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Glass transition temperature prediction of disordered
molecular solids
Kun-Han Lin 1✉, Leanne Paterson1, Falk May2 and Denis Andrienko 1✉

Glass transition temperature, Tg, is the key quantity for assessing morphological stability and molecular ordering of films of organic
semiconductors. A reliable prediction of Tg from the chemical structure is, however, challenging, as it is sensitive to both molecular
interactions and analysis of the heating or cooling process. By combining a fitting protocol with an automated workflow for
forcefield parameterization, we predict Tg with a mean absolute error of ~20 °C for a set of organic compounds with Tg in the
50–230 °C range. Our study establishes a reliable and automated prescreening procedure for the design of amorphous organic
semiconductors, essential for the optimization and development of organic light-emitting diodes.
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INTRODUCTION
Amorphous molecular solids are materials composed of organic
molecules with a disordered molecular packing. They are widely
used in electronic and opto-electronic applications due to their
flexibility, light-weight, solution-processability and tunability
through versatile organic synthesis1–5. For example, they serve
as charge carrier transport materials6,7 and host materials8,9 in
organic light-emitting diodes (OLEDs) and perovskite solar cells.
In addition to the electronic properties of these materials, the

glass transition temperature, Tg, is especially important as it
determines the morphological stability and hence the lifetime of
electronic devices10. The search for high-Tg compounds is
therefore crucial for all electronic applications. In this context,
computer simulation protocols capable of reliable Tg-prediction
are invaluable. Various efforts have been made in the past to
achieve accurate Tg-prediction using statistical approaches, such
as quantitative structure-property relationships11–14 and machine
learning15–17, as well as the direct extraction from molecular
dynamics (MD) simulations18–21. In the latter approach, reliable-Tg
prediction has been achieved for a particular material through
tailor-made forcefield parameters22. A systematic study of a
dataset of conjugated small molecules using a deterministic
approach is, however, lacking. This is presumably due to (1) the
considerable computational cost and human effort involved in
forcefield parameterization and molecular dynamics simulations
and (2) the difficulty of finding a forcefield parameterization
protocol that works for a dataset of molecules composed of
different molecular building blocks.
In our recent work23,24, we developed a multiscale computa-

tional protocol that successfully predicts relevant physical proper-
ties of OLED host materials, including solid-state ionization energy,
density of states of charge carriers and the charge carrier mobility.
Despite this success, the predicted Tg values are significantly off
the experimental values. Since all torsional parameters were
reparametrized with Lennard–Jones parameters from the OPLS
database and Merz–Singh–Kollman partial charges25,26, we con-
clude that the non-bonded terms24,27,28 should also be adjusted.
Here, we propose a computational methodology for reliable Tg-

prediction of disordered organic molecular solids involving two

parts: (1) fitting protocol for a density–temperature plot and (2)
non-bonded forcefield parameterization via atoms-in-molecule
electron density partitioning29,30. This methodology is tested on
common organic semiconducting OLED hosts and hole-
transporting materials, the chemical structures of which are
shown in Fig. 1. The computed Tg values are in good agreement
with the experimental Tg from our measurements and litera-
ture31–39, with a mean absolute error (MAE) of 20.5 °C, excluding
two outliers.

RESULTS
Conventional bilinear fit
Conventionally, the simulated Tg is obtained via a bilinear fit, as
an intersection of two lines in a density-temperature (ρ–T) plot,
as shown in Fig. 2a. Ideally, two plateaus representing two
linear regions should be observed in a slope–temperature plot.
However, this is often not the case for data extracted from MD
trajectories, as shown in Fig. 2b and Supplementary Fig. 1. For
BCP, for example, a transition region II between regions I and III
could be identified based on the change in the slope, as shown
in Fig. 2b. The non-constant slope observed in Region I and III
and the existence of Region IV may be because there is more
than one mechanism responsible for the volume compression
during the cooling step, and the cooling rate (100 K ns−1)
adopted in the simulations is too high. However, this non-ideal
behavior persists even in the simulation with a 10 times slower
cooling rate (10 K ns−1, see Supplementary Fig. 2). Since MD
simulations with a cooling rate of 10 K ns−1 and all-atom
forcefields for 3000-molecule system (150,000–450,000 atoms)
is already too costly for the computational screening, we aim at
extracting Tg from a non-ideal ρ–T plot with a 100 K ns−1

cooling rate.
The ambiguity in choosing the fitting ranges for Region I and

Region III leads to a human bias, which is also common in the
fitting process of charge carrier mobility40. In Fig. 2b, for example,
we could choose any fitting range lying between point A and
point B for Region I. Similarly, we could choose any fitting range
between point C and point D for Region III. To quantify this
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variation, we show Tg calculated using four fitting ranges for
Region I (A, B) and Region III (C, D) in Fig. 2c. For BCP this leads to
variations from 51.2 °C to 147.7 °C, depending on the fitting
ranges.

