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CONSTRUCTIBILITY AND REFLEXIVITY IN

NON-ARCHIMEDEAN GEOMETRY

ILDAR GAISIN, JOHN WELLIAVEETIL

Abstract. We introduce a notion of constructibility for étale sheaves with
torsion coefficients over a suitable class of adic spaces. This notion is related
to the classical notion of constructibility for schemes via the nearby cycles
functor. We use the work of R. Huber to define an adic Verdier dual and
investigate the extent to which we have a 6-functor formalism in this context.
Lastly, we attempt to classify those sheaves which are reflexive with respect
to the adic Verdier dual.
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1. Introduction

In the early 1960’s, motivated by the question of uniformizing elliptic curves
with split multiplicative reduction over a non-Archimedean real valued field, Tate
introduced the theory of rigid analytic spaces and a robust formalism within which
one could discuss a notion of coherent sheaves. Since the introduction of rigid
geometry, there have been other significant theories of non-Archimedean geometry,
namely - the theory of formal schemes outlined by Raynaud, the theory of Berkovich
spaces and Huber’s adic spaces, each of which was developed with a different goal in
mind. Berkovich’s theory provides one with non-Archimedean analytic spaces with
nice topological properties whilst adic spaces were introduced to better understand
the étale cohomology of rigid varieties.

An étale cohomology theory for non-Archimedean spaces seeks to prove ana-
logues of the classical theorems that hold true in the étale cohomology of algebraic
varieties such as finiteness results, base change theorems, Poincaré duality, Kun-
neth formula... Despite the advances made by Berkovich and Huber, we do not yet
have a suitable theory of constructible sheaves for non-Archimedean spaces. If we
were to imitate the classical definition and require that constructible sheaves be
those for which there exists a semi-analytic stratification such that the restriction
of the sheaf to each element of the strata is finite locally constant then it is not
true that this class of sheaves is stable by pushforwards, cf. [24]. In fact it was
only recently shown that if X is a compact strictly k-analytic space then the groups
Hq(X,Z/ℓZ) ∼= Hq

c (X,Z/ℓZ) are of finite dimension (cf. [7], [8], [9]) where k is an
algebraically closed complete non-Archimedean real valued field and ℓ is a prime

number different from the characteristic of the residue field k̃. In the language of
adic spaces, if f : X → Y is smooth and quasi-compact then there is a theorem of
stability for Rqf! with respect to a certain class of constructible sheaves, cf. [19],
and in the case that dim(Y ) ≤ 1, and f : X → Y is only quasi-compact, we have
results of stability by Rqf∗ (in characteristic 0) and Rqf! for another class of sheaves
(cf. [21], [20], [22]). The focus of this paper is to discuss a notion of constructibility
that generalizes the constructions of Huber and Berkovich and to study the extent
to which one has a six functor formalism in this context. We also attempt to relate
our notion of constructibility to reflexivity with respect to the adic Verdier dual.
More precisely we conjecture that semi-constructible sheaves coincides with reflex-
ive sheaves, while also verifying this conjecture in some particular cases. This is in
the spirit of some upcoming work of P. Scholze.

1.1. Motivation. Let X be an adic space that is separated and finite type over k.
We refer to such spaces as fine k-adic spaces. Recall that we have an isomorphism
of locally ringed topological spaces

X ≃ lim
←−
X∈B

Xs(1)

where B is the cofiltered family of admissible formal models of X .
Observe that for every X ∈ B, Xs is a variety over k̃. Hence, it seems reasonable

to wonder if one could study the étale topos of X using the relatively well under-
stood étale topoi of the varieties Xs as X varies along the family B. With this in
mind, we restrict the étale site of X and consider only those objects which are fine,

thus obtaining the fine étale site Xf
ét. This allows us to define in a natural way the

nearby cycles functor cf. §2.4.3 which was studied in [19] (in the adic context) as
well as [7], [8] and [9] (in the Berkovich context). More precisely, given a formal
model X of X , we have a functor of derived categories

RψX : Db(Xf
et,Λ)→ D

b(Xs,et,Λ)
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where Λ := Z/ℓZ for some prime ℓ different from char(k̃).

1.2. Constructible and semi-constructible complexes. Our notion of semi-
constructibility is motivated by the isomorphism (1) above. We say that a complex

F ∈ Db(Xf
ét,Λ) is semi-constructible if after pulling back to any object U of Xf

ét,
the image of F via the nearby cycles functor RψU(F |U ) is constructible for every
formal model U of U . The class of semi-constructible sheaves is not stable for
pullback (cf. Proposition 4.26). We get around this issue by defining a constructible
sheaf to be a semi-constructible sheaf that is stable for pullbacks along morphisms
f : Y → X where Y is a fine L-adic space for some non-Archimedean algebraically
closed complete field extension L of k. The precise definition can be found in §3.1.

In §3, we show that the class of constructible sheaves described above has rea-
sonable properties. Firstly, the class of constructible sheaves is large enough to
include both Huber’s notion of constructibility (cf. Remark 3.2) and those intro-
duced by Berkovich in [9]. In Proposition 3.7, we prove that this class is stable for
pushforwards and the lower shriek functor. It is natural to ask if the properties of
being semi-constructible or constructible are local for the fine étale topology. We
answer these questions in the affirmative in Theorem 3.12 and §3.2. A powerful
tool that we use to prove these results is an inductive construction from [7] which
we adapt to the adic setting (cf. Lemma 3.11).

Huber’s definition of constructibility preserves the spirit of the classical con-
struction in that he requires that his sheaves be finite locally constant along certain
stratifications. We provide an alternate characterization of constructibility that
shows the definition introduced above is similar in spirit to the classical definition.
Firstly, in Proposition 3.13, using an argument from SGA 4.5, we show that an étale
sheaf G of Λ-modules on a k-variety Z is constructible if and only if H0(Z ′

ét, g
∗(G ))

is finite where Z ′ is a K-variety 1 and g : Z ′ → Z is a morphism of schemes that
is the composition of a morphism of K-varieties Z ′ → ZK followed by the projec-
tion ZK → Z. Theorem 3.12 tells us that much like in the case of varieties, the
constructible sheaves we are interested in must satisfy a strong finiteness property.
More precisely, we show that a sheaf F is constructible if and only if for every

q, Hq(Y f
ét, f

∗(F )) is finite, where Y is a fine L-adic space 2 and the morphism
f : Y → X is the composition of a morphism of fine L-adic spaces Y → XL

followed by the projection XL → X .
Let f be a morphism between fine k-adic spaces. The following table summarises

the various properties of constructible, semi-constructible and Huber constructible
sheaves.

Huber constructible constructible semi-constructible
stable under f∗ Yes Yes No
stable under Rf∗ No Yes Yes
stable under Rf! No Yes Yes

stable under f ! No No No
stable under ⊗L Yes No No
stable under RHom Yes No No
can be checked étale lo-
cally

Yes Yes Yes

Moreover we have inclusions of categories

{Huber constructible} ⊂ {constructible} ⊂ {semi-constructible} ⊂ {reflexive-sheaves}

1The field K is an algebraically closed field extension of k.
2The field L is a non-Archimedean algebraically closed complete field extension of k.
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where the first two inclusions are typically strict and the last inclusion is conjectured
to be an equality.

1.3. Counterexamples. The affirmative entries in the table above are justified
with proofs and we provide counterexamples for the negative entries. There are
three principal counterexamples.

In §4.1, we provide an example of a morphism f : X → Y of fine k-adic spaces
and a sheaf F on Y such that f !(F ) is not Huber constructible. This example
was suggested to us by R. Huber. More precisely, we take X to be a singular curve
over the field k and then show that p!Xad(Λ) is not a complex whose cohomology is

Huber constructible. On the other hand, p!Xad(Λ) is a constructible complex.
In §4.3, we give an example of a sheaf F on the adic unit disk X such that

the adic Verdier dual Dad(F ) is not a constructible complex. This example was
suggested to us by P. Scholze. The sheaf F is an infinite direct sum of the form
⊕i∈N F i where for every i ∈ N, F i is a constructible sheaf. An important fact to
verify is that for any morphism f : Y → X of fine k-adic spaces and any j ∈ N,
we have that for all but finitely many i ∈ N, Hj(Y, f∗(F i)) = 0. Since the Verdier
dual of a semi-constructible sheaf is semi-constructible, this construction gives us
an étale sheaf on the adic unit disk which has infinite stalk at the origin but whose
nearby cycles are constructible

In §4.3.2, we find constructible sheaves F and G on the adic unit disk X such
that F ⊗LG is not semi-constructible. This is a variation of the example described
above and makes crucial use of results in [21].

1.4. Adic Verdier dual. By the results of Huber in [19], we have a functor Rf! :

Db(Xf
ét,Λ) → D(Y

f
ét,Λ) that admits a right adjoint f ! : Db(Y f

ét,Λ) → D(X
f
ét,Λ).

As in classical algebraic geometry, given a complex F ∈ Db(Xf
ét,Λ), we define

Dad(F ) := RHom (F , p!X(Λ))

where pX : X → Spa(k, k0) is the structure morphism.
Once again, prompted by isomorphism (1) above, we ask the following question.

Question : Can the adic Verdier dual dual of F be described in terms of the nearby
cycles of F and its pullbacks along étale morphisms ?

In §4, we answer this question by proving that Dad(F ) can be recovered from

the data of the nearby cycles RψU(F |U ) where U → X is an object in Xf
ét and

U is a formal model of U . More precisely, we show in Proposition 4.2 that for any
étale morphism U → X of fine k-adic spaces,

Dad(F )(U) = RΓ(Us, RψU(F |U ))

where U is any formal model of U .
It can be shown that the association U 7→ RΓ(Us, RψU(F |U )) is a well defined

presheaf on Xf
ét which takes values in the derived category of bounded complexes

of Λ-modules. In fact, using techniques from the theory of ∞-categories, one can

show without alluding to f ! that this recipe fully defines a complex in Db(Xf
ét,Λ).

From the discussion above, it should not be surprising that we prove in Theorem
4.4, the identity

RψX ◦D
ad = D ◦RψX.

The adic Verdier dual does not preserve constructible sheaves, however it does
preserve semi-constructibles. As in the classical case, we prove in Lemma 4.6 and
Corollary 4.7, that it behaves nicely with respect to the functors Rf∗, Rf! and
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f !. An important point to note is that the dualizing complex is a constructible
complex. We prove this using an adic version of the classical cohomological descent
argument (cf. §4.2.1) akin to [9, §1.2].

1.5. Classification of reflexive sheaves. In some upcoming work, P. Scholze
shows that the notion of reflexive sheaves turns out to be a suitable framework
for the sheaves appearing in Fargues’ conjecture, cf. [16, Conjecture 4.4]. More
precisely, for G a quasi-split reductive group over Qp there is a diamond stack in
groupoids BunG whose points are the G-torsors over the relative Fargues-Fontaine
curve. Scholze proves that there is a fairly simple characterization of reflexive
sheaves over BunG: namely they are the sheaves whose stalks are admissible rep-
resentations. The need to work with reflexive sheaves in this setting is highlighted
by the fact that the typical sheaves appearing in Fargues’ conjecture have infinite
dimensional stalks. For this reason the classical notion of constructibility is not
sufficient.

In §5, we attempt to classify those sheaves on Xf
ét which are reflexive with

respect to the adic Verdier dual i.e. the class of sheaves F such that the canonical
morphism F → Dad ◦Dad(F ) is an isomorphism. As a first step in this direction,

we prove in Theorem 5.2 that a sheaf F on Xf
ét is reflexive if for every U → X

in Xf
ét there exists a formal model U of U such that RψU(F |U ) is reflexive with

respect to the classical Verdier dual on Us,ét. We conjecture (cf. Conjecture 5.3)
that an étale sheaf G on a variety Z over an algebraically closed field is reflexive if
and only if it is constructible. In Corollaries 5.14, 5.17 and Propositions 5.16, 5.21
we verify particular instances of this conjecture. The idea in each of the cases is
to show that a reflexive sheaf has étale cohomology which can be controlled. For
instance we make use of the Grothendieck-Ogg-Shafarevich formula. From these
calculations, it appears (at least to the authors) that Conjecture 5.3 is related to
ramification problems.

One can use techniques from SGA 4.5 to show that Conjecture 5.3 is true if
certain pullbacks of reflexive sheaves remain reflexive.

Finally assuming Conjecture 5.3, we prove using Theorem 4.4 that a sheaf F on

Xf
ét is reflexive if and only if F is semi-constructible.

Acknowledgments. Ildar Gaisin would like to express his deep gratitude to his ad-
visors Jean-François Dat and Laurent Fargues, who suggested that he should think
about developing a notion of perversity in relation to the Langlands Program. John
Welliaveetil would like to thank the Max-Planck Institute for Mathematics where
a portion of this work was done. He is also grateful to Imperial college, London for
the suitable working conditions and Johannes Nicaise in particular for his support
and encouragement through this period. The essential ideas of this article are an
elaboration of comments made to us by Peter Scholze and we are grateful that he
shared this with us. Next we want to thank Marco Robalo for spending countless
hours answering our questions. We would also like to thank Ahmed Abbes, Justin
Campbell, Pierre Deligne, Ofer Gabber, Benjamin Hennion, Luc Illusie, Andreas
Gross and Damien Lejay for many helpful remarks.

Notation: For the remainder of the article, unless otherwise stated, we fix an alge-
braically closed non-Archimedean real valued field k.

2. The fine topology on an adic space

Our goal in this section is to provide a short introduction to the theory of adic
spaces. We then proceed to define the category of fine adic spaces which will form
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the focus of the sections that follow. Our primary references are R. Huber’s book
[19] and P. Scholze’s article [26].

2.1. Adic spaces.

2.1.1. Huber rings.

Definition 2.1. A Huber ring is a topological ring A that contains an open sub-
ring A0 such that there exists a finitely generated ideal I ⊂ A0 and the family
{In|n ∈ N} forms a basis of open neighbourhoods of zero. We call any such ring
A0 a ring of definition of A while any ideal I that satisfies the property above is
referred to as an ideal of definition.

Example 2.2. (1) Let k be a non-Archimedean field. The valuation ring k0 :=
{x ∈ k||x| ≤ 1} is a ring of definition of k and the ideal generated by any
element π ∈ k0 such that |π| < 1 is an ideal of definition. There is a large
and interesting class of Huber rings that are also k-algebras, namely the
Tate algebras defined over k. It can be checked easily that the algebra
k〈X1, . . . , Xn〉/I is a Huber ring where I ⊂ k〈X1, . . . , Xn〉 is an ideal.
Such examples of Huber rings where the ideal of definition is generated by
a topologically nipotent unit in the ring are called Tate Huber rings.

2.1.2. Affinoid adic spaces.

Definition 2.3. An affinoid ring is a pair (A,A+) such that A is a Huber ring
and A+ is an open integrally closed sub-ring that is contained in the set of power
bounded elements, cf. [19, §1.1]. The ring A+ is said to be a ring of integral
elements. A morphism (A,A+) → (B,B+) of affinoid rings is a continuous ring
homomorphism φ : A→ B such that φ(A+) ⊂ B+.

Henceforth, we will assume that all affinoid rings under consideration are com-
plete.

Example 2.4. Example 2.2 can be generalized to an arbitrary base ring that is
Huber (leading to the notion of topologically of finite type). Let A be a Huber
ring and M = (M1, . . . ,Mn) be a tuple of finite subsets of A such that for every i,
Mi ·A ⊂ A is open. Define

A〈X1, . . . , Xn〉M := {Σv∈NnavX
v|for every open set U in A, we have that

for all but finitely many indices, av /∈M
v · U}.

where if v = (v1, . . . , vn), X
v := Xv1

1 · . . . ·X
vn
n and Mv :=Mv1

1 · . . . ·M
vn
n .

We endow A〈X1, . . . , Xn〉M with a topology such that the sets

{Σv∈NnavX
v|av ∈M

v · U}

(U is an open neighbourhood of 0 in A) form a basis of open neighbourhoods of 0
in A〈X1, . . . , Xn〉M . It can be checked that A〈X1, . . . , Xn〉M is a Huber ring.

Suppose we are given a ring of integral elements A+ ⊂ A. We can define a ring
of integral elements in A〈X1, . . . , Xn〉M as follows. Let B := {Σv∈NnavX

v|av ∈
Mv · A+} and C denote the integral closure of B in A〈X1, . . . , Xn〉M . We then
have that (A〈X1, . . . , Xn〉M , C) is an affinoid ring.

Given an affinoid ring (A,A+) we can associate to it a locally topologically ringed
topological space which we denote Spa(A,A+).

Definition 2.5. (Locally topologically ringed spaces) Let (V ) denote the category
of triples (X,OX , (vx|x ∈ X)) where X is a topological space, OX is a sheaf of com-
plete topological rings and for every x ∈ X , vx is an equivalence class of valuations 3

3A brief discussion of valuations is provided in [19, §1.1].
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on the local ring OX,x. A morphism (X,OX , (vx|x ∈ X))→ (Y,OY , (vy |y ∈ Y )) of
objects in (V ) is a continuous map f : X → Y and a morphism of sheaves of topo-
logical rings φ : OY → f∗(OX) such that for every x ∈ X , the induced morphism of
topological local rings φx : OY,f(x) → OX,x is compatible with the valuations vf(x)
and vx respectively, i.e. vf(x) = vx ◦ φx. For every object of (V ), O+

X denotes the

subsheaf of OX with O+
X(U) := {s ∈ OX(U) |vx(s) ≤ 1 for every x ∈ U} (here U

is any open in X).

Let Spa(A,A+) be the set of continuous valuations (up to equivalence) on v :
A→ Γ ∪ {0} such that v(a) ≤ 1 for every a ∈ A+. We equip Spa(A,A+) with the
topology generated by the sets {x ∈ Spa(A,A+)||a(x)| ≤ |b(x)| 6= 0, a, b ∈ A}.

