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Thermodynamics of spacetime from minimal area
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Motivated by exploring the interface between thermodynamics of spacetime and quantum gravity
effects, we develop a heuristic derivation of Hawking temperature and Bekenstein entropy from the
existence of a minimal resolvable area. Moreover, we find leading order quantum gravity corrections
to them that are in qualitative agreement with results obtained by other methods, both heuristic
and rigorous. In this way, we recover, as a particular case, the corrections heuristically obtained
from the existence of minimal length. We also show that the size of minimal area is constrained
from above by well understood results of semiclassical black hole physics, specifically by the entropy
content of Hawking radiation. The minimal area derivation we introduce is also applied to finding
the Unruh temperature associated with causal diamonds and to establish a new relation between
this temperature and the entropy of the causal diamond’s horizon.

I. INTRODUCTION

In the study of gravitational phenomena, the introduc-
tion of thermodynamic tools has revealed a useful ap-
proach to understand different processes involving hori-
zons, such as black hole evaporation. Black hole ther-
modynamics emerged in the early seventies with the ar-
gument that black holes posses entropy proportional to
their horizon area [I]. Soon thereafter, it was found that
black hole evolution follows four laws analogous to the
laws of thermodynamics [2] and that they emit black
body radiation corresponding to a finite temperature [3]
(the Hawking effect). The ideas behind the Hawking ef-
fect were later further extended and it was found that a
uniformly accelerating observer perceives the Minkowski
vacuum as a thermal bath of particles whose temperature
is proportional to the observer’s acceleration [4] (while
this phenomena, known as the Unruh effect, is related
to the Hawking effect through the equivalence principle,
they are nevertheless distinct [5]).

In order to get a better understanding of these effects
and develop new predictions, many results concerning
the relation of thermodynamics and gravity have been
later reproduced and extended by rather simple heuris-
tic arguments. For instance, expressions of Hawking and
Unruh temperatures are implied by the uncertainty re-
lation between position and momentum of the produced
particles [6]. The form of Bekenstein entropy then follows
from the Hawking temperature and the equilibrium Clau-
sius relation, providing a complete thermodynamic de-
scription of a Schwarzschild black hole just from heuristic
considerations. While these derivations of course cannot
replace the corresponding rigorous calculations, they still
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provide useful physical intuition and allow one to develop
new predictions and directions to explore meticulously
in the future. Furthermore, one can extend heuristic rea-
soning beyond the well-explored semiclassical setting and
employ it to gain insight into low energy quantum grav-
ity effects. To achieve this, the standard Heisenberg un-
certainty principle has been replaced by the generalised
uncertainty principle (GUP) [7HI0], that phenomenolog-
ically incorporates minimal resolvable length appearing
in a number of approaches to quantum gravity [11, [12].

In this paper, inspired by previous successes of heuris-
tic results, we park for a while the more rigorous side
of black hole thermodynamics and drive our ideas to ex-
plore new directions and results. The nature of our rea-
soning is similar to that of the derivations based on GUP.
However, in place of minimal length we introduce a new
game piece: minimal resolvable area. There are good
reasons to consider it. While the existence of minimal
length trivially implies minimal area, the converse does
not hold. To see this, consider an ellipse with height 2b
and width 2a, whose area, A = mab corresponds to the
minimal value. One can then set the height arbitrar-
ily small, as long as its product with width and, thus,
the area, remains fixed. Moreover, some approaches to
quantum gravity say something about minimal area but
not necessarily about minimal length, e.g. loop quantum
gravity (LQG) [13]14] and proposals to quantise the area
of a black hole horizon [15].

We begin by finding a derivation for the modified black
hole temperature and entropy from minimal area. As ex-
pected, whenever the GUP approach is applicable, we ob-
tain results equivalent to it. However, as we emphasised
above, our findings are more general and hold even for
some theories that do not necessarily imply GUP. Upon
verifying and generalising the known previous results, we
proceed to ask two new questions. First, if minimal area
allows us to recover some predictions concerning black
hole thermodynamics, can we in turn use our knowl-
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edge of black hole thermodynamics to learn something
about minimal area? We argue that average entropy per
photon of Hawking radiation indeed provides an upper
limit on the minimal area and, indirectly, the minimal
length. Since the semiclassical entropy of Hawking ra-
diation depends only on its black body nature [16], the
limits obtained in this way are model independent. Fur-
thermore, the upper bound we find for the minimal area,
Amin S 10.801%,, is consistent with theoretical predic-
tions of its value [I5], [I7]. The second question we pose
comes from the fact that one can assign entropy propor-
tional to area even to observer-dependent horizons asso-
ciated with accelerating observers [I8H20], who measure
non-zero Unruh temperature. Therefore, it is natural to
ask: can one connect the values of horizon entropy and
Unruh temperature associated to such horizons? Ap-
plying our derivation based on minimal area, we show
that this is indeed possible in the case of causal dia-
monds (and, possibly, other closed horizons). It turns
out that the relation between the Unruh temperature
measured by finite lifetime inertial observers inside the
diamond [21], 22] and the entropy of diamond’s horizon
is similar as in the case of temperature and entropy of a
Schwarzschild black hole. Furthermore, we derive correc-
tions to diamond’s temperature and entropy, obtaining
results consistent with the GUP modified Unruh tem-
perature [9] and the entanglement entropy of a spherical
horizon in Minkowski spacetime [19].

