V�A ⋅ [D,G] = V�A ⋅ [D! ,G],

so thatD! defines an element ofD. Finally, since ! is a relative gauge potential, it follows
that D and D! are gauge-comparable. �

At last, in the case where (A, �) is unital, we can realiseAt as a R-affine space modelled
on at; this will gauge-equivariantly generalise the structure of A(P) as a R-affine space
modelled on Γ(� ∗TB ⊗̂ VP)G , at least at the level of principal symbols.
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Theorem 3.30. Suppose that (A, �) is unital. Then At is a topological R-affine space mod-
elled on the normed R-vector space at with subtraction Λ ∶ At × At → at given by

∀D1, D2 ∈ At, Λ(D1, D2) ∶= D1 − D2 ||DomDv .
Moreover, for every fixed D ∈ At, the homeomorphism Λ(⋅, D) ∶ At → at intertwines the
gauge action of G on At with isometric R-affine action on at defined by

∀S ∈ G, ∀! ∈ at, (S, !) ↦ S[D, S∗] + S!S∗.
Proof. First, Proposition 3.29 immediately implies that Λ ∶ At×At → at endows Atwith
the structure of a R-affine space modelled on at; the construction of the topologies on At

and at now implies that the translation action

At × at → At, (D, !) ↦ D!
is continuous, and hence, that Λ(⋅, D) ∶ At → at is a homeomorphism for every D ∈ At.
Finally, for any fixed D ∈ At, one can simply computeSD!S∗ = S(D + !)S∗ = D + S[D, S∗] + S!S∗
on DomD, which establishes G-equivariance of Λ(⋅, D). �

Remark 3.31. In the non-unital case, if one restricts to principal gauge-admissible G-
spectral triples with bounded vertical geometrywhose differences are /Dv-bounded, gauge
transformations S with [Dbase, S] ∈ L(Dom /Dv , H ), and /Dv-bounded relative gauge poten-
tials, then [74, Thm. 1.1] remains applicable, so that, mutatis mutandis, Proposition 3.29
and Theorem 3.30 still hold.

Remark 3.32. If (A, �) is unital, then At/R defines a topological R-affine space modelled
on the topologicalR-vector space at/R; in particular, for any fixedD ∈ At, the homeomor-
phism Λ(⋅, D) ∶ At → at descends to a G-equivariant homeomorphism At/R → at/R
with respect to the R-affine G-action on at/R induced by the action on at defined above.

Example 3.33. In Example 3.15, suppose that P is compact, and let �0 = (�0, �0) ∈ A(P).
Besides the canonical inclusion A(P) ↪ At and the homeomorphism Λ(⋅, DE�0 − ZE�0 ) ∶
At → at, we also have maps

Γ(� ∗T ∗B ⊗̂ VP)G → at, ! ↦ c⊕(((�i)P , !))∇E,⊕(�i )P ,
A(P) → Γ(� ∗T ∗B ⊗̂ VP)G , � = (�, �) ↦ �−1◦(� − �0).

By passing to the quotients At/R and at/R and using the canonical inclusion G(P) ↪ G,
we finally obtain a G(P)-equivariant commutative diagram

A(P) At/R

Γ(� ∗T ∗B ⊗̂ VP)G at/R.
≅ ≅

3.4. The noncommutative Tm-gauge theory of crossed products by Zm. We now ap-
ply Theorem 3.30 to compute the noncommutative gauge theory of crossed products by
metrically equicontinuous Zm-actions as noncommutative principal Tm-bundles. In what
follows, let TN ∶= Rn/Zn with the duality pairing ( ⋅ , ⋅ ) ∶ Zm × Tm → U(1) defined by

∀n ∈ Zm, ∀t ∈ Tm, (m, t) ∶= exp(2� imktk).
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Let (B, �) be a trivially Z2-graded unitalZm-C∗-algebra, and let (, H0, D0) be an (n−m)-
multigraded spectral triple for B with m ≤ n ∈ Z≥0, such that  is Zm-invariant and

∀b ∈ , sup
k∈Zm‖[D0, �k(b)]‖ < ∞;

in the commutative case, this means that the geodesic distance on the underlying compact
Riemannian manifold is equivalent to a Zm-invariant metric [56, Prop. 3.1]. LetA ∶= Zm ⋉r B,  ∶= Zm ⋉alg ,
and let � ∶ Tm → Aut(Zm ⋉r B) be the dual action, so that (A, �) defines a triviallyZ2-graded unital principal Tm-C∗-algebra with dense Tm-invariant ∗-subalgebra . One
can now construct a canonical exactly principal Tm-spectral triple for (A, �) with totally
geodesic fibres; our goal will be to compute its noncommutative gauge theory.

Let V ∶= /S(Rm ⊕ (Rm)∗) carry an irreducible Z2-graded ∗-representation ofClm ⊗̂Cl((Rm)∗) ≅ Cl(Rm ⊕ (Rm)∗),
and let c0 ∶ Cl((Rm)∗) → L(V ) be the restriction of this representation to the ∗-subalgebraCl((Rm)∗) ≅ 1 ⊗̂ Cl((Rm)∗). Let H ∶= � 2(Zm, V ⊗̂ H0), let U ∶ Tm → U (H ) be the strongly
continuous unitary representation defined by

∀t ∈ Tm, ∀� ∈ H, ∀p ∈ Zm, Ut� (p) ∶= (p, t)� (p),
and let � ∶ Zm → U (H ) be the translation representation, which is given by

∀k ∈ Zm , ∀� ∈ H, ∀p ∈ Zm, �k� (p) ∶= � (p − k).
Thus, given t ∶ Zm → L(V ⊗̂ H0), we can define Op(t) to be the closed operator with
domain Dom(Op(t)) ⊃ H alg = cc (Zm , V ⊗̂ H0) given by

∀� ∈ H alg, ∀k ∈ Zm , (Op(t)� ) (k) ∶= t(k)� (k);
in particular, we can now define a Zm-equivariant ∗-representation B → L(H ) by

∀b ∈ B, ∀� ∈ H, ∀k ∈ Zm, (b� )(k) ∶= (Op(id ⊗̂�∙(b))�) (k) = (id ⊗̂�k(b))� (k),
which therefore extends to a Tm-equivariant ∗-representation A ∶= Zm ⋉r B → L(H ) by
even operators supercommuting with Clm . Finally, view Zm as the integer lattice in (Rm)∗
spanned by the dual of the standard basis, let s ∶= −2� i c0|Zm ∶ Zm → L(V ), and letD ∶= Op(s ⊗̂ idH0 ) + id�2(Zm ,V ) ⊗̂D0.
Proposition 3.34 (Bellissard–Marcolli–Reihani [13], Hawkins–Skalski–White–Zacharias
[56, Theorem 2.14]). The data (, H , D;U ) define an n-multigraded Tm-spectral triple for
the Tm-C∗-algebra (A, �).

Now, if c ∶= id�2(Zm) ⊗̂c0 ⊗̂ idH0 , then (1, c) is a vertical geometry for (, H , D;U ) withDv = Op(s ⊗̂ idH0 ), Dℎ ∶= Dℎ[0] = id�2(Zm ,V ) ⊗̂D0,
so that the trivial remainder 0 is D-geodesic. Using Remark 2.39, it is now easy to check
that (, H , D;U ) is exactly principal (and hence, in particular, gauge-admissible); in par-
ticular, the resulting basic spectral triple is the external Kasparov product

(Clm ⊗̂Cl((Rm)∗), V , 0) ⊗̂C (, H0, D0).
Thus, letAt be the resulting Atiyah space, let at be the resulting space of relative gauge

potentials, and let G be the resulting gauge group. By Theorem 3.30, it follows that At
is a topological R-affine space modelled on the R-subspace at of L(DomDv , H ) endowed
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with the operator norm and that, after fixing D ∈ At as a basepoint, the gauge action of
G on At corresponds to the R-affine action on at defined by

∀S ∈ G, ∀! ∈ at, (S, !) ↦ S[D, S∗] + S!S∗.
Our goal, then, it find explicit characterisations of at ⊂ L(DomDv , H )Tm andG ⊂ U (H )Tm .
Remark 3.35. Let r ⊂ L(H0) be the closedR-linear subspace of all odd self-adjoint bounded
operators on H0 supercommuting with B and with Cln−m . Then R ≅ �∞(Zm, r) via the
map r ∋ M ↦ Op(idV ⊗̂M) ∈ R.

Let D0 ,� be the closure of  under the norm ‖ ⋅ ‖D0,� defined by

∀b ∈ , ‖b‖D0,� ∶= ‖b‖B + sup
k∈Zm‖[D0, �k(b)]‖L(H0) = ‖b‖L(H ) + ‖[D, b]‖L(H ),

so that D0 ,� defines an Banach ∗-algebra. By our assumptions, the Zm-action � on theC∗-algebra B restricts to a Zm-action on D0,� , thereby inducing a diagonal Zm-action onB ⊗̂ℎC D0 ,� . Let Ω1D0 ∶= B ⋅ [D0,]L(H0) and let �D0 ∶ B ⊗̂ℎC D0,� → Ω1D0 be given by

∀b1 ∈ B, ∀b2 ∈ , �D0 (b1 ⊗ b2) ∶= b1[D0, b2].
Finally let ZD0 () ∶= {b ∈ Z () | [D0, b] ∈ ′} and Ω1D0,sa ∶= {! ∈ Ω1D0 | !∗ = !}. From
now on, let us make the following assumptions:

(1) the subspace ker �D0 of B ⊗̂ℎC D0 ,� is Zm-invariant, so that the diagonal Zm-
action on B ⊗̂ℎC D0 ,� descends to the Zm-action � on the operator space Ω1D0
given by

∀k ∈ Zm , ∀b1 ∈ B, ∀b2 ∈ , �k(b1[D0, b2]) = �k(b1)[D0, �k(b2)];
(2) the subspace Ω1D0 ,sa ∩ ′ of Ω1D0 is Zm-invariant.

Thus, the Zm-action � on B canonically induces isometric actions on the Abelian metriz-
able group U (ZD0 ()) ⊂ U (D0,� ) and the normed R-space Ω1D0,sa ∩′, both of which, by
abuse of notation, we also denote by � .

Lastly, let Z 1(Zm , U (ZD())) denote the Abelian group of all 1-cocycles on Zm valued
in U (ZD0 ()), endowed with the metrizable topology inherited from the Banach space
�∞(Zm, L(H0)), let Z 1(Zm,Ω1D0,sa∩′) be the R-vector space of all 1-cocycles onZm valued

in Ω1D0,sa ∩ ′, endowed with the norm ‖⋅‖ defined by

∀ω ∈ Z 1(Zm,Ω1D0 ,sa ∩ ′), ‖ω‖ ∶= sup
k∈Zm(4�2‖k‖2 + 1)−1/2‖ω(k)‖L(H0) < +∞,

let B1(Zm,Ω1D0 ,sa ∩ ′) ⊂ Z 1(Zm,Ω1D0 ,sa ∩ ′) be the subspace of all 1-coboundaries, letH 1(Zm,Ω1D0 ,sa ∩ ′) ∶= Z 1(Zm,Ω1D0 ,sa ∩ ′)/B1(Zm,Ω1D0 ,sa ∩ ′)
be the resulting first cohomology group of Zm with coefficients in Ω1D0 ,sa ∩′, and let W
denote the subgroup of all even w ∈ U (H ) supercommuting with  and Cln−m , such that
w ⋅ DomD0 ⊂ DomD0 and [D0,w] ∈ L(H ).