Determination of fitting ranges from a R2–T plot
To explore the best linear fitting ranges for Region I and III, we
plotted the R2 vs temperature (R2–T plot) with different sizes of the
fitting range for BCP, as shown in Fig. 3. Starting from the range of

Fig. 1 Molecular structures of organic molecular solids. Chemical structures of 26 OLED host materials and charge transport materials
investigated in this work.
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150 K, a clear valley region (Region II) that separates Region I from
III can be observed. The decrease of R2 in the valley region is a
direct consequence of including a more non-linear transition
region into the linear regression. A straightforward way of
determining two optimal fitting ranges is then to pick two “hill
tops”, corresponding to the maximum R2 values, on the opposite
sides of the valley. This protocol is generic, as is illustrated for all
compounds in Supplementary Fig. 3, indicating that the R2–T plot
does provide fitting ranges unambiguously.
The effect of the fitting ranges on Tg is shown in Supplementary

Fig. 4. Overall, the variation of Tg due to the fitting range is much
smaller than that observed in Fig. 2c. In most cases, the calculated
Tg slightly rises with increasing fitting range. In some cases;
however, the fitted Tg values exhibit complicated dependence on
the fitting range (such as BTST and MTDATA). This originates from
the synergistic effect of the aforementioned non-ideal ρ–T curve
and the density fluctuation (see Supplementary Discussion for
more details). This indicates that we cannot determine the optimal
fitting range for each compound unbiasedly. Nevertheless, we can
treat the fitting range as a parameter to be determined. Overall,
the Tg calculated with the fitting ranges of 150 K and 200 K show
better agreement with experimental values, as shown in
Supplementary Fig. 4. Therefore, the fitting range of 200 K will
be used for later comparison. The ρ–T plots and calculated Tg of
the 26 compounds determined using the 200 K fitting range are
shown in Supplementary Fig. 5.

Effect of VdW parameters
With the proposed fitting procedure at hand, we now study the
impact of the forcefield on the predicted glass transition
temperature. It has been shown that electronic properties, such
as ionization energy, density of states and charge carrier mobility,
of amorphous films simulated using the Merz–Singh–Kollman
partial charges and OPLS VdW parameters are in good agreement
with experimental values17. However, the Tg simulated using this
forcefield, poorly agree with experiments, as shown in Fig. 4a and
Supplementary Table 1. Assuming that the disagreement is due to
non-bonded parameters, we reparametrized all non-bonded

parameters for each molecule employing electron density-based
DDEC6 method18,19. The predictions are also summarized in Fig.
4a. Compared to the MAE of 59.1 °C using the MK-based forcefield,
DDEC6 gives a smaller MAE of 20.5 °C and a much higher R2 (0.61
vs 0.87). The reported MAE excludes Tg of MTDATA and 2-TNATA,
which are clear outliers for both methods (see Supplementary
Table 1), and have a similar molecular structure, namely starburst
dendrimers of triphenylamine (TPA)41. Since these two com-
pounds are mostly composed of TPA blocks, the reason for the
observed discrepancy may be the lack of non-local correlations in
dihedral potentials of the TPA moiety, absent in both forcefields42.
To correctly describe this behavior, an improved forcefield model
that takes this correlation into account, either by a traditional
fitting or a machine-learning approach39, is required.
In addition, we compare our results with those obtained from

the protocol proposed by Patrone et al., which also features a
reduction of human analysis variation43. The Tg is determined as
the intersection of high- and the low-temperature asymptotes of a
hyperbolic fit of the whole range of the data. As shown in Fig. 4b,
Tg calculated using Patrone’s protocol gives reasonably high R2

and a slope close to one. If the transferability of the fitted linear
model is good, we can also predict Tg using this model by adding
the intercept on top of the simulated Tg values. Overall, our
protocol performs better in terms of both MAE, 64.7 vs 20.5 °C and
R2, 0.75 vs 0.87.