The space X := Spa(A,A+) can be endowed with a structure presheaf OX by
specifying its values on so-called rational subsets of X and then extending this
definition in a natural way to include all open sets in X .

Definition 2.6. (Rational subsets) Let X = Spa(A,A+) where (A,A+) is an
affinoid ring. Let T ⊂ A be a finite set of elements such that T · A ⊂ A is open.
For s ∈ A let U(T/s) = {x ∈ Spa(A,A+) ||t(x)| ≤ |s(x)| 6= 0, t ∈ T }. A set of this
form is referred to as a rational subset of X.

Proposition 2.7. Let (A,A+) be an affinoid ring and satisfies one of the following
conditions.

(1) The ring A is discrete.
(2) The ring A is finitely generated over a Noetherian ring of definition.
(3) The ring A is Tate and for every n ∈ N, A〈X1, . . . , Xn〉 is Noetherian.

Then there exists a unique sheaf OX on X := Spa(A,A+) such that for every
rational subset U(T/s), OX(U(T/s)) = A[1/s]∧ where the topology on A[1/s] is
such that A0[T/s] is a ring of definition for any ring of definition A0 in A and
I · A0[T/s] is an ideal of definition for any ideal of definition I ⊂ A0.

Remark 2.8. On a general open subset U ⊂ X , we have that

OX(U) := lim
←−

W⊂U,W rational

OX(W )

Definition 2.9. (1) An affinoid adic space is an object in the category (V )
that is isomorphic in (V ) to a space of the form Spa(A,A+).

(2) An adic space is an object of the category (V) that is locally isomorphic to
an affinoid adic space.

2.1.3. Morphisms of adic spaces.

Definition 2.10. (1) A morphism of affinoid rings f : (A,A+) → (B,B+)
is of topologically finite type if there exists n ∈ N, a tuple of finite subsets
M = (M1, . . . ,Mn) such thatMi ·A ⊂ A is open and a continuous surjective
open ring homomorphism g : A〈X1, . . . , Xn〉M → B (cf. Example 2.4)
which satisfies the following properties.
(a) Let h : A → A〈X1, . . . , Xn〉M be the canonical morphism. We have

that f = g ◦ h.
(b) In Example 2.4, we defined a ring of integral elements C ⊂ A〈X1, . . . , Xn〉M

such that h(A+) ⊂ C. We then have that B+ is the integral closure
of g(C).

(2) A morphism f : X → Y of adic spaces is said to be locally of finite type if for
every x ∈ X , there exists affinoid open neighbourhoods U of x and V of f(x)
with f(U) ⊂ V such that the map (OY (V ),O+

Y (V ))→ (OX(U),O+
X(U)) is

topologically of finite type. A morphism of adic spaces is of finite type if it is
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locally of finite type and quasi-compact i.e. the pullback of a quasi-compact
open is quasi-compact.

We fix a non-trivially valued non-Archimedean field k that is algebraically closed.

Remark 2.11. A k-adic space is an adic space X along with a structure map
pX : X → Spa(k, k0). A morphism f : (X, pX) → (Y, pY ) of k-adic spaces is a
morphism of adic spaces f : X → Y such that pX = pY ◦ f . Let k − ad denote
the category of k-adic spaces. Observe that if X is a k-adic space and x ∈ X then
there exists an affinoid neighbourhood U of x such that OX(U) is Tate. Hence, a
k-adic space is a particular instance of an analytic adic space.

As stated earlier, we would like to define a sub-category of the category of k-
adic spaces which possess certain favourable properties. Before doing so, we briefly
discuss the notion of a separated morphism.

Definition 2.12. A morphism f : X → Y of adic spaces which is locally of finite
type is said to be separated if the image of the diagonal map is closed i.e. if
∆ : X → X ×Y X is the diagonal map then ∆(X) is closed in X ×Y X .

Remark 2.13. If f : X → Y is separated then the morphism ∆ : X → X×Y X is a
homeomorphism of X onto its image. Indeed, it suffices to show that the morphism
∆ is closed. Let Z ⊂ X be a closed set and let ∆(Z) denote its closure in X ×Y X .

Since f is separated ∆(Z) is contained in ∆(X). We claim that ∆(Z) = ∆(Z).

Suppose there exists z ∈ X such that ∆(z) ∈ ∆(Z) r∆(Z). As Z is closed in X ,
we have that there exists an open set O in X that contains z and is disjoint from
Z. The set O ×Y O ⊂ X ×Y X is an open neighbourhood of ∆(z) that does not
intersect ∆(Z). Indeed, O ×Y O is open since if p1 and p2 denote the projections

X ×Y X → X then O ×Y O = p−1
1 (O) ∩ p−1

2 (O). Hence ∆(z) cannot lie in ∆(Z)
and this contradicts our initial claim.

Lemma 2.14. Let f : X → Y and g : Y → Z be locally of finite type morphisms of
k-adic spaces. Suppose g ◦ f is separated. Then so is f .

Proof. Since g ◦ f is separated, it is also quasi-separated. We show first that f is
quasi-separated. This is equivalent to saying that the diagonal morphism ∆f : X →
X ×Y X is quasi-compact. To show that ∆f is quasi-compact, we show that there
exists an affinoid covering {Ui}i of X×Y X such that f−1(Ui) is quasi-compact for
every i cf. [28, Tag 01K4].

We choose affinoid coverings {Ct} of Z, {Bs} of Y and {Ar} of X such that
for every r there exists s such that the image of Ar is contained in Bs and for
every s, the image of Bs is contained in Ct for some t. Furthermore, for every s,
f−1(Bs) is covered by some sub-family of elements in {Ar}. It follows that X×Y X
is covered by sets of the form Ar1 ×Bs

Ar2 which is affinoid by construction. The
pre-image of Ar1×Bs

Ar2 in X is Ar1 ∩Ar2 which is quasi-compact because the map
X → Z is quasi-separated and hence after choosing an appropriate t, the preimage
of Ar1 ×Ct

Ar2 in X which is Ar1 ∩ Ar2 is quasi-compact
To complete the proof, we use Huber’s valuative criterion for separatedness,

cf. [19, Proposition 1.3.7]. Let (x,A) be a valuation ring of X and suppose that
it possesses two distinct centers z1 6= z2 ∈ X such that f(z1) = f(z2). Then
(g ◦ f)(z1) = (g ◦ f)(z2), which contradicts separatedness of g ◦ f .

�

Lemma 2.15. Let X and Y be separated finite type k-adic spaces i.e. the structure
morphisms pX : X → Spa(k, k0) and pY : Y → Spa(k, k0) are separated and finite
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type. If f : X → Y is a morphism of k-adic spaces then the morphism f is separated,
taut and of finite type 4.

Proof. By [19, Lemma 5.1.3(i)] a separated finite type k-adic space is taut and by
Lemma 5.1.3(iii) in loc.cit. a morphism of separated finite type k-adic spaces is
taut. The fact that f is separated follows from Lemma 2.14.

We show that the morphism f is locally of finite type. First note that f comes
from a morphism of rigid analytic varieties by [18, Proposition 4.5(iv)]. Working
locally on X , it suffices to show that a morphism of k-Tate rings of the form
f : k〈T 〉/a → k〈U〉/b is topologically of finite type5. This follows from Lemma
3.3(iii) in loc.cit. (the point is that the morphism induced by f ,

(
k〈T 〉/a

)
〈U〉 →

k〈U〉/b is a continuous, surjective and open ring homomorphism. It is open because
of the open mapping theorem).

Finally, the morphism f is quasi-compact by Lemma 2.16. �

Lemma 2.16. Let f : X → Y and g : Y → Z be locally of finite type morphisms of
k-adic spaces such that g ◦ f is quasi-compact and g is quasi-separated. Then f is
quasi-compact.

Proof. The proof is formal. Observe that f factorises as X
(1,f)
−−−→ X ×Z Y → Y

(the fiber product in question exists by [19, Proposition 1.2.2]), where the second
morphism is projection. The second morphism is quasi-compact because it is base
change of g ◦ f (cf. Corollary 1.2.3(iii) in loc.cit.). The first morphism sits in a
cartesian diagram

X X ×Z Y

Y Y ×Z Y.

(1,f)

∆g

Since g is quasi-separated, ∆g is quasi-compact and again by base change (1, f)
is quasi-compact. The composition of quasi-compact morphisms is again quasi-
compact and this proves the lemma. �

As outlined in the introduction, we develop a theory of constructible sheaves via
the nearby cycles functor which requires that the adic spaces we deal with admit
quasi-compact formal models. Hence, we restrict our attention to a sub-class of
adic spaces which we call fine.

Definition 2.17. Let Finek−ad denote the category of fine k-adic spaces. The
objects of Finek−ad are separated finite type k-adic spaces and the maps between
objects are morphisms of k-adic spaces.

Lemma 2.18. The category Finek−ad admits fiber products and the canonical func-
tor Finek−ad → k − ad preserves fiber products.

Proof. First, note that by Lemma 2.15 and [19, Proposition 1.2.2(a)], fiber products
of fine k-adic spaces exists in k−ad. Hence, it suffices to verify that the fiber product
of fine k-adic spaces in the category of k-adic spaces is fine. Let X , X ′ and X ′′ be

4In the language of [19], this implies that f is locally of +weakly finite type.
5Here k〈T 〉 := k〈T1, T2, . . . , Tm〉 for some m ≥ 0 and a ⊂ k〈T 〉 is an ideal. Similarly k〈U〉 :=

k〈U1, U2, . . . , Un〉 for some n ≥ 0 and b ⊂ k〈U〉 is an ideal.
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fine k-adic spaces sitting in a cartesian diagram

X ′ ×X X ′′ X ′′

X ′ X.

g̃

f̃ f

g

Since f and g are of finite type (Lemma 2.15), so are f̃ and g̃, cf. Corollary 1.2.3
(i), (iiic) in loc.cit. A composition of finite type morphisms is of finite type and so
X ′×XX

′′ is of finite type over k. It remains to prove X ′×XX ′′ is separated. This
follows from Lemma 1.10.17(iii) in loc.cit. and Lemma 2.15. �

2.1.4. Rigid varieties, Berkovich spaces and adic spaces.

2.2. Rigid varieties and adic spaces. We have a fully faithful functor, cf. [19,
1.1.11]:

{rigid-analytic varieties/k} → {adic spaces/k}

X 7→ Xad

sending Sp(R) to Spa(R,R+) for any affinoid k-algebra (R,R+) of topologically
finite type (tft). It induces an equivalence

{quasi-compact quasi-separated rigid-analytic varieties/k}

∼= {quasi-compact quasi-separated adic spaces of finite type/k}.

There is also an equivalence of categories, cf. [19, Proposition 8.3.1]) :

{Hausdorff strictly k − analytic Berkovich spaces}

∼= {taut adic spaces locally of finite type/k}

sendingM(R) to Spa(R,R+) for any affinoid k-algebra (R,R+) of tft. It induces
equivalences

{compact Hausdorff strictly k − analytic Berkovich spaces}

∼= {quasi-separated adic spaces of finite type/k}

and

{compact separated strictly k − analytic Berkovich spaces}

∼= {separated adic spaces of finite type/k}

Putting everything together we get the following equivalence of categories where
Raynaud’s theorem applies:

{fine k − adic spaces}

∼= {compact separated strictly k − analytic Berkovich spaces}

∼= {separated quasi-compact rigid-analytic varieties/k} .

2.3. The fine étale site.

Definition 2.19. (1) A morphism (R,R+)→ (S, S+) of affinoid k-algebras is
called finite étale if S is a finite étale R-algebra with the induced topology
and S+ is the integral closure of R+ in S.

(2) A morphism f : X → Y of adic spaces over k is called finite étale if there is
a cover of Y by open affinoids V ⊂ Y such that the preimage U = f−1(V )
is affinoid and the associated morphism of affinoid k-algebras

(OY (V ),O+
Y (V ))→ (OX(U),O+

Y (U))

is finite étale.
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(3) A morphism f : X → Y of adic spaces over k is called étale if for any point
x ∈ X there are open affinoid neighbourhoods U and V of x and f(x)
respectively, and a commutative diagram

U W

V

f |U

j

p

where j is an open embedding and p is finite étale.

Remark 2.20. [19, Definition 1.6.5(i)] is equivalent to Definition 2.19 for the adic
spaces that we will consider and we will use both definitions when convenient, cf.
Lemma 2.2.8 in loc.cit.

Definition 2.21. Let X be a fine k-adic space. We define Xf
ét to be the site Xf

ét

generated by those objects of Xét which are fine k-adic i.e. the objects of Xf
ét are

étale morphisms α : Y → X where Y is fine k-adic and given Y → X in Xf
ét, we

say that {(Yi → X)→ (Y → X)}i is a covering if it is a covering in Xét. Given a

torsion ring Λ, let D+(Xf
ét,Λ) denote the bounded below derived category of fine

étale sheaves of Λ-modules.

2.3.1. A Comparison of sites. In [19], Huber works with the étale site of an adic
space and develops a six functor formalism in this setting6. We would like to make
use of these constructions for fine k-adic spaces.

Proposition 2.22. Let X be a fine k-adic space. There exists a canonical mor-
phism of sites (cf. Lemma 2.18)

uX : Xét → Xf
ét

such that the induced morphism of topoi ũX := (u∗X , uX∗) : X̃f
ét
→ X̃ét is an

equivalence of categories.

Proof. The proposition follows from Lemma 2.23 and [1, Exposé III, Théorème
4.1]. �

Lemma 2.23. Let Z be a k-adic space, which is not necessarily fine. Suppose there
is an étale morphism g : Z → X. Then there exists an étale covering Zi → Z such
that the Zi are fine k-adic spaces.

Proof. An étale morphism is by definition locally of finite type (in fact it is locally
of finite presentation). Thus Z is locally of finite type over k and so we can take a
covering gi : Z

′
i → Z where the Z ′

i are of finite type. If the Z
′
i were separated over k

then we would be done. To complete the proof, we refine each of the Z ′
i by affinoid

spaces that are separated over X .
Working locally for each point z′ij ∈ Z

′
i, there are open affinoid neighbourhoods

Zij and Vij of z′ij and g(gi(z
′
ij)) respectively, and a commutative diagram

Zij W

Vij

j

p

6It should be noted that certain hypothesis are required to construct the functors f! and f !.



12 ILDAR GAISIN, JOHN WELLIAVEETIL

where j is an open embedding and p is finite étale. In particular g ◦ gi|Zij
is

separated. Thus the the Zij are fine k-adic spaces and cover Z. �

Theorem 2.24. Let φ : X → Y be a morphism of fine k-adic spaces. There exists
a functor

Rφ! : D
+(Xf

ét
,Λ)→ D+(Y f

ét
,Λ)

which satisfies the following properties.

(1) Let φ! := R0φ!. If F ∈ Sh(Xf
ét
,Λ) then

φ!(F )(U) := {s ∈ Γ(X ×Y U)|supp(s) is proper over U}.

(2) Assume the morphism φ is étale. We have that φ! is exact. Furthermore,

if F ∈ Sh(Xf
ét
,Λ) and G ∈ Sh(Y f

ét
,Λ) then

HomSh(Y f

ét
,Λ)(φ!(F ),G ) = HomSh(Xf

ét
,Λ)(F , φ∗(G )).

(3) If the morphism φ is partially proper then Rφ! is the right derived functor
of φ!.

Proof. This is a direct consequence of [19, Theorem 5.4.3], Lemma 2.15 and Propo-
sition 2.22. �

Theorem 2.25. Let φ : X → Y be a morphism of fine k-adic spaces. There exists
a functor

φ! : D+(Y f
ét
,Λ)→ D+(Xf

ét
,Λ)

such that if A ∈ D+(Xf
ét
,Λ) and B ∈ D+(Y f

ét
,Λ) then there is a functorial isomor-

phism

HomD+(Y f

ét
,Λ)(Rφ!(A), B) = HomD+(Xf

ét
,Λ)(A, φ

!(B)).

In particular, the functor φ! is right adjoint to Rφ!.

Proof. We claim that dim.tr(φ) <∞. Indeed dim.tr(φ) = dim(φ) ≤ dim(X), where
the first equality follows from [19, Corollary 1.8.7(ii)]. But X is in particular quasi-
compact and so we can assume X is affinoid. The claim then follow from Lemma
1.8.6 in loc.cit.

The theorem then follows from Theorem 7.1.1 in loc.cit., Lemma 2.15 and Propo-
sition 2.22. �

2.4. Formal schemes. The theory of formal schemes allows us to relate the étale
site of a fine k-adic space and the étale sites of certain k̃-varieties (here k̃ is the
residue field of k). We refer the reader to [27, §2.2] for more details on how to
describe the generic fiber of a formal scheme. In what follows, we provide a brief
introduction to formal geometry and define the étale site of the formal schemes
we will be interested in. We end the subsection by introducing the nearby cycles
functor, the properties of which we exploit later on.

2.4.1. Affine formal schemes. We make use of the following notation. Let k0 :=
{x ∈ k||x| ≤ 1} and k00 := {x ∈ k||x| < 1} (so that k̃ = k0/k00). The ring k0 is
referred to as the ring of power bounded elements of k while k00 is called the ring
of topologically nilpotent elements of k. We will restrict our attention to formal
schemes defined over k0. We fix a topological nilpotent element π that is non-zero
if the valuation on k is non-trivial and zero if it is trivial.

As in classical algebraic geometry, a formal scheme over k0 is obtained by glueing
together affine formal schemes while an affine formal scheme over k0 is the formal
spectrum of a k0-algebra topologically of finite presentation where the topology is
defined by (π).
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Definition 2.26.

(1) Let X1, . . . , Xn be a set of variables. We define the ring of restricted power
series over k0

k0〈X1, . . . , Xn〉 :=





∑

i:=(i1,...,in)∈Nn

aiX
i1
1 . . . X in

n ||ai| 7→ 0 as |i| 7→ ∞



 .

(2) A k0-algebra A is topologically of finite presentation if for some n ∈ N, A
is isomorphic to k0〈X1, . . . , Xn〉/I where I is a finitely generated ideal in
k0〈X1, . . . , Xn〉.

