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Abstract

Let Σ be a closed surface of genus at least two and ρ : π1(Σ) → G

a Hitchin representation into G = PSL(n,R), PSp(2n,R), PSO(n, n + 1)
or G2. We consider the energy functional E on the Teichmüller space
of Σ which assigns to each point in T (Σ) the energy of the associated
ρ-equivariant harmonic map. The main result of this paper is that E is
strictly plurisubharmonic. As a corollary we obtain an upper bound of
3 · genus(Σ)− 3 on the index of any critical point of the energy functional.

1 Introduction

Let Σ be a closed surface of genus at least two and let ρ : π1(Σ) → G be a Hitchin
representation. In this paper we take G to be either PSL(n,R),PSp(2n,R),
PSO(n, n + 1) or the exceptional group G2. Let K be a maximal compact
subgroup of G. For every complex structure J on Σ there exists a (unique) ρ-

equivariant harmonic map fJ : (Σ̃, J) → G/K. Recall that a map f : Σ̃ → G/K
is called ρ-equivariant if f(γx) = ρ(γ)f(x) for all γ ∈ π1(Σ). The energy density
of each fJ is π1(Σ)-invariant. Hence, it descends to Σ and can be integrated
to obtain the Dirichlet energy of fJ . Assigning to a complex structure J the
energy of the harmonic map fJ gives us an energy functional on the Teichmüller
space of Σ. We will denote this functional by E : T (Σ) → R. The main result
of this paper is the following theorem.

Theorem 1.1. Let G be one of the following Lie groups: PSL(n,R), PSp(2n,R),
PSO(n, n+1) or the exceptional group G2. If ρ : π1(Σ) → G is a Hitchin repre-
sentation, then the energy functional E : T (Σ) → R is strictly plurisubharmonic.

This theorem extends the results of Tromba ([Tro92, Theorem 6.2.6]) to a
wider class of energy functionals. Tromba considers a fixed hyperbolic metric g
on Σ and studies the energy functional that assigns to each complex structure J
the energy of the harmonic map (Σ, J) → (Σ, g) that is homotopic to the identity.
He proves that this functional is strictly plurisubharmonic. This corresponds
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to our result if we take ρ : π1(Σ) → PSL(2,R) to be a Fuchsian representation.
Hitchin representations form a larger class of representations (that contains the
Fuchsian representations) so Theorem 1.1 can be seen as a natural extension of
Tromba’s results.

The energy functional E is studied by Labourie in [Lab08]. He proved E
is a proper function on Teichmüller space and hence has a global minimum.
Labourie conjectured that this critical point of the energy functional is unique.
This conjecture has been proved in the case that the Lie group G has rank 2
(see [Lof01] and [Lab17]) but remains open in higher rank. Our result puts a
limit on how degenerate a critical point of E can be. More precisely, it implies
that the Hessian of E at any critical point is positive definite on a subspace of
dimension at least 3 · genus(Σ)− 3 (cf. Corollary 4.1).

Various examples of plurisubharmonic functions on Teichmüller space have
been constructed. Notably, in [Yeu03] it is proved that Teichmüller space admits
a bounded and strictly plurisubharmonic exhaustion function. In contrast, the
energy functionals we consider in this paper provide interesting examples of
strictly plurisubharmonic functions that are proper.

Our proof of Theorem 1.1 is based on the work of Toledo in [Tol12]. Our
main innovation is the use of Higgs bundles techniques to sharpen the results of
that paper in the particular case we consider. Toledo considers a Riemannian
manifold N of non-positive Hermitian curvature (see Section 3) and makes the
assumption that for every complex structure J there exists a unique harmonic
map (Σ, J) → N in a given homotopy class. He then proves that the functional
that assigns to each J the energy of this harmonic map is a plurisubharmonic
function on Teichmüller space. The setting we consider amounts to taking
N = ρ(π1(Σ)) \G/K. Our proof of Theorem 1.1 combines the result of Toledo
with the Higgs bundle description of Hitchin representations to obtain the strict
plurisubharmonicity of E.