Theorem 3.36. Assume that ker �D0 is Zm-invariant and that Ω1D0 ,sa ∩′ is Zm-invariant.
(1) The map F ∶ Z 1(Zm,Ω1D0,sa ∩ ′) × r → at defined by

∀(ω, M) ∈ Z 1(Zm,Ω1D0 ,sa ∩ ′) × r, F(ω, M) ∶= Op(idV ⊗̂(ω +M))
is an isomorphism of normed R-spaces that descends to a surjectionH 1(Zm,Ω1D0,sa ∩ ′) ։ at/R.
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(2) The map U ∶ Z 1(Zm , U (ZD0 ())) ×W → G defined by

∀(υ,w) ∈ Z 1(Zm, U (ZD0 ())) ×W, U(υ,w) ∶= Op(idV ⊗̂w ⋅ υ)
is an isomorphism of topological groups.

(3) For every (ω, M) ∈ Z 1(Zm,Ω1D0 ,sa ∩ ′) × r and (υ,w) ∈ Z 1(Zm, U (ZD0 ())) ×W,

(3.10) U(υ,w)[D,U(υ,w)∗] + U(υ,w)F(ω, M)U(υ,w)∗ = F(ω + υ[D0,υ∗],wMw∗).
To prove this theorem, we will need the following elementary lemma.

Lemma 3.37. Let E be a real Banach space, and let � ∶ Zm → GL(E) be an isometric
representation of Zm on E. Let � ∶ Zm → E be a 1-cocycle valued in �. Then

sup
k∈Zm(4�2‖k‖2 + 1)−1/2‖�(k)‖ < +∞.

Proof. Let {e1,… ,em} be the standard basis of Rm ≅ (Rm)∗ ⊃ Zm, let
C ∶= max{‖�(ei)‖E | 1 ≤ i ≤ m},

and for p ≥ 1, let ‖ ⋅ ‖p denote the p-norm on Rm; by equivalence of the norms ‖ ⋅ ‖ = ‖ ⋅ ‖2
and ‖ ⋅ ‖1 on Rm, it suffices to show that

∀k ∈ Zm, ‖�(k)‖E ≤ C‖k‖1,
but this now follows by induction on ‖k‖1. �

Proof of Theorem 3.36. Lemma 3.37 implies that F is well-defined; a simple check of defi-
nitions shows that U is well-defined and that F is a continuous R-linear map, that U is a
continuous group homomorphism, that F(B1(Zm,Ω1D0,sa ∩ ′) × r) ⊂ R, and that (3.10) is
satified. It remains to show that F and U are both bijective with continuous inverses.

Let us show that F is bijective with continuous inverse; mutatis mutandis, the same
argument will show that U is bijective with continuous inverse. Let ! ∈ at = at(D). First,
since ! is Tm-invariant, odd, self-adjoint, and supercommutes with Cl((Rm)∗), Cln , and
, it follows that ! = Op(id ⊗̂V s) for unique s ∶ Zm → r, which one can recover by

∀k ∈ Zn , ∀ℎ1, ℎ2 ∈ H0, ⟨ℎ1, s(k)ℎ2⟩ ∶= ⟨�k ⊗̂ ℎ1, !(�k ⊗̂ ℎ2)⟩.
Next, let ω ∶= s − s(0) ∶ Zm → r, and observe that

∀k ∈ Zm , id�0⊗̂V ⊗̂ω(k) = �∗k[!, �k]||HTm ,
which, since �∗k[!, �k] ⊂ ((Zm ⋉ B) ⋅ [D,])Tm , implies that ω ∈ Z 1(Zm,Ω1D0 ,sa ∩′) with

∀k ∈ Zm, �∗k[!, �k] = Op (idV ⊗̂�∙(ω(k))) .
Finally, set F−1(!) ∶= (ω, s(0)). One can now check that the mapping ! ↦ F−1(!) does
indeed define an inverse map to F, which is continuous by Lemma 3.37 together with the
definitions of the relevant topologies. �

Remark 3.38. By Theorem 3.30, the group cohomology of Zm with coefficients in the
Banach space Ω1D0,sa ∩′ manifests itself as the noncommutative gauge theory of Zm ⋉ B
as a noncommutative principal Tm-bundle
Example 3.39. Let � ∈ R be irrational, and let � ∶ Z → Aut(C(T)) be generated by
rotation by � , so that A ∶= Z ⋉ C(T) ≅ C(T2� ) via the unique ∗-isomorphism, such that

�1 ↦ U ∶= Ue1 , (t ↦ e2� it ) ↦ V ∶= Ue2 ,
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where, for n ∈ Z2, we define Un ∶= (n, ⋅ ) = (t ↦ e2� i(n1t1+n2t2)). Let
�1 ∶= (0 1

1 0) , �2 ∶= (0 −i
i 0) , �3 ∶= (1 0

0 −1) ,
and consider the canonical 1-multigraded spectral triple

(, H0, D0) ∶= (C∞(T),C2 ⊗ L2(T), −i�2 ⊗ d
dt ),

forC(T), where theZ2-grading onH0 is given by �3⊗I and the 1-multigrading is generated
by i�1 ⊗ I . Then the unitaryW ∶ H → C2 ⊗̂ L2(T2,C) given by

∀m ∈ Z, ∀x , v ∈ C2, ∀f ∈ C∞(T),
W (�m ⊗ x ⊗ v ⊗ f ) ∶= i√

2
(�3x ⊗ v + �2x ⊗ �1v) ⊗ (t ↦ e2� imt1f (t2))

defines a T-equivariant unitary equivalence

(, H , D) ≅ (C∞(T2� )alg,C2 ⊗̂ L2(T2,C2), idC2 ⊗̂ /DT2,i),
where C∞(T2� )alg consists of algebraic vectors in C∞(T2� ) for the translation action of the
subgroup T × {0} ≤ T2, where, for � ∈ {z ∈ C | ℑz > 0},

/DT2,� ∶= 1
i ( 0 � /i� /i 0 ) ))t1 +(0 −1

1 0 ) )
)t2 = 1

i ((ℜ� ⋅ �2 + ℑ� ⋅ �1) )
)t1 + �2 )

)t2)
is the spin Dirac operator for the trivial spin structure on T2 ≅ C/( �i Z + iZ) ≅ C/(Z + �Z),
and where the additional factor C2 carries the 2-multigrading. On the one hand, the
isomorphism F of Theorem 3.36 induces a R-linear isomorphism

FW ∶ Z 1(Z, C(T,R)) ∼→ {W!W ∗ | ! ∈ at, !|HT = 0}
given by

∀! ∈ Z 1(Z, C(T,R)), ∀x , v ∈ C2, ∀n ∈ Z2, FW (!)(x ⊗̂ v ⊗̂ Un) ∶= �3x ⊗ �2v ⊗ !(n1)Un;
in particular, if ! ∈ Z 1(Z, C(T,R)) is a homomorphism, so that ! = (m ↦ 2�sm) for
some s ∈ R, thenW (D + F(i! dt))W ∗ = idC2 ⊗̂ /DT2 + FW (!)

= idC2 ⊗̂1i (�1 )
)t1 + �2 )

)t2) + 1
i s idC2 ⊗̂�2 )

)t1
= idC2 ⊗̂ /DT2,s+i.

On the other hand, the isomorphism U of Theorem 3.36 induces a group isomorphism

UW ∶ Z 1(Z, C∞(T,U(1))) ∼→ {WSW ∗ | S ∈ G, S |HT = id}
given by

∀� ∈ Z 1(Z, C∞(T,U(1))), ∀x , v ∈ C2, ∀n ∈ Z2, UW (�)(x ⊗̂ v ⊗̂ Un) ∶= x ⊗ v ⊗ �(n1)Un,
which satisfies

∀� ∈ Z 1(Z, C∞(T,U(1))), UW (�)[idC2 ⊗̂ /DT2,i,UW (�)∗] = FW (i�(⋅)−1 d
dt �(⋅));

in particular, given k ∈ Z, if �k ∈ Z 1(Z, C∞(T,U(1))) is the unique 1-cocycle satisfying�k(1) ∶= (t ↦ exp(−2� ikt)), then i�k(⋅)−1 d
dt �k(⋅) = (n ↦ 2�kn), so that, in turn,W (U(�k)DU(�k)∗)W ∗ = UW (�k) (idC2 ⊗̂ /DT2,i)UW (�k)∗ = idC2 ⊗̂ /DT2,k+i.



60 BRANIMIR ĆAĆIĆ AND BRAM MESLAND

In fact, this calculation can be used to show that s1, s2 ∈ R yield gauge equivalent elementsW ∗(idC2 ⊗̂ /DT2,s1+i)W, W ∗(idC2 ⊗̂ /DT2,s2+i)W
of At if and only if s1 − s2 ∈ Z.

Finally, we can immediately combine the results of this last theoremwith Theorem3.30
to yield the following concrete realisation of At/G.

Corollary 3.40. Assume that ker �D0 is Zm-invariant and that Ω1D0,sa ∩′ is Zm-invariant.
Give Z 1(Zm,Ω1D0,sa ∩ ′) the isometric R-affine action of Z 1(Zm, U (ZD0 ())) defined by

(υ,ω) ↦ ω + υ[D0,υ∗],
and give r the isometric R-linear action of W defined by

(w, M) ↦ wMw∗.
Then Λ(⋅, D)−1◦F ∶ At

∼→ Z 1(Zm,Ω1D0 ,sa ∩ ′) × r → At descends to a homeomorphism

At/G ∼→ (Z 1(Zm ,Ω1D0,sa ∩ ′)/Z 1(Zm, U (ZD0 ()))) × (r/W) .
4. Connes–Landi deformations of TN -eqivariant principal bundles

As was first observed by Connes–Landi [36], any compact Riemannian spin TN -mani-
fold can be deformed isospectrally to yield a noncommutative spectral triple qua non-
commutative spin manifold. This procedure, for instance, recovers the usual flat spectral
triples for noncommutative tori—following Yamashita [100], who first recorded its gen-
eralisation to TN -equivariant spectral triples, we may call this procedure Connes–Landi
deformation. As was quickly observed by Sitarz [94] and by Várilly [98], Connes–Landi
deformation can be viewed as the refinement to spectral triples of Rieffel’s strict defor-
mation quantisation [91] along an action of TN . In this section, we refine our earlier
definitions and constructions to the TN -equivariant case and show that all relevant TN -
equivariant structures, when correctly defined, persist under Connes–Landi deformation.
For example, this will imply that the �-deformed quaternionic Hopf fibration is covered
by our framework as a noncommutative principal SU(2)-bundle.

In what follows, let TN ∶= RN /ZN with the flat bi-invariant Riemannian metric on
Lie(TN ) ≅ RN , whose Riemannian volume form yields the normalised bi-invariant Haar

measure on TN ; recall that ZN ≅ T̂N via n ↦ en ∶= (t ↦ exp(2� i⟨n, t⟩)). Again,
further details and notation related to harmonic analysis can be found in Appendix A. In
this section, all C∗-algebras will be unital and nuclear unless otherwise noted.