We often simplify notation by setting X := (X1, . . . , Xn) and using k0〈X〉 to
denote the algebra k0〈X1, . . . , Xn〉.

Remark 2.27. Observe that

k0〈X̄〉 = lim
←−

m∈Z≥1

k0[X̄ ]/(πm).

Definition 2.28. Let A be a k0-algebra which is topologically of finite presentation.
We define the formal spectrum of A to be

Spf(A) := lim
−→
m

Spec(Am)

where Am := A/(πm) and the limit is taken in the category of locally ringed spaces.

Given a k0-algebra A which is topologically of finite presentation, one can think
of Spf(A) as a topological space Spec(A ×k0 k̃) along with a structure sheaf that

contains information about an infinitesimal neighbourhood of Spec(A ×k0 k̃). We

refer to Spec(A×k0 k̃) as the special fibre of Spf(A).

Definition 2.29. A formal scheme over k0 is a locally ringed space that is locally
isomorphic to an affine formal scheme of the form Spf(A) where A is topologically of
finite presentation. A morphism of formal schemes is a morphism of locally ringed
spaces.

Remark 2.30. Let X be a k0-formal scheme. We can associate to X a k̃-scheme
Xs which we call the special fibre of X and an adic space Xη over k which we call
the generic fibre of X. Suppose X was of the form Spf(A) then Xs is the scheme

Spec(A⊗k0 k̃) and Xη is the adic space Spa(A,A)×Spa(k0,k0) Spa(k, k
0). In general,

the special fibre (generic fibre) of a formal scheme X is obtained by glueing together
the special fibres (generic fibres) of a family of affine formal schemes which cover
X. In such a situation, we say that X is a formal model of Xη. If X is separated
and quasi-compact over k0 then Xη is a fine k-adic space while Xs is a variety over

k̃.

2.4.2. Étale site of a formal scheme. Let X denote a formal scheme over k0 with
structure sheaf OX. Let Xn be the scheme (|X|,OX/π

nOX).

Definition 2.31. A morphism of formal schemes over k0, φ : X→ Y is étale if for
every n ∈ N, the induced morphism of schemes φn : Xn → Yn is étale.

Proposition 2.32. Let X be a k0-formal scheme.

(1) The correspondence Y 7→ Ys induces an equivalence between the category
of formal schemes étale over X and schemes étale over Xs.

(2) Let f : Y→ X be an étale morphism of formal schemes. We then have that
the induced map of generic fibres fη : Yη → Xη is étale. In particular, we

have a morphism of sites νX,X : Xf
ét
→ Xs,ét.

Proof. See [7, Lemma 2.1] and [19, Lemma 3.5.1]. �



14 ILDAR GAISIN, JOHN WELLIAVEETIL

2.4.3. Nearby cycles functor.

Definition 2.33. (Nearby cycles functor) Let X be a fine k-adic space and X be
a formal model of X . We have the following functor:

ψX :X̃f
et → X̃s,et

F 7→ νX,X∗(F ).

Lemma 2.34. Let Λ be a torsion ring. Let f : X → Y be a morphism of fine k-adic
spaces. Let X and Y be formal models of X and Y . We suppose that there exists a
morphism f : X → Y such that the induced morphism fη between the generic fibres
coincides with f . Let fs : Xs → Ys denote the morphism between the respective

special fibres. For F ∈ D+(Xf
ét
,Λ) one has

Rfs! ◦RψX(F )
∼
−→ RψY ◦Rf!(F ).

Proof. The main ideas can be found in [19, §3.5]. By Corollary 5.1.13 in loc.cit.
f has a compacitification f = g ◦ j where j : X → X ′ is an open embedding and
g : X ′ → Y is proper. Note thatX ′ is a fine k-adic space. By [10, Proposition 8.2.16,
Lemma 8.4.4], there exists formal models X1 and X ′ of X and X ′ respectively such
that we have an admissible blow-up b : X1 → X, a morphism of formal schemes
f1 : X1 → Y, an open immersion j : X1 → X′ and a map g : X′ → Y. Furthermore,
these morphisms are such that jη = j, gη = g, f1 = g ◦ j. Here g is the generic fibre
of g and by [19, Remark 1.3.18(ii)] g is proper.

By Corollary 3.5.11(ii) in loc.cit., we see that

Rjs! ◦RψX(F )
∼
−→ RψX′ ◦ j!(F ).

We show that
Rgs∗ ◦RψX′(F )

∼
−→ RψY ◦Rg∗(F ).

By Grothendieck’s theorem on the composition of derived functors, it suffices to
verify that

gs∗(νX′∗(F )) ∼= νY∗(g∗(F )).

We need only check that gs ◦ νX′ = νY ◦ g as a morphism of sites . This reduces to
checking that for a formal scheme Z→ Y, (X′ ×Y Z)η = X′

η ×Yη
Zη. This can be

further reduced to the case when the formal schemes are all affine, in which case
the identity is clear. Since f1 = g ◦ j, we have thus shown that

Rf1s! ◦RψX1
(F )

∼
−→ RψY ◦Rf1!(F )

where f1 := f1η. By construction, f1 = f ◦ b. Since, b is an admissible blow up, we
get that

Rfs! ◦Rbs! ◦RψX1
(F )

∼
−→ RψY ◦Rf!(F )

Since bs is proper and using the isomorphism Rbs∗ ◦RψX1
→ RψX we deduce that

Rfs! ◦RψX(F )
∼
−→ RψY ◦Rf!(F ).

�

Lemma 2.35. Let X be a fine k-adic space. Let F ∈ Db(Xf
ét
,Λ) and X be a formal

model of X. We then have that RψX(F ) is a bounded complex on Xs,et.

Proof. It suffices to show that there exists d ∈ N such that for every Y → Xs

étale, we have that RΓ(Us, RψX(F )) ∈ D[−d,d](Λ). Observe that there exists a
formal scheme U étale over X with special fibre Us = Y and RΓ(Us, RψX(F )) =
RΓ(Uη,F ). By [19, Corollary 2.8.3], one deduces that there exists d ∈ N such

that for every Y → Xs étale, RΓ(Y,RψX(F )) ∈ D[−d,d](Λ). This completes the
proof. �
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3. Constructible sheaves

We fix a prime number l which is coprime to the characteristic of the residue
field k̃ of k. Let Λ := Z/ℓnZ.

Definition 3.1. Let X be a fine k-adic space and F be a sheaf of Λ-modules on

the site Xf
ét.

(1) We say that F is semi-constructible if for every f : U → X in Xf
ét and

every formal model U of U , we have that RψU(f
∗ F ) ∈ Db

c(Us,Λ).
(2) The sheaf F is constructible if for every complete algebraically closed non-

Archimedean field extension L and every morphism of fine L-adic spaces f :
Y → XL, we have that f

∗◦p∗L(F ) is semi-constructible. Here pL : XL → X
is the projection.

We use Con(Xf
ét
,Λ) to denote the full sub-category of constructible sheaves and

sCon(Xf
ét
,Λ) to denote the full sub-category of semi-constructible sheaves

Remark 3.2. It is reasonable to ask if the class of constructible sheaves defined
above contains any sheaves of interest. By [21, Proposition 2.12], the class of
constructibles defined above extends the class of constructible sheaves introduced
by Huber in [19, Definition 2.7.2]. Henceforth, we will refer to these sheaves as
Huber constructible.

It should be noted that there exist semi-constructible sheaves which are not
constructible. For instance cf. §4.3.

Example 3.3. Consider the following example of a sub-sheaf of a constructible

sheaf that is not constructible. Let k = Cp and X = P1,ad
Cp

. Let Ω := X r P1(Qp).

The subspace Ω is open subspace of X and let j : Ω →֒ P1,ad
Cp

denote the open

immersion. We set G := j!j
∗Λ. It can be deduced from [12, Théorème 3.1.1]

that H1(Xf
ét, G) is not finite since it corresponds to the Steinberg representation,

while H2(Xf
ét, G) corresponds to a twist of the trivial representation. By Corollary

3.10, it follows that G is not constructible. Hence we see that the sub-category

Con(Xf
ét,Λ) is not necessarily a Serre sub-category of the category of sheaves of

Λ-modules on X .

Lemma 3.4. Let X be a fine k-adic space. The category Con(Xf
ét
,Λ) is exact.

Proof. It suffices to show that the category Con(Xf
ét,Λ) is stable for extensions.

Let 0 → F → F
′ → F

′′ → 0 be a short exact sequence of constructible Λ-
étale sheaves on X . Let f : Y → XL be a morphism of fine L-adic spaces where
L is a non-Archimedean algebraically closed complete field extension of k. Let
pL : XL → X be the projection. Let Y be a formal model of Y . We have an exact
sequence 0 → f∗p∗L(F ) → f∗p∗L(F

′) → f∗p∗L(F
′′) → 0 which induces a triangle

RψY(f∗p∗L(F ))→ RψY(f∗p∗L(F
′))→ RψY(f∗p∗L(F

′′))→ · in Db(Ys,Λ). By as-
sumption, RψY(f∗p∗L(F )) and RψY(f∗p∗L(F

′′)) are complexes whose cohomology
is constructible. It follows that RψX(f

∗p∗L(F
′)) is a complex whose cohomology is

constructible and hence F ′ is an object of Con(Xf
ét,Λ). �

Definition 3.5. (1) Let Db
sc(X

f
ét,Λ) be the full subcategory of Db(Xf

ét,Λ) con-

sisting of those complexes A ∈ Db(Xf
ét,Λ) such that for every étale map

U → X in Xf
ét and every formal model U of U , RψU(A|U ) ∈ D

b
c(Us,Λ).

(2) Let Db
c(X

f
ét,Λ) be the full subcategory of Db(Xf

ét,Λ) consisting of those

complexes A ∈ Db(Xf
ét,Λ) such that for every complete algebraically closed

non-Archimedean field extension L and every morphism of fine L-adic
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spaces f : Y → XL, we have that f∗ ◦ p∗L(A) is semi-constructible. Here
pL : XL → X is the projection.

Unlike the class of Huber constructible sheaves, the objects of Db
c(X

f
ét,Λ) and

Db
sc(X

f
ét,Λ) are stable by pushforwards and lower shriek.

Lemma 3.6. Let f : X → Y be a morphism of fine k-adic spaces and let

F ∈ Db
sc(X

f
ét
,Λ). We have that Rf∗(F ), Rf!(F ) ∈ Db

sc(Y
f
ét
,Λ).

Proof. By [19, Theorem 4.3.1], it suffices to show the following. Let Y be a formal
model of Y . We then have that RψY(Rf∗(F )) ∈ Db

c(Ys,Λ). By Raynaud’s the-

orem, there exists a formal model X of X and a morphism f̃ : X → Y such that
f = f̃η. The argument in Lemma 2.34 shows that

RψY(Rf∗F ) ∼= Rf̃s∗(RψXF ).

As F ∈ Db
sc(X

f
ét,Λ), we have that RψX(F ) ∈ Db

c(Xs,Λ). It follows that

Rf̃s∗(RψXF ) ∈ Db
c(Ys,Λ).

The proof that Rf! preserves semi-constructible complexes follows the same argu-
ment as above, making use of Theorem 5.4.6 in loc.cit. �

Proposition 3.7. Let f : X → Y be a morphism of fine k-adic spaces and let

F ∈ Db
c(X

f
ét
,Λ). We have that Rf∗(F ), Rf!(F ) ∈ Db

c(Y
f
ét
,Λ).

Proof. Let g : Z → YL
pL
−−→ Y be a morphism of fine adic spaces where Z → YL

is L-adic, pL : YL → Y is the projection morphism and L is a non-Archimedean
algebraically closed complete field extension of k. We must show that g∗(Rf∗(F )) ∈

Db
sc(Z

f
ét,Λ). Let f ′ : X ×Y Z → Z and g′ : X ×Y Z → X denote the morphisms

obtained by base change. By [19, Lemma 1.1.10 (v), Theorem 4.3.1], we get that
g∗(Rf∗(F )) ≃ Rf ′

∗(g
′∗(F )). As g′∗(F ) is constructible on X ×Y Z, it suffices to

show that semi-constructibility is stable for pushforwards. This is accomplished by
Lemma 3.6.

The proof that Rf! preserves constructible complexes follows the same argument
as above. In place of the quasi-compact base change theorem, we use Theorem 5.4.6
in loc.cit. �

Due to the fact that fine adic spaces are in general highly non-noetherian topo-
logical spaces, it means that skyscraper sheaves have no chance of being Huber
constructible, as the following example shows. On the other hand they are con-
structible.

Example 3.8. We give an example of a constructible sheaf which is not Huber
constructible. Take a closed point of type (1), i : x →֒ Spa(k〈T 〉, k0〈T 〉). Then
i!Λ is constructible by Proposition 3.7. However we claim that x is not a globally
constructible subset of X := Spa(k〈T 〉, k0〈T 〉). That is we claim that there does
not exist U, V ⊂ X open and retrocompact in X such that

x = U ∩ V c.

It suffices to show that X\x is not quasi-compact. Suppose it is. Then the image
of X\x under the continuous retraction X → XBerk is also quasi-compact. But
XBerk\x cannot be compact because x is not open in XBerk (for the Berkovich
topology).

Remark 3.9. It is clear from the definition that constructibility is stable for pull-
backs. In general this is not the case for semi-constructibility, cf. §4.3.
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Corollary 3.10. Let X be a fine k-adic space. Let F be a sheaf on Xf
ét
which takes

values in the category of Λ-modules. If F is constructible then for every morphism

g : Z → XL
pL
−−→ X where Z → XL is L-adic, pL : YL → Y is the projection

morphism and L is a non-Archimedean algebraically closed complete field extension
of k, we have that Hi(Y, g∗(F )) is finite for every i ∈ N.

3.1. Properties of constructible sheaves. Recall that in the theory of étale
cohomology of algebraic varieties, constructibility is an étale local condition.

We show that analogous statements hold true in the context of (semi)-constructible
sheaves as defined above on fine adic spaces.

3.1.1. An inductive construction. Let X be a separated formal scheme of finite
type over k0. Suppose that the canonical morphism X → Spf(k0) goes through a
morphism X → U1 := Spf(k0〈T 〉). Here U1

η is the one-dimensional unit disc. Let t

be the Gauss-point of U1
η. Under the continuous specialization map sp: U1

η → U1
s

the point t is the preimage of the generic point of U1
s. Let L be the completion of

the algebraic closure of k(t) where k(t) is the residue class field of the local ring
OU1

η ,t
. We set X′ := X×U1 Spf(L0). The projection λ : X′ → X induces morphisms

λs : X
′
s → Xs and λη : X

′
η → Xη. Let us denote by F ′ the pullback λ∗ηF where F

is a Λ-module on Xf
ét.

Lemma 3.11. In the situation of the preceding paragraph, for any q ≥ 0, there is
a canonical isomorphism

λ∗s(R
qψX(F )) ≃ RqψX′(F ′)P

where P := Gal(H(t)sep/H(t)nr) and H(t) is the completion of k(t).

Proof. This is analogous to the proof of [7, Proposition 4.6(ii)]. The proof crucially
uses Lemma 4.4(i) in loc.cit. and the analogous statement required in our setup is
the following:

Let X be a separated finite type L-adic space and F a sheaf on Xét which takes
values in the category of Λ-modules (in this situation we do not demand that L be
algebraically closed but only complete). Let La be an algebraic closure of L. We

set X ′ := X⊗̂L̂a. Let F
′ be the inverse image of F on X ′. Then

lim
−→
K/L

H0(X⊗̂K,F ) ≃ H0(X ′,F ′)

where K runs through finite extensions of L in Lsep.
This statement follows from that fact that Gal(Lsep/L) acts continuously on

Hi(X ′,F ′), cf. [19, Proposition 2.6.12].
�

The next result states that constructibility is an étale local condition. The key
step is to show a converse to Corollary 3.10.

Theorem 3.12. Let X be a fine k-adic space and let F be a sheaf of Λ-modules

on Xf
ét
.

(1) F is constructible if and only if for every complete algebraically closed non-
Archimedean field extension L and every morphism of fine L-adic spaces
f : V → XL, we have that RΓ(V, f∗ ◦ p∗L(F )) has finite cohomology. Here
pL : XL → X is the projection morphism.

(2) Suppose that there exists an étale cover {Ui → X} in Xf
ét

such that for
every i, F |Ui

is constructible on Ui. Then F is a constructible.
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Proof. (1) We deduce from Corollary 3.10 that it suffices to prove the reverse
implication: Let F be such that for every complete algebraically closed non-
Archimedean field extension L and every morphism of fine L-adic spaces
f : V → XL, we have that RΓ(V, f∗ ◦ p∗L(F )) has finite cohomology. Then
we show that F is constructible. Let X is a formal model of X . It suffices
to show that RψX(F ) is constructible. Since constructibility is local for
the Zariski topology, we reduce to when X is affinoid and X is an affine
formal scheme.

We proceed by induction on d = dim(X) < ∞. If d = 0, the site Xf
ét

is equivalent to Spec(A)ét where A is a finite k-algebra, cf. [11, §6.1.2,
Corollary 2]. Note that Spec(A) is the disjoint union of a finite number
of points and thus we can reduce to the case that it is a single point.
Since Spec(A)ét is equivalent to Spec(Ared)ét, we can assume that A is a
field. In this case RψX is just the global sections functor, which is finite by
assumption.