We obtain two corollaries to Theorem 1.1. The first, Corollary 4.1, gives an
upper bound on the index of critical points of E. Namely, if g is the genus of
Σ, then the index of a critical point of E is at most dimC T (Σ) = 3g − 3. The
second corollary, Corollary 4.2, states that the set of points where E attains its
minimal value is locally contained in a totally real submanifold of T (Σ).

The proof of Theorem 1.1 and its corollaries will be given in Section 4. In
Section 2 we recall the aspects of the Non-Abelian Hodge correspondence and
the construction of the Hitchin component that we need for our proof. In
Section 3 we describe the results of [Tol12] on which our proof will be based.

Acknowledgements. The author wishes to thank Professor Ursula Hamenstädt
for her encouragement and the many helpful suggestions she has made during
this project. The author was supported by the IMPRS graduate program of the
Max Planck Institute for Mathematics.
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2 Non-Abelian Hodge correspondence

We briefly recall the Non-Abelian Hodge correspondence and the construction
of the Hitchin component for the case G = SL(n,C). We follow parts of the
expositions found in [Mau15] and [Li19]. In this section we will denote G =
SL(n,C) and K = SU(n). The Lie algebras of these groups we denote by
g = sl(n,C) and k = su(n) and we let p ⊂ g be the subspace of Hermitian
matrices. We have g = k ⊕ p. Furthermore, let X be a Riemann surface of
genus at least two, let X̃ be its universal cover and denote by KX the canonical
bundle of X . Finally, if E → X is a vector bundle we denote by End0(E) the
vector bundle of trace free endomorphisms of E.

Definition 2.1. A G-Higgs bundle over X is a pair (E, φ) where E is a rank
n holomorphic vector bundle over X with trivial determinant bundle and φ is
a holomorphic section of KX ⊗ End0(E). We call (E, φ) stable if any proper
sub-G-Higgs bundle has negative degree and we call (E, φ) polystable if it is a
direct sum of stable G-Higgs bundles.

We denote by MHiggs(G) the moduli space of gauge equivalence classes of
polystable G-Higgs bundles over X . The representation variety Rep(π1(X), G)
is the set of conjugacy classes of reductive representations of π1(X) into G.
The Non-Abelian Hodge correspondence describes an identification between
Rep(π1(X), G) and MHiggs(G).

We first describe how to construct a G-Higgs bundle from a representation.
Let ρ : π1(X) → G be a reductive representation and consider the G-bundle

PG = (X̃ × G)/π1(X) → X where π1(X) acts on the second factor via the
representation ρ. Let ω ∈ Ω1(G, g) be the left Cartan form on G. Then the

form π∗ω on X̃×G is the connection form of the flat connection of X̃×G (where

π : X̃ × G → G is the projection to the second factor). This form descends to
PG inducing a flat connection on PG which we will denote by D.

Since ρ is reductive it follows from [Cor88] that there exists a ρ-equivariant

harmonic map f : X̃ → G/K (unique up to composition with an element in
the centraliser of im ρ). We consider the reduction of the structure group of
PG to K determined by f . The projection G → G/K is a K-bundle which we

pull back via f to obtain the K-subbundle f∗G ⊂ X̃ × G. By ρ-equivariance
of f this bundle descends to a K-bundle PK ⊂ PG over X . We denote by ωk

and ωp the composition of the Cartan form on G with the projections g → k

and g → p respectively. Note that on f∗G we have π∗ω = f∗ω hence π∗ω =
f∗ωk+ f∗ωp. The form f∗ωk descends to PK and is a connection form. We will
denote the connection it determines on PK by ∇. The form f∗ωp descends to a
p-valued one-form on PK . This form is basic and hence determines a section of
T ∗X ⊗ (PK ×AdK p) which we will call Φ. From the above observations follows
that D = ∇+Φ.