4.1. Naturality of the wrong-way class. As it turns out, a TN -equivariant principal G-C∗-algebra, suitably defined, remains a principal G-C∗-algebra after strict deformation
quantisation à la Rieffel [91]. Our goal in this sub-section is to show that its wrong-
way class is natural with respect to the canonical KK -equivalences between a nuclear
unital TN -C∗-algebra and its strict deformation quantisation [92]. Our technique of proof,
which interpolates (up to G-equivariant Morita equivalence) between a TN -equivariant
principal G-C∗-algebra and its deformation by means of a certain (non-unital) principalG-C([0, 1])-algebra, bears a striking formal resemblance to the discussion of [22, §6].

Let us begin by recalling the theory of strict deformation quantisation as adapted to
ourG-equivariant context; details can be found, for instance, in [26, § 2], but the definitive
reference, especially for technical subtleties, is Rieffel’s own account [91].
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Definition 4.1. A TN -equivariantG-C∗algebra is a C∗-algebra A together with homomor-
phisms � ∶ G → Aut(A) and � ∶ TN → Aut(A), such that (A, �) is a G-C∗-algebra, (A, �)
is a TN -C∗-algebra, and �g�t = �t�g for all g ∈ G and t ∈ TN .

Now, suppose that (A, �, �) is aTN -equivariantG-C∗-algebra. Observe that the Casimir
element ΔTN ∶= ΔLie(TN ) of TN canonically topologises the dense ∗-subalgebra

A∞;� ∶= {a ∈ A | (t ↦ �t (a)) ∈ C∞(TN , A)},
of A as a Fréchet ∗-algebra in such a way that the inclusion A∞;� ↪ A is continuous,
the G-action � restricts to a strongly continuous G-action on A∞;� , and the TN -action �
restricts to a strongly smooth isometric TN -action on . Thus, every element a ∈ A∞;�
admits an absolutely convergent Fourier expansion a = ∑n∈ZN â(n) in A∞;� , where

∀a ∈ A, ∀n ∈ ZN , â(n) ∶= ∫TN en(t)�t (a) dt.
This now permits the following result—recall that L2v,� (A) denotes the completion of A to

a right Hilbert AG -module with respect to the conditional expectation A ։ AG defined
by averaging with respect to the G-action � .
Theorem4.2 (Rieffel [91]). Let (A, �, �) be aTN -equivariantG-C∗-algebra; letΘ ∈ gl(N ,R).
Define maps ⋆Θ ∶ A∞;� × A∞;� → A∞;� and ∗Θ∶ A∞;� → A∞;� by

∀a, b ∈ A∞;� , a ⋆Θ b ∶= ∑
x,y∈ZN exp(−2� i⟨x − y,Θy⟩)â(x − y)b̂(y),(4.1)

∀a ∈ A∞;� , a∗Θ ∶= ∑
x∈ZN exp(2� i⟨x,Θx⟩)â(−x)∗,(4.2)

respectively, and define ‖ ⋅ ‖Θ ∶ A∞;� → [0, +∞) by

(4.3) ∀a ∈ A∞;� , ‖a‖Θ ∶= supb∈A∞;� ⧵{0}
‖a ⋆Θ b‖L2v;� (A)‖b‖L2v;� (A) .

Then the Fréchet space A∞;� endowed with ⋆Θ, ∗Θ, and ‖ ⋅ ‖Θ is a pre-C∗-algebra. Moreover,

the G-action � and TN -action � on A respectively induce a G-action �Θ and TN -action �Θ
on the resulting C∗-algebra AΘ, such that (AΘ, �Θ, �Θ) is a TN -equivariant G-C∗-algebra
satisfying (AΘ)∞;� = A∞;� as Fréchet spaces and�Θ(⋅)|(AΘ)∞;� = �(⋅)|A∞;� , �Θ(⋅)|(AΘ)∞;� = �(⋅)|A∞;� .

Given a TN -equivariant G-C∗-algebra (A, �, �) and Θ ∈ gl(N ,R), we call (AΘ, �Θ, �Θ)
the strict deformation quantisation of (A, �, �) with deformation parameter Θ.

Remark 4.3. That (4.3) yields the C∗-norm on AΘ is an immediate consequence of Abadie
and Exel’s Fell bundle-theoretic description of strict deformation along a torus action [1];
that (AΘ, �Θ, �Θ) still defines a TN -equivariant G-C∗algebra follows, mutatis mutandis,
from Rieffel’s analysis of the functoriality of strict deformation quantisation at the level
of C∗-algebras [91, p. 44].

Up to G-invariant stabilisation, the deformed C∗-algebra AΘ can also be expressed as
an interated crossed product of A by RN .
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Proposition 4.4 (Rieffel [92, §3], cf. Yamashita [100, §§3–4]). Let (A, �, �) be aTN -equivari-
ant G-C∗-algebra and let �̃ ∶ RN → Aut+(A) denote the lift of � to RN . Let Θ ∈ gl(N ,R),
and let �Θ ∶ RN → Aut+(RN ⋉�̃ A) be the G-equivariant strongly continuous RN -action
on RN ⋉�̃ A defined by

∀k ∈ RN , ∀f ∈ (RN , A∞;� ), ∀t ∈ RN , �Θk (f )(t) ∶= ei⟨k,t⟩�[Θ(k)](f (t)).
Then the map QΘ ∶ (RN × RN , A∞;� ) → LATN (L2(RN ) ⊗̂ℎ L2v;� (A)) defined by
∀f ∈ (RN × RN , A∞;� ), ∀� ∈ (RN , A∞;� ), ∀t ∈ RN ,

(QΘ(f )� ) (t) ∶= ∫RN ∫RN ei⟨k,t⟩f (k, s)�̃s+Θ(k) (� (t − s)) ds dk

defines a G-equivariant ∗-isomorphism RN ⋉�Θ (RN ⋉�̃ A) ∼→ K(L2(RN )) ⊗̂ AΘ.

Remark 4.5. Yamashita’s account actually works with ran(ΘT )⋉�Θ (ran(ΘT )⋉�̃ A); how-
ever, since RN = ran(ΘT ) ⊕ ker(Θ), where �Θ|ker(Θ) = ̂̃� |ker(Θ), these results can be safely
restated as above.

This iterated crossed product construction allows one to interpolate G-equivariantly
between K(L2(RN )) ⊗̂ A and any stabilised deformation K(L2(RN )) ⊗̂ AΘ by means of an
explicit continuous field of G-C∗-algebras over [0, 1], thereby yielding a G-equivariantKK -equivalence between A and AΘ.

Theorem 4.6 (Rieffel [92, p. 213], cf. Yamashita [100, Cor. 10]). Under the hypotheses of

Proposition 4.4, let �Θ ∶ RN → Aut+((RN ⋉�̃ A) ⊗min C([0, 1])) be the G-equivariantRN -action defined by

∀k ∈ RN , ∀f ∈ (RN , C∞([0, 1], A∞;�)), ∀(s, ℏ) ∈ RN × [0, 1],�Θk (f )(s)(ℏ) ∶= �ℏΘk (f (⋅)(ℏ))(s) = ei⟨k,s⟩�[ℏΘ(k)](f (s)(ℏ)),
so that XΘ(A) ∶= RN ⋉�Θ ((RN ⋉�̃ A) ⊗min C([0, 1])) defines a G-C∗-algebra for the G-
action XΘ(�) induced by � . For every ℏ ∈ [0, 1], the evaluation map

evℏ ∶ XΘ(A) → RN ⋉�ℏΘ (RN ⋉�̃ A)
given by

∀f ∈ (RN × RN , C∞([0, 1], A∞;� )), evℏ(f ) ∶= f (⋅, ⋅)(ℏ) ∈ (RN × RN , A∞;� ),
yields a G-equivariant KK -equivalenceYA,Θ,ℏ ∶= [QℏΘ◦ evℏ] ∈ KKG

0 (XΘ(A),K(L2(RN )) ⊗̂ AℏΘ) ≅ KKG
0 (XΘ(A), AℏΘ).

In particular, it follows that

(4.4) ΥA,Θ ∶= Y −1A,Θ,1 ⊗̂XΘ(A) YA,Θ,0 ∈ KKG
0 (AΘ, A)

is a G-equivariant KK -equivalence.
We now refine Ellwood’s definition of principal G-C∗-algebra into a notion of TN -

equivariant noncommutative topological principal bundle compatible with strict defor-
mation quantisation.
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Definition 4.7. Let (A, �, �) be a TN -equivariant G-C∗-algebra. We say that (A, �, �) is
principal if the canonical map Φ(A,� ) of the G-C∗-algebra (A, �) satisfies

Φ(A,� )(A∞;� ⊗̂alg A∞;� )C∞(G,A∞;� )
= C∞(G,A∞;� ).

Remark 4.8. A TN -equivariant principal G-C∗algebra is, in particular, a principal G-C∗-
algebra.

Example 4.9. Any TN -equivariant principal G-bundle P ։ B of closed manifolds gives
rise to a TN -equivariant principal G-C∗-algebra (C0(P), �), since the canonical map ΦC0(P)
is the Gel’fand dual of the principal map G × P → P × P , which is smooth—indeed, it

descends to a diffeomorphism G × P ∼→ P ×B P .
Example 4.10 (Baum–De Commer–Hajac [12]). Let (A, �) be a principal unital TN -C∗-
algebra; since TN is Abelian, we can set � ∶= � and view (A, �, �) as a TN -equivariant TN -C∗-algebra. Since Aalg, as a G-∗-algebra, satisfies the Peter–Weyl–Galois condition [12,
Thm. 0.4], it follows that (A, �, �) defines a TN -equivariant principal TN -C∗-algebra.

A straightforward argument now shows that a strict deformation quantisation of a TN -
equivariant principal G-C∗-algebra remains a TN -equivariant principal G-C∗-algebra.

Proposition 4.11 (Landi–Van Suijlekom [73, Prop. 34]). Let (A, �, �) be a TN -equivariantG-C∗-algebra and Θ ∈ gl(N ,R). If (A, �, �) is principal, then so too is (AΘ, �Θ, �Θ).
Proof. Let Φ(A,� ) and Φ(AΘ ,�Θ) denote the canonical maps of (A, �) and (AΘ, �Θ), respec-
tively, and observe that (AΘ)alg;�Θ = Aalg;� , so that

Φ(AΘ ,�Θ)((AΘ)alg;�Θ ⊗̂alg (AΘ)alg,�Θ ) = Φ(A,� )(Aalg;� ⊗̂alg Aalg;� ).
But now, since Aalg;� is dense in A∞;� , since the subspace Φ(A,� )(A∞;� ⊗̂alg A∞;� ) is dense
in C∞(G,A∞;� ), and since A∞;� = (AΘ)∞;�Θ as Fréchet spaces, it follows that the subspace
Φ(AΘ,�Θ)((AΘ)alg;�Θ ⊗̂alg (AΘ)alg;�Θ ) is dense in C∞(G, (AΘ)∞;�Θ ). �

We now also make precise our notion of TN -invariant vertical metric.

Definition 4.12. Let (A, �, �) be a TN -equivariant G-C∗-algebra. A vertical metric for

(A, �, �) is a vertical metric � for (A, �), such that (�) ⊂ ATN .
Remark 4.13. It is enough to check that ⟨�1, ��2⟩ ∈ ATN for all �1, �2 ∈ g∗.

Example 4.14. Let (P, g) be a compact oriented Riemannian G × TN -manifold, such that
the G-action is locally free. Let VP be the vertical tangent bundle of P as a G-manifold,
and suppose that gVP ∶= g |VP is orbitwise bi-invariant. Then the vertical metric � onC(P) induced by gVP is a vertical metric on the TN -equivariant G-C∗-algebra C0(P).