Suppose that d ≥ 1 and that the claim is true for formal schemes whose
generic fibre has dimension at most d − 1. We take a closed immersion
X → UN := Spf(k0〈T1, T2, . . . , TN 〉) to the formal affine scheme UN . It

gives rise to a closed immersion of the affine schemes Xs to UN
s over k̃. Let

pi be the ith-projection from UN → Spf(k0〈Ti〉). As in 3.1.1, we have the

morphism λ : X′ := X×Spf(k0〈Ti〉) Spf(L
0)→ X where L := k̂(x) where x is

the Gauss point of Spa(k〈Ti〉).
By Lemma 3.11 there is a canonical isomorphism

λ∗s(R
qψX(F )) ≃ RqψX′(λ∗η F )P

Observe that dim(X′
η) = d − 1. We apply our inductive hypothesis to get

λ∗s(R
qψX(F )) is constructible. We deduce using [14, Lemma 3.5] that there

exists a constructible sheaf H q ⊂ RqψX(F ) such that the local sections of
the quotient RqψX(F )/H q are of finite support. We follow the argument
in SGA 4.5 to show that RqψX(F ) is constructible provided Hq(X,F ) is
finite. We have a spectral sequence

Ep,q
2 = Hp(Xs, R

qψX(F )) =⇒ Hp+q(X,F ).

We take the image of these abelian groups in the quotient of the category of
abelian groups by the thick sub-category of finite abelian groups. It follows
that

Ep,q
2 ∼ Hp(Xs, R

qψX(F )/H q)

andHp(Xs, R
qψX(F )/H q) ∼ 0 when p ≥ 1. HenceH0(Xs, R

qψX(F )/H q) ∼
Hq(X,F ). This completes the proof of part (2).

(2) To prove (2), we use (1) and deduce that it suffices to show thatHq(X,F ) is
finite for all q. This must follow from the fact that F is locally constructible
and the space is fine. More precisely, we can use Cech cohomology associ-
ated to a finite refinement of the cover U := {Ui → X}i to conclude the
finiteness statement we are looking for. Indeed, recall that we have the
following spectral sequence

Ep,q
2 = Ȟp(U , Hq(F )) =⇒ Hp+q(X,F )

where Hq(F ) is the presheaf given by U 7→ Hq(U,F ) where U → X is an
element of the fine site. By Lemma 3.10, we get that Hq(F ) takes values
in the category of finite Λ-modules. Furthermore, since X is fine, the cover
U can be refined to a finite cover and hence we see that Hp+q(X,F ) is
finite.
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�

The classification of constructibility provided above parallels what happens in
the theory of étale cohomology of varieties.

Proposition 3.13. Let X be an algebraic variety over an algebraically closed field
K. A sheaf F in Λ-modules with ℓ 6= char(K) on Xét is constructible if and only if
for every algebraically closed extension L of K and every morphism of L-varieties
f : V → XL, we have that H0(V, f∗ ◦ p∗L(F )) is finite. Here pL : XL → X is the
projection morphism.

Proof. We need only prove the reverse implication. We may assume that X is
affine. We proceed by induction on the dimension of X . Let i : X →֒ An

K be
a closed immersion for some n and let {p1, . . . pt} be projections from An

K to A1
K

such that the image of X is dense in A1
K . Let η denote the generic point of A1

K .
We have that Xη is of dimension dim(X)− 1. By our induction hypothesis, F |Xη

is constructible. By [14, Lemma 3.5] it follows that there exists a constructible
sub-sheaf H of F such that the local sections of F /H are of finite support. The
finiteness of H0(X,F ) implies that F /H is simply the finite direct sum of finite
skyscraper sheaves, cf. Lemma 5.15. Thus we see that F is constructible. �

3.2. Semi-constructibility is an étale local property.

Lemma 3.14. Let X and Y be fine k-adic spaces. Let f : Y → X be a surjective
étale morphism. There exists a finite affinoid cover {Ui} of X such that for every
i, there exists an affinoid space Vi ⊂ Y and the map f|Vi

: Vi → Ui is finite.

Proof. By [19, Corollary 1.7.4], f is locally quasi-finite. Since it is quasi-compact,
it is also quasi-finite. Let x ∈ X be a maximal point. Since f is surjective,
there exists a maximal point y ∈ Y such that f(y) = x. By Proposition 1.5.4
in loc.cit., there exists affinoid neighbourhoods Vx of Y and Ux of X such that
f(Vx) ⊂ Ux and f|Vx

: Vx → Ux is finite. Hence, there exists a family {Ux}x∈Xan

of affinoid open subspaces of X such that {Uan
x } covers the associated Berkovich

space Xan. Since Xan is compact, we can replace {Uan
x } with a finite sub-cover

{Uan
i }1 ≤i≤m. It follows that that {U rig

i } is an admissible cover of Xrig and hence
we get that {Ui}1≤i≤m is a cover of the adic space X which satisfies the assertion
of the lemma. �

Lemma 3.15. Let f : Y → X be a finite surjective étale morphism of fine k-adic

spaces. Let F be a sheaf of Λ-modules of Xf
ét

such that F |Y is semi-constructible

sheaf on Y f
ét
. Then F is semi-constructible on Xf

ét
.

Proof. It suffices to show that if X be a formal model of X , RψX(F ) ∈ Db
c(Xs,Λ).

We can replace Y by the Galois closure of Y over X and hence assume that f is
finite étale and Galois. Let Y be a formal model of Y such that the map f extends
to a map f : Y → X. Let G := Aut(Y/X). The sheaf f∗f

∗(F ) is a Λ[G]-module
on X and we have the following isomorphism.

F ≃ RΓG
X(f∗f

∗(F ))(2)

where ΓG
X(−) is the functor that sends a Λ[G]-module G to the sheafification of

Λ-sub module of G-invariants which is defined by U 7→ G (U)G.
We can extend the construction of the nearby cycles functor to obtain a functor

ψX,G : Sh(X,Λ[G])→ Sh(Xs,Λ[G]) whose derived functors we denote

RψX,G : Db
c(X,Λ[G])→ D

b
c(Xs,Λ[G]).
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We claim the following isomorphism.

RψX ◦RΓ
G
X(−) ≃ RΓG

Xs
(−) ◦RψX,G.

The functor ΓG
X(−) is right adjoint to the exact functor that sends a Λ-module M

to the Λ[G]-moduleM where G acts trivially. Hence, it takes injectives to injectives.
We thus have that RψX◦RΓ

G
X(−) ≃ R(ψX◦Γ

G
X(−)). Likewise, since ψX,G is nothing

but a pushforward morphism from the sheaves of Λ[G]-modules on Xf
ét to étale

sheaves on Xs, we see that it preserves injectives and hence RΓG
Xs

(−) ◦ RψX,G ≃

R(ΓG
Xs

(−) ◦ ψX,G). Hence to verify the claim, we need to check that

ΓG
Xs

(−) ◦ ψX,G ≃ ψX ◦ Γ
G
X(−)

which is clear from the definitions.
Let G := f∗f

∗(F ). By the claim above and (2),

RψX(F ) ≃ RΓG
Xs

(RψX,G(G )).

However, RΓG
Xs

(RψX,G(G )) ∈ Db
c(Xs,Λ) because RψX,G(G ) ≃ Rfs∗RψY,G(f

∗(F ))
and f∗(F ) is semi-constructible on Y . �

Proposition 3.16. Let X be a fine k-adic space and {Ui → X} be an étale cover

of X by fine k-adic spaces. Let F be a sheaf of Λ-modules on Xf
ét

such that for
every i, F |Ui

is semi-constructible. Then F is semi-constructible.

Proof. Let X be a formal model of X . It suffices to show that RψX(F ) ∈ Db
c(X,Λ)

to conclude a proof. Given Ui → X an element of the cover, we can apply Lemma
3.14 to the map {Ui → im(Ui)} and hence suppose that the cover {Ui → X} is
composed of affinoids such that for every i, there exists an open affinoid subspace
Vi ⊂ X and the morphism Ui → Vi is finite étale. By Lemma 3.15, F |Vi

is semi-
constructible. By [25, Lemma 4.4], there exists an admissible blow up b : X′ → X
and an open formal cover {Vi} of X

′ such thatVi,η ≃ Vi. We claim that RψX′(F ) ∈
Db

c(X
′
s,Λ). Indeed for every i,

RψX′(F )|Vis
≃ RψVi

(F |Vi
).

The claim follows since F |Vi
is semi-constructible and by choice of X′, {Vi}i is a

cover. We can conclude the proof since Rbs∗ ◦RψX′ ≃ RψX. �

4. Adic Verdier dual

As stated in the introduction, Proposition 4.2 shows that the adic Verdier dual is
compatible with the nearby cycles functor and the classical Verdier dual on varieties.

Recall from Theorem 2.25 that when given a morphism φ : X → Y of fine k-adic
spaces, Huber defined a functor

φ! : D+(Y f
ét,Λ)→ D+(Xf

ét,Λ).

Definition 4.1. Let X be a fine k-adic space and pX : X → Spa(k) denote the

structure map. Let F ∈ Db(Xf
ét,Λ). We use Dad(F ) to denote the adic Verdier

dual of F and define it to be the complex RHom (F , p!X(Λ)) ∈ Db(Xf
ét,Λ).

Proposition 4.2. Let F ∈ Db(Xf
ét
,Λ) and let f : U → X be an element of the

fine étale site of X. Let U be any formal model of U . Then we have that

RΓ(U,Dad(F )) = RΓ(Us, D(RψU(f
∗
F )))

where pU : U → k is the structure morphism. In particular RΓ(Us, D(RψU(f
∗F )))

is independent of the choice of formal model U.
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Proof. This is a direct calculation. Let h : U → Spf(k0) and hs := hs : Us →

Spec(k̃). We use h = hη to denote the generic fibre of h, so that h = pX ◦ f .
Evaluating Dad(F ) for an étale morphism f : U → X , we obtain

Dad(F )(U)
(1)
= RHom (F , p!X(Λ))(U)

(2)
= RΓ(U, f∗RHom (F , p!XΛ))

(3)
= RΓ(U, f !RHom (F , p!XΛ))

(4)
= RΓ(U,RHom (f∗

F , h!Λ))

(5)
= RHom (Rh!f

∗
F ,Λ)

(6)
= RHom (RψSpf(k0)(Rh!f

∗
F ),Λ)

(7)
= RHom (Rhs,!RψU(f

∗
F ),Λ)

(8)
= RΓ(Us, RHom (RψU(f

∗
F ),KUs

))

(9)
= RΓ(Us, D(RψU(f

∗
F )))

where (1) follows from the definition of the adic Verdier dual, (3) follows from the
fact that f is étale, (4) follows from Lemma 4.6, (5) follows from the adjointness of
Rh! and h

!, (6) follows from triviality of nearby cycles on Spa(k), (7) follows from
Lemma 2.34, (8) follows from the adjointness of Rhs,! and h!s (here KUs

= h!sΛ

is the dualizing sheaf of hs : Us → k̃) and (9) follows from the definition of the
classical Verdier dual �

Remark 4.3. The calculation in Proposition 4.2 can be used to construct the adic
Verdier dual Dad using only the nearby cycles functor RψU and the classical Verdier
dual.

Theorem 4.4. Let X be a fine k-adic space. Let X be a formal model of X. The
adic Verdier dual satisfies the following properties.

(1) RψX◦D
ad = D◦RψX where D is the (classical) Verdier dual in Db(Xs,Λ).

(2) RψX ◦D
ad ◦Dad = D ◦D ◦RψX. In particular, if F ∈ Db

sc(X
f
ét
,Λ) then

RψX ◦D
ad ◦Dad(F ) = RψX(F ).

(3) If F ∈ Db
sc(X

f
ét
,Λ) then Dad ◦Dad(F ) = F .

Proof. (1) Let Xs denote the special fibre of the formal scheme X. Observe
that it suffices to show that for every étale morphism ps : Ys → Xs and
every Λ-sheaf F on Xét, we have a natural isomorphism

RΓ(Ys, RψX(D
ad(F ))) ≃ RΓ(Ys, D(RψX(F ))).

We have a natural isomorphism of sites Xs,ét ≃ Xét. It follows that
there exists an étale morphism of formal schemes p : Y→ X such that the
induced morphism between the respective special fibres coincides with ps.
Let p : Y → X be the morphism pη between the respective generic fibres.
Since p is étale, we get that p is étale.
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Observe that

RΓ(Ys, RψX(D
ad(F )))

(1)
≃ RΓ(Ys, p

∗
sRψX(D

ad(F )))

(2)
≃ RΓ(Ys, RψY(p

∗Dad(F )))

(3)
≃ RΓ(Y, p∗Dad(F ))

(4)
≃ RΓ(Y,Dad(F ))

(5)
≃ RΓ(Ys, D(RψY(p∗F )))

(6)
≃ RΓ(Ys, p

∗
sD(RψX(F )))

(7)
≃ RΓ(Ys, D(RψX(F ))).

The quasi-isomorphism (2) follows from the fact that ps is étale, (3) is
because of the composition of derived functors, (5) is implied by Proposition
4.2, (6) is because ps is étale.

(2) Part (2) follows by manipulating the equalities from part (1). By (1), we
get that RψX ◦D

ad ◦Dad = D ◦RψX ◦D
ad. Using (1) again, implies that

D ◦RψX ◦D
ad = D ◦D ◦RψX.

(3) We verify the equality by evaluating the given expressions at an object
f : U → X of the étale site of X . We claim that

RΓ(U,Dad ◦Dad(F )) ≃ RΓ(U,F ).

Indeed, by part (2) and the fact that the classical Verdier dual is an invo-
lution on Db

c(Us,Λ), we get that if U is a formal model of U then

RψU ◦D
ad ◦Dad(F |U ) ≃ RψU(F |U ).

Hence we get that

RΓ(Us, RψU ◦D
ad ◦Dad(F |U )) ≃ RΓ(Us, RψU(F |U )).

Since for a complex G on Uét, we have that RΓ(U,G ) ≃ RΓ(Us, RψU(G )),
cf. [7, Corollary 4.5]. This implies the claim.

�

Remark 4.5. One of the important features of the theory of étale cohomology for
varieties is the fact that when restricted to the class of constructible étale sheaves,
the Verdier dual interacts nicely with the functors Rf!, f

∗, f∗ and f !. We deduce
as simple consequences of Theorem 4.4, similar results for the adic Verdier dual
and the class of semi-constructible complexes of sheaves on a fine k-adic space.

Lemma 4.6. Let f : X → Y be a morphism of fine k-adic spaces. Let A,B ∈

Db(Y f
ét
,Λ) and F ∈ Db(Xf

ét
,Λ).

(1) f !RHom (A,B) = RHom (f∗(A), f !(B)).
(2) f !Dad(A) = Dad(f∗(A)).
(3) Dad(Rf!(F )) = Rf∗(D

ad(F ))

Proof. Let C ∈ Db(Xf
ét,Λ). By [19, Theorem 5.5.9(ii)], we have the following

projection formula.

Rf!(C)⊗
L A ≃ Rf!(C ⊗

L f∗(A)).

Using the formula above, the proof is the same as the proof of Lemma 5.8. Part
(2) is a direct consequence of (1). Part (3) follows from the adjointness of Rf! and
Rf∗. �
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Corollary 4.7. Let X be a fine k-adic space and let F ,G ∈ Db
sc(X

f
ét
,Λ). Let

f : X → Y be a morphism of fine k-adic spaces. Then we have that

(1) Dad(F ) ∈ Db
sc(X

f
ét
,Λ).

(2) Dad(Rf∗(F )) = Rf!(D
ad(F )).

(3) f !(F ) = Dad ◦ f∗ ◦Dad(F ).
(4) RH om(F ,G ) = Dad(F ⊗LDad(G )).

Proof. (1) This follows from part (1) of Theorem 4.4.
(2) Substituting F with Dad(F ) in Lemma 4.6, we get

DadRf!(D
ad(F )) = Rf∗D

adDad(F ))

= Rf∗(F )

where the second equation follows from part (3) in Theorem 4.4 . Applying
Dad to both sides of the equation above and noting that Rf!(D

ad(F )) ∈

Db
sc(X

f
ét,Λ) by part (1) and Lemma 3.6 completes the proof of the identity.

(3) Let G := Dad(F ). Part (1) implies that G is semi-constructible. By Lemma
4.6, we have that

f ! ◦Dad(G ) = Dad ◦ f∗(G ).

The result follows from the fact that semi-constructible sheaves are reflex-
ive.

(4) This follows by setting G = Dad ◦Dad(G ) and the adjointness of RH om
and ⊗L.

�

4.1. Huber constructible is not stable for upper shriek. We provide an
example of a morphism pX : X → Spa(k) of fine adic spaces such that p!X(Λ) is a
complex whose cohomology is not Huber constructible. In the next section however
(cf. §4.2) we show that the dualizing complex is constructible. Using Lemma 4.8,
we choose a suitable singular curve C such that H−2(p!Cad(Λ)) is trivial with respect

to a stratification of the form {Uad, {x}} where U is a Zariski open subset of C and
x is a k-point. Since a closed point cannot be a Huber constructible set, we obtain
the counterexample we are looking for. The idea for the above construction was
suggested to us by R. Huber.

Lemma 4.8. Let C be a one-dimensional proper scheme over an algebraically closed
field k and assume that ℓ is prime to char(k). Setting Λ = Z/ℓZ and pC : C → k,
the structure morphism, the dualizing complex sits in an distinguished triangle

i∗Λ→ p!CΛ→ Rj∗Λ[2]→ ·

where j : U → C is the open complement of the singular set i : Z → C.

Proof. This follows from the proof in [15, Theorem 3.1]. �

Lemma 4.9. Let X be a fine k-adic space. Let F ∈ Db
sc(X

f
ét
,Λ). Let i : Z →֒ X be

a closed adic subspace. Let j : U := XrZ →֒ X be the inclusion of the complement.
We have the following distinguished triangle.

i∗i
!(F )→ F → Rj∗j

∗(F )→ ·
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Proof. We have the following triangle

Rj!j
∗(Dad(F ))→ Dad(F )→ i∗i

∗(D(F ))→ ·

Note that Dad(F ) is semi-constructible and hence reflexive. We apply Dad to the
triangle above to obtain

Dadi∗i
∗(Dad(F ))→ F → DadRj!j

∗(Dad(F ))→ ·

By Corollary 4.7, we get

Dadi∗i
∗(Dad(F )) ≃ i∗i

!(F ).