Efficiency of our computational protocol
Since our goal is to set up an automated prescreening procedure,
we have analyzed the average computational cost and human
effort required for obtaining the Tg for one compound. The
specification of CPUs used for each computation is listed in the
Methods section. Out of 6 h of human effort per compound, ca
70% is spent on generating the molecular topology and
parameterizing bonded and non-bonded parameters. This moti-
vates us to further develop an automatic/semi-automatic gen-
erator for these files. As for the computational cost, the total time
spent on computing the Tg using the DDEC protocol amounts to
~850,000 cpu hours, as shown in Fig. 5. Around 50% of the

Fig. 2 Derivation of Tg via a bilinear fit. a A schematic illustration of a density–temperature and a slope–temperature plot characterizing a
glass transition process. b Slope–temperature plot of BCP molecule. Each blue point on the plot represents a slope from a linear regression
within the temperature range of [T, T+ 150]. Four regions and corresponding edge points, A, B, C, D, are specified. c Fitted Tg using four
different combinations of fitting ranges.
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resources are used in compressing and heating the as-generated
low-density morphology. Nearly 30 and 20% of cpu hours are
utilized for the MD cooling step and QM constrained dihedral
scanning, respectively. The step for computing DDEC charge and
LJ parameters is only 0.1% of the total computational cost. It is
clear that further optimization of the protocol to achieve better
efficiency is necessary for a large-scale screening purpose. One
potential direction is to reduce the computational cost of
compressing and heating in MD simulations by using a smaller
system and denser initial morphology.

DISCUSSION
In summary, we propose a computational methodology for
reliable Tg prediction, including a fitting procedure and an MD
simulation protocol using DDEC6 non-bonded parameters. Our
fitting procedure reduces the human analysis variation (~90 °C for
BCP) resulting from different chosen fitting ranges for linear
regression. In combination, the proposed fitting procedure
ensures the reliability of Tg, while the DDEC6 forcefield parameters
improve Tg predictions. The obtained values agree well with
experimental values, with MAE= 20.5 °C, acceptable for in silico
prescreening of organic hosts. The overestimation of Tg for two
starburst TPA-based dendrimers encourages further forcefield
development, as the TPA moiety is ubiquitous in organic
semiconductors44. Furthermore, we generated OPLS-DDEC force-
field parameters for 26 compounds, which are available in the
open-access git repository. These forcefield parameters, which
give reasonable Tg, could also be useful for multiscale simulations
of complicated guest-host or interfacial systems in OLEDs and in
silico deposition protocols. Finally, given that the molecular
fragments included in this molecular dataset are the most
common building blocks of organic semiconductors, we expect
our protocol could have wide applicability in this field.

EXPERIMENTAL SECTION
For determination of the glass transition temperature (Tg) at Merck
KGaA, Darmstadt, Germany, we used differential scanning
calorimetry (DSC) analyzing samples of 10–15mg in DSC 204/1/
G Phönix from Netsch. Samples were heated by 5 °Cmin−1 up to
370 °C then cooled by 20 °Cmin−1 to 0 °C and finally heated again
by 20 °C min−1 to 370 °C, where Tg was determined by the kink in
heat flow vs temperature using the temperature corresponding to
half the drop in heat flux. Only for BCP and TMBT, this protocol did
not yield a significant kink. TMBT was expected to be the lowest Tg

material from simulation, so we tried other protocols to measure
Tg. We finally used a 5mg TMBT sample in DSC Discovery from TA
Instruments in nitrogen atmosphere and first heated by 20 °C
min−1 up to 320 °C, then for cooling quenched the sample by
liquid nitrogen and finally heated by 20 °Cmin−1 up to 320 °C,
where the Tg was observed. Other protocols we tried for TMBT
without the cooling quench did not lead to the observation of Tg.

METHODS
Computational section
Our protocol for Tg prediction involves three steps: (i) forcefield
parameterization, (ii) classical MD simulations and (iii) fitting procedure,
which are described as following.
(i) Forcefield parameterization: All bonded parameters apart from proper

and improper dihedrals were taken from OPLS-AA forcefield45,46 and our
previous work24. The non-bonded parameters, atomic partial charges and
Lennard-Jones parameters, were derived following the protocol proposed
by Cole et al.29. In short, the overlapping atomic electron densities were
obtained via the density-derived electrostatic and chemical (DDEC6)
electron density partitioning scheme30. The atomic partial charges can
then be obtained by integrating the corresponding atomic electron
densities over the whole space. Additionally, the two parameters, A and B,
in Lennard-Jones potential are then derived using Tkatchenko−Scheffler
(TS) scheme47, where the radius of the free atom in a vacuum ðRfreei Þ is
taken from ref. 29. The electron density was obtained using Gaussian1648 at
ωB97X-D32/6–311 G(d,p) level and the DDEC6 computations were
performed using Chargemol of version 09_26_201730. All molecules
considered in this work were partitioned into several rigid fragments
following the same procedure as our previous work24. After non-bonded
parameters were set, the dihedral potentials that connect these rigid
fragments, which are usually missing in the OPLS-AA database, were
parameterized using the constrained optimization scanning performed at
ωB97X-D3/def2-TZVP level using ORCA 4.2.149. For more details of the
parameterization of dihedral potentials, please refer to ref. 50.
(ii) Classical MD simulations: All classical MD simulations were performed