Now, suppose that � is a vertical metric for a TN -equivariant G-C∗-algebra (A, �, �);
then � ∶ TN → Aut+(A) induces V�� ∶ TN → Aut+(V�A)making (V�A, V��, V��) into aTN -equivariant G-C∗-algebra, which is principal whenever (A, �, �) is. Moreover, for any
Θ ∈ gl(N ,R), the vertical metric � for (A, �, �) automatically also defines a vertical met-
ric for (AΘ, �Θ, �Θ) and a vertical metric for the non-unital G-C∗-algebra (XΘ(A), XΘ(�)).
By untangling definitions and repeatedly using Proposition 1.20 together with technical
results of Rieffel [91, §5], we obtain canonical TN - and G-equivariant ∗-isomorphismsV�(AΘ)

∼→ (V�A)Θ, V�(XΘ(A)) ∼→ XΘ(V�A), V�(XΘ(A))G ∼→ XΘ(V�AG ).
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At last, we can state and prove the main result of this subsection, which establishes the
naturality of our noncommutative wrong-way classes with respect to the G-equivariantKK -equivalences of Theorem 4.6.

Theorem 4.15. Let (A, �, �) be a principal TN -equivariant G-C∗-algebra; let Θ ∈ gl(N ,R).
Then (XΘ(A), XΘ(�)) is principal. Moreover, if � is a vertical metric for (A, �, �), then for
every ℏ ∈ [0, 1],
(4.5) YA,Θ,ℏ ⊗̂AℏΘ (AℏΘ ↩ (AℏΘ)G)! = (XΘ(A) ↩ XΘ(A)G)! ⊗̂XΘ(V�AG ) YV�AG ,Θ,ℏ,
and hence ΥA,Θ ⊗̂A (A ↩ AG)! = (AΘ ↩ AGΘ)! ⊗̂V�AGΘ ΥV�AG ,Θ.

Before proceeding with the proof of Theorem 4.15, we will need a technical result that
will guarantee that (XΘ(A), XΘ(�)) is principal whenever (A, �, �) is. Recall that for X
a compact Hausdorff space, a G-C(X )-algebra is a (not necessarily unital) G-C∗-algebra
(A, �) together with a unital ∗-homomorphism C(X ) → Z (M(A))Geven, in which case, for
every x ∈ X , the fibre of (A, �) at x is the G-C∗-algebra (A(x), �(x)), whereA(x) ∶= A/(C0(X ⧵ {0}) ⋅ A)
and where �(x) is G-action on A(x) induced by � .
Proposition 4.16 (Baum–DeCommer–Hajac [12, Thm. 5.2]). LetX be a compact Hausdorff
space, and let (A, �) be a (not necessarily unital) G-C(X )-algebra. Suppose that for everyx ∈ K , the G-C∗-algebra (A(x), �(x)) is principal. Then (A, �) is principal.
Proof. Let ℎ ∈ C(G,A). Fix " > 0. For every x ∈ X , since (A(x), �(x)) is a principal G-C∗-
algebra, let zx ∈ imΦAx be such that ‖(ℎ − zx )(x)‖ < "

2 ; by upper semi-continuity of the
map X ∈ y ↦ ‖(ℎ − zx )(y)‖, there exists an open neighbourhood Ux of x , such that

∀y ∈ Ux , ‖(ℎ − zx )(y)‖ ≤ ‖(ℎ − zx )(x)‖ + "
2 < ".

Now, by compactness of X , let {f1,… , fk} be a partition of unity subordinate to a finite
subcover {Ux1 ,… , Uxk} of {Ux}x∈X ; let z ∶= ∑kj=1 fjzxj ∈ imΦA. Then,

‖ℎ − z‖ = supx∈X‖(ℎ − z)(x)‖ ≤ supx∈X
k∑j=1 fk(x)‖(ℎ − zxk )(x)‖ < ". �

Proof of Theorem 4.15. Let us first show that (XΘ(A), XΘ(�)) is principal. Observe that
the obvious map C[0, 1] → Z (M(XΘ(A)))G manifests (XΘ(A), XΘ(�)) as a G-equivariantC[0, 1]-algebra. For each ℏ ∈ [0, 1], one can use an approximate unit for C0([0, 1] ⧵ {ℏ})
to show that C0([0, 1] ⧵ {ℏ}) = ker evℏ, so that QℏΘ◦ evℏ descends to a G-equivariant
∗-isomorphism (XΘ(A)(ℏ), XΘ(�)(ℏ)) ≅ (K(L2(RN )) ⊗̂ AℏΘ, id ⊗̂�ℏΘ). Hence, by Proposi-
tions 1.40 and 4.16, theG-C∗-algebra (XΘ(A), XΘ(�)) is principal. Equation 4.5 now follows
by G-equivariance of the ∗-homomorphisms defining YA,Θ,ℏ and YV�AG ,Θ,ℏ, respectively,
by G-equivariance of the canonical ∗-isomorphism V�(XΘ(A))G ≅ XΘ(V�AG ), and by the
observation that

1K(L2(RN )) ⊗̂C (AℏΘ ↩ (AℏΘ)G)! = (K(L2(RN )) ⊗̂ AℏΘ ↩ (K(L2(RN )) ⊗̂ AℏΘ)G)! . �

Example 4.17. Continuing from Examples 1.47 and 4.14, suppose that the vertical tangent
bundle VP is G-equivariantly spinC. Then for any Θ ∈ gl(N ,R),

(C(P)Θ ↩ C(P/G)Θ)! ⊗̂V�C(P)GΘ ΥV�C(P)G ,Θ ⊗̂V�C(P)G MV�C(P)G ,C(P/G) = �!.
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4.2. Persistence of TN -equivariant structures. As we shall see, a TN -equivariant prin-
cipal G-spectral triple, suitably defined, remains a TN -equivariant principal G-spectral
triple after Connes–Landi deformation [36, 100]. Our goal in this sub-section is to show
that this is indeed the case and, moreover, that its TN -invariant noncommutative gauge
theory is preserved by Connes–Landi deformation; in particular, this will finally imply
that the �-deformed quaternionic Hopf fibration C∞(S7� ) ↩ C∞(S4� ) is fully accommo-

dated by our framework. In what follows, let (A, �, �) be a TN -equivariant G-C∗-algebra.
We begin by recalling Yamashita’s noncommutative formulation of Connes–Landi de-

formation as adapted to our G-equivariant context.
Definition 4.18. We define a TN -equivariant G-spectral triple for (A, �, �) to be a spectral
triple (, H , D) for A together with commuting strongly continuous unitary representa-
tions U ∶ G → U +(H ) and V ∶ TN → U +(H ) of G and T , respectively, such that:

(1) (, H , D;U ) is a G-spectral triple for (A, �);
(2) (, H , D;V ) is a TN -spectral triple for (A, �);
(3)  is topologised as a Fréchet ∗-algebra, so that the inclusion  ↪ Lip(D) is

continuous, the G-action � restricts to a strongly continuous G-action on, and
the TN -action � restricts to a strongly smooth isometric TN -action on .

In what follows, recall that if U ∶ G → U (H ) and V ∶ Tm → U (H ) are commuting
unitary representations on the same Hilbert space H , then LU ×V (H ) denotes resulting theG × Tm-C∗-algebra of G × Tm-continuous elements in L(H ) (see Equation A.4).

Theorem 4.19 (Connes–Landi [36, Thm. 6], Yamashita [100, Prop. 5]). Let (, H , D;U , V )
be a TN -equivariant G-spectral triple for (A, �, �), and let Θ ∈ gl(N ,R). Define the mapLΘ ∶ LU ×V (H )∞;AdV → L(H ) by
(4.6) ∀a ∈ , ∀� ∈ H, LΘ(a)� ∶= ∑

x∈ZN
â(x)V−[ΘT (x)]� .

Finally, letΘ be endowed with the multiplication ∗Θ and ∗-operation ∗Θ. Then LΘ defines

a continuous G- and TN -equivariant ∗-monomorphism Θ ↪ L(H ) that extends to a ∗-
monomorphism AΘ ↪ L(H ) that makes (Θ, H , D;U , V ) into a TN -equivariant G-spectral
triple for (AΘ, �Θ, �Θ).

Following Yamashita, given a TN -equivariant G-C∗-algebra (A, �, �), a TN -equivariantG-spectral triple (, H , D;U , V ) for (A, �, �), and Θ ∈ gl(N ,R), we call (Θ, H , D;U , V )
the Connes–Landi deformation of (, H , D;U , V ) with deformation parameter Θ.

Remark 4.20. Injectivity and G- and Tn-equivariance of LΘ ∶ AΘ → L(H ) is actually a
somewhat subtle consequence of [91, §5].

It is alsoworth recallingHigson’s observation (as recorded by Yamashita) that Connes–
Landi deformation is natural with respect to the KK -equivalences of Theorem 4.15.

Proposition 4.21 (Higson apud Yamashita [100, Remark 9]). Let (, H , D;U , V ) be a TN -
equivariant G-spectral triple for (A, �, �). Then

∀Θ ∈ gl(N ,R), [(Θ, H , D;U )] = YA,Θ ⊗̂A [(, H , D;U )].
Now, let (, H , D;U , V ) be a TN -equivariant G-spectral triple for (A, �, �). We define a

vertical geometry for (, H , D;U , V ) to be a vertical geometry (�, c) for (, H , D;U ), such
that(�) ⊂ ATN and c(g∗) ⊂ L(H )TN . Given a vertical geometry (�, c) for (, H , D;U , V ),TN -invariance of all elements of (�) and c(g∗) implies that for any Θ ∈ gl(N ,R), the
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data (�, c) still define a vertical geometry for (Θ, H , D;U , V ). Similarly, given a vertical
geometry (�, c) for (, H , D;U , V ), we define a remainder for (, H , D;U , V )with respect

to (�, c) to be a remainder Z for (, H , D;U )with respect to (�, c), such that Z ∈ L(H )TN .
Given a remainder Z for (, H , D;U , V )with respect to (�, c), TN -invariance implies that
for any Θ ∈ gl(N ,R), Z remains a remainder for (Θ, H , D;U , V ) with respect to (�, c).
In this TN -equivariant context, it turns out that constructing the differentiable vertical
algebra from the original differentiable algebra and the vertical geometry commutes with
strict deformation quantisation at the level of Fréchet ∗-algebras.