From the data of (PK ,∇) and Φ a G-Higgs bundle can be constructed. We
consider E = PK ×K Cn where K = SU(n) acts on Cn via the canonical
action. The connection ∇ on PK induces a connection on E, that we will

3



also denote by ∇. The (0, 1) part of ∇ determines a holomorphic structure
on E. We note that pC = sl(n,C) = End0(C

n) hence PK ×K pC = End0(E).
It follows that the (1, 0) part of Φ, which we will denote by φ = Φ1,0, is a
section of KX ⊗ (PK ×AdK pC) = KX ⊗ End0(E). Finally, we use that the
harmonicity condition on the map f translates to ∇0,1φ = ∇0,1Φ1,0 = 0. So φ
is a holomorphic section of KX ⊗End0(E). We conclude that the pair (E, φ) is
a G-Higgs bundle.

Conversely, if (E, φ) is a polystable G-Higgs bundle, then it follows from a
theorem of Hitchin [Hit87] and Simpson [Sim88] that there exists a Hermitian
metric H on E such that

F∇
H

+ [φ, φ∗
H

] = 0.

Here ∇H denotes the Chern connection of H , F∇
H

is its curvature and φ∗
H

is the adjoint of φ with respect to H . The above condition implies that if we

define a connection by setting D = ∇H+φ+φ∗
H

, then D is flat. We now obtain
a representation ρ : π1(X) → SL(n,C) by taking a holonomy representation of
the flat bundle E around any point x ∈ X .

The Non-Abelian Hodge correspondence states that the two constructions
described above are inverses of each other and describe a homeomorphism be-
tween MHiggs(G) and Rep(π1(X), G).

In the following lemmas we collect two observations about the above con-
struction that we will use in later arguments. By ρ-equivariance the bundle
f∗T (G/K) defined over X̃ descends to a bundle over X . We will denote this
bundle also by f∗T (G/K). We denote by ∇lc the Levi-Civita connection on
T (G/K).

Lemma 2.2. The bundles (End0(E),∇) and (f∗TC(G/K), f∗∇lc) are affine
isomorphic. That is there is a vector bundle isomorphism β : f∗TC(G/K) →
End0(E) with β∗∇ = f∗∇lc.

Proof. We first observe that T (G/K) = G×AdK p and hence on X̃ we have

f∗T (G/K) = f∗(G×AdK p) = (f∗G)×AdK p.

Both these bundles descend to X so on X we have

f∗T (G/K) = PK ×AdK p.

In the above discussion we saw PK ×AdK pC = End0(E) so we find that
f∗TC(G/K) = End0(E). Finally, we observe that ωk on G is the connection
form that induces the Levi-Civita connection on G ×AdK p. So f∗ωk induces
the connection f∗∇lc on f∗TC(G/K) and also, by construction, induces the
connection ∇ on End0(E). We conclude that the two bundles are indeed affine
isomorphic.

4



Lemma 2.3. Consider the derivative of the map f as a section df ∈ T ∗X ⊗
f∗T (G/K). Then under the above described correspondence of vector bundles
we have the following equality of PK ×AdK p valued one-forms

β(df) = Φ

As a consequence we obtain, if we denote d′f = (df)1,0, that

β(d′f) = φ.

Proof. We consider the vector bundle valued one-form Ψ ∈ T ∗X⊗ (PK ×AdK p)
defined by Ψ = β(df). We lift Ψ first to PK and then to f∗G to obtain a p-valued

one-form Ψ̃ on f∗G. Let p : G → G/K be the quotient map. By unrolling the

definition of β we can describe Ψ̃ as follows. Let (x, g) ∈ f∗G (i.e. f(x) = p(g))

and (X,A) ∈ T(x,g)f
∗G. Then Ψ̃((X,A)) = ξ where ξ ∈ p is the unique element

such that g∗dp(ξ) = df(X). We now consider the form f∗ωp. Here f : f∗G → G
is the map induced by the pull back construction and is given by f(x, g) = g.
We have (f∗ωp)((X,A)) = ωp(A). The condition (X,A) ∈ T(x,g)f

∗G implies
df(X) = dp(A) hence we observe that

g∗dp(f
∗ωp((X,A))) = g∗dp(ω

p(A)) = dp(A) = df(X).