For the next part note that j : U → X is partially proper. We have that

DadRj!j
∗(Dad(F ))

(i)
≃ Rj∗D

adj∗Dad(F )

(ii)
≃ Rj∗j

∗DadDad(F )

(iii)
≃ Rj∗j

∗
F .

Here we see that the quasi-isomorphism (i) follows from the adjointness of j! and
j∗. The quasi-isomorphism (ii) can be deduced from the projection formula [19,
Lemma 5.5.9(ii)] using the same steps as in the proof of Lemma 5.8. Lastly, the
quasi-isomorphism (iii) is obtained from the reflexivity of the sheaf F .

�

Proposition 4.10. Let V be an algebraic variety over k and V ad denote its adifi-
cation. Let µV denote the morphism of sites V ad

ét
→ Vét. The following isomorphism

holds true.

µ∗
V p

!
V (Λ) ≃ p

!
V ad(Λ).

Proof. We proceed by induction on the dimension dim(V ) of the variety V . Let
j : U → V be a Zariski dense open smooth sub-variety of V and let i : Z :=
V r U → V be the inclusion of the complement of U into V . We add the super
script ad to i and j to denote the respective adifications. It is well known from the
classical étale cohomology theory for varieties that we have

i∗i
!p!V (Λ)→ p!V (Λ)→ Rj∗j

∗p!V (Λ)→ ·

Since U is smooth, j∗p!V (Λ) ≃ ⊕tΛ[2dt] where dt runs over the dimension of the
irreducible components of U . By [19, Theorem 3.8.1], µ∗

V i∗p
!
Z(Λ) = iad∗ µ

∗
Zp

!
Z(Λ)

and µ∗
VRj∗j

∗(⊕tΛ[2dt]) = Rjad∗ (⊕tΛ[2dt]). Our induction hypothesis implies that
iad∗ µ

∗
Z i

!(Λ) = iad∗ p
!
Zad(Λ). Hence applying µ∗

V to the triangle above gives

iad∗ p
!
Zad(Λ)→ µ∗

V p
!
V (Λ)→ Rjad∗ (⊕tΛ[2dt])→ ·

By Lemma 4.9 and the fact that p!Uad(Λ) = ⊕tΛ[2dt], we get the following triangle

iad∗ p
!
Zad(Λ)→ p!V ad(Λ)→ Rjad∗ (⊕tΛ[2dt])→ ·

Since the maps above are natural, we get that p!V ad(Λ) ≃ µ
∗
V p

!
V (Λ).

�

Proposition 4.11. There exists a singular curve C over k such that H−2(p!Cad(Λ))
is not Huber constructible.
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Proof. Let C be the singular curve in P2
k given by the homogenous equation

〈Y 2 = X2(X − Z)〉. Observe that C has a singularity at the point x := (0 : 0 : 1).

Let f : C̃ → C denote the normalization of C. Since the morphism f is finite, f∗
is exact. A quick calculation shows that the preimage of x in C̃ has two points.
Let U := C r {x}, j : U →֒ C and j′ : U →֒ C̃ be the associated open immersions.

We have that Rj∗ = f∗Rj
′
∗. Let y be a preimage of x in C̃. By [2, Exposé VIII,

Théorème 5.2], we have that (j′∗(Λ))ȳ = H0(K(y),Λ) where K(y) is the quotient
field of the strict henselization of OC̃,y. Hence we get that [j∗(Λ)]x̄ = Λ ⊕ Λ. This

must mean in particular that j∗(Λ) cannot be locally constant and is only trivial
along the stratification of C given by {U, x}.

By Lemma 4.8 and Lemma 4.10, we see that H−2(p!Cad(Λ)) cannot be locally

constant and is only trivial along the stratification of Cad given by {Uad, x}. How-
ever, {x} is not a constructible subset of Cad. Hence H−2(p!Cad(Λ)) is not Huber
constructible. �

4.2. Stability by upper shriek. In general, upper shriek does not preserve con-
structibility nor semi-constructibility, cf. Example 4.31. However in this section
we prove that for a morphism of fine k-adic spaces f : X → Y , f ! of a Huber
constructible sheaf is constructible. In particular the dualizing complex (which ap-
pears in Verdier duality) is constructible. The main ingredients are Gabber’s weak
uniformization theorem [23, Exp. VII, Theorem 1.1] and Deligne’s cohomological
descent theory (cf. [2, Exposé Vbis] and [13]) adapted to the setting of adic spaces.

First we need a factorization lemma.

Lemma 4.12. Let f : X → Y be a morphism of fine k-adic spaces. Then locally

(for the analytic topology) on X, f factors into X
i
−→ Z

g
−→ Y where Z is a fine

k-adic space, i is a closed embedding and g is a smooth morphism of pure dimension
d.

Proof. Let x ∈ X and y := f(x). By definition of a morphism of finite type, there
exists open affinoid neighbourhoods U := Spa(B,B+) ⊂ X and V := Spa(A,A+) ⊂
Y such that f restricts to a morphism U → V which is topologically of finite type.
By definition, f|U is induced by a morphism A→ B that factors through a surjective
open continuous map g : A〈X1, . . . , Xn〉M → B where M is as in Definition 2.10.
Hence, we can identify U with a closed adic sub-space of Spa(〈A〈X1, . . . , Xn〉M , C)
where C is as in Definition 2.10. By [19, Corollary 1.6.10], the morphism

Spa(〈A〈X1, . . . , Xn〉M , C)→ V

is smooth.
�

Lemma 4.13. Let K/k be an extension of algebraically closed non-Archimedean
fields. Let X be a fine k-adic space and X ′ := X ×k K. Then from the cartesian
diagram

X ′ K

X k

g′

pX′

g

pX

the canonical morphism (coming from adjunction)

g′∗p!X(Λ)→ p!X′(Λ)

is an isomorphism.
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Proof. By base change for compact support (cf. [19, Theorem 5.5.9(i)]), we have a
canonical morphism (given by the counit map)

pX′!g
′∗p!X(Λ) ≃ g∗pX!p

!
X(Λ)→ g∗(Λ)

and by adjunction this gives a morphism g′∗p!X(Λ) → p!X′(Λ). Proving it is an
isomorphism is local for the analytic topology on X ′, so by Lemma 4.12, we can

assume that pX factorises as X
i
−→ Y

pY
−−→ k where Y is a fine k-adic space, i is a

closed embedding and pY is a smooth morphism of pure dimension. Let j : Z → Y
be the complement of i, so that we have a distinguised triangle

i∗i
!(Λ)→ Λ→ Rj∗(Λ)→ ·

It suffices to prove that i!(Λ) is compatible with change of base field, or equivalently
Rj∗(Λ) is compatible with change of base field. This follows from the equivalent
statement for Berkovich spaces (cf. the proof of [6, Theorem 7.6.1]) and [19, The-
orem 8.3.5]. �

4.2.1. Cohomological descent. We need a base change result for upper shriek.

Lemma 4.14. Let

X ′ Y ′

X Y

g′

f ′

g

f

be a cartesian diagram of fine k-adic spaces. Then for F ∈ D+(Y ′
ét
,Λ) there is an

isomorphism of functors

f ! ◦Rg∗(F ) ≃ Rg′∗ ◦ f
′!(F ).

Proof. This follows from [19, Theorem 5.4.6] and adjunction. �

Since we will be dealing with hypercoverings, what we will really need is a sim-
plicial version of Lemma 4.14. So let us recall and apply some definitions and facts
from cohomological descent theory to fine k-adic spaces. Something similar has
been done by Berkovich in [9, §1.2] and we refer the reader there for more details.
A simplicial object of Finek−ad is a contravariant functor ∆→ Finek−ad, where ∆
is the category whose objects are the sets [n] = {0, 1, . . . , n}, n ≥ 0 and morphisms
are nondecreasing maps. Such an object is denoted by X• = (Xn)n≥0, where Xn is
the image of [n] and X•(f) denotes the morphism Xm → Xn that corresponds to
a morphism f : [n]→ [m]. One can then make sense of the étale site X•ét and the
étale topos X∼

•ét.
Let S be a fine k-adic space. This defines a constant simplicial object S• which

corresponds to the functor on ∆ that takes the constant value S. By an augmen-
tation of a simplicial object X• to S, we mean a morphism

a = (an)n≥0 : X• → S•

which is briefly denoted by a : X• → S. If F is an étale sheaf on S, then

a∗(F ) = (a∗nF )n≥0

is an étale sheaf on X•. The functor F 7→ a∗F has a right adjoint a∗ defined by

a∗(F
•) := ker(a0∗(F

0) ⇒ a1∗(F
1))

where the two arrows are induced by the two morphisms [0] ⇒ [1]. Finally for a
morphism of simplicial fine k-adic spaces

ϕ = (ϕn)n≥0 : Y• → X•

we can define ϕ! and Rϕ! term by term.
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Lemma 4.15. Let X and Y be fine k-adic spaces, and X ′
• and Y ′

• simplicial fine
k-adic spaces. Suppose

X ′
• Y ′

•

X Y

g′

f ′

g

f

is a cartesian diagram, where the vertical arrows are augmented simplicial k-adic
spaces. Then for F ∈ D+(Y ′

•ét,Λ) there is an isomorphism of functors

f ! ◦Rg∗(F ) ≃ Rg′∗ ◦ f
′!(F ).

Proof. By adjunction it suffices to prove a simplicial version of [19, Theorem 5.4.6]:
That is for G ∈ D+(Xét,Λ) an isomorphism g∗ ◦Rf!(G ) ≃ f ′

! ◦ g
′∗(G ). This can be

checked in each separate degree, where one has an honest cartesian diagram of fine
k-adic spaces. �

We now turn our attention to specific hypercoverings. We need the following
analogue of [9, Theorem 1.3.1].

Lemma 4.16. Let X be a fine k-adic space. Then there exists a surjective mor-
phism

∐
i∈I Yi → X with each Yi of the form Y∧

η , where Y is an affine scheme

finitely presented over k0.

Proof. This is a direct consequence of taking the adification of [9, Theorem 1.3.1].
The only thing to check is that the morphism in loc.cit. remains surjective after
adification. It suffices to check this for X = Spa(A). The morphism in loc.cit.
is then coming from the analytification of a covering in the alteration topology of
Spec(A). Thus it is either a proper surjective morphism (cf. [6, Proposition 2.6.9])
or an étale morphism (cf. [6, Proposition 3.3.11]). In the former situation the
adification of a proper surjective morphism is again surjective (cf. the proof of [19,
Proposition 8.3.4]), and in the latter situation the adification is again surjective by
Proposition 8.3.4 in loc.cit. �

Corollary 4.17. Let X be a fine k-adic space. Then X admits a hypercovering in
the étale topology of universal Λ-cohomological descent of the form a : Y• → X, in
which all the Yn are disjoint unions of affinoids in the analytifications of smooth
affine schemes over k.

Proof. This follows by taking the the coskeleton of the morphism in Lemma 4.16,
cosk0(

∐
i∈I Yi/X)→ X , the generalizing base change theorem ([19, Theorem 4.1.1(c)])

and [2, Exposé Vbis, Proposition 3.2.4]. �

Proposition 4.18. Let X be a fine k-adic space with structure morphism pX : X →
k. Then the dualizing complex p!XΛ is constructible.

Proof. Denote by ωX := p!XΛ. Since the anaytic Verdier dual preserves semi-
constructibility, cf. Theorem 4.4 and the constant sheaf is semi-constructible, it fol-
lows that Dad(Λ) = ωX is semi-constructible. Let f : Y → X be a morphism of fine
k-adic spaces. By Lemma 4.13 it suffices to show that f∗ωX is semi-constructible.
Now f !Λ = Dad ◦ f∗ ◦ Dad(Λ) = Dad(f∗ωX), so it suffices to show f !Λ is semi-
constructible. Note first that if X is smooth, then this is true since up to a shift and
twist f !(Λ) = p!Y (Λ) and now one applies the result for p!Y (Λ). In the general case,
choose a hypercovering a : Z• → X in which all Zn are disjoint unions of affinoids in
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the analytifications of smooth affine schemes over k (cf. Corollary 4.17). Consider
the cartesian diagram

Z ′
• Z•

Y X.

a′

f ′

a

f

Now by cohomological descent we have Λ ≃ Ra∗(Λ) and so by Lemma 4.15 we
have f !(Λ) ≃ f !(Ra∗(Λ)) ≃ Ra

′
∗(f

′!(Λ)). Since the Zn are smooth, by the previous
paragraph we have that f ′!(Λ) is semi-constructible. Finally semi-constructibility
is preserved via pushforward and so Ra′∗(f

′!(Λ)) is semi-constructible. It follows
that f !(Λ) is semi-constructible and this proves the result.

�

Corollary 4.19. Let f : Y → X be a morphism between fine k-adic spaces. Then
f !(Λ) is constructible.

Proof. Constructibility of f !(Λ) is local for the étale topology on Y , cf. Theorem

3.12. Thus by Lemma 4.12, we can assume that f factors into Y
i
−→ Z

g
−→ X where

Z is a fine k-adic space, i is a closed embedding and g is a smooth morphism of pure
dimension d. Poincaré duality gives g!Λ = g∗Λ[2d](d), which is again constructible.
So it suffices to prove the proposition for f = i. If Z is smooth, then this follows
from Proposition 4.18. In the general case, choose a hypercovering a : U• → Z in
which all Un are disjoint unions of affinoids in the analytifications of smooth affine
schemes over k (cf. Corollary 4.17). Consider the cartesian diagram

U ′
• U•

Y Z.

a′

i′

a

i

By cohomological descent one has Λ ≃ Ra∗a
∗(Λ) and so by Lemma 4.15, i!(Λ) ≃

i!(Ra∗a
∗(Λ)) ≃ Ra′∗i

′!(a∗(Λ)). Now Λ = a∗(Λ) is again constant and so by the
previous paragraph i′!(a∗(Λ)) is constructible. Finally constructibility is preserved
via pushforward and so Ra′∗i

′!(a∗(F )) is constructible. This means i!(Λ) is con-
structible as promised. �

Corollary 4.20. Let f : Y → X be a morphism between fine k-adic spaces. Let F

be a locally constant sheaf of finite type on Xét Then f !(F ) is constructible.

Proof. Let hi : Xi → X be an étale covering, such that the restriction F |Xi
is

the constant sheaf associated with a finitely generated Λ-module. Let h′i : Yi =
Xi ×X Y → Y be the corresponding étale covering of Y and fi : Yi → Xi the
base change of f . Then h′∗i f

!(F ) = f !
i(F |Xi

) and by Corollary 4.19, f !
i(F |Xi

) is
constructible. Hence f !(F ) is étale locally constructible and hence constructible
by Theorem 3.12. �

Lemma 4.21. Let X be a fine k-adic space and F a locally constant sheaf of finite
type on Xét. Then Dad(F ) is constructible.

Proof. Let f : Y → X be a morphism of fine k-adic spaces. We show that f∗Dad(F )
is semi-constructible. Note however f !(F ) = Dad◦f∗Dad(F ) and the result follows
from Corollary 4.20. Similarly for an extension L/k of algebraically closed non-
Archimedean complete fields g!(F ) = Dad ◦ g∗Dad(F ) where g : XL → X is the
projection map. �
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Lemma 4.22. Let X be a fine k-adic space and j : U → X be an étale morphism
of fine k-adic spaces. Then Dad(j!F ) is constructible where F is a locally constant
sheaf of Λ-modules of finite type on Uét.

Proof. Since Dad(j!F ) = Rj∗D
ad(F ), the result follows from Lemma 4.21 and

stability of constructibility by pushforwards. �

Lemma 4.23. Let f : Y → X and j : U → X be morphisms between fine k-adic
spaces with j étale. Then f !(j!F ) is constructible where F is a locally constant
sheaf of Λ-modules of finite type on Uét.

Proof. Let g : Z → Y be a morphism of fine k-adic spaces. We have a commutative
diagram

U ′′ Z

U ′ Y

U X

g′

j′′

g

f ′

j′

f

j

where the squares are cartesian. It suffices to show that g∗f !(j!F ) is semi-constructible
or equivalently Dad(g∗f !(j!F )) = g!Dad(f !(j!F )) is semi-constructible. We com-
pute

g!Dad(f !(j!F ))
(i)
= g!Dad(Dad ◦ f∗ ◦Dad(j!F ))

(ii)
= g!f∗Dad(j!F )

(iii)
= g!f∗Rj∗D

ad(F )

(iv)
= g!Rj′∗f

′∗Dad(F )

(v)
= Rj′′∗ g

′!f ′∗Dad(F )

(vi)
= Rj′′∗ g

′!Dad(f ′!
F )

(vii)
= Rj′′∗D

ad(g′∗f ′!
F )

where (i) follows from f ! = Dad ◦ f∗ ◦ Dad for semi-constructible sheaves, (ii)
follows from Lemma 4.22 which says that Dad(j!F ) is constructible and hence so
is f∗ ◦ Dad(j!F ) (and in particular reflexive), (iii) follows from adjunction, (iv)
follows from generalizing base change (cf. [19, Theorem 4.1.1(c)]), (v) follows from
Lemma 4.15, (vi) follows from the constructibility of f ′!F (cf. Corollary 4.20) and
(vii) follows from adjunction. Now g′∗f ′!F is constructible and so Dad(g′∗f ′!F ) is
semi-constructible. Since semi-constructibility is stable via pushforward it follows
that Rj′′∗D

ad(g′∗f ′!F ) is semi-construcible. �

Proposition 4.24. Let f : Y → X be a morphism between fine k-adic spaces.
Suppose F is a Huber constructible Λ-module on Xét. Then f

!(F ) is constructible.

Proof. By [19, Lemma 2.7.9], every Huber constructible sheaf on Xét is a compact
object. Thus the category of Huber constructible sheaves is a full subcategory of
the smallest category which is closed under retracts and contains every object of
the form j!F where j : U → X is an étale morphism between fine k-adic spaces
and F is a locally constant sheaf of Λ-modules of finite type on Uét (cf. the proof
of [17, Proposition 4.2.2]). We conclude by Lemma 4.23.
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�

4.3. Constructibility is not stable for the adic Verdier dual. In this section
we provide an example of a constructible sheaf whose Verdier dual is not con-
structible. The example was suggested to us by P. Scholze while Johannes Nicaise
helped us with the proof.