Proposition 4.22. Let (, H , D;U , V ) be a TN -equivariant G-spectral triple for (A, �, �)
with vertical geometry (�, c) and remainder Z . Endow V� with the Fréchet topology in-
duced by the Fréchet topology on  via the canonical ∗-isomorphismc0,� ∶ Clm ⊗̂Cl(g∗) ⊗̂ A → V�A
of Proposition 1.16. Then V� is a Fréchet ∗-algebra, the inclusion V� ↪ Lip(Dℎ[Z ]) is
continuous, � restricts to a strongly continuous G-action on , and � restricts to a strongly

smooth isometric TN -action on . Moreover, for every Θ ∈ gl(N ,R),
(4.7) (V�)Θ = V�Θ

as Fréchet ∗-algebras, where (V�)Θ denotes the Fréchet space V� endowed with the mul-

tiplication and ∗-operation inherited from ((V�A)Θ)∞;(AdV )Θ .
Proof. By G− and TN -equivariance of c0,� and the properties of , it remains to show
that V� ↪ Lip(Dℎ[Z ]) is continuous; by construction of the Fréchet topology on V�,
it suffices to show that c0,� ∶ (Clm ⊗̂Cl(g∗)) ⊗̂alg  → Lip(Dℎ[Z ]) is continuous with
respect to the projective tensor product norm ‖ ⋅ ‖∧ on (Clm ⊗̂Cl(g∗)) ⊗̂alg (A ∩ Lip(D)). Let

K0 ∶= sup
{‖c0,�(!)‖L(H )‖!‖∧ ||||| ! ∈ (Clm ⊗̂Cl(g∗)) ⊗̂alg (A ∩ Lip(D)) ⧵ {0}},

K1 ∶= sup
{‖[Dℎ[Z ], c0,�(� )]‖L(H )‖� ‖Clm ⊗̂Cl(g∗)

||||| � ∈ Clm ⊗̂Cl(g∗) ⧵ {0}},
K2 ∶= sup

{‖c(�i)[�(�i), T ]‖L(H )‖T ‖L(H )

||||| T ∈ L(H ) ⧵ {0}
},

K3 ∶= sup
{‖c(�i)[T , c(�♭i )]‖L(H )‖T ‖L(H )

||||| T ∈ L(H ) ⧵ {0}
},

and let M ∶= 1 + max{2‖Z ‖L(H ), K2, K3} ∈ [1, +∞). In particular, for any a ∈ , since

[Dℎ[Z ], a] = [D − Z , a] − [Dv , a]
= [D, a] − [Z , a] − c(�i)d�(�i)(a)
= [D, a] − [Z , a] − c(�i)[�(�i), a] + 1

2c(�i)[[D, a], c(�♭i )],
it follows that

‖a‖Lip(Dℎ[Z ]) ≤ ‖a‖A + ‖[D, a]‖L(H ) + 2‖Z ‖L(H )‖a‖L(H ) + K2‖a‖L(H ) + K3‖[D, a]‖L(H )≤ M‖a‖Lip(D).
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Now, let ! ∈ Clm ⊗̂Cl(g∗) ⊗̂, and consider a decomposition ! = ∑mk=1 �k ⊗̂ ak , where
{�k}Nk=1 ⊂ Clm ⊗̂Cl(g∗) and {ak}Nk=1 ⊂ . Let Γ denote the Z2-grading on Clm ⊗̂Cl(g∗).
Then

[Dℎ[Z ], c0,�(!)] = m∑k=1[Dℎ[Z ], c0,�(�k)]ak +
m∑k=1 c0,�(Γ(�k))[Dℎ[Z ], a],

so that

‖[Dℎ[Z ], c0,�(!)]‖L(H ) ≤ K1 m∑k=1‖�k ‖Clm ⊗̂Cl(g∗)‖ak ‖A + K0M m∑k=1‖�k ‖Clm ⊗̂Cl(g∗)‖ak ‖Lip(D)
≤ (K1 + K0M)

m∑k=1‖�k ‖Clm ⊗̂Cl(g∗)‖ak ‖Lip(D).
Since the decomposition ! = ∑mk=1 �k ⊗̂ ak is arbitrary, this now implies that‖[Dℎ[Z ], c0,�(!)]‖L(H ) ≤ (K1 + K0M)‖!‖∧,
and hence that‖c0,�(!)‖Lip(Dℎ[Z ]) = ‖c0,�(!)‖L(H ) + ‖[Dℎ[Z ], c0,�(!)]‖L(H ) ≤ (K0 + K1 + K0M)‖!‖∧.

Finally, since c0,� is TN -equivariant, since TN acts trivially on Cl(g∗) and Cl(g∗; �), and
since the inclusion  ↪ A∞;� is TN -equivariant and continuous, it follows that the
inclusion V� ↪ (V�A)∞;V�� is also TN -equivariant and continuous, so that (4.7) holds
for all Θ ∈ gl(N ,R). �

At last, let us refine our definition of a principal G-spectral triple to the TN -equivariant
context, viz, to a notion of TN -equivariant noncommutative Riemannian principal bundle
compatible with Connes–Landi deformation. Before continuing, given a TN -equivariant
spectral triple (, H , D;U , V ) for (A, �, �), observe that (LU ×V (H ),AdU ,AdV ) defines aTN -equivariant G-C∗-algebra, where the homomorphisms AdU ∶ G → Aut(LU ×V (H ))
and AdV ∶ TN → Aut(LU ×V (H )) are defined by

∀g ∈ G, ∀T ∈ L(H ), (AdU )g(T ) ∶= UgTU ∗g ,
∀t ∈ TN , ∀T ∈ L(H ), (AdV )t (T ) ∶= VtTV ∗t .

Definition 4.23. Suppose that (A, �, �) is principal. Let (, H , D;U , V ) be a TN -equivari-
ant G-spectral triple for (A, �, �) with vertical geometry (�, c) and remainder Z . We say
that (, H , D;U , V ) is principal with respect to (�, c) and Z if:

(1) the G- and TN -equivariant ∗-representation V�A ↪ L(H ) satisfies

V�alg;V�� ⋅ HG = H, {! ∈ V�A | !|HG = 0} = {0};
(2) the resulting horizontal Dirac operator Dℎ[Z ] satisfies

[Dℎ[Z ],] ⊂ A∞;� ⋅ [D − Z ,]
LU ×V (H )∞;AdV ,(4.8)

[Dℎ[Z ], V�] ⊂ (V�A)∞;V�� ⋅ [Dℎ[Z ], V�G ]LU ×V (H )∞;AdV .(4.9)

Moreover, we say that (, H , D;U , V ) is gauge-admissible with respect to (�, c) and Z if,
in addition,

(4.10) ∀! ∈ V�, [Dℎ[Z ], !] ⊂ (V�A)∞;V�� ⋅ [Dℎ[Z ],G]LU ×V (H )∞;AdV .
This definition is sufficiently different fromDefinition 2.37 to necessitate the following.
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Proposition 4.24. Suppose that (A, �, �) is principal. Let (, H , D;U , V ) be a principal TN -
equivariantG-spectral triple for (A, �, �) with vertical geometry (�, c) and remainder Z . TheG-spectral triple (, H , D;U ) for (A, �) is principal with respect to (�, c) and Z , and

(V�G , HG , DG [Z ]; id, V∙|HG ),
is aTN -equivariant {1}-spectral triple; moreover, if (, H , D;U , V ) is gauge-admissible with
respect to (�, c) and Z , then (, H , D;U ) is gauge-admissible with respect to (�, c) and Z .
Proof. Let us first show that the G-spectral triple (, H , D;U ) is principal with respect
to (�, c) and Z . Observe that we can use the G-equivariant (and trivially TN -equivariant)
∗-isomorphism c0,� ∶ Clm ⊗̂Cl(g∗) ⊗̂ A ∼→ V�A of Proposition 1.16 and the Fréchet topol-
ogy on  to endow V� with the structure of a Fréchet ∗-algebra, so that the inclusionV� ↪ V�A is continuous, V�� restricts to a strongly continuous action of G on V�,

and V�� restricts to a strongly smooth action of TN on V�. As a result, the conditional

expectation V�A ։ V�AG induced by the Haar measure on G restricts to a conditional

expectation V� ։ V�G , so that condition 1 of Definition 2.37 is satisfied. Next, sinceV�alg;V�� ⊂ V�Aalg, it follows that condition 2 is satisfied. Finally, (4.8) and (4.9) imme-
diately imply (2.7) and (2.8), respectively, while (4.10) immediately implies (3.8).

Now, let us show that (V�G , HG , DG[Z ]; id, V∙|HG ) is a TN -equivariant {1}-spectral
triple, where V�G is topologised as a closed ∗-subalgebra of a Fréchet ∗-algebra V�;

the only non-trivial point is continuity of the inclusion V�G ↪ Lip(DG[Z ]). By con-

struction of DG[Z ] from Dℎ[Z ], it suffices to show that the inclusion V� ↪ Lip(Dℎ[Z ])
is continuous, but this now follows by Proposition 4.22. �

Now, suppose that (A, �, �) is principal and that Σ ∶= (, H , D;U , V ) is a TN -equivari-
ant G-spectral triple for (A, �, �) that is principal and gauge-admissible with respect to
(�, c) and Z . Let At(Σ) be the resulting Atiyah space, G(Σ) the resulting gauge group,

and at(Σ) the resulting space of relative gauge potentials. Let AtTN (Σ) be the subset of allD′ ∈ At(Σ) making (, H , D′;U , V ) into a TN -equivariant G-spectral triple for (A, �, �)
that is principal and gauge-admissible with respect to (�, c) and 0, let

GTN (Σ) ∶= G(Σ) ∩ LU ×V (H )TN ,
and let atTN (Σ) be the subset of all TN -invariant ! ∈ at(Σ), such that

(4.11) ∀a ∈ , [!, a] ∈ A∞;� ⋅ [D − Z ,G]LU ×V (H )∞;AdV .
Finally, observe that the gauge actions of G(Σ) on At(Σ) and at(Σ) restrict to actions of

GTN (Σ) on AtTN (Σ) and atTN (Σ), respectively, and that AtTN (Σ) is an affine subspace

of At(Σ) with space of translations atTN (Σ). At last, we can state and prove the main
result of this sub-section, which says that a principal TN -equivariant G-spectral triple�-deforms to a principal TN -equivariant G-spectral triple with the same TN -equivariant
gauge theory—note that there are no guarantees about the non-TN -equivariant part of
the gauge theory.

Theorem4.25. Suppose that (A, �, �) is principal, and letΣ ∶= (, H , D;U , V ) be a principalTN -equivariant G-spectral triple for (A, �, �) with vertical geometry (�, c) and remainderZ . Let Θ ∈ gl(N ,R). Then the TN -equivariant spectral triple ΣΘ ∶= (Θ, H , D;U , V ) for
(A, �, �) is also principal with respect to (�, c) and Z , and

(V�(Θ)G , HG , DG [Z ]; id, V∙|HG ) = ((V�G )Θ, HG , DG[Z ]; id, V∙|HG ).
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Moreover, if Σ is gauge-admissible, then so too is ΣΘ, in which case,

AtTN (ΣΘ) = AtTN (Σ), GTN (ΣΘ) = GTN (Σ), atTN (ΣΘ) = atTN (Σ).
Proof. Let us first show that (Θ, H , D;U , V ) is principal with respect to (�, c) andZ ; sinceV� = V�(Θ) as Fréchet spaces, condition 1 continues to be satisfied, so it remains to
show that (4.8) and (4.9) continue to be satisfied. By abuse of notation, let LΘ denote theG- and TN -equivariant ∗-monomorphism LU ×V (H )∞;AdV

Θ → LU ×V (H )∞AdV defined by
(4.6). Since V� ⋅ DomDℎ[Z ] ⊂ DomDℎ[Z ] and  ⋅ Dom(D − Z ) ⊆ Dom(D − Z ), whereD − Z and Dℎ[Z ] are TN -equivariant, it follows that

∀a ∈ V�, [Dℎ[Z ], LΘ(a)] = LΘ([Dℎ[Z ], a]).
Now, for convenience, let us say that X ⊆ LU ×V (H )∞;AdV is Fourier-closed if

∀x ∈ X, ∀k ∈ ZN , x̂(k) ∈ X.
Observe that A∞;� are V�A∞;V�� are Fourier-closed by construction and that [D − Z ,G]
and [Dℎ[Z ], V�G] are Fourier-closed by strong smoothness of the TN -actions on G
and V�G , respectively, together with TN -invariance of D −Z and Dℎ[Z ] and continuity
of the inclusionsG ↪ Lip(D − Z ) and V�G ↪ Lip(Dℎ[Z ]). Hence, it suffices to show

that for any two Fourier-closed subspaces X and Y of LU ×V (H )∞;AdV ,
LΘ(X ⋅ Y ) ⊂ LΘ(X ) ⋅ LΘ(Y )Lc (H )∞;AdV .