We find that f∗ωp((X,A)) = ξ and hence f∗ωp = Ψ̃ on f∗G. Since f∗ωp

descends to Φ and Ψ̃ descends to Ψ = β(df) we conclude that indeed β(df) =
Φ.

2.1 Hitchin component

If (p2, . . . , pn) is a basis for the space of conjugation invariant polynomials on
sl(n,C) we can construct a map

p : MHiggs(G) → ⊕n
i=2H

0(X ;Ki
X) : (E, φ) 7→ (p2(φ), . . . , pn(φ))

via the Chern-Weil construction. This map is called the Hitchin fibration. A

section of this map can be constructed as follows. Let K
1/2
X be a choice of

holomorphic line bundle over X that squares to KX . We set

E = K
n−1

2

X ⊕K
n−3

2

X ⊕ · · · ⊕K
3−n

2

X ⊕K
1−n

2

X .

Then KX ⊗ End0(E) ⊂ ⊕n
i,j=1K

i−j+1
X . For (q2, . . . , qn) ∈ ⊕n

i=2H
0(X ;Ki

K) we
define

s(q2, . . . , qn) =



E, φ =




0 q2 q3 . . . qn
r1 0 q2 . . . qn−1

0 r2 0
. . .

...
...

. . .
. . .

. . . q2
0 . . . 0 rn−1 0







(1)
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where ri =
i(n−i)

2 . For a suitable choice of (p2, . . . , pn) we have that s is indeed
a section of p. Hitchin proved in [Hit92] that representations determined (via
the Non-Abelian Hodge correspondence) by Higgs bundles in the image of this
section take values in SL(n,R). Furthermore, these representations constitute
precisely a connected component of the space Rep(π1(X), SL(n,R)). We call
this connected component the Hitchin component and representations contained
in it Hitchin representations. We note that the exact form of the section φ in
Equation (1) depends on a choice of irreducible embedding of SL(2,R) into
SL(n,R). The resulting sections for different choices can be related by a gauge
transformation. We follow the choice made in [Li19] and hence φ differs slightly
from the section that appears in [Hit92].

By composing with the projection SL(n,R) → PSL(n,R) a Hitchin represen-
tation induces a representation into PSL(n,R). Hitchin proved ([Hit92, Section
10]) that Rep(π1(Σ),PSL(n,R)) contains a connected component consisting en-
tirely of representations that are obtained in this way (i.e. each can be lifted to
a Hitchin representations into SL(n,R)). We call representations of π1(Σ) into
PSL(n,R) that lie in this component also Hitchin representations.

If Gr is an adjoint group of the split real form of a complex simple Lie
group it is also possible to identify a Hitchin component in Rep(π1(Σ), G

r) us-
ing a Higgs bundle argument ([Hit92]). However, for convenience we give an
alternative definition. Namely, for such Gr there exists an irreducible represen-
tation ιGr : PSL(2,R) → Gr that is unique up to conjugation. Composing a
Fuchsian representation ρ0 : π1(Σ) → PSL(2,R) that corresponds to a point in
Teichmüller space with ιGr yields a representation into Gr. The Hitchin compo-
nent of Rep(π1(Σ), G

r) can be defined as the connected component containing
ιGr ◦ ρ0.

The casesGr = PSp(2n,R), PSO(n, n+1) or G2 have the special feature that
if we consider Gr as a subset of PSL(m,R) (for m = 2n, 2n+1 or 7 respectively),
then ιGr = ιPSL(m,R). Hence, the Hitchin component for Gr can be realised as
a subset of the Hitchin component for PSL(m,R).