4.3.1. Construction. Let k be of equi-characteristic zero and let X be the adic
closed unit disk. Let rn ∈ |k

∗| be a decreasing sequence of real numbers that tend
to zero. For every n, let Xn denote the adic closed ball around 0 of radius rn and
let hn denote the open immersion Xn →֒ X . We set Un := Xn r {0} and use jn to
denote the open embedding Un →֒ Xn. Let Fn := hn∗jn!(Λ) and F = ⊕n∈N Fn.

We need a lemma which allows us to calculate the cohomology of closed adic
subspaces via tubular neighbourhoods.

Lemma 4.25. Let r > 0 be an element of |k∗| and X(r) denote the closed adic
ball around 0 of radius r. Let Y be a fine k-adic space and f : Y → X(r). There
exists 0 < s < r with s ∈ |k∗| such that for every 0 < s′ ≤ s with s′ ∈ |k∗|, the
restriction map

RΓ(Y ×X(r) X(s′),Λ)→ RΓ(f−1(0),Λ)

is an isomorphism.

Proof. This follows from [21, Theorem 3.6(a)] by taking the space Y in place of
Huber’s choice ofX , f−1(0) instead of Z and noting that Λ is oc-quasi-constructible.

�

Proposition 4.26. The sheaf F on X is constructible. However, the stalk of its
Verdier dual at the origin i.e. [Dad(F )]0 is not in Db

c(Λ).

Proof. We begin by showing that F is constructible. For L/k an extension of
algebraically closed non-Archimedean fields (extending the absolute value of k) we
have a diagram (where each square is cartesian)

Un,L Xn,L XL

Un Xn X.

pU
n,L

jn,L

pn,L

hn,L

pL

jn hn

We compute

p∗LFn = p∗Lhn∗jn!(Λ)

(i)
= hn,L∗p

∗
n,Ljn!(Λ)

(ii)
= hn,L∗jn,L!(Λ)

where (i) follows from [19, Theorem 4.1.1(c)] and (ii) follows from [19, Proposition
5.2.2(iv)]. Hence by Theorem 3.12, it suffices to prove the following statement. If
f : Y → X is a morphism of fine k-adic spaces then for every i ∈ Z, Hi(Y, f∗(F ))
is finite. We make use of the notation from the lemma above. For 0 < r < 1 and
r ∈ |k∗|, let Y (r) denote the By Lemma 4.25, there exists 0 < s < 1 with s ∈ |k∗|
such that for every 0 < s′ ≤ s with s′ ∈ |k∗|, the natural map RΓ(Y (s),Λ) →
RΓ(Y0,Λ) is an isomorphism.

We claim that for all n ∈ N such that rn ≤ s, RΓ(Y, f∗(Fn)) = 0. By [19,
Proposition 5.2.2(iv)], f∗

|Y (rn)
jn!(Λ) ≃ j′n!(Λ) where j′n is the open embedding

Y (rn)r Y0 →֒ Y (rn).
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Lemma 4.29 applied to the triangle

Rhn∗jn!(Λ)→ Rhn∗Λ→ Rhn∗in∗(Λ)→ ·(3)

where in denotes the embedding {0} →֒ Xn, implies that Fn = Rhn∗jn!(Λ). By
Theorem 4.3.1 in loc.cit. and the isomorphism above, f∗(Fn) = f∗Rhn∗jn!(Λ) ≃
Rh′n∗j

′
n!(Λ) where h

′
n is the embedding Y (rn) →֒ Y . Hence,

RΓ(Y, f∗(Fn)) ≃ RΓ(Y (rn), j
′
n!(Λ)).(4)

Observe that we have the following exact sequence on Y (rn)

0→ j′n!(Λ)→ Λ→ i∗Λ|Y0
→ 0

where i : Y0 →֒ Y (rn). This gives us the triangle

RΓ(Y (rn), j
′
n!(Λ))→ RΓ(Y (rn),Λ)→ RΓ(Y0,Λ)→ ·

By Lemma 4.25 and (4) above, RΓ(Y, f∗(Fn)) ≃ 0. We have thus verified the
claim.

The claim above implies that

Hi(Y, f∗(F )) =⊕n∈N H
i(Y,Fn)

=⊕n|rn>s H
i(Y,Fn).

Hence, F is constructible.
By Lemma 4.27, the Verdier dual of F is the complex R

∏
n hn!Rjn∗(Λ[2]).

Finally by Lemma 4.28 the stalk of Dad(F ) at 0 is infinite and it is therefore not
constructible. �

Lemma 4.27. The Verdier dual of F is the complex (up to a twist) R
∏

n hn!Rjn∗(Λ[2]).

Proof. By definition, F = ⊕n Fn. It follows that D
ad(F ) = R

∏
nD

ad(Fn). Let
in denote the embedding {0} →֒ Xn. We claim that jn!(Λ) is semi-constructible.
Indeed, consider the following distinguished triangle

jn!(Λ)→ Λ→ in∗(Λ)→ ·(5)

Since Λ and in∗(Λ) are semi-constructible, we get that jn!(Λ) is semi-constructible
as well. It follows that Rhn∗(jn!(Λ)) is also semi-constructible. Applying Rhn∗
to the triangle above and invoking Lemma 4.29, we deduce that Rhn∗(jn!(Λ)) ≃
hn∗(jn!(Λ)). By Corollary 4.7, Dad(Fn) = hn!D

ad(jn!(Λ)).
To calculate Dad(jn!(Λ)), consider the following isomorphisms,

Dad(jn!(Λ)) ≃ RH om(jn!(Λ), p
!
Xn

(Λ))

≃ Rjn∗RH om(Λ, p!Un
(Λ))

≃ Rjn∗p
!
Un

(Λ)

where the second isomorphism follows by adjointness. Since Un is smooth, we get
that p!Un

≃ p∗Un
[2] (ignoring twists). Hence we see that Dad(Fn) = hn!Rjn∗(Λ[2]).

�

Lemma 4.28. Let A be the complex [R
∏

n hn!Rjn∗(Λ)]0. We have that H0(A)
is infinite.

Proof. Since we assumed the field k to be of equi-characteristic zero, we have that
the system of closed disks centred at 0 with radii in |k∗| form a fundamental system
of étale neighbourhoods of the origin. Indeed, let Y → X be a fine étale neighbour-
hood of the origin. By Lemma 3.14, there exists an open affinoid neighbourhood
V of the origin and an affinoid open subset U of Y such that U → V is finite.
Since the family of closed disks containing the origin forms a fundamental system of
open neighbourhoods in the adic topology, we replace V with a closed disk that is
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contained in it. By [6, Theorem 6.3.2], and since the field k is of equi-characteristic
zero, we get that U → V is the identity map. This shows that the family of adic
closed disks around the origin are terminal amongst all étale neighbourhoods of the
origin. Hence the claim.

By definition and since R
∏

n commutes with taking global sections,

A = lim
−→

0<s<1|s∈|k∗|

R
∏

n

RΓ(X(s), hn!Rjn∗(Λ)).

For every n ∈ N, RΓ(X(s), hn!Rjn∗(Λ)) has finite cohomology (this is because
Dad(Fn) is semi-constructible). Hence by the Mittag-Leffler condition applied to
the spectral sequence

Ep,q
2 = Rp

∏

n

Hq(RΓ(X(s), hn!Rjn∗(Λ)))⇒ Hp+q

(
R
∏

n

RΓ(X(s), hn!Rjn∗(Λ))

)

we see that

H0

(
R
∏

n

RΓ(X(s), hn!Rjn∗(Λ))

)
=
∏

n

H0(RΓ(X(s), hn!Rjn∗(Λ))).

Now by the spectral sequence

Ep,q
2 = RpΓ(X(s), hn!R

qjn∗(Λ))⇒ Hp+q(RΓ(X(s), hn!Rjn∗(Λ)))

we see that

H0(A) = lim
−→

0<s<1|s∈|k∗|

∏

n

H0RΓ(X(s), hn!Rjn∗(Λ))

= lim
−→

0<s<1|s∈|k∗|

∏

n

H0(X(s), hn!jn∗(Λ)).

Now for s < rn, H
0(X(s), hn!jn∗(Λ)) = Λ and so we see that H0(A) is infinite.

�

Lemma 4.29. Let h : X(r) →֒ X be the open immersion from the closed adic disc
around zero of radius r to the unit disc. Then Rih∗(Λ) = 0 if i ≥ 1.

Proof. Let han denote the associated map between the respective Berkovich spaces.
By [19, Proposition 8.3.5], Rh∗(Λ) = µ∗

XRh
an
∗ (Λ) where µX : Xét → Xan

ét . However,
Rhan∗ = han∗ because han∗ is an exact functor. Indeed, firstly observe that for an étale
sheaf G on X(r)an, [han∗ (G )]y = 0 where y ∈ Xan rX(r)an. This follows from the
fact that Xan rX(r)an is an open analytic domain of Xan and hence an object of
the site Xan

ét . The exactness of han∗ can be deduced from this fact. �

Example 4.30 (Non-stability of RH om(−,−)). Observe that Dad(F ) is a
semi-constructible complex that is not constructible. In particular RH om(−,−)
is not stable for constructiblility. Moreover we show that RH om(A,B) is not
stable for semi-constructible complexes A and B. Indeed, let x ∈ X be the origin.
The geometric stalk i∗x(D

ad(F )) is not a complex with finite cohomology. Let
A := Dad(F ), B = ix∗(Λ). Then RΓ(X,RH om(A,B)) = RHom(i∗xA,Λ) which is
not a complex with finite cohomology by our choice of x and since Λ is an injective
Λ-module on Spa(k).

Example 4.31 (Non-stability of upper shriek). Furthermore by Corollary
4.7(3), and

i!x(F ) = Dadi∗x(D
ad(F ))

and hence i!x(F ) is neither constructible nor semi-constructible.
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Example 4.32 (Non-stability of − ⊗L −). It can be deduced from Corollary
4.7(4) that−⊗L− is not stable for semi-constructible sheaves. Indeed RH om(A,B) =
Dad(A ⊗L DadB) is not semi-constructible by Example 4.30. Thus A⊗L DadB is
not semi-constructible.

4.3.2. Non-stability of ⊗L. We provide an example of constructible sheaves F 1 and
F 2 on a fine k-adic space such that F 1⊗

L F 2 is not constructible. We recall the
notation introduced in §4.3.

Let k be of equi-characteristic zero and let X be the adic closed unit disk. Let
rn ∈ |k

∗| be a decreasing sequence of real numbers that tend to zero. For every
n, let Xn denote the adic closed ball around 0 of radius rn and let hn denote the
open immersion Xn →֒ X . We set Un := Xn r {0} and use jn to denote the open
embedding Un →֒ Xn.

For every n ∈ N, let un : Vn →֒ Xn denote an adic closed ball that is defined
over k and does not contain 0. Let vn := hn ◦ un : Vn →֒ X . Let an, bn be
distinct k-points in Vn. Let W1n := Vn r {an} and W2n := Vn r {bn}. We use
w1n and w2n to denote the open immersions W1n →֒ Vn and W2n →֒ Vn. Let
F 1 :=

⊕
n∈N

vn∗w1n!(Λ) and F 2 :=
⊕

n∈N
vn∗w2n!(Λ). For every n ∈ N, let

F 1n := vn∗w1n!(Λ) and F 2n := vn∗w2n!(Λ).
We begin by showing that the sheaf F 1 is constructible.

Lemma 4.33. Given r ∈ R, let X(r) denote the closed unit adic ball around 0
of radius r with r ∈ |k∗|. Let Y be a fine k-adic space and f : Y → X(r) be a
morphism of k-adic spaces. There exists 0 < s < r such that for every 0 < s′ ≤ s
and every i ∈ N, Rif∗(Λ) is a locally constant sheaf of finite type when restricted
to X(s′)r {0}.

Proof. By Proposition 3.6, Rf∗(Λ) ∈ D
b
sc(X(r)fét,Λ). In particular, there exists

d ∈ N such that for every d′ ≥ d, Rd′

f∗(Λ) = 0. Hence it suffices to show that if i ∈
D := {1, . . . , d} then there exists a closed disk U around 0 such that Rif∗(Λ)|Ur{0}

is locally constant of finite type.
Now note that the set of adic closed disks centred at 0 forms a fundamental

system of open neighbourhoods of 0 for the adic topology. This follows from the
explicit description of compact neighbourhoods for the Berkovich analytic topology
of the closed disk as implied by [5, Proposition 1.6]. Although the reference doesn’t
concern adic spaces, one can still apply it since it only suffices to describe the
affinoid open subspaces of X and these correspond to Berkovich affinoid domains
of X via the equivalences in §2.2.

By [21, Theorem 0.1], the sheaf Rif∗(Λ) is oc-quasi-constructible. By the proof
of [21, §1.3 (iv)] we see that there exists an open subset U containing 0 such that
Rif∗(Λ)|Ur{0} is locally constant of finite type. The result now follows by the
previous paragraph.

�

Lemma 4.34. Let Y be a fine k-adic space and f : Y → X be a morphism of
k-adic spaces. There exists n0 ∈ N such that for every n ≥ n0, the restriction map

RΓ(Y ×X Vn,Λ)→ RΓ(f−1(an),Λ)

is an isomorphism.

Proof. By Lemma 4.33, there exists n0 ∈ N such that for every i ∈ N and n ≥ n0

Rif∗(Λ)|Vn
is locally constant. By [6, Theorem 6.3.2], we get that Rif∗(Λ)|Vn

is constant. Observe that since Vn → X is étale, if f ′ denotes the base change
Y ×X Vn → Vn then Rif∗(Λ)|Vn

= Rif ′
∗(Λ).
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We have the following spectral sequence

Hp(Vn, R
qf ′

∗(Λ))⇒ Hp+q(Y ×X Vn,Λ).

SinceRqf ′
∗(Λ) is constant and Vn is a closed k-adic disk, we know thatHp(Vn, R

qf ′
∗(Λ)) =

0 for all p ≥ 1. Hence, H0(Vn, R
qf ′

∗(Λ)) = Hq(Y ×X Vn,Λ). By the quasi-compact
base change theorem (cf. [19, Theorem 4.3.1]), [Rqf ′

∗(Λ)]an
= Hq(f−1(an),Λ).

SinceRqf ′
∗(Λ) is constant and Vn is connected, we get that [Rqf ′

∗(Λ)]an
= H0(Vn, R

qf ′
∗(Λ)).

Thus,

Hq(Y ×X Vn,Λ) = Hq(f−1(an),Λ).

�

Proposition 4.35. The sheaf F 1 on X is constructible.

Proof. For L/k an extension of algebraically closed non-Archimedean fields (ex-
tending the absolute value of k) we have a diagram (where each square is cartesian)

W1n,L Vn,L XL

W1n Vn X.

pW
n,L

w1n,L

pn,L

vn,L

pL

w1n vn

We compute

p∗LF1n = p∗Lvn∗w1n!(Λ)

(i)
= vn,L∗p

∗
n,Lw1n!(Λ)

(ii)
= vn,L∗w1n,L!(Λ)

where (i) follows from [19, Theorem 4.1.1(c)] and (ii) follows from [19, Proposition
5.2.2(iv)]. Hence by Theorem 3.12, it suffices to prove the following statement. If
f : Y → X is a morphism of fine k-adic spaces then for every i ∈ Z, Hi(Y, f∗(F 1))
is finite. By Lemma 4.34, there exists n0 ∈ N such that for every n ≥ n0, the
restriction map

RΓ(Y ×X Vn,Λ)→ RΓ(f−1(an),Λ)

is an isomorphism.
We claim that for all n ∈ N such that n ≥ n0, RΓ(Y, f

∗(F 1n)) = 0. Let
YVn

:= Y ×X Vn and Yan
be the fibre over an. By [19, Proposition 5.2.2(iv)],

f∗
|YVn

w1n!(Λ) ≃ w
′
1n!(Λ) where w

′
1n is the open embedding YVn

r Yan
→֒ YVn

.

Lemma 4.29 implies that F 1n = Rvn∗w1n!(Λ). By Theorem 4.3.1 in loc.cit. and
the isomorphism above, f∗(F 1n) = f∗Rvn∗w1n!(Λ) ≃ Rv

′
n∗w

′
1n!(Λ) where v

′
n is the

embedding YVn
→֒ Y . Hence,

RΓ(Y, f∗(F 1n)) ≃ RΓ(YVn
, w′

1n!(Λ)).(6)

Observe that we have the following exact sequence on YVn

0→ w′
1n!(Λ)→ Λ→ i∗Λ|Yan

→ 0

where i : Yan
→֒ YVn

. This gives us the triangle

RΓ(YVn
, w′

1n!(Λ))→ RΓ(YVn
,Λ)→ RΓ(Yan

,Λ)→ ·

By Lemma 4.34 and (6) above, RΓ(Y, f∗(F 1n)) ≃ 0. We have thus verified the
claim.
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The claim above implies that

Hi(Y, f∗(F 1)) =⊕n∈N H
i(Y, f∗

F 1n)

=⊕n|n≤n0
Hi(Y, f∗

F 1n).

Hence, F 1 is constructible since for every n ∈ N, F 1n is constructible and hence
Hi(Y, f∗ F 1n) is finite for all i ∈ N. �

We have thus shown that both F 1 and F 2 are constructible. We now show that
F 1⊗

L F 2 is not constructible.

Proposition 4.36. The complex F 1⊗
L F 2 does not belong to Db

c(X
f
ét
,Λ).

Proof. We deduce from the definitions of F 1 and F 2 that

F 1⊗
L

F 2 ≃ ⊕n∈N ⊕m∈N (F 1n⊗
L

F 2m).