So, let x ∈ X and y ∈ Y . Observe that x = ∑k∈ZN x̂(k) and y = ∑k∈ZN ŷ(k) with abso-

lute convergence in LU (H )∞;AdV , so that, in particular, xy = ∑k1,k2∈ZN x̂(k1)ŷ(k2) with
absolute convergence in LU ×V (H )∞;AdV . Since LΘ ∶ LU ×V (H )∞;AdV → LU ×V (H )∞;AdV
is continuous as a linear map between Fréchet spaces, it follows that

LΘ(xy) = ∑
k1,k1∈ZN

x̂(k1)ŷ(k2)V−[Θt (k1+k2)] = ∑
k1,k2∈ZN

LΘ(x̂(k1))LΘ(e2� i⟨k1,Θk2⟩ŷ(k2))
with absolute convergence in LU ×V (H )∞;AdV , so that

LΘ(xy) ∈ LΘ(X ) ⋅ LΘ(Y )LU ×V (H )∞;AdV .
Next, by Proposition 4.22, (V�)Θ = V�Θ, so that, a fortiori,

(V�G )Θ = ((V�)Θ)G = V�(Θ)G .
Now, suppose that (, H , D;U , V ) is gauge-admissible with respect to Z ; by the above

argument, mutatis mutandis, so too is (Θ, H , D;U , V ). Since (, H , D;U , V ) can be re-
covered from (Θ, H , D;U , V ) via Connes–Landi deformation with deformation param-
eter −Θ, it only remains to show that

AtTN (Σ) ⊂ AtTN (ΣΘ), GTN (Σ) ⊂ GTN (ΣΘ), atTN (Σ) ⊂ atTN (ΣΘ);
in particular, observe thatAtTN (Σ) ⊂ AtTN (ΣΘ), again, by the same argument above. Now,

let us show that GTN (Σ) ⊂ GTN (ΣΘ). Let S ∈ GTN (Σ). Since S is TN -invariant,
∀a ∈ , SLΘ(a)S∗ = LΘ(SaS∗),

which implies that SLΘ(Θ)S∗ ⊂ LΘ(Θ) and that S supercommutes with LΘ((Θ)G ) and
hence with LΘ(AΘ). Since [D − Z , S] ∈ L(Dom /Dv , H ), it now follows that

[D − Z , S] =W ( /Dv + i), W ∶= [D − Z , S]( /Dv + i)−1 ∈ LU (H )TN ,
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where [ /Dv , ⋅] ∶  → LU (H )∞;AdV is G- and TN -equivariant and continuous by the proof
of Proposition 4.22; thus, supercommutation of [D, S]withG implies supercommutation
with ((Θ)G )alg;�Θ , and hence, by continuity of [[D − Z , S], ⋅], supercommutation with

(Θ)G = (G )Θ. Thus, S ∈ GTN (ΣΘ).
Finally, let us show that atTN (Σ) ⊂ atTN (ΣΘ). Let ! ∈ atTN (Σ). On the one hand, by

the above argument, mutatis mutandis, supercommutation of ! with 
G implies super-

commutation with (Θ)G = (G )Θ; on the other hand, by the proof that (Θ, H , D;U , V )
satisfies (4.8) and (4.9), mutatis mutandis, it follows that ! satisfies (4.11) with respect to

ΣΘ. Thus, ! ∈ atTN (ΣΘ). �

Let us conclude by relating these generalities to Connes–Landi deformations of TN -
equivariant principal G-bundles. Let (P, gP ) be a compact oriented Riemannian G × TN -
manifold, and suppose that the G-action on P is free and that the vertical Riemannian
metric with respect to the G-action is orbitwise bi-invariant; let (C(P), �, �) be the result-
ing principal TN -equivariant G-C∗-algebra. Let (E,∇E) be a G × TN -equivariant dim P-
multigraded Dirac bundle on P , and let Σ ∶= (C∞(P), L2(P, E), DE ;U E , V E) be the resulting
principal and gauge-admissible TN -equivariant G-spectral triple with canonical vertical
geometry (�, c) and canonical remainder Z(�,c). Then, for any Θ ∈ gl(N ,R), the Connes–
Landi deformation ΣΘ ∶= (C∞(PΘ), L2(P, E), DE ;U E , V E) remains a principal and gauge-
admissible TN -equivariant G-spectral triple with respect to (�, c) and Z(�,c), with

A(P)TN ↪ AtTN (Σ) = AtTN (ΣΘ), G(P)TN ↪ GTN (Σ) = GTN (ΣΘ).
In particular, then, this recovers the unbounded KK -theoretic factorisations of Brain–
Mesland–Van Suijlekom [20] as follows.

Example 4.26 (Brain–Mesland–Van Suijlekom [20, §5]). Fix � ∈ R. Let P ∶= T2 with the
flat metric and the translation actions of T2 and U(1) ≅ T × {0}, and letE ∶= T2 × /S(R2 ⊕ Lie(T2)∗).
where ∇E is the flat connection. Finally, let Θ ∶= −�( 0 0

1 0 ). Then ΣΘ is a canonically

principal and gauge-admissible T2-equivariant U(1)-spectral triple with totally geodesic
orbits that recovers the noncommutative principal U(1)-bundle C∞(T2� ) ↩ C∞(T1) up to
multigrading. When � is irrational, this can also be identified with the noncommutative
principal U(1)-bundle of Example 3.39 using the unitary equivalenceW .

Example 4.27 (Brain–Mesland–Van Suijlekom [20, §6]). Fix � ∈ R. Let P ∶= SU(2) with
the metric induced by the positive-definite Killing form, let T ≤ SU(2) be the diagonal
maximal torus, letU(1) ≅ T act by left translation, and let T2 ≅ T ×T act via left translation
by the first factor and right translation by the second; note that standard diffeomorphism

SU(2) ∼→ S3 ⊂ C2 defined by A ↦ Ae1 intertwines the above T2-action on SU(2) with
the diagonal action of T2 ≅ U(1) × U(1) on S3 up to the double coverT2 ։ T2, (t1, t2) ↦ (t1 + t2, t1 − t2)
and exactly entwines the above U(1) action on SU(2) with the diagonal action of U(1) onS3. Following Homma [59], endow SU(2) with the spin structure

Spin(SU(2)) ∶= Spin(4) ≅ SU(2) × SU(2),
where Spin(3) ≅ SU(2) acts diagonally on the right, letE ∶= Spin(SU(2)) ×Spin(3) /S(R3 ⊕ su(2)∗)
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with ∇E the spin Levi-Civita connection, so that the commuting actions of U(1) and T2
on SU(2) lift to commuting actions of U(1) and T2 on Spin(SU(2)) (and hence on E) via left
multiplication by the ranges ofT ↪ SU(2) × SU(2), � ↦ (� , 1),T × T ↪ SU(2) × SU(2), (�1, �2) ↦ (�1, �2),
respectively. Finally, let Θ ∶= �

2 ( 0 0
1 0 ). Then ΣΘ is a canonically principal and gauge-

admissible T2-equivariant U(1)-spectral triple with totally geodesic orbits that recovers
the noncommutative principal U(1)-bundle C∞(S3� ) ↩ C∞(S2) up to multigrading; in
particular, up to multigrading, the canonical remainder Z(�,c) recovers the obstruction
1
2 to exact factorisation in unbounded KK -theory observed by Brain–Mesland–Van Sui-
jlekom [20, Remark 6.9].

Finally, let us observe that our machinery can accommodate Connes–Landi deforma-
tion of the quaternionic Hopf fibration S7 ։ S4 as a T2-equivariant principal SU(2)-
bundle, as first studied by Landi and Van Suijlekom [72]. To the authors’ best knowledge,
the resulting unbounded KK -theoretic factorisation of (the total space of) the noncom-
mutative principal SU(2)-bundle C∞(S7� ) ↩ C∞(S4� ) is novel.
Example 4.28. Fix � ∈ R. Let P ∶= S7 ≅ {(q1, q2) ∈ H

2 | ‖q1‖2 + ‖q2‖2 = 1} with the round
metric, let SU(2) ≅ Sp(1) act diagonally via left multiplication on S7, let T ≤ SU(2) be the
diagonal maximal torus, and let T2 ≅ T × T ⊂ SU(2) × SU(2) ≅ Sp(1) × Sp(1) act block-
diagonally via right multiplication on S7. Following Homma [59], endow S7 with the spin
structure Spin(S7) ∶= Spin(8), where Spin(7) acts freely on Spin(8) via right translation
by the stabilizer of (1, 0) ∈ H

2 ≅ R
8, and letE ∶= Spin(S7) ×Spin(7) /S(R7 ⊕ T ∗

(1,0)S7)
with ∇E the spin Levi-Civita connection. Since the homomorphism SU(2) × T2 → SO(8)
defined by the commuting Lie actions of SU(2) and T

2 on S7 lifts to a homomorphism
SU(2) × T2 → Spin(8) (cf. [27, §2]), it follows that the commuting actions of SU(2) and
T
2 on S7 lift to to commuting actions on Spin(S7) (and hence on E) via left translation by

the range of SU (2) × T2 → Spin(8). Finally, let Θ ∶= − �2 ( 0 0
1 0 ). Then ΣΘ is a canonically

principal and gauge-admissible T2-equivariant SU(2)-spectral triple with totally geodesic
orbits encoding the noncommutative principal SU(2)-bundle C∞(S7� ) ↩ C∞(S4� ) up to
multigrading.

Question 4.29. Can one construct an extension of C∗-algebras that represents the image of

(C(S7� ) ↩ C(S4� ))! ∈ KKSU(2)
3 (C(S7� ), V1C(S7� )SU(2)) ≅ KKSU(2)

1 (C(S7� ), C(S4� ))
in KK1(C(S7� ), C(S4� )) ≅ Ext1(C(S7� ), C(S4� ))?

5. Outlook

In this work, we have laid foundations for noncommutative gauge theorywith compact
connected Lie structure group within the framework of noncommutative Riemannian
geometry via spectral triples. In so doing, we have used the methods of unbounded KK -
theory to start bridging the gap between the algebraic framework of strong connections
on principal comodule algebras with the functional-analytic framework of the spectral
action principle in a manner that is explicitly consistent with index theory. There are two
outstanding issues, however, that should be addressed in the short-term.
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First, given a principal G-spectral triple (, H , D;U ; �, c; Z ) for a principal G-C∗-alge-
bra (A, �), the resulting basic spectral triple (V�G , HG , DG [Z ]) is a spectral triple forV�AG , not AG , for which one would need a vertical spinCstructure. In the case whereG is Abelian and Z is totally geodesic, one can simply use the canonical Morita equiva-
lence of Clm ⊗̂Cl(g∗) and C as Z2-graded C∗-algebras with trivial G-actions. The general
case, however, will necessarily involve certain additional functional-analytic subtleties,
especially in the non-unital case—these will be addressed in future work, which will also
provide all the functional-analytic groundwork needed for a satisfactory account of asso-
ciated vector bundles and associated connections.