3 Plurisubharmonicity

In this section we explain some of the results of [Tol12] and introduce some
notation used in that paper that we will also use. Let

C = {J ∈ C∞(Σ,End(TΣ)) | J2 = − id}

be the set of almost complex structures on Σ. We let N be a Riemannian
manifold of non-positive Hermitian sectional curvature. This condition means
thatR(X,Y,X, Y ) ≤ 0 for allX,Y ∈ TN⊗Cwhere R is the complex multilinear
extension of the Riemannian curvature tensor of N .

If A is an endomorphism of TΣ, then for any one-form α ∈ Ω1(Σ) we denote
Aα = −α ◦A. In particular, if J ∈ C, then Jdf = −df ◦ J = df ◦ J−1. For any
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J ∈ C the Dirichlet energy of a map f : Σ → N is given by

E(J, f) =
1

2

∫

Σ

〈df ∧ Jdf〉 .

A map is harmonic if it is a critical point of this functional. We fix a homotopy
class of maps Σ → N . We make the assumption that for each J ∈ C there exists
a unique harmonic map fJ : (Σ, J) → N in this homotopy class. We assume
further that the maps fJ depend smoothly on J . These assumptions will be
satisfied in the situation we will consider. Define E : C → R by E(J) = E(J, fJ).
This map descends to Teichmüller space because if φ ∈ Diff0(Σ), then fφ∗J =
φ∗fJ hence E(φ∗J) = E(φ∗J, φ∗fJ) = E(J, fJ) = E(J). The main result of
[Tol12] is that E is a plurisubharmonic function on Teichmüller space.

To state this result formally we consider a small diskD ⊂ C centred around 0
and a holomorphic family of complex structures J : D → C. Denote by u = s+ it
the complex coordinates on D. Set E(s, t) = E(J(s, t)) and f(s, t) = fJ(s,t). We
define

W =
∂f

∂s
+ i

∂f

∂t
∈ Γ∞(f∗TCN).

We equip Σ with the complex structure J0 = J(0, 0) and denote by TCΣ =
T1,0Σ ⊕ T0,1Σ and T ∗

C
Σ = T 1,0Σ ⊕ T 0,1Σ the induced splittings of the tangent

and cotangent space into +i and −i eigenspaces of J0. The complexification
of the derivative df splits into a (1, 0) and (0, 1) part denoted by d′f and d′′f
respectively. Similarly, if s is a section of a vector bundle equipped with a
connection ∇, then we denote by d′∇s and d′′∇s respectively the (1, 0) and (0, 1)
part of ∇s. Finally, we consider

H =
∂J

∂s
(0, 0) ∈ TJ0

C.

The endomorphism H of TM anti-commutes with J0 hence its complexification
can be written as H = µ+ µ with µ a smooth section of T 0,1Σ⊗ T1,0Σ.

Theorem 2 of [Tol12] now states:

Theorem 3.1. We have
∆E(0, 0) ≥ 0

and in case of equality we have

d′′∇W = ±µd′f. (2)

The last statement in this theorem is not explicitly stated in [Tol12] but
follows from the arguments used to prove the first statement. We briefly clarify
how Equation (2) is obtained when ∆E(0, 0) = 0 (see also the proof of [Tol12,
Theorem 3]). In this section any reference to a numbered equation will to refer
to an equation in [Tol12].

Toledo first calculates (Equation 16) that ∆E(0, 0) = −a+ b where

a = −

∫

Σ

〈
d∇

∂f

∂s
∧Hdf

〉
+

〈
d∇

∂f

∂t
∧ J0Hdf

〉
and b =

∫

Σ

〈
df ∧ J0H

2df
〉
.
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We denote also

α =

∫

Σ

〈
d′∇W ∧ J0d

′′
∇W

〉
and ρ =

∫

Σ

R

(
∂f

∂z
,W,

∂f

∂z
,W

)
dx ∧ dy.