While we do not aim to provide a solid closed answer to
any of these questions, we offer a novel and intuitive view-
point that might prove helpful in solving them completely
and even motivate further research in related topics. In
any case, a slightly playful approach we adapt seems fit-
ting for a field of research that is said to begin with a
question: ”What happens when you pour a cup of tea
into a black hold™?”

The paper is organised as follows. In section [
we derive the modified temperature and entropy of a
Schwarzschild black hole and discuss bounds on mini-
mal area implied by black hole evaporation. Section [IT]
is devoted to derivation of temperature and entropy of a
causal diamond. We also explore how are both quanti-
ties modified due to quantum gravitational effects. Sec-
tion [[V] sums up our results and discusses unresolved is-
sues.

Throughout the paper we will work in four spacetime
dimensions, assume metric signature (—1,1,1,1) and use
ST units. Other conventions follow [23].

1 Reportedly, the question was posed by J. A. Wheeler to his stu-
dent, J. D. Bekenstein, who consequently proposed his formula
for black hole entropy [24].

II. THERMODYNAMICS OF
SCHWARZSCHILD BLACK HOLES

Our first scenario will be a Schwarzschild black hole. It
makes for a convenient choice as it is fully described by a
single parameter, the mass M. Therefore, we have a very
simple dependence of entropy on temperature given by
the equilibrium Clausius relation, dS = ¢2dM/T. Later
on, when we turn our attention to causal diamonds (sec-
tion , we will see how the presence of thermodynamic
quantities beyond mass, temperature and entropy (in this
case volume and pressure) makes the derivation more
cumbersome and less clear. We first recap the uncer-
tainty principle based reasoning for the sake of compari-
son with our method (subsection. In subsectionm
we carry out a derivation of modified black hole temper-
ature and entropy from minimal area. Lastly, subsec-
tion [[T'C] introduces constraints on the minimal area and
length implied by black hole evaporation.

Before, setting up the model and starting to play with
it, we ought to say a few words about its limitations.
Both the uncertainty principle and the minimal area
method can determine temperature of the photons of
Hawking radiation (up to a numerical factor). However,
they do not say anything about their existence. To use
them, we must assume that black hole does emit radia-
tion corresponding to a well defined temperature. One
can rigorously show that this indeed occurs and specify
the necessary conditions [3} [25] (of course, the Hawking
temperature is then found as a simple by-product of the
calculations). However, to keep in tune with the rest
of the paper, we will just support the existence of black
hole radiation by a well known intuitive description intro-
duced in the Hawking’s seminal paper [3]. Consider pairs
of virtual particles created just inside the horizon. Then,
there exists a probability that the positive energy particle
will tunnel outside of the horizon as Hawking radiation,
while the negative energy one will be absorbed by the
black hole, reducing its mass. Alternatively, one might
consider a virtual particle pair just outside the horizon,
with the negative energy particle tunnelling inside the
black hole (while this model may sound somewhat hand-
wavy, it can actually be used to derive many features of
the Hawking radiation [206], 27]).

A. Hawking temperature from uncertainty
principle

We begin by reviewing a heuristic derivation of Hawk-
ing temperature and modifications to it from the uncer-
tainty principle [6H8]. It will serve to provide a compar-
ison with the minimal area approach we will introduce
later on.

Consider a Schwarzschild black hole of mass M. A
photon emitted from the black hole has uncertainty in its
position comparable with the black hole’s Schwarzschild
radius, rs = 2GM/c* [28]. The Heisenberg uncertainty



principle (HUP) then implies a minimal uncertainty in
photon’s momentum
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If we take AE = cAp to be the typical energy of an
emitted photon, the temperature of the radiation obeys
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which agrees with the Hawking result for black hole tem-
perature up to 1/27. However, since the above presented
argument is only qualitative, some discrepancy in numer-
ical factor can be expected. Therefore, the result must be
corrected by a calibration factor of 1/27. Then, one re-
covers the Hawking temperature of a Schwarzschild black
hole
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To obtain a formula for the black hole entropy, one sim-

ply needs to integrate the equilibrium Clausius relation,
dS = 2dM/T, finding
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where A denotes the horizon area. This is of course the
well known expression for the Bekenstein entropy of a
Schwarzschild black hole.