Second, the requirement that a vertical metric � for a G-C∗-algebra (A, �) be valued inZ (M(A)) is rather restrictive, but a straightforward generalisation is suggested by work
of Dąbrowski–Sitarz [40,41]. Indeed, given a G-spectral triple (, H , D;U ) for (A, �), one
can just as easily consider � valued in a suitable commutative unital ∗-subalgebra of G-
invariant even elements of the supercommutant A′ ⊂ L(H ). In this case, one can consider
vertical geometries (in the strict sense) for the G-spectral triple ( ⋅ (�), H , D;U ) forA� ∶= A ⋅(�)L(H )

endowed with the trivial extension of � ; in particular, one can check
that (A� , �) is principal whenever (A, �) is. However, in the absence of any obvious rela-

tion between A and V�A� or between AG and (V�A�)G , the dependence of noncommuta-
tive (algebraic) topology, noncommutative Riemannian geometry, and noncommutative
gauge theory on the choice of � will now require detailed examination.

At the same time, our framework is complete enough to shed a new and unifying
light on a number of key examples in the noncommutative-geometric literature and to
motivate foundational questions in the theory of spectral triples, with its rich interplay
of noncommutative differential calculus, spectral theory, and index theory. We conclude
by sketching three concrete directions for future investigation.

The first example of a genuinely noncommutative principal bundle in the noncommu-
tative geometry literature is the q-deformed complex Hopf fibration (SUq(2)) ↩ (S2q)
constructed by Brzeziński–Majid [24] with base the standard Podleś sphere [86]; more-
over, in the same paper, Brzeziński–Majid also construct the q-monopole, which is prob-
ably the first example of a genuinely noncommutative principal connection on a non-
commutative principal bundle. As Das–Ó Buachalla–Somberg observe [43, §1], there is a
canonical spectral triple for the base space S2q , namely, the one constructed byDąbrowski–
Sitarz [38], but there is no canonical choice of spectral triple for the total space SUq(2).
Even worse, as Senior demonstrated in his Ph.D. thesis [93, Chapters 5, 6], the straight-
forward unboundedKK -theoretic reverse-engineering of a spectral triple for SUq(2) from
the canonical spectral triple for S2q does not result in a spectral triple. However, by our
results, any principal U(1)-spectral triple for SUq(2) would canonically induce a spectral
triple for S2q , which, in turn, can be compared to the spectral triple of Dąbrowski–Sitarz.

Question 5.1. Does the compact quantum group SUq(2) admit a principal U(1)-spectral
triple ((SUq(2)), H , D;U ; �, c; Z )? If so, does (V�(SUq(2)), HU(1), DU(1)[Z ]) recover, up
to the canonical Morita equivalence of Cl1 ⊗̂Cl(u(1)∗) and C as Z2-graded C∗-algebras, the
canonical spectral triple for the standard Podleś sphere S2q , and does the ∗-derivation [Dℎ[Z ], ⋅]
recover the q-monopole?

The first computationally tractable example of a non-trivial noncommutative principal
bundle with non-Abelian structure group is arguably the �-deformed quaternionic Hopf
fibration C∞(S7� ) ↩ C∞(S4� ) of Landi–Van Suijlekom [72], which, by Example 4.28, can be
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recovered from our framework, at least up to the canonical Morita equivalence of the Z2-
graded Fréchet T2-pre-C∗-algebras V1C∞(S7� )G ≅ C∞(S4,Cl3 ⊗̂Cl(su(2)∗) ×SU(2) S7))� and
C. There is a rich literature on generalising the ADHM construction [8, 9] of instantons
on the classical quaternionic Hopf fibration S7 ։ S4 to the �-deformed case [71–73], but
for lack of a direct approach to noncommutative principal bundles within the framework
of spectral triples, one is essentially forced to construct noncommutative instantons onC∞(S7� ) ↩ C∞(S4� ) implicitly via maps of the form

ŜU(2) ∋ � ↦ (E(�) ∶= HomSU(2)(V� , C∞(S7� )), Hermitian connection on E(�)) .
Since the framework of Section 3 is directly applicable to the gauge-admissible principal
SU(2)-spectral triple for S7� of Example 4.28, this raises the following question.

Question 5.2. Do the “basic” noncommutative instantons of Landi–Van Suijlekom [72] and
the families of noncommutative instantons constructed by Landi–Van Suijlekom [73] and
Landi–Pagani–Reina–Van Suijlekom [71] correspond to explicit elements of the Atiyah space
At of the spectral triple for S7� of Example 4.28? If so, do gauge-inequivalent noncommutative
instantons remain inequivalent with respect to the gauge action on At of the corresponding
noncommutative gauge group G?

Finally, although unbounded KK -theory has been developed primarily to facilitate
noncommutative index theory, an explicit factorisation in unbounded KK -theory such
as that of Theorem 2.44 also involves highly non-trivial exact relationships between un-
bounded operators, whose implications for spectral theory—and hence noncommutative
integration theory (see [75]) and noncommutative spectral geometry (see [50])—have not
yet been studied. In the longer term, the relationship between noncommutative integra-
tion on a principal G-spectral triple (, H , D;U ; �, c; Z ) and noncommutative integration
on the resulting basic spectral triple (V�G , HG , DG [Z ]) begs to be understood; at a bare
minimum, such a relationship would naïvely require that the metric dimension of the
spectral triple (, H , D) be at least dimG, which suggests the following question.

Question 5.3. Let (, H , D;U ) be a G-spectral triple for a unital G-C∗-algebra (A, �). Sup-
pose that (, H , D;U ) admits a vertical geometry. Does it necessarily follow that

inf{p ∈ [0,∞) | (D2 + 1)−p/2 is trace class} ≥ dimG?
In particular, does this follow when (A, �) is principal and (, H , D;U ; �, c; Z ) is principal?
Note that an answer to this question would also provide crucial technical insight towards
relating the spectral actions on the base space (possibly twisted by an associated vector
bundle) and the total space of a noncommutative Riemannian principle bundle with com-
pact connected Lie structure group; establishing such a relation would arguably bridge
the two solitudes of noncommutative gauge theory.

Appendix A. Peter–Weyl theory and G-Hilbert modules

In this appendix, we provide a sketch of Peter–Weyl theory for continuous represen-
tations of compact connected Lie groups on Fréchet spaces in general and for actions
on C∗-algebras and Hilbert C∗-modules in particular. A detailed account of the general
picture can be found in [45, Chapter 4]; specifics related to C∗-algebras and Hilbert C∗-
modules can be found, for instance, in [16, §VIII.20; 44, §2].

For the moment, let E be a Z2-graded Fréchet space topologised by a countable family
of seminorms {‖ ⋅ ‖E;i}i∈N, and � ∶ G → GL(E) a strongly continuous representation of G
on E by even isometries.
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Definition A.1. For every � ∈ Ĝ , the � -isotypical component of E is the closed subspace

E� ∶= E�� ∶= {T (v) | T ∈ HomG (V� , E), v ∈ V�},
which is the range of the idempotent P� ∈ L(E) defined by

∀e ∈ E, P� (e) ∶= d� ∫G �� (g)�g (e) dg.
In particular, the isotypical component of the trivial representation 1 ∈ Ĝ is the sub-

space EG of fixed points, while the corresponding projection P1 simply averages with
respect to the Haar measure.

Proposition A.2. The family of idempotents {P�}�∈Ĝ defines an orthogonal resolution of

the identity in the sense that

∀�1, �2 ∈ Ĝ, P�1P�2 =
{P�1 if �1 = �2,
0 else,

while∑�∈Ĝ P� = idE pointwise on the dense subspace

(A.1) Ealg ∶= Ealg;� ∶=
alg⨁�∈Ĝ E� ;

if E is a Hilbert space and � is unitary, then ∑�∈Ĝ P� = idE strongly in L(E).
Now, for each k ∈ N, define the subspace of Ck vectors by

(A.2) Ek ∶= Ek;� ∶= {e ∈ E | (g ↦ �g (e)) ∈ Ck(G, E)}.
The infinitesimal representation d� ∶ g → HomC(E1, E) then permits us to topologise Ek
as a Fréchet space with the family of seminorms {‖ ⋅ ‖E;j,m}(j,m)∈N×Nk defined by

∀j ∈ N, ∀m ∈ N
k , ∀e ∈ Ek , ‖e‖E;j,m ∶= ‖‖‖(d�(�m1 )◦ ⋯ ◦d�(�mk )) (e)‖‖‖E;j .

As a result, the subspace of smooth vectors

E∞ ∶= E∞;� ∶=
∞⋂k=1 Ek,� ⊃ Ealg;�

is naturally a Fréchet space as well, and d� extends to a representation d� ∶  (g) → L(E)
of the universal enveloping algebra (g) of g; in particular, it follows that

∀e ∈ E∞, e = ∑�∈Ĝ P� (e),
with absolute convergence in E∞. Finally, in this regard, note that if � is strongly smooth,
then E = E∞ as vector spaces and idE ∶ E∞ → E is a continuous bijection.

We now specialise to strongly continuous actions on C∗-algebras and Hilbert modules.

Definition A.3. A G-C∗-algebra is a Z2-graded C∗-algebra A together with a strongly
continuous action � ∶ G → Aut+(A) of G on A by even ∗-automorphisms. The fixed

point algebra is the C∗-subalgebra AG ∶= {a ∈ A | �g (a) = a, ∀g ∈ G} of G-fixed vectors.
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Suppose that (A, �) is a G-C∗-algebra. The map EA ∶= P1 ∶ A ։ AG is a faithful condi-
tional expectation onto AG . More generally, for every � ∈ Ĝ, the �-isotypical componentA� defines Hilbert (AG , AG )-bimodule with respect to left and right multiplication by AG
and the Hermitian metric defined by

(A.3) ∀a1, a2 ∈ A, (a1, a2)AG ∶= EA(a∗1a2) = ∫G �g (a∗1a2) dg.
In fact, for every � ∈ Ĝ, it follows that (A� )∗ = A� ∗ , where � ∗ is the contragredient of� , so that Aalg defines a dense ∗-subalgebra of A; moreover, A∞ defines a dense Fréchet
pre-C∗-algebra closed under the holomorphic functional calculus.

Definition A.4. Let (A, �) and (B, �) are G-C∗-algebras. Then a Hilbert G-(A, B)-bimodule
is a Z2-graded Hilbert (A, B)-bimodule E together with a strongly continuous representa-
tion U ∶ G → GL+(E) of G on E by even Banach space automorphisms, such that

∀g ∈ G, ∀a ∈ A, ∀e ∈ E, ∀b ∈ B, Ug(aeb) = �g (a)Ug (e)�g(b);
∀g ∈ G, ∀e1, e2 ∈ E, (Ug(e1), Ug(e2))B = �g ((e1, e2)B).

For E a G-(A, B) Hilbert module, LB(E) denotes the C∗-algebra of adjointable endo-
morphisms, while KB(E) denotes the C∗-subalgebra of compact endomorphisms. Although
KB(E) naturally defines a G-C∗-algebra, LB(E) does not. This motivates the definition of
the C∗-subalgebra

(A.4) L
UB (E) ∶= {T ∈ LB(E) | g ↦ UgTU ∗g ∈ C(G, LB(E))} ⊂ LB(E),

of G-continuous adjointable operators, which is a G-C∗-algebra by construction.