Inequality (26) yields that a ≤ α + b
2 and Equation (29) gives that α = a

2 + ρ.
Putting these together gives α ≤ 1

2 (a+b)+2ρ or equivalently a ≤ b+4ρ (which is
Inequality (30)). The non-positive Hermitian curvature condition implies ρ ≤ 0
hence a ≤ b from which follows that ∆E(0, 0) ≥ 0.

If the family J is such that ∆E(0, 0) = 0, then we see that equality holds in
inequalities (26) and (30). The remarks made by Toledo after Inequality (26)
tell us that Inequality (26) is an equality if and only if d′′∇W = ±µd′f .

We note that in this case we also have ρ = 0 which meansR
(

∂f
∂z ,W, ∂f

∂z ,W
)
=

0 everywhere. However, we do not use this in our proof.

Remark 3.2. We note that in the statements of Theorems 1 and 2 in [Tol12]
the manifold N is assumed to be compact. This is something that will not be
true in the application we have in mind. The compactness assumption is used
to guarantee the existence of a harmonic map (Σ, J) → N in a given homotopy
class for every J . This is not necessarily true when N is not compact. However,
in the situation we consider the existence of such harmonic maps follows from
the results of Corlette ([Cor88]). An inspection of the proof in [Tol12] shows
that the compactness ofN plays no further role. This means we are free to apply
Theorem 3.1 even if N is not compact, as long as the existence of a (unique)
harmonic map for each J ∈ C is guaranteed.

4 Proof

We turn now to the proof of Theorem 1.1. We observe first that it is enough to
give a proof for G = PSL(n,R). Namely, if G equals PSp(2n,R), PSO(n, n+ 1)
or G2, then the inclusion G ⊂ PSL(m,R) (for m = 2n, 2n+ 1 or 7 respectively)
induces an inclusion of the Hitchin component for G into the Hitchin compo-
nent for PSL(m,R). Moreover, via the totally geodesic embedding G/K ⊂

PSL(m,R)/PSO(m) a harmonic map X̃ → G/K equivariant for a representa-
tion ρ : π1(X) → G can be seen as a harmonic map into PSL(m,R)/PSO(n)
equivariant for ρ as a representation into PSL(m,R). In particular, the energy
functional E is unchanged if we view ρ as a representation into PSL(m,R) rather
then into G.

We consider now the energy function associated to a PSL(n,R)-Hitchin rep-
resentation. We lift this representation to a representation into SL(n,R) which
we denote by ρ : π1(Σ) → SL(n,R). From now on we denote G = SL(n,R) and
K = SO(n). Hitchin representations act freely and properly on G/K ([Lab06])
so we can consider the locally symmetric space N = ρ(π1(Σ)) \ G/K. The
representation ρ determines a homotopy class of maps Σ → N that lift to
ρ-equivariant maps Σ̃ → G/K. Equivariant harmonic maps for Hitchin repre-
sentations are unique and depend smoothly on J (see [EL81] or [Sle20]). Hence,
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we can consider the energy functional E : T (Σ) → R as defined in Section 3.
We note that this coincides with the energy functional as described in Section 1.
In [Sam86] Sampson proved that locally symmetric spaces of non-compact type
have non-positive Hermitian sectional curvature. So Theorem 3.1 applies to E.

We now give a proof of Theorem 1.1. The strategy is similar to the proof
of [Tol12, Theorem 3] in which strict plurisubharmonicity is proved when the
target is assumed to have strictly negative Hermitian sectional curvature. It
is interesting that this strictly negative curvature condition can be replaced by
the explicit information about the form of the harmonic map that is provided
by the Higgs bundle picture.

Proof of Theorem 1.1. We use the notation introduced in Section 3. Suppose
that J : D → C is a holomorphic family of complex structures such that ∆E(0, 0) =
0. It then follows from Theorem 3.1 that Equation (2) holds.