Hence for every i ∈ N,

Hi(X,F 1⊗
L

F 2) ≃ ⊕n ⊕m Hi(X,F 1n⊗
L

F 2m).

where Hi(X,−) = HiRΓ(X,−) is the hyper-cohomology. By Lemma 4.37, we get
that for all n, Hi(X,F 1n⊗

L F 2n) is not zero. Hence H
1(X,F 1 ⊗

L F 2) is infinite
which implies that F 1⊗

L F 2 is not even semi-constructible. �

Let n ∈ N. To simplify notation, we write G := F 1n ⊗
L F 2n.

Lemma 4.37. We have that H1(X,G ) 6= 0.

Proof. By definition,

G := vn∗w1n!Λ⊗
L vn∗w2n!Λ.

Let Vn = (X, |Vn|) be the closed pseudo-adic subspace [19, Definition 1.10.8 (i)]

where |Vn| is the topological space which is the closure of |Vn| in |X |. Let v̄n :
Vn →֒ X denote the associated closed embedding. Observe that supp(G ) ⊂ Vn. By
[19, Lemma 1.10.17 (i)], v̄n is proper and hence v̄n∗ = v̄n!. It follows that v̄n∗ is
exact. Furthermore, one checks at stalks that we have an isomorphism G ≃ v̄n∗G|Vn

.

In particular, it suffices to show that H1(Vn,G|Vn
) is not zero.

Observe that pn : Vn →֒ Vn is an open embedding whose complement is the
pseudo adic space x := (X, |Vn|r |Vn|). Let ix : {x} →֒ Vn be the closed embedding
of pseudo-adic spaces. Consider the following exact sequence associated to the open
embedding Vn →֒ Vn :

pn!G|Vn
→ G|Vn

→ ix∗i
∗
x(G|Vn

)→ ·

Observe that the open embedding vn : Vn →֒ X factors through the closed em-
bedding Vn →֒ X via the map pn. Hence, for every m ∈ N, Hm(Vn, pn!G|Vn

) ≃
Hm(X, vn!G|Vn

). Applying Lemmas 4.38 and 4.39, gives the following long exact
sequence :

0→ 0→ H0(Vn,G|Vn
)→ Λ→ Λ⊕ Λ→ H1(Vn,G|Vn

)→ . . .

Since the map Λ→ Λ⊕Λ cannot be surjective, we get that H1(Vn,G|Vn
) cannot be

zero. �

Lemma 4.38. We have the following isomorphisms.

(1) H0(X, vn!(G|Vn
)) ≃ 0.

(2) H1(X, vn!(G|Vn
)) ≃ Λ⊕ Λ.
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(3) H2(X, vn!(G|Vn
)) ≃ Λ.

Proof. Recall that the derived tensor product commutes with pullbacks i.e. the
identity g∗(A⊗LB) ≃ g∗A⊗L g∗B. One deduces from this that G|Vnr{an,bn} is the
constant sheaf Λ and Gan

= Gbn
= 0. Hence we see that vn!(G|Vn

) ≃ v′n!(Λ) where

v′n is the open immersion Vn r {an, bn} →֒ X . On Vn, we have the following exact
sequence

0→ v′′n!(Λ)→ Λ→ ian∗(Λ)⊕ ibn∗(Λ)→ 0

where v′′n : Vn r {an, bn} →֒ Vn and ian
: {an} →֒ Vn. Composing with vn! gives

0→ v′n!(Λ)→ vn!(Λ)→ ian∗(Λ)⊕ ibn∗(Λ)→ 0

where we abuse notation and use ian
to denote the closed embedding an →֒ X as

well. Applying the global sections functor gives a long exact sequence in cohomol-
ogy. Hence, it suffices to determine Hj(X, vn!(Λ)) for all j ∈ N. Since Vn embeds
into X , we see that Hj(X, vn!(Λ)) ≃ H

j
c (Vn,Λ). By [19, Example 0.4.6], Hj

c (Vn,Λ)
is 0 if j 6= 2 and equal to Λ when j = 2.

�

Lemma 4.39. Recall the notation introduced in Lemma 4.37. Let x be the pseudo-
adic space (X, |Vn| r |Vn|) and let ix : {x} →֒ Vn be the closed embedding of
pseudo-adic spaces. We have the following isomorphism

H0(x, i∗x(G|Vn
)) ≃ Λ.

Proof. Since pullbacks commute with derived tensor products, we get that

i∗x(G|Vn
) ≃ i∗xvn∗w1n!Λ⊗

L i∗xvn∗w2n!Λ.

Observe that the complement of {an} in Vn is an étale open neighbourhood of
x. Let us call this open neighbourhood O and jO : O →֒ Vn be the associated
open embedding. The morphism ix : x →֒ Vn factors through jO and the inclusion
x →֒ O which we abuse notation and denote by ix as well. Hence i∗xpn∗w1n!Λ ≃
i∗xj

∗
Opn∗w1n!Λ. By smooth base change [19, Theorem 4.1.1], i∗xj

∗
Opn∗w1n!Λ ≃ i

∗
xp

′
n∗Λ

where p′n : Vn ×Vn
O → O. We now show i∗xp

′
n∗Λ = i∗xpn∗(Λ). Indeed, by identical

arguments as above

i∗xpn∗(Λ) ≃ i
∗
xj

∗
Opn∗(Λ)

≃ i∗xp
′
n∗(Λ).

Observe that i∗xpn∗(Λ) = i∗xvn∗(Λ). This is because vn can be seen as the composi-
tion of pn : Vn → Vn and Vn →֒ X . Hence we see that

i∗x(G|Vn
) ≃ i∗xvn∗Λ⊗

L i∗xvn∗Λ(7)

We claim i∗xvn∗Λ ≃ Λ. We first show that H0(x, i∗xvn∗Λ) = Λ. Consider the
following exact sequence on Vn :

0→ pn!Λ→ pn∗Λ→ ix∗i
∗
xpn∗Λ→ 0

where pn : Vn →֒ Vn. Applying the derived functor RΓ(Vn,−) gives a long exact
sequence in cohomology. Note that Hm(V n, pn!(Λ)) = Hm

c (Vn,Λ). In Lemma 4.38,
we saw that Hm

c (Vn,Λ) = 0 if m 6= 2 and is equal to Λ if m = 2. Since Vn is
connected, we get that H0(Vn, pn∗Λ) = H0(Vn,Λ) = Λ. The long exact sequence
proves that H0(x, i∗xvn∗Λ) = Λ.

By [19, Theorem 8.3.5], the sheaf vn∗(Λ) is the pullback of a sheaf on the étale site
of the Berkovich spaceXan (the Berkovich analytic unit disk). Hence vn∗(Λ) is over-
convergent. Let x be a geometric point over x and let y be the unique generalization
of x. By definition of overconvergence, we have a bijection [vn∗(Λ)]x → [vn∗(Λ)]y
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where y is a geometric point over y that generalizes x. Since y ∈ Vn, we get that
[vn∗(Λ)]y = Λ and hence [vn∗(Λ)]x = Λ as a set. By Proposition 2.3.10 in loc.cit.,
the topos associated to the site {x}ét can be identified with the topos associated to
Spec(k(x)h)ét where k(x)

h denotes the henselization of the field k(x) with respect
to k(x)+. Hence, we can identify sheaves on {x}ét with G := Gal(k(x)h,sep/k(x)h)-
modules where the identification takes a sheaf on {x}ét and sends it to the stalk
at x. Furthermore, we see that for a sheaf F on x, H0(x,F ) = [F ]Gx . Since
H0(x, i∗xvn∗(Λ)) = Λ and [vn∗(Λ)]x = Λ, we get that G acts trivially on [vn∗(Λ)]x.
This proves the claim and by equation (7), we see that i∗x(G|Vn

) ≃ Λ. �

5. Reflexivity

Recall from [3, Exposé XVIII, Théorème 3.1.4] that if g : Z ′ → Z is a morphism
of varieties over an algebraically closed field L then there exists a functor g! :
Db(Zét,Λ) → D

b(Z ′
ét,Λ) which is right adjoint to the functor Rg! : D

b(Z ′
ét,Λ) →

Db(Zét,Λ). Given an object F ∈ Db(Zét,Λ), the Verdier dual of F is defined to
be D(F ) := RHom (F , g!(Λ)) where g : Z → Spec(L) is the structure map.

Definition 5.1. Let L be an algebraically closed field and let Z be an L-variety.
An object F ∈ Db(Zét,Λ) is said to be reflexive if the canonical map

F → D ◦D(F )

is an isomorphism. Likewise, if X is a fine k-adic space and F ∈ Db(Xf
ét,Λ) is said

to be reflexive if the canonical map

F → Dad ◦Dad(F )

is an isomorphism.

Our results from §4 let us connect reflexive sheaves on the fine étale site of a fine
k-adic space X and reflexive sheaves on the special fibre of any of its formal models
via the nearby cycles functor. The precise statement is the following.

Theorem 5.2. Let X be a fine k-adic space. Let F be a complex in Db(Xf
ét
,Λ).

(1) If F is reflexive then for any étale morphism U → X of fine k-adic spaces
and any formal model U of U , RψU(F |U ) is reflexive.

(2) Suppose for every étale morphism U → X of fine k-adic spaces, there exists
a formal model U of U such that RψU(F |U ) is reflexive then F is reflexive.

Proof. We begin by proving part (1). Suppose F is reflexive and U → X is an
étale morphism of fine k-adic spaces. Let U be a formal model of U . We must verify
that RψU(F |U ) is reflexive on Us,ét i.e.

RψU(F |U ) ≃ D ◦D ◦RψU(F |U ).

By part (2) in Theorem 4.4, we see that

D ◦D ◦RψU(F |U ) ≃ RψU ◦D
ad ◦Dad(F |U ).

By part (2) of Lemma 4.6,

Dad ◦Dad(F |U ) ≃ [Dad ◦Dad(F )]|U .

Since F is reflexive, we get that F ≃ Dad ◦Dad(F ) which completes the proof of
(1).

We now prove part (2). We must show that F is reflexive. It suffices to prove
that if U → X is an étale morphism of fine k-adic spaces then

RΓ(U,F ) ≃ RΓ(U,Dad ◦Dad(F )).
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Let U be a formal model of U such that RψU(F |U ) is reflexive. Observe that we
have the following chain of isomorphisms.

RΓ(U,Dad ◦Dad(F ))
(i)
≃ RΓ(U,Dad ◦Dad(F |U ))

(ii)
≃ RΓ(Us, RψU ◦D

ad ◦Dad(F |U ))

(iii)
≃ RΓ(Us, D ◦D ◦RψU(F |U ))

(iv)
≃ RΓ(Us, RψU(F |U ))

(v)
≃ RΓ(U,F |U ).

The isomorphism (i) follows from part (2) of Lemma 4.6, (ii) is because of the
composition of derived functors, (iii) is a direct consequence of part (2) in Theorem
4.4, (iv) is because by assumption RψU(F |U ) is reflexive and finally (v) is simply
by the composition of derived functors. �

Our goal is to classify the reflexive objects in Db(Xf
ét,Λ) where X is fine k-adic.

Theorem 5.2 suggests that it suffices to classify reflexive objects on the special
fibre of a model of X . To this end, we propose the following conjecture concerning
reflexive objects on Db(Zét,Λ) where Z is a variety over an algebraically closed
field.

Conjecture 5.3. Let L be an algebraically closed field and let Z be an L-variety.
An object F ∈ Db(Zét,Λ) is reflexive if and only if its cohomology sheaves are
constructible i.e. F ∈ Db

c(Zét,Λ).

Remark 5.4. We will see from the proof of Lemma 5.6, that Conjecture 5.3 is true
if it is true for Z = An

L.

Theorem 5.5. Let X be a fine k-adic space and let pX : X → k denote the

structure morphism. Let F ∈ Db(Xf
ét
,Λ). If F is semi-constructible then it is

reflexive. The converse is true if we suppose that Conjecture 5.3 is true.

Proof. Let F be a semi-constructible complex. Theorem 4.4(3) shows that F is re-

flexive. Suppose F ∈ Db(Xf
ét,Λ) is reflexive. To show that F is semi-constructible,

we must show that for every étale f : U → X and every formal model U of U ,
RψU(f

∗ F ) ∈ Db
c(Us,Λ). The following computation shows that f∗ F is reflexive:

RHom (RHom(f∗
F , p!U (Λ)), p

!
U (Λ))

(i)
= RHom (f !RHom (F , p!X(Λ)), p!U (Λ))

(ii)
= RHom (f∗RHom (F , p!X(Λ)), p!U (Λ))

(iii)
= f !RHom (RHom (F , p!X(Λ)), p!X(Λ))

(iv)
= f∗RHom (RHom (F , p!X(Λ)), p!X(Λ))

= f∗
F

where (i) and (iii) follow from Lemma 4.6(2); and (ii) and (iv) follow from the fact
that f is étale.

By Theorem 5.2, RψU(f
∗ F ) is reflexive. The given hypothesis impliesRψU(f

∗ F )
is constructible and hence F is semi-constructible as promised. �

5.1. Reflexivity for varieties. For the rest of this section we fix a field k which is
algebraically closed. Let ℓ denote a prime number different from the characteristic
of k and set Λ := Z/ℓZ for some n ∈ N.
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Our goal is to study Conjecture 5.3 which provides a classification of the class
of reflexive étale sheaves on a variety X over k. In what follows, we show that the
conjecture holds true at least in certain specific instances.

Lemma 5.6. The following statements are equivalent.

(1) Let X be a k-variety. An étale sheaf F of Λ-modules on X is reflexive if
and only if it is constructible.

(2) (a) Let X be a k-variety. Let F be a reflexive étale sheaf of Λ-modules.
Suppose we have a k-morphism f : X → A1

k. Let η denote the generic
point of A1

k and Xη̄ := X ×A1
k
η̄. Then the sheaf f∗

η (F ) is reflexive on
Xη̄.

(b) Let X be a k-variety. Let F be a reflexive étale sheaf of Λ-modules
on X. Suppose F is the direct sum of skyscraper sheaves. Then F is
constructible.

Proof. It suffices to verify (a) + (b) implies (1). For an open immersion f : U → X
we have that

RHom (RHom (f∗
F , p!U (Λ)), p

!
U (Λ))

(i)
= RHom (f !RHom (F , p!X(Λ)), p!U (Λ))

(ii)
= RHom (f∗RHom (F , p!X(Λ)), p!U (Λ))

(iii)
= f !RHom (RHom (F , p!X(Λ)), p!X(Λ))

(iv)
= f∗RHom (RHom (F , p!X(Λ)), p!X(Λ))

where (i) and (iii) follow from Lemma 5.8(2); and (ii) and (iv) follow from the fact
that f is étale. Thus we see that the property of being reflexive is local for the
Zariski topology on X . Hence we can assume that X is a connected affine k-variety.
We proceed by induction on dim(X). If dim(X) = 0, the site Xét is equivalent to
Spec(A)ét where A is a finite k-algebra. Note that Spec(A) is the disjoint union of
a finite number of points each of which is open in X for the Zariski topology. Since
reflexivity is preserved for pullbacks along open immersions, we can reduce to the
case that X is a single point. Since Spec(A)ét is equivalent to Spec(Ared)ét, we can
assume that A is a field. The case X = Spec(k) is well known.

Let us assume the following. For every algebraically closed field extension K of
k and every K-variety Y of dimension strictly less than dim(X), a reflexive sheaf
G on Y is constructible.

By construction, there exists an immersion h : X → An
k for some n ∈ N. Let

pi : A
N
k → A1

k be the projection onto the i-th coordinate and p′i := pi ◦ h. Let η
denote the generic point of A1

k. By (a), we have that F
|X×

A1
k
k(η)

is reflexive.

Then by our induction hypothesis, we have that F |X×
A1

k(η) is constructible. It

follows from [14, Lemma 3.5], that there exists a constructible sheaf G ⊂ F such
that the local sections of H := F /G have finite support. By Lemma 5.15, H

is the direct sum of skyscrapers sheaves. Since G is constructible, it is reflexive.
It follows that H is reflexive. By (b), H is constructible, from which it can be
deduced that F is constructible. �

Remark 5.7. In the section that follows, we provide a proof of Statement (b), cf.
Corollary 5.14

Lemma 5.8. Let f : X → Y be a morphism of k-varieties. Let pX : X → Spec(k)
and pY : Y → Spec(k) be the structure maps of X and Y . Let A,B ∈ Db(Yét,Λ).
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(1) f !RHom (A,B) = RHom (f∗(A), f !(B)).
(2) f !RHom (A, p!Y (Λ)) = RHom (f∗(A), p!X(Λ)).

Proof.

(1) It suffices to show that for any C ∈ Db(Xét,Λ).

Hom(C, f !RHom (A,B)) = Hom(C,RHom (f∗(A), f !(B))).

Let C ∈ Db(Xét,Λ).

Hom(C, f !RHom (A,B)) = Hom(Rf!(C), RHom (A,B))

= Hom(Rf!(C) ⊗
L A,B).

By [3, Exposé XVII, Proposition 5.2.9], we have

Hom(Rf!(C)⊗
L A,B) = Hom(Rf!(C ⊗

L f∗(A)), B)

= Hom(C,RHom (f∗(A), f !(B))).

(2) Part (2) follows directly from part (1).

�

5.2. Calculation for skyscraper sheaves. In this section we prove Statement
(B) from Lemma 5.6. For the rest of this section we write

F =
⊕

x∈X(k)

ix∗Mx

where X(k) is the set of closed points of X , ix : x →֒ X is the inclusion and Mx is
a Λ-vector space. We begin with a general lemma.

Lemma 5.9. Suppose G = ⊕i∈IGi is a reflexive sheaf on X, where I is any indexing
set. Then Gi is also reflexive.

Proof. This is a purely category theoretic result. For F ∈ Db(Xét,Λ), we denote by
δF : F → DDF the canonical morphism. Since we are working in a triangulated
category, if δF is a monomorphism and an epimorphism then it is an isomorphism.
Let i : Gi → G and π : G → Gi be the canonical morphisms. Note that π ◦ i = idGi

.
Thus i is a monomorphism and π is an epimorphism.