Let us remark that HUP sets a lower limit on the prod-
uct of both uncertainties, but allows in principle arbitrar-
ily precise determination of either position or momentum.
However, thought experiments combining quantum me-
chanics with (even Newtonian) gravity indicate existence
of a minimal resolvable length [IT], [12]. Moreover, mini-
mal length also arises in string theory [29]. To study its
implications, one can introduce a modification of HUP,
the generalised uncertainty principle (GUP). It reads
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where [p = /Ghi/c? is the Planck length and «p is a
model dependent real number generally expected to be
of the order of unity. The corresponding minimal length
equals lyin = y/aglp. There also exist variants of GUP
incorporating minimal and/or maximal momentum [30].
However, we will limit our study to the above stated
version, as it is represents the simplest modification of
HUP necessary to incorporate minimal length and has
the advantage of being supported by a variety of argu-
ments, from simple thought experiments to more sophis-
ticated calculations in various approaches to quantum
gravity [I1l [12]. Black hole temperature heuristically ob-
tained from GUP then contains quantum gravity correc-
tions coming from the existence of minimal length [7].

The previously described derivation, with HUP re-
placed by GUP, yields modified formulas for black hole

temperature,
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This form of modified temperature has not been (to
our best knowledge) confirmed by any rigorous method.
However, a logarithmic correction term in black hole
entropy was reported in many approaches to quantum
gravity, including LQG [31], B2], string theory [33] and
AdS/CFT correspondence [34].

B. Hawking temperature from minimal area

We have seen how modified black hole temperature
and entropy arise from the existence of minimal length.
However, that turns out to be a slightly too strong as-
sumption, as we show how to accomplish similar results
by considering just a minimal area which, as we discussed
in the introduction, represents a more general concept.
Relaxing the requirement of minimal length is especially
advantageous since some approaches to quantum gravity
do not assume it, while still including a notion of minimal
area.

One of the main candidate theories of quantum gravity,
LQG, obtains a positive minimal eigenvalue of the area
operator [14]. When considering loop quantum cosmol-
ogy (LQC) within the improved dynamics prescription,
this eigenvalue is identified with the “area gap”, which is
then treated as a physical minimal resolvable area given
by Al% = 4\/57771?3, with v being the Barbero-Immirzi
parameter [I7, B5H38]. (Note, also, that the appearance
of physical minimal area in LQG and LQC has been ques-
tioned in some works [39, 40]). In an opposite way, the
length operator in LQG does not provide a similar no-
tion of minimal resolvable length [14, [41]. This frame-
work then does not imply GUP in any straightforward
way. Nevertheless, we do know that LQG leads to nega-
tive logarithmic correction to Bekenstein entropy [31], [32]
consistent with that implied by GUP. Generalising the
derivation of modified entropy reviewed in the previous
subsection to work just with minimal area could shed
some light on the consistency of the phenomenological
results.

Another approach to quantum gravity in which the
difference of minimal length and minimal area becomes
relevant is the proposal to quantise the area of black hole



horizon [I5] 42H44]. Tt assumes that quantised area of a
Kerr-Newman black hole has an evenly spaced spectrum,
thus it directly introduces a minimal change in black hole
area [15]. However, while the area is discretised, no spe-
cific realisation of a minimal area surface is envisioned.
In other words, one does not divide the event horizon
into some “minimal area patches” of a given shape, and
the existence of minimal area only manifests in discrete
(rather than continuous) changes of the horizon area.
Hence, no constraints whatsoever are put on the min-
imal length. Since this idea offers a very simple model
for quantum properties of black holes, its implications for
their temperature and, especially, entropy are of interest,
but they do not follow from the GUP-based argument.

Suppose there exists a minimal resolvable area, A, in,
implied by quantum gravity effects. Then, emission of
a single photon of energy c?6M decreases the area of a
Schwarzschild black hole event horizon at least by A,,n-
If black hole’s initial mass equals M, we have
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where Ay = 167G?M?/c* denotes the initial horizon

area. Taking the value M ¢?, that saturates this inequal-

ity, as the typical energy of emitted photons, we get for

their temperature
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We first apply this formula to a black hole large enough
to satisfy M >> dM. In this approximation, we find
SM = c* Apin /32mG? M and, therefore,

T~ CGAmin
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We can simplify the expression by writing A,,;, in terms
of squared Planck length, A, = Al%, where A is some
positive real number. Note that this entails no assump-
tions about the size of the minimal area as we keep A
arbitrary. We reserve the discussion of its value for sub-
section [[lTC] Then, our expression for temperature reads

(10)

T ~ éTH. (11)
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Due to a qualitative nature of our argument which may
ignore some numerical factors, we must again introduce a
calibration factor, in this case 4/A, to obtain the correct
Hawking temperature. This factor explicitly depends on
the size of the minimal area and for the typically con-
sidered values of A, it turns out to be close to one (for
instance, A & 5.17 often assumed in LQC [I7] yields cal-
ibration factor approximately 1.29). In conclusion, the
photon temperature obeys
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from which we easily find the Bekenstein entropy using
the Clausius relation, just like in previous subsection.
That is, the minimal area derivation recovers the stan-
dard expressions.