We note that W is a smooth section of f∗TCN . Using Lemma 2.2 we can
view it as a section of End0(E) by considering ν = β(W ). Since β is an affine
isomorphism we have d′′∇ν = β(d′′∇W ). Taking into account Lemma 2.3 we see
that Equation (2) is equivalent to

d′′∇ν = ±µφ. (3)

We write ν = (νi,j)i,j with each νi.j a smooth section of Kj−i. Keeping in
mind the expression for φ as given in Equation (1) we consider now the (2,1)
component of the matrices on both sides of Equation (3). This gives

∂ν2,1 = ±µ(r1 · 1) = ±
1

2
µ.

Here ν2,1 is a section ofK−1 = T1,0Σ. The above equality implies that [µ] = 0 in
H1(X,T1,0Σ) which means precisely that the tangent vector H ∈ TJ0

C projects
to zero in T[J0]T (Σ).

We conclude that for any family J of complex structures inducing a non-zero
tangent vector in Teichmüller space we have ∆E(0, 0) > 0. This concludes the
proof.

As a first corollary of Theorem 1.1 we obtain a bound on the index of the
critical points of E. We recall that if g = genus(Σ), then dimR T (Σ) = 6g − 6.

Corollary 4.1. Under the assumptions of Theorem 1.1 the index of a critical
point of E is at most dimC T = 3g − 3.

Proof. Assume [J ] ∈ T (Σ) is a critical point of E. Let H be the Hessian of E at

this point and denote by H̃ its sesquilinear extension of the complexified tangent
space of T (Σ). The forms H and H̃ have the same index. If (z1, . . . , z3g−3) are
complex coordinates around [J ], then the strict plurisubharmonicity property
of E implies that

H̃(u, v) =
∂2E

∂zα∂zβ
uαvβ

9



is positive definite. This means that H̃ is positive definite on the subspace of
dimension 3g − 3 that is spanned by the vectors ∂

∂zα and as a result has index
at most 3g − 3.

Finally, we obtain the following corollary by applying the results of [HW73]
to the function f = E −min[J]∈T (Σ) E([J ]). We call a submanifold P of T (Σ)
totally real if TpP contains no non-zero complex subspaces of TpT (Σ) for all
p ∈ P .

Corollary 4.2. The set

M = {[J ] ∈ T (Σ) | E attains its global minimum at [J ]}.

is locally contained in totally real submanifolds of T (Σ). More precisely for every
[J ] ∈ M there exists an open neighbourhood U ⊂ T (Σ) of [J ] and a totally real
submanifold P ⊂ U such that M ∩U ⊂ P . In particular, at smooth points of M
its tangent space is totally real. It follows that the Hausdorff dimension of M is
at most 3g − 3.

References

[Cor88] K. Corlette. Flat G-bundles with canonical metrics. J. Differential
Geom., 28(3):361–382, 1988.

[EL81] J. Eells and L. Lemaire. Deformations of metrics and associated har-
monic maps. Proc. Indian Acad. Sci. Math. Sci., 90(1):33–45, 1981.

[Hit87] N. J. Hitchin. The self-duality equations on a Riemann surface. Proc.
London Math. Soc. (3), 55(1):59–126, 1987.

[Hit92] N. J. Hitchin. Lie groups and Teichmüller space. Topology, 31(3):449–
473, 1992.

[HW73] F. R. Harvey and R. O. Wells. Zero sets of non-negative strictly
plurisubharmonic functions. Math. Ann., 201:165–170, 1973.

[Lab06] F. Labourie. Anosov flows, surface groups and curves in projective
space. Invent. Math., 165(1):51–114, 2006.

[Lab08] F. Labourie. Cross ratios, Anosov representations and the energy
functional on Teichmüller space. Ann. Sci. Éc. Norm. Supér. (4),
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