using GROMACS of version 2020.351,52. For the long-range electrostatic
interactions, the particle mesh Ewald (PME) method was employed with a
0.12 nm Fourier spacing. A cutoff of 13 Å was applied to all non-bonded
interactions. The temperature and pressure control were accomplished
using velocity rescaling with a stochastic term53 (τT= 0.5 ps) and an
isotropic coupling for the pressure from a Berendsen barostat (P0= 1 bar,
χ= 4.5 × 10−5 bar−1, and τP= 0.5 ps).
For each compound, 3000 molecules were initially randomly placed in a

simulation box with a low target density around 50–150 kgm−3 using
Packmol54. The whole system was then heated up from 100 K to 300 K at a
rate of 0.67 K ps−1. It was then equilibrated at 300 K until the density
reached a steady value. This step helps to prevent the system from
exploding due to a high heating rate. Finally, the system was heated up
from 300 K to 800 K at a rate of 0.5 K ps−1, followed by an equilibration at

Fig. 3 The effect of fitting ranges on R2–T plot. The R2–T plot for BCP compound with six different fitting ranges. Each blue point in the plot
represents an R2 value fitted with a range [T, T+a], where a= 50, 100, 150, 200, 250, and 300 K.
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800 K for 10 ns. The equilibration time is long enough to ensure a steady
density of the system for all compounds discussed here. Finally, the system
underwent a linear cooling procedure from 800 K to 0 K at a 100 K ns−1

cooling rate, where the density and temperature data were extracted for Tg
fitting procedure.
The effect of cooling protocol (continuous vs stepwise) was also

investigated. The cooling profiles for the stepwise cooling are shown in
Supplementary Fig. 6. The density-temperature curves of mCP obtained
using different conditions are very similar, as shown in Supplementary Fig.
7. For this reason, we put our main focus on other factors, such as non-
bonded parameters and the fitting protocol. All Tg values shown in the
main text are extracted from MD simulations with a continuous cooling
protocol.
Furthermore, the effects of system size, initial configurations, barostats,

cooling rates and density fluctuation were investigated for mCP (see
Supplementary Discussion). We also evaluated our R2-based fitting
protocol by considering the effect of the ideal/non-ideal ρ–T curve and
the density fluctuation on our protocol. To conclude, our current
computational workflow is useful for practical Tg prediction, reaching a
balance of accuracy and the computational cost.
(iii) Fitting protocol: The simulated Tg is obtained via a bilinear fit, as an

intersection of two lines in a density–temperature (ρ−T) plot. In order to
obtain the optimal fitting range in a less biased way, we propose the
following fitting strategy. We plotted the R2 value as a function of
temperature T for a series of linear regressions with fitting ranges [T, T+a],
where a is the fitting size (Fig. 3). In this plot, we can identify a clear valley

region (Region II) that separates Region I from III (Fig. 2). The fitting ranges
for two linear regressions are chosen as the two “hill tops” (maximum R2

value) on the opposite sides of the valley region. The effect of the fitting
size is described in detail in the main text. The MK data shown in Fig. 1b
are taken from our previous work24, where the atomic charges are derived
using Merz–Singh–Kollman scheme and VdW parameters are taken from
OPLS forcefield database.
Finally, all QM computations (GAUSSIAN16 and ORCA) were performed

using 20 CPUs of Intel Xeon Silver 4210 @ 2.2 GHz. All MD simulations were
performed using (4 nodes; 4*40= 160CPUs) of Intel Skylake 6148 @
2.4 GHz.

DATA AVAILABILITY
The input files of simulations, optimized forcefield parameters, the density-
temperature data for all compounds are available in the Tg git repository, version
1.0: https://gitlab.mpcdf.mpg.de/materials/tg.

CODE AVAILABILITY
The python scripts for deriving VdW parameters and Tg-fitting are available in Tg git
repository, version 1.0: https://gitlab.mpcdf.mpg.de/materials/tg.
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