Upon deriving the standard formulas for black hole
temperature and entropy, we turn to phenomenological
quantum gravity corrections to them. To do so, we sim-
ply have to abandon the limit M > §M (minimal area
is already a consequence of quantum gravity, so no ad-
ditional concept is required). Assuming again that the
change in horizon area corresponds to A,,;, and solving
the quadratic equation for 6 M yields
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where mp = y/hic/G is the Planck mass. We choose
the minus sign as the plus sign gives a clearly unphys-
ical solution for which 6M > M, i.e., the emitted pho-
ton would have greater energy than the black hole it-
self (a similar ambiguity stemming from the existence of
two solutions of a quadratic equation is also present in
the GUP approach [7]). Temperature corresponding to
M = M — /M2 — Am?% /167 equals
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Once again, we find the entropy by integrating the Clau-
sius relation. It yields
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where we chose A,,in = All% as a natural lower bound
for the integration.

The previous formulae are implied only by the exis-
tence of a minimal area, without the necessity to intro-
duce a minimal length. Nevertheless, one can consider
a special case in which non-zero A,,;, indeed arises due
to a minimal resolvable length, I, = /aolp. While
it clearly holds that A, o (2., we are aware of no
preferred exact relation between both quantities. How-
ever, one of the fairly natural options is to choose A,
as an area of a 2-sphere whose radius equals [,,;,, i.e.,
Apmin = 4rl2,. = 4ragl%. Then, the modified tempera-

ture and entropy formulas become
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in precise agreement with results obtained from GUP. If
one considers a different relation between A,,;,, and lin,
the numerical factors in the correction terms differ, but
basic structure of the expressions remains the same.

C. Estimation of free parameters

All the formulae for modified black hole temperature
and entropy we discussed contain a single undetermined
model dependent parameter, either ag, or A. (Recall
that aq is present in the statement of GUP and we intro-
duced A as a measure of minimal area). While both
are widely believed to be of the order of unity based
on the theoretical frameworks in which they arise, the
current experimental constraints are far less stringent.
The lowest reported upper limit on ag we are aware of
(coming from measurements of frequency shifts of har-
monic oscillators) is ap < 10 [45] and most methods
yield much higher upper bounds [46, [47]. Here, upon
adding a new game piece, we are able to introduce a novel
theoretical estimate providing a fairly stringent bound,
Qg ~ A S 10t

The necessary additional game piece is the black body
character of Hawking radiation. The average entropy per
photon of black body radiation equals [16]
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After including the standard deviation, we get
(S) ~ (2.70 £ 1.75) k. Hawking radiation has a black
body spectrum at least up to the late stages of evapo-
ration, when quantum gravity effects might modify it.
Since the average Clausius entropy per photon of black
body radiation of any origin equals (S), this result also
holds for Hawking radiation at the level of macroscopic
semiclassical thermodynamics [I6]. According to gen-
eralised second law of thermodynamics [I], the average
change of Bekenstein entropy due to emission of one pho-
ton, (ASg), obeys

(8) + (ASE) > 0. (19)

This means that the average decrease of Beken-
stein entropy per emitted photon is at most
[{ASE)| ~ (2.70 £ 1.75) kg. Now, combine this bound
with the existence of minimal area, that implies the
decrease of Bekenstein entropy per emitted photon is
at least (A/4) kp. Comparing both limits directly gives
us an upper bound on A, specifically A < 10.80. This
value fits very well with the common expectation A =~ 1.

We have seen that in any minimal length scenario the
choice A = 4mag leads to an equivalence between cor-
rections derived from GUP and from minimal area. Fur-
thermore, such a choice is geometrically well motivated
as an area of a 2-sphere whose radius is equal to the
minimal length. Thus, any estimate of the minimal area
also directly gives us the minimal length, provided that

such a length exists in the model of quantum gravity
we consider. Of course, the precise relation A = 4mwag
is a bit arbitrary and not necessarily correct. Hence,
we only argue that aq (if it exists) is roughly compara-
ble with A and any upper bound on A also represents
an upper bound on «ag (while not excluding the option
A > 0, ag = 0, i.e., there is minimal area but no minimal
length). Therefore, we are able to provide the general
bound ag < 10.80. Note that if we were to take seriously
the relation A = 47ay, we would have gotten even more
stringent bound ag < 0.86.