We have the commutative diagram

Gi DDGi

G DDG

δGi

i DDi

δG

where by assumption δG is an isomorphism. Thus δGi
is a monomorphism. Similarly

we have the commutative diagram

G DDG

Gi DDGi

δG

π DDπ

δGi

where DDπ satisfies DDπ ◦DDi = idDDGi
and so DDπ is an epimorphism. Hence

δGi
is an epimorphism. We have shown that δGi

is both a monomorphism and an
epimorphism and hence it is an isomorphism.

�
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Lemma 5.10. For any étale sheaf G of Λ-modules, E xt i(G , p!XΛ) = 0 for i > 0.

Proof. It is enough to prove it for group Ext, that is Exti(G , p!XΛ) = 0. In this

case, the result follows by duality i.e. Exti(G |U , p
!
UΛ) = Hom(H−i

c (U,G |U ),Λ). �

Lemma 5.11. Suppose k is countable. Recall that we assumed F :=
⊕

x∈X(k) ix∗Mx.

We will suppose in addition that for every x ∈ X(k), Mx is finite dimensional. We
have that RHom (F , p!XΛ) =

∏
x∈X(k) ix∗M

∧
x where M∧

x := HomΛ(Mx,Λ) is the

dual vector space.

Proof. Denote by px = pX ◦ ix. We compute

RHom (F , p!XΛ) = RHom (
⊕

x∈X(k)

ix∗Mx, p
!
XΛ)

= R
∏

x∈X(k)

RHom (ix∗Mx, p
!
XΛ)

= R
∏

x∈X(k)

ix∗RHom (Mx, p
!
xΛ)

= R
∏

x∈X(k)

ix∗M
∧
x .

Since k is countable, X(k) is a countable set.
The Mittag-Leffler criterion, cf. [28, Tag 0940, Lemma 21.22.5] now implies that

R
∏

x∈X(k) ix∗M
∧
x =

∏
x∈X(k) ix∗M

∧
x .

�

Proposition 5.12. Let X be a variety over the algebraically closed countable field
k. Let F =

⊕
x∈X(k) ix∗Mx be an étale sheaf on X. If F is reflexive then F is

constructible.

Proof. By Lemma 5.9, for every x ∈ X(k), Mx is a finite dimensional Λ-vector
space. By Lemma 5.11, we have

RHom (F , p!XΛ) =
∏

x∈X(k)

ix∗M
∧
x

(whereM∧
x is the dual vector space) and since F is reflexive the canonical morphism

(8) F → RHom


 ∏

x∈X(k)

ix∗M
∧
x , p

!
XΛ




is an isomorphism. Taking H0 of (8) gives an isomorphism

F →Hom


 ∏

x∈X(k)

ix∗M
∧
x , p

!
XΛ


 .

Let H be the quotient of the canonical morphism

⊕x∈X(k)ix∗M
∧
x →֒

∏

x∈X(k)

ix∗M
∧
x .

By taking RHom (−, p!XΛ), the long exact sequence associated to

0→ ⊕x∈X(k)ix∗M
∧
x →֒

∏

x∈X(k)

ix∗M
∧
x →H → 0
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is of the form

Hom


 ∏

x∈X(k)

ix∗M
∧
x , p

!
XΛ


→Hom (⊕x∈X(k)ix∗M

∧
x , p

!
XΛ)→ E xt 1(H , p!XΛ)→ · · ·

Noting that E xt 1(H , p!XΛ) = 0 (cf. Lemma 5.10) shows that the morphism

Hom


 ∏

x∈X(k)

ix∗M
∧
x , p

!
XΛ


→Hom (⊕x∈X(k)ix∗M

∧
x , p

!
XΛ)

is surjective.
Summarizing we have a commutative diagram of sheaves

⊕x∈X(k)ix∗Mx Hom (
∏

x∈X(k) ix∗M
∧
x , p

!
XΛ)

∏
x∈X(k) ix∗Mx Hom (⊕x∈X(k)ix∗M

∧
x , p

!
XΛ)

∼

∼

where the bottom arrow is an isomorphism by Lemma 5.11. It follows that the left
hand vertical arrow is surjective and so there are only finitely many x ∈ X(k) for
which Mx 6= 0. Thus F is constructible. �

Remark 5.13. Both Lemma 5.11 and Proposition 5.12 hold true under the more
general assumption (without assuming k is countable) that I := {x ∈ X(k) |Mx 6=
0} is countable.

We now come to the main result of this section.

Corollary 5.14. Let X be a variety over the algebraically closed field k. Let F =⊕
x∈X(k) ix∗Mx be an étale sheaf on X. If F is reflexive then F is constructible.

Proof. We set I := {x ∈ X(k) |Mx 6= 0}. Suppose for the sake of contradiction that
I is infinite. Then I contains an infinite countable subset J ⊂ I and by Lemma 5.9
we see that G :=

⊕
x∈J ix∗Mx is reflexive. This contradicts Remark 5.13. �

We close this section with a classification result.

Lemma 5.15. If G is an étale sheaf of Λ-modules on X whose local sections have
finite support (cf. [28, Tag 04FQ, Definition 53.31.3]), then G is a direct sum of
skyscraper sheaves supported on closed points.

Proof. We begin by making the following claim. Since the sheaf G has all of its local
sections having finite support, the support of G is only on closed points. Indeed,
suppose there exists x ∈ X such that Gx 6= 0 and x is not a closed point. It follows
by definition that there exists an étale neighbourhood f : U → X of x and s ∈ G (U)
such that the image of s in Gx is not zero. Observe that supp(s) ⊂ U is a Zariski
closed subset. Let x′ be an element in U such that x′ 7→ x. It follows by assumption
on x that {x′} ⊂ supp(s) where {x′} is the Zariski closure of x′. Observe that {x′}
is an algebraic variety whose dimension is strictly greater than zero. Since the field
k is algebraically closed, it is in particular infinite. Hence, {x′} contains an infinite
number of points. This implies that supp(s) contains an infinite number of points.

Consider the morphism

G →
⊕

x∈X(k)

ix∗Gx

which for an étale morphism V → X , s ∈ G (V ) gets sent to (sx)x∈X(k). This is a
well-defined morphism because sx is zero except for a finite number of points x. It
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is clearly an isomorphism (checking at the level of stalks for closed points, noting
that taking stalks at closed points commutes with colimits). �

5.3. Calculation for direct sum of constructible sheaves. Let X be a smooth
affine curve over k and suppose that k is of positive characteristic (we will return
to the characteristic zero case later, the proof differing to the positive characteristic
case). We show that Conjecture 5.3 above is true in a particular case.

In this section we assume that F is a direct sum of local systems. For the rest
of this section we write

F =
⊕

i∈N

Li

where Li are local systems corresponding to (finite) dimensional Fl-representations
Vi of π1(X). We assume that the index set is the positive integers N. We denote
by L ∧

i := Hom (Li,Λ). The spectral sequence

E xt i(R−j
∏

i

L
∧
i ,Λ) =⇒ E xt i+j(R

∏
L

∧
i ,Λ)

degenerates at the 2nd page, cf. [28, Tag 07A9]. The possible non-zero terms on
the 2nd page are

Hom (
∏

i L ∧
i ,Λ) E xt 1(

∏
i L ∧

i ,Λ) E xt 2(
∏

i L ∧
i ,Λ) 0

Hom (R1
∏

L ∧
i ,Λ) E xt 1(R1

∏
L ∧

i ,Λ) E xt 2(R1
∏

L ∧
i ,Λ) 0

α

Assuming F is reflexive, we get that

E xt 1(
∏

i

L
∧
i ,Λ) = E xt 2(

∏

i

L
∧
i ,Λ) = 0

and

(9) Hom (R1
∏

L
∧
i ,Λ) = 0.

Moreover the morphism α must be surjective. Finally we have a short exact se-
quence

0→ E xt 1(R1
∏

L
∧
i ,Λ)→

⊕

i

Li → kerα→ 0.

Proposition 5.16. Let X be a smooth affine curve. For every i ∈ N, let Li be
a finite local system on X such that ⊕iLi =

∏
i Li. We suppose in addition that

⊕iL
∧
i =

∏
i L

∧
i . Suppose, ⊕iLi is a reflexive étale sheaf. Then we must have that

for all but finitely many i ∈ N, Li = 0. In particular, ⊕iLi is constructible.

Proof. Our discussion concerning the spectral sequence above shows that the re-
flexivity of ⊕iLi implies that

(10) E xt 1(
∏

i

L
∧
i ,Λ) = 0.

We claim that E xt 1(
∏

i L ∧
i ,Λ) = R1

∏
i Li. Indeed,

E xt 1(
∏

i

L
∧
i ,Λ) = H1(RHom (

∏

i

L
∧
i ,Λ)).

By assumption,
∏

i L
∧
i = ⊕iL

∧
i and hence we see that RHom (

∏
i L ∧

i ,Λ) =

R
∏

i Li. Therefore E xt 1(
∏

i L
∧
i ,Λ) = R1

∏
i Li. Equation (10) implies that

R1
∏

i Li = 0. By [28, Tag 0940, Lemma 21.22.2], we see that for every U → X
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étale, H1(U,
∏

i Li) =
∏

iH
1(U,Li). However, by assumption,

∏
i Li = ⊕iLi

and H1(U,⊕iLi) = ⊕iH
1(U,Li). Thus we get that for every U → X étale,
⊕

i

H1(U,Li) =
∏

i

H1(U,Li).

This must mean that for all but a finite number of i ∈ N, we get H1(U,Li) = 0.
We claim that this is not possible if there are infinitely many i such that Li 6= 0.

We argue by contradiction. Indeed, since the canonical morphism
⊕

i

Li →
∏

i

Li

is an isomorphism, for all open immersions U → X there exists a positive integer
N(U) such that for all i > N(U), H0(U,Li|U ) = 0.

Let X be the smooth projective curve which contains X as an open sub-scheme.
Let X\X = {x1, . . . xj}. The Grothendieck-Ogg-Shafarevich formula, cf. [4, Ex-
posé X, Théorème 7.1] says that for every open immersion V →֒ X (note that since
V is affine, Hk(V,Li|V ) = 0 for k > 1)

(11)

dimH0(V,Li|V )−dimH1(V,Li|V ) = dimLi,η·(2−|X\V |−2g(X))−
∑

1≤m≤j

Swanxm
(Li).

Since H0(V,Li|V ) = 0 for all i > N(V ), (11) shows that the dimension of
H1(V,Li|V ) is at least |X\V | − 2 provided Li 6= 0. Hence we get a contradiction.

�

We immediately obtain a stronger result in the case X = A1
k.

Corollary 5.17. Let X = A1
k. For every i ∈ N, let Li be a finite local system

on X such that ⊕iLi =
∏

i Li. Suppose, ⊕iLi is a reflexive étale sheaf. Then
we must have that for all but finitely many i ∈ N, Li = 0. In particular, ⊕iLi is
constructible.

Proof. By Proposition 5.16, it suffices to show that ⊕iL
∧
i =

∏
i L ∧

i . Since the
prime-to-p part of π1(A

1
k) is trivial, this follows from Lemma 5.18. �

We finish this section by showing that the condition imposed in Proposition 5.16
is not empty. That is the existence of a countably infinite family (Li)i∈N of non-
zero local systems on a k-variety such that ⊕i∈NLi ≃

∏
i∈N

Li and ⊕i∈NL ∧
i ≃∏

i∈N
L ∧

i .

Lemma 5.18. Let X be a k-variety and let L be a local system of Λ-modules on
X. Suppose L corresponds to a π1(X)-representation that factors through a finite
group G whose order |G| is coprime to the prime ℓ. If L (X) 6= 0 then L ∧(X) 6= 0.

Proof. The local system L corresponds to a finite π1(X)-representation which we
denote V i.e. V is a Λ-module endowed with an action by π1(X). We have that

L (X) = V π1(X).

Hence there exists a non-trivial sub-representation W ⊆ V on which π1(X) acts
trivially. By assumption, the action of π1(X) on V factors through a finite quotient
G whose order |G| is coprime to ℓ. By Maschke’s theorem, there exists W ′ ⊆ V
such that V =W ⊕W ′ as G-representations. Hence we see that V ∧ =W∧⊕ W ′∧.
Since G acts trivially onW , we see thatW∧ ≃W (as G-representations) and hence
W∧ ⊆ [V ∧]G. By definition, [V ∧]G = L ∧(X) and hence L ∧(X) is not trivial. �

The following example was inspired by a discussion with Pierre Deligne and
shows that the hypothesis in Proposition 5.16 is not empty.



CONSTRUCTIBILITY AND REFLEXIVITY IN NON-ARCHIMEDEAN GEOMETRY 45

Example 5.19. We provide an example of a countably infinite family (Li)i∈N of
non-zero local systems on a k-variety such that ⊕i∈NLi ≃

∏
i∈N

Li and ⊕i∈NL ∧
i ≃∏

i∈N
L ∧

i . Let k be algebraically closed of characteristic p such that p divides

ℓ − 1. Let χ : Fp → (Z/ℓZ)∗ be a non-trivial character. Let X := A1
k. By [29,

Remark 5.8.6], Hom(π1(X),Fp) is infinite (here the morphisms are continuous group
homomorphisms, with the discrete topology on Fp). Let {φi : π1(X) → Fp}i∈N

be a family of distinct elements of Hom(π1(X),Fp). For every i, let Li be the
rank 1 local system defined by the (Z/ℓZ)∗ character given by the composition

π1(X)
φi
−→ Fp → (Z/ℓZ)∗. We claim

⊕i∈NLi ≃
∏

i∈N

Li

and

⊕i∈NL
∧
i ≃

∏

i∈N

L
∧
i .

By Lemma 5.18, it suffices to verify that if U → X is an étale morphism of connected
varieties then the set of i ∈ N such that Li(U) 6= 0 is finite. Let Vi denote the

π1(X)-representation corresponding to Li. By definition, Li(U) = V
π1(U)
i . Since,

Li is of rank one, we get that V
π1(U)
i is either Vi or 0. If V

π1(U)
i = Vi then π1(U)

acts trivially on Vi and hence by construction π1(U) lies in the kernel of the map

π1(X)
φi
−→ Fp. Let Ui → X be the finite étale cover of X that trivializes Li i.e.

π1(Ui) is the kernel of the homomorphism φi : π1(X)→ Fp. It follows that if k(U),
k(Ui) and k(X) denote the function fields of U , Ui and X then since π1(U), π1(Ui)
and π1(X) can be identified with quotients of Gal(k(X)sep/k(X)), we get from the
Galois correspondance that the field extension k(X) →֒ k(U) factors through the
extension k(X) →֒ k(Ui) and an extension k(Ui) →֒ k(U). As U → X is étale, the
field extension k(X) →֒ k(U) is finite and separable (in particular, by the primitive
element theorem, it only has a finite number of intermediate fields). The family
{Ui → X}i is a countable set of distinct p-covers and hence the corresponding
family of field extensions {k(X) →֒ k(Ui)} are pairwise non-isomorphic. It follows
that there can be only finitely many i such that k(Ui) embeds into k(U). We have
thus shown that there are only finitely many i such that Li(U) 6= 0.

Finally we specialize to the case X = A1
k, where the characteristic of k is zero.

In this case the finite local systems on X are constant and we claim that
⊕

i∈N

Λ

cannot be reflexive.

Lemma 5.20. In the situation of the preceding paragraph we have that R1
∏

Λ = 0.

Proof. By [28, Tag 0940, Remark 21.22.4] R1
∏

Λ = 0 is the sheafification of the
presheaf

(U
étale
−−−→ X) 7→

∏

N

H1(U,Λ).

But H1(U,Λ) is a finite Λ-vector space, and hence the underlying set is finite say
{s1, s2, . . . , sm}. Each si corresponds to a Λ-torsor Vi → U which is trivialized by
a covering Ui → U . However the sections then vanish in

H1(U1 ×U U2 ×U · · · ×U Um,Λ).

Hence the associated sheaf is zero. �
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Proposition 5.21. Let X = A1
k where the characteristic of k is zero. Then

⊕

i∈N

Λ

is not reflexive.

Proof. By the spectral sequence in the beginning of this section, if
⊕

i∈N
Λ is re-

flexive then we must have by Lemma 5.20:

Hom (
∏

i∈N

Λ,Λ) =
⊕

i∈N

Λ.

Taking global sections gives

(12) HomShét(A1
k
,Λ)(
∏

i∈N

Λ,Λ) =
⊕

i∈N

Λ,

where the Hom on the LHS of (12) is in the category of étale sheaves in Λ-vector
spaces on A1

k. However

(13) HomShét(A1
k
,Λ)(
∏

i∈N

Λ,Λ) = HomΛ(
∏

i∈N

Λ,Λ)

where the Hom on the RHS of (13) is in the category of Λ-vector spaces. We
explain why (13) is true. Let α ∈ HomShét(A1

k
,Λ)(
∏

i∈N
Λ,Λ). For an étale morphism

U → A1
k (with U connected) one demands to have a commutative square (noting

that global sections commute with products)

∏
i∈N

Λ(A1
k) Λ(A1

k)

∏
i∈N

Λ(U) Λ(U)

α
A1
k

id id

αU

and we see that the morphism on global sections (i.e. αA1
k
) determines the morphism

on local sections (i.e. αU ). Conversely αA1
k
is a morphism of vector spaces

∏
i∈N

Λ→

Λ and clearly any such morphism gives rise to a unique morphism of sheaves.
Now (12) and (13) imply that

HomΛ(
∏

i∈N

Λ,Λ) =
⊕

i∈N

Λ

and this implies that the infinite dimensional vector space
⊕

i∈N
Λ is reflexive, which

is a contradiction. �
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Raynaud, Joël Riou, Benôıt Stroh, Michael Temkin and Weizhe Zheng, Astérisque No. 363-
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