Example A.5. One can complete the G-equivariant Z2-graded (A,AG )-bimodule A with
respect to the AG-valued Hermitian metric ( ⋅ , ⋅ )AG defined by Equation (A.3) to obtain a
Hilbert G-(A,AG )-bimodule L2v(A) ∶= L2v (A; �). In particular, � ∶ G → Aut+(A) extends
to its own spatial implementation L2v (�) ∶ G → UAG (L2v(AG )).

Finally, suppose that (A, �) is a G-C∗-algebra and that B is a C∗-algebra with trivialG-action. Then, for every � ∈ Ĝ , the �-isotypical component E� defines a right Hilbert B-
submodule of E that is G-equivariantly unitarily equivalent to V� ⊗HomG (V� , E) endowed
with the AG-linear Hermitian metric given by

∀v1, v2 ∈ V� , ∀T1, T2 ∈ HomG (V� , E), (v1 ⊗ T1, v2 ⊗ T2)B ∶= d−1� (T1(v1), T2(v2))B;
an explicit unitary equivalence �� ∶ V� ⊗HomG (V� , E) → E� is given by

∀v ∈ V� , ∀T ∈ HomG (V� , E), �� (v ⊗ T ) ∶= d1/2� T (v)
with inverse �−1� ∶ E� → V� ⊗HomG (V� , E) given by

∀e ∈ E� , �−1� (e) ∶= d1/2� d�∑i=1 vi ⊗ ∫G Ug(e) ⊗ ⟨vi , � (g−1)(⋅)⟩ dg,
where {v1,… , vd� } is any orthonormal basis for V� .
Proposition A.6 (Peter-Weyl theorem for Hilbert modules). Let (A, �) be a G-C∗-algebra
and B a C∗-algebra with trivial G-action. For every � ∈ Ĝ, the Hilbert B-submodule E� is
complemented in E with G-invariant orthogonal projection P� ∈ LB(E); moreover, the map

(A.5) E → ⨁�∈Ĝ E� , e ↦ (P� (e))�∈Ĝ
is an isomorphism of right Hilbert G-B-modules (i.e., Hilbert G-(C, B)-bimodules).
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In the special case of the Hilbert G-(A,AG )-bimodule (L2v(A), L2v(�)), for every � ∈ Ĝ,
the norm on A� = L2v(A)� as a right Hilbert B-submodule of L2v (A) is equivalent to the
restriction of the C∗-norm of A [44, Cor. 2.6], and HomG (V� , L2v(A)) = HomG (V� , A).

Appendix B. Hermitian module connections from strong connections

Wepresent a generalmethod for constructingHilbertmodule connections (in the sense
of Mesland [77]) from strong connections [55] relative to a spectral triple. This reconciles
two prominent notions of connection in the noncommutative geometry literature.

We begin with a minimalistic definition of noncommutative fibration over a spectral
triple admitting well-defined integration over the fibres (but without presupposing any
noncommutative fibrewise family of Dirac operators).

Definition B.1. Let (, H0, T ) be a complete spectral triple for a separable C∗-algebra B
with adequate approximate identity {�k}k∈N. We define a noncommutative fibration over
(, H0, T ) to be a triple (A,EA,) consisting of:

(1) a C∗-algebraA together with non-degenerate ∗-monomorphism B ↪ A, such that
{�k}k∈N defines an approximate identity of A;

(2) a faithful conditional expectation EA ∶ A → B, such that the resulting completionL2(A; EA) of A to a Hilbert B-module admits a countable frame contained in A;
(3) a dense ∗-subalgebra  ⊂ A, such that  ⊂ .

We now define a notion of horizontal differential calculus on a noncommutative fibra-
tion compatible with the de Rham differential calculus on the base—this gives us a suitable
functional analytic setting for the strong connection condition as identified by Hajac [55].

Definition B.2. Let (, H0, T ) be a complete spectral triple for a separable C∗-algebra B,
and let (A,EA,) be a noncommutative fibration over (, H0, T ). We define a horizontal
differential calculus for (A,EA,) to be a triple (Ω,EΩ,∇0) consisting of:

(1) a C∗-algebra Ω together with a ∗-mononorphism A ↪ Ω;
(2) a positive contraction EΩ ∶ Ω → L(H0), such that EΩ|A = EA and

∀b ∈ B, ∀! ∈ Ω, EΩ(b!) = bEΩ(!), EΩ(!b) = EΩ(!)b;
(3) a ∗-derivation ∇0 ∶  → Ω, such that

(B.1) ∀a ∈ A, ∀b ∈ , EΩ(a ⋅ ∇0(b)) = EA(a) ⋅ [T , b].
Moreover, we say that (Ω,EΩ,∇0) satisfies the strong connection condition whenever

(B.2) ∀a ∈ , ∇0(a) ∈ A ⋅ ∇0()Ω.
Finally, we show that the horizontal exterior derivative of a horizontal differential

calculus satisfying the strong connection condition canonically induces a Hilbert module

connection. Recall that ⊗̂ℎ denotes the Haagerup tensor product.

Theorem B.3. Let (, H0, T ) be a complete spectral triple for a separable C∗-algebra B, let
(A,EA,) be a noncommutative fibration over (, H0, T ), and let (Ω,EΩ,∇0) be a horizontal
differential calculus for (A,EA,) that satisfies the strong connection condition. Then ∇0
canonically induces a Hermitian T -connection ∇ ∶  → L2(A; EA) ⊗̂ℎB Ω1T on L2(A; EA) by
(B.3) ∀a ∈ , ∇(a) ∶= ∑i∈N �i ⊗̂ EΩ (� ∗i ∇0(a)) ,
where {�i}i∈N is any frame for L2(A; EA) contained in A.
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Proof. Given a frame {�i}i∈N ⊆ A for L2(A; EA), which exists by assumption, we show
that (B.3) defines a B-module connection ∇. Let a ∈ , and write ∇(a) = ∑k ak∇0(bk) forak ∈ A and bk ∈ , so that, by continuity of EΩ and closure of Ω1T in L(H0),

∀i ∈ N, EΩ(� ∗i ∇0(a)) = EΩ(∑k � ∗i ak∇0(bk)) = ∑k EA(� ∗i ak)[T , bk] ∈ Ω1T ;
without loss of generality, we may assume that ‖∇0(a)‖ ≤ 1.

Choose K large enough that ‖‖∑k>K ak∇0(bk)‖‖2 < "/6, so that for any n, N ,‖‖‖‖‖‖ ∑n≤|i|≤N �i ⊗ EΩ(� ∗i ∇0(a))‖‖‖‖‖‖
2

ℎ
≤ 2

‖‖‖‖‖‖ ∑n≤|i|≤N ∑k≤K �i ⊗ EΩ(� ∗i ak∇0(bk))‖‖‖‖‖‖
2

ℎ + 2
‖‖‖‖‖‖ ∑n≤|i|≤N ∑k>K �i ⊗ EΩ(� ∗i ak∇0(bk))‖‖‖‖‖‖

2

ℎ
≤ 2

‖‖‖‖‖‖ ∑n≤|i|≤N ∑k≤K �i ⊗ EΩ(� ∗i ak∇0(bk))‖‖‖‖‖‖
2

ℎ + 2
‖‖‖‖‖∑k>K ak∇0(bk)‖‖‖‖‖2ℎ

≤ 2
‖‖‖‖‖‖ ∑n≤|i|≤N ∑k≤K �i ⊗ EΩ(� ∗i ak∇0(bk))‖‖‖‖‖‖

2

ℎ +
"
3 .

Now choosem and n large enough, so that‖‖‖‖‖∑k≤K(�mak − ak)∇0(bk)‖‖‖‖‖2Ω < "
12 ,

‖‖‖‖‖‖∑|i|≥n �m�iEA(� ∗i �m)
‖‖‖‖‖‖L2(A,EA) < "

12 ‖‖∑k≤K ak∇0(bk)‖‖2 .
Then, for any N ≥ n we can estimate‖‖‖‖‖‖ ∑n≤|i|≤N ∑k≤K �i ⊗ EΩ(� ∗i ak∇0(bk))‖‖‖‖‖‖

2

ℎ
≤ ‖‖‖‖‖‖EA(∑i �i� ∗i)‖‖‖‖‖‖

‖‖‖‖‖‖ ∑n≤|i|≤N ∑k,�≤K ∇0(bk)∗EA(a∗k�i)EA(� ∗i a� )∇0(b� )‖‖‖‖‖‖
≤ 2

‖‖‖‖‖‖ ∑n≤|i|≤N ∑k,�≤K ∇0(bk)∗EA(a∗k�m�i)EA(� ∗i �ma� )∇0(b� )‖‖‖‖‖‖
+ 2

‖‖‖‖‖‖ ∑k,�≤K ∇0(bk)∗(�mak − ak)∗(�ma� − a� )∇0(b� )‖‖‖‖‖‖
≤ 2

‖‖‖‖‖‖ ∑n≤|i|≤N ∑k,�≤K ∇0(bk)∗EA(a∗k�m�i)EA(� ∗i �ma� )∇0(b� )‖‖‖‖‖‖ + "
6

Now observe that by [70, Lemma 4.2], we can estimate

(∑|i|≥nEA(a∗k�m�i)EA(� ∗i �ma� ))k,�≤K = (EA(a∗k (∑|i|≥n �m�iEA (� ∗i �m)) a�))k,�≤K
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≤ ‖‖‖‖‖‖∑|i|≥n �m�iEA(� ∗i �m)
‖‖‖‖‖‖ (EA(a∗ka� ))k,�≤K≤ "

12 ‖‖∑k≤K ak∇0(bk)‖‖2 (EA(a∗ka� ))k,�≤K ,
as matrices. Therefore‖‖‖‖‖‖ ∑n≤|i|≤N ∑k,�≤K ∇0(bk)∗E(a∗k�m�i)E(� ∗i �ma� )[T , b� ]‖‖‖‖‖‖ ≤ "

12 ,
and we continue to estimate‖‖‖‖‖‖ ∑n≤|i|≤N �i ⊗ EΩ(� ∗i ∇0(a))‖‖‖‖‖‖

2

ℎ ≤
"
3 + 2

‖‖‖‖‖‖ ∑n≤|i|≤N ∑k≤K �i ⊗ EΩ(� ∗i ak∇0(bk))‖‖‖‖‖‖
2

ℎ
≤ "
3 + "

3 + 4
‖‖‖‖‖‖ ∑n≤|i|≤N ∑k,�≤K ∇0(bk)∗EA(a∗k�m�i)EA(� ∗i �ma� )∇0(b� )‖‖‖‖‖‖≤ "

3 + "
3 + "

3 = ".
This proves that the series is convergent in the Haagerup norm. Independence of the
choice of frame {�i} ⊂ A now follows, for if {�j} ⊂ A is another countable frame we write∑i �i ⊗ EΩ(� ∗i ∇0(a)) = ∑i,j �j ⊗ EA(�∗j�i)EΩ(� ∗i ∇0(a)) = ∑i,j �j ⊗ EΩ(EA(�∗j�i)� ∗i ∇0(a))

= ∑j �j ⊗ EΩ(∑i (�iEA(� ∗i �j ))∗ ∇0(a)) = ∑j �j ⊗ EΩ(�∗j∇0(a)),
where convergence of the relevant sums follows from continuity of EA and EΩ. �
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