Let us recall some theoretical predictions for A. First,
if the area gap of LQC indeed represents a physical min-
imal area, it implies A ~ 5.17. This value comes from
fixing the Barbero-Immirzi parameter by demanding that
one recovers Bekenstein entropy for black holes [I7 [32].
Second, in the context of quantisation of black hole hori-
zon area, the value A = 41n2 = 2.77 has been suggested
as the most natural one [I5]. It is chosen so that the
minimal change of (dimensionless) black hole entropy is
precisely 1 bit. We can see that not only both values fit
within our predicted upper limit A < 10.80, but both are
rather close to it, implying that the bound we found is
already quite restrictive.

Actually, we can make a more ambitious attempt and
not only constrain A from above, but provide an estima-
tion of its value. The price to pay is a loss of robust-
ness, so we may more appropriately consider it a guess
for an approximate value than a genuine prediction. To
do so, we associate the minimal entropy per photon with
the average entropy minus its standard deviation, i.e.,
A/4 ~ 2.70 — 1.95 (one can still expect a significant
number of photons with this entropy, so it should not
be smaller than its minimal value). In this way, we find
A = 3.80, in a very good agreement with other theoreti-
cal predictions.

Let us stress that the argument for the upper value
of A,nin does not depend on the heuristic reasoning we
discussed in previous subsections. Only two assumptions
are required; that a minimal resolvable area exists (oth-
erwise, estimating it feels rather pointless) and that av-
erage entropy per photon of Hawking radiation is about
2.70kp, at least in the early stages of evaporation, when
quantum gravity effects can be safely neglected (while
it was proposed that the discreteness of area causes the
Hawking radiation to have a line spectrum instead of a
continuous one, this should not significantly affect the
entropy per photon [I5, [43]).

III. THERMODYNAMICS OF CAUSAL
DIAMONDS

It has been shown in the literature that heuristic
derivations from HUP work both for the Hawking tem-
perature of Schwarzschild black holes and for the Un-
ruh temperature measured by uniformly accelerating ob-
servers [6]. From them, on one hand, Hawking temper-



FIG. 1. A simple scheme of a Rindler horizon. We de-
pict only the right Rindler wedge in detail, the left one is
symmetric to it. The horizon is represented by oblique lines,
curved lines are wordlines of a few selected uniformly acceler-
ating observers whose velocities are denoted by arrows. Even
though the observers have different accelerations and the tem-
peratures they measure thus differ, all of them have access to
the same region of spacetime (the right Rindler wedge) and
perceive the same entanglement entropy.

ature and equilibrium Clausius relation provide a more
or less direct route to obtain an expression for black hole
entropy. On the other hand, while one can assign en-
tanglement entropy to a horizon perceived by an accel-
erating observer who measures non-zero Unruh tempera-
ture [48], there appears to be no way to obtain an expres-
sion for this entropy from the temperature. If this were
possible, it would establish a heuristic analogy between
thermodynamics of black holes and observer-dependent
horizons. However, one cannot connect entanglement en-
tropy and Unruh temperature for horizons perceived by
eternal, uniformly accelerating observers (Rindler hori-
zons, sketched in figure , because a single such horizon
corresponds to a class of observers with different acceler-
ations and, consequently, different temperatures.

In this section, we will argue that a connection be-
tween both quantities, Unruh temperature and entropy,
exists in the case of causal diamonds. We can understand
these structures as a convenient way to define small re-
gions filling the spacetime. Relating their temperature
and entropy is possible because causal diamonds posses
a “preferred” Unruh temperature; the one measured by
finite lifetime inertial observers |21, [22].

A. Geodesic local causal diamonds

Let us begin by introducing the structure that will
allow us to obtain a connection between Unruh tem-
perature and entropy: geodesic local causal diamonds
(GLCD). In this subsection we will briefly explain their
construction and relevant properties before starting to

play with them. One can find more detailed descriptions
of these objects, e.g. in [49H52].

Choose any spacetime point P and an arbitrary unit
timelike vector n(P). In every direction orthogonal to n
send out of P geodesics of parameter length [ to form
a geodesic 3-ball, 3y. The region of spacetime causally
determined by ¥ is known as a GLCD. The construction
of this object is illustrated in figure [2| for the sake of
clarity. The boundary, B, of ¥ is approximately a 2-
sphere whose area equals [20]

A= 4rl? — 4571-Z4C¥()0 (P)+0O (15) ) (20)

where Gog = Gntn”. The boundary B, understood
as a 2-surface embedded in a spatial 3-surface containing
Yo, has extrinsic curvature [52]

2

The GLCD is endowed with an approximate (up to O (13)
curvature dependent terms) conformal Killing vector [20]

_ 2_2_2ﬁ_ ﬁ
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where C' represents an arbitrary normalisation constant.
It is often set to C' = 1/2l so that ¢ has a unit sur-
face gravity [20]. However, we will keep C' unspecified
and consider arbitrary surface gravity denoted by & to
clearly demonstrate that the value of C' is irrelevant for
our discussion. From the definition of { one easily sees
that the null boundary of the GLCD forms a conformal
Killing horizon.

In order to define temperature associated with a
GLCD, let us point out the appearance of two dif-
ferent concepts of it in the literature. One option
refers to the conformal Killing vector (, defining the
Hawking temperature of the corresponding horizon as
Ty = hr/2nkge [62]. Due to the arbitrary normalisation
constant C' in the definition of (, temperature Ty can
take any value. The second possibility is considering the
Unruh temperature measured by accelerating observers
moving inside the GLCD. While these observers are not
infinitely uniformly accelerating, they will approximately
measure the usual Unruh temperature, Ty = fia/27kpe,
as long as the magnitude of their acceleration is constant
and satisfies a > ¢? /1 [53]. Furthermore, the isometry be-
tween a causal diamond in flat spacetime and a Rindler
wedge allows one to find the Unruh temperature even for
small accelerations [2I]. In particular, even a finite life-
time inertial observer travelling between the apices of the
diamond (see figure [3) measures finite Unruh tempera-
ture Tipertiar = he/2kpl [21122]. In the following, we will
concentrate on recovering Tjnertiqr from the existence of
minimal area.

To find the temperature and entropy of causal dia-
monds from minimal area, we still need one more game



FIG. 2. A GLCD with the origin in point P (the angular
coordinate 0 is suppressed). 3o denotes a spatial geodesic ball
of radius | (some of the geodesics forming it are represented
as grey lines), whose boundary is an approximate 2-sphere
B. The normal to Xg is the timelike vector n*. The tilted
lines starting at the past apex A, (¢ = —l/c) and going to the
future apex Ay (¢t = l/c) represent some of the null geodesic
generators of the GLCD boundary. Geodesic ball 3¢ is the
spatial cross-section of the future domain of dependence of
A, and the past domain of dependence of Ay at t = 0.

piece, some relation for small variations of causal dia-
mond’s area similar to equation for a Schwarzschild
black hole. Thankfully, changes of area and volume of
causal diamonds obey an equation analogous to the first
law of black holes mechanics [52],

5 < b A+ s
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where dH,,, denotes the change of the matter Hamilto-
nian. Note that the first law of causal diamond can be
rigorously proved using the Noether charge formalism,
without making any reference to thermodynamics [52].
Therefore, we can use it to heuristically obtain the ex-
presions for diamond’s temperature and entropy without
making a circular argument.

B. Diamond temperature and entropy from
minimal area

For simplicity, we will focus on a GLCD that is initially
in Minkowski spacetime. Generalisation to a sufficiently
small GLCD in an arbitrary spacetime would be straight-
forward, but needlessly messy. Let us consider a photon

FIG. 3. Observers moving inside a causal diamond who per-
ceive non-zero Unruh temperature. Oblique lines form the
diamond’s conformal Killing horizon. The vertical line rep-
resents the inertial finite lifetime observer, whose existence
starts in the past apex of the diamond and ends in its future
apex, corresponding to lifetime 2{/c. The curved lines are ex-
ample wordlines of observers who travel inside the diamond
with an acceleration of constant magnitude a.

being detected by a finite lifetime inertial observer asso-
ciated with the GLCD. The presence of the photon will
give rise to a small spacetime curvature, decreasing the
area of the GLCDEl For the variation of matter Hamilto-
nian it holds 6 H,,, = 47l*kdTp0/15 [52] (the same result
applies even for quantised conformal fields, just with 75
replaced by the expectation value, §(Tpo) [20]). The first
law of causal diamonds then implies

4T 4 ct ct

151 KT = ~3C Kk6A + SWGK'%V' (24)
We stress that x drops out of the equation and, there-
fore, the normalisation of { indeed does not affect our
reasoning. Furthermore, variations of volume and area
are not independent. Since we keep [ constant, it holds
0V =16A/5 [20]. If we assume that J.A corresponds to
the minimal area, A,,;,, and identify the photon’s energy
as 0F = V Ty = 4ml36Tho/3 (i.e., energy density times
volume), we find

4
Lsp=3¢
5 5

%Amm. (25)

2 Treating the influence of the Unruh effect on spacetime geometry
in this way is admittedly rather cavalier. However, we believe it
suffices for the heuristic argument we intend to make.



Therefore, temperature measured by the inertial finite
lifetime observer satisfies

SE 1 3c*Apminl  3A he 1
Tinertial = E = gwj = ?%7 (26>
Here one can see that temperature is proportional to 1/1
in accordance with the result obtained from isometry be-
tween a causal diamond and a Rindler wedge [21] 22].
However, to get the exact formula for Unruh temper-
ature, we must again add a calibration factor, 8/3AE|
Multiplying the expression for Tj,ertiqr by the calibra-
tion factor, we straightforwardly obtain

T he 1 he
inertial — 7T]€B I - 27’(’](13 .

From that, finding the entropy of the GLCD’s hori-
zon is somewhat more difficult than in the case of a
Schwarzschild black hole, as the first law of causal dia-
monds involves an extra term corresponding to the varia-
tion of volume. To identify a notion of entropy, we inter-
pret the quantities present in the previously defined first
law of causal diamonds in the standard thermodynamic
form of

(27)

AU = TdS + paV. (28)

Thus, if we want to treat the left hand side of equa-
tion as heat, it must have dimensions of energy.
However, we have seen that it is actually proportional to
l6E. To amend this, we can multiply the entire equation
by some quantity with dimensions of inverse length. The
only such natural quantity associated with the GLCD is
extrinsic curvature, k = 2/l (another option would be
1/lp, but since we do not consider any minimal length
scenario, it appears to be a rather artificial choice). Then,
the first law yields

C4

4
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8#Gk5A+ 87er 1%
_ kpc? o,
= - Tznertzal@(SA + %k oV
= i7le7"tial65+p6‘/a (29>

2
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where we have identified p = ¢*k?/87G, that has the

correct dimensions of pressure, kg -m~! - s72.

Now we can consider a simultaneous change of area and
volume with the matter content held fixed, obtaining

p

Enertial

as = — av, (30)

3 The necessary factor differs from the value calibrating the case of
the Schwarzschild black hole, 4/A. This difference is expected as
the processes we study in both cases are somewhat different. For
a black hole, we consider change in its Schwarzschild radius and,
consequently, area due to the emission of a photon. However,
length scale [ associated with a causal diamond is held fixed.
Instead, the change in area is brought about by the backreaction
of the spacetime geometry to a photon of Unruh radiation.

and, therefore,

_ wkpcdl? B A

Ch (31)

We have arrived precisely at the DBekenstein en-
tropy of the GLCD’s conformal horizon, in accor-
dance with previous assumptions in thermodynamics of
spacetime [20], [52].

The most interesting feature of our result is the con-
nection between the Unruh temperature and the entropy
associated with an observer dependent object. The possi-
bility of such a connection has been hinted at in previous
papers dealing with the temperature of finite lifetime in-
ertial observers [21] [22]. Tt occurs since a GLCD is, much
like a Schwarzschild black hole, fully characterised by a
single length scale, [, and it holds ST}nertiar = c*l/G.
Similarly, one gets STy = c*rg/4G for the case of a
Schwarzschild black hole. A connection of this kind does
not exists between the Unruh temperature and entropy
associated with a Rindler wedge. In other words, one can
assign a preferred temperature to causal diamonds (the
one measured by inertial observers), but not to Rindler
wedges (where none of the accelerating observers is priv-
ileged, at least as far as physics is concerned).

C. Modified temperature and entropy for causal
diamonds

Following our previous treatment of a Schwarzschild
black hole, a natural question now is whether we can use
the method developed in previous subsection to find phe-
nomenological quantum gravity corrections to GLCD’s
temperature and entropy. The direct answer is that the
process is rather tricky. Nevertheless, basic features of
the modified expressions can be guessed fairly easily. To
do so, we include the change of volume due to curvature
to the left hand side of the first law and leave the right
hand side as before
27 1
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The modified temperature then equals

%léE - Amin- (32)

27Tt AGKk?
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mod inertial ( + 14hcd inertial

A2G?k
+0 (hQCloBTﬁwrtial) >a (33)

and has the same structure as both modifications of the
Hawking temperature implied by the minimal area and
recently proposed modifications of the Unruh tempera-
ture due to GUP [9]. For the entropy, we obtain in the
same way as previously (assuming unmodified pressure)

Smod = kB@ WkB In (A”Lin) + O (A ) .

(34)




We can see that the result is qualitatively in agreement
with the modified Bekenstein entropy. In this way, we
have found that, up to a numerical factor, the existence
of the minimal area implies the same modified entropy
for a black hole and a causal diamond. Furthermore, it
agrees with logarithmic corrections to the entanglement
entropy of a 2-sphere in Minkowski spacetime [19].

The previous procedure of course disregards higher or-
der corrections to the right hand side of the first law.
One can actually attempt a more precise calculation, ap-
proximating the effect of Unruh radiation on curvature in
terms of spatially homogeneous, isotropic and flat metric.
In this case, the first law yields

1 27 871G 3 & 88G
I0F — — ——8F?> = —— Ayin — —— 0 E?
5 87TGA 7875c4 » (35)
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and, up to coefficients in correction terms, we reach the
same conclusions. Anyway, we do know that we cannot
find the exact numerical factors using our method and we
expect that neither this correction nor any other more re-
fined approach is going to provide new qualitative effects.
Then, its analysis is not relevant for our purposes. The
signs and orders of magnitude of the correction terms
are already correctly captured by the simple estimate we
made above, and would not be modified by further cor-
rections.

To sum up, we found that the relation between tem-
perature and entropy of a causal diamond is analogous to
that between temperature and entropy of a Schwarzschild
black hole not only semiclassically, but even when leading
order quantum gravity corrections are taken into account.
It would be interesting to rederive this relation in a more
rigorous study and to find out how far we can extend the
similarity of causal diamonds and black holes. We will
address these questions in a future work.

IV. DISCUSSION

We have heuristically derived modified Hawking tem-
perature and Bekenstein entropy of a Schwarzschild black
hole from the existence of minimal area, generalising
a similar derivation from minimal length. The modi-
fied entropy containing a term logarithmic in horizon
area qualitatively agrees with results obtained, e.g. in
LQG, AdS/CFT and calculations of entanglement en-
tropy. Furthermore, we have used the known semiclas-
sical properties of Hawking radiation to constrain the
size of the minimal area. The upper bound we found,
Amin S 10.801%,, is of the same order as theoretical pro-
posals for minimal area, but somewhat larger than them.

We have also extended our heuristic derivation to
causal diamonds, obtaining a formula for the Unruh tem-
perature measured by finite lifetime inertial observers
and for the entropy of diamond’s horizon. Furthermore,
we have proceeded to derive modifications of tempera-
ture and entropy due to low energy quantum gravity
effects, finding results consistent with the proposal of

GUP-modified Unruh temperature and logarithmic cor-
rections to entanglement entropy of a 2-sphere, respec-
tively.

Let us stress that the entropy modifications we have
obtained for black holes and causal diamonds contain
only microcanonical corrections, coming from more pre-
cise knowledge of microstates responsible for entropy due
to insights from quantum gravity (phenomenologically
captured in the existence of minimal length/area). A
complete treatment of the logarithmic term in the en-
tropy would require adding canonical corrections. These
ones arise due to thermal fluctuations at fixed Hawk-
ing/Unruh temperature and increase the entropy. It has
been argued that canonical correction to black hole en-
tropy should be at least AS. 2 (3kp/2) In (A/ Amin) [54).
Our upper bound on the minimal area, Ay <
10.80(%, and heuristic formula for modified entropy to-
gether yield an upper bound for the magnitude of mi-
crocanonical corrections, |ASy,| < 0.68kp1In (A/Amin).
Combination of both bounds would then imply
AS.+AS,, 2 0.82kgIn(A/ Apmin) >0, ie., the total
logarithmic correction to black hole entropy would be
positive. Since the overall sign of the logarithmic term
remains an open issue, with some implications for the fi-
nal stages of black hole evaporation [10, 55| (6], it would
be of interest to explore this issue further in the future.
Moreover, working out the complete logarithmic term in
entropy of causal diamonds could help to constrain quan-
tum phenomenological gravitational dynamics proposed
by the authors of this paper [57].

Recently, a heuristic derivation of Bekenstein bound
and its modification due to quantum gravity effects from
uncertainty relations has been proposed [568]. The au-
thors have even derived the uncertainty relations from
the Bekenstein bound. Finding a similar relationship
between the Bekenstein bound and minimal area would
strengthen the notion that minimal area has the same
implications for black hole thermodynamics as minimal
length. Moreover, it would connect two Bekenstein’s
ideas, the upper bound on entropy contained in a given
region and the quantisation of area. This direction will
be further explored in a future work.

Besides our results concerning black hole physics, we
have also found a new relation between Unruh temper-
ature and entropy of causal diamonds. This connection
we have heuristically established strengthens the analogy
between thermodynamics of causal diamonds and black
holes. Both posses a “preferred” notion of temperature
(black holes the Hawking temperature measured by in-
ertial observers at infinity and causal diamonds the Un-
ruh temperature measured by finite lifetime inertial ob-
servers), and entropy of both can be derived from tem-
perature via the equilibrium Clausius relation. Next step
will be trying to confirm the relation of entropy and tem-
perature by more rigorous methods, especially since it
could have implications for deriving gravitational dynam-
ics from thermodynamics of causal diamonds [20], 59H6T].

To conclude, let us remark that in this paper, we have



introduced a new basic structure to the game of thermo-
dynamics of spacetime and its connection to phenomenol-
ogy of quantum gravity. Here, we do not pretend to es-
tablish solid results based on first principles, but instead
explore new insights and relations that will be worth a
more detailed treatment in future works.
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