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HODGE DECOMPOSITION FOR COUSIN GROUPS AND FOR

OELJEKLAUS-TOMA MANIFOLDS

ALEXANDRA OTIMAN AND MATEI TOMA

Abstract. We compute the Dolbeault cohomology of geodesically convex domains con-
tained in Cousin groups which satisfy a strong dispersiveness condition. As a consequence
we obtain a description of the Dolbeault cohomology of Oeljeklaus-Toma manifolds and in
particular the fact that the Hodge decomposition holds for their cohomology.

1. Introduction

A Cousin group X is a quotient Cn/Λ, where Λ is a discrete subgroup of rank n +m, with
1 6 m 6 n, such that the global holomorphic functions on X are constant. They are named
after P. Cousin and introduced in [Cou10]. In [Vog83] it is shown that a Cousin group has
finite dimensional Dolbeault cohomology groups provided if and only if the discrete subgroup
Λ satisfies a certain dispersiveness condition, which we shall describe in the paper and call
weak dispersiveness. Moreover, Hodge decomposition is proven by Vogt to hold on X under
this same condition.

The aim of our paper is twofold. Firstly, we extend the “if” direction of Vogt’s result to open
sets U in Cn/Λ, whose inverse image in Cn are convex domains, see Theorem 3.1. For this
we need to impose a new condition on the discrete subgroup Λ, which we shall call strong
dispersiveness. We show that this condition is actually equivalent to the finite generation
of the Dolbeault cohomology of such domains, see Theorem 3.4, thus extending the “only
if” direction of the cited result as well. Secondly, we use the aforementioned extension to
show the Hodge decomposition and to compute the Dolbeault cohomology of Oeljeklaus-
Toma (OT) manifolds, see Theorem 4.5. These are compact complex manifolds associated
to number fields allowing a positive number of real embeddings as well as a positive number
of complex (non-real) embeddings, see Section 4. Their construction and first properties are
described in [OT05]. Thus OT manifolds give examples in any dimension of compact complex
non-Kähler manifolds for which Hodge decomposition holds, or equivalently, the Frölicher
spectral sequence degenerates at the first page. As a consequence, we also obtain a new way
of computing the Dolbeault cohomology of Inoue-Bombieri surfaces, which are obtained as
Oeljeklaus-Toma manifolds of complex dimension 2, without using powerful tools like the
Riemann-Roch theorem or Serre duality and providing instead a more complex-analytical
proof.
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2. Preliminary facts on Cousin groups

We present in this section basic definitions and results about Cousin groups and introduce
the notions of weak and strong dispersiveness, see Definition 2.4.

Definition 2.1. A connected complex Lie group X admitting no non-constant global holo-
morphic functions is called a Cousin group or a toroidal group.

Cousin groups of complex dimension n are shown to appear as quotients X = Cn/Λ, where
Λ is a discrete subgroup of Cn of rank n+m, with 1 6 m 6 n, cf. [AK01, Proposition 1.1.2].
Moreover Λ may be assumed to be generated by the columns of a matrix of the form:

(2.1) P =

ˆ

Om,n−m Tm,2m

In−m Rn−m,2m

˙

,

which we shall call the normal form, where In−m is the n − m identity matrix, Tm,2m is a
basis of the lattice of an m-dimensional complex torus and R has real entries. Furthermore,
one can arrange T such that the normal form is:

(2.2) P =

ˆ

Om,n−m Im M + iN
In−m R1 R2

˙

,

where M and N have real entries and N is invertible, see [Vog82, Proposition 2], [Vog83,
Proposition 1]. In the above situation we will say that P is the period matrix of Λ.

Proposition 2.2 ([Vog82, Proposition 2]). Suppose that X = Cn/Λ with Λ generated by the
columns of a matrix P in normal form (2.1). Then X is a Cousin group if and only if for
any σ ∈ Zn−m \ {0}, tσR 6∈ Z2m.

Proposition 2.3. Let X = Cn/Λ be a Cousin group and let U ⊂ X be a non-empty open

subset whose inverse image Ũ in Cn is convex. Then any global holomorphic function on U
is constant.

Proof. We use essentially that Cn/Λ is a Cousin group, a similar argument as in [OT05,

Lemma 2.4] and the fact that Ũ is convex. We may and will assume that Λ is generated by
the columns of a matrix P in normal form (2.1).

For (z01 , . . . , z
0
n) ∈ Ũ , the set conv((z01 , . . . , z

0
n) +Λ) is a real affine (n+m)-dimensional plane

in Cn, where by conv(S) we mean the convex hull of S. It is also a subset of Ũ by the

convexity and Λ-invariance of Ũ . Since the functions Im zm+1, . . . , Im zn are Λ-invariant we
get conv((z01 , . . . , z

0
n) + Λ) = Cm × ((z0m+1, . . . , z

0
n) +Rn−m). Therefore

(2.3)

Ũ =
⋃

(z01 ,...,z
0
n)∈Ũ

Cm × ((z0m+1, . . . , z
0
n) + Rn−m) = Cm ×

⋃

(z01 ,...,z
0
n)∈Ũ

((z0m+1, . . . , z
0
n) + Rn−m).

Thus, Ũ = Cm × W , where W ⊂ Cn−m is a convex domain, hence Stein, and moreover
Zn−m-invariant.

Let now f be a holomorphic function on U , f̃ its lift to Ũ and choose arbitrarily w ∈ W .
Since Cm × (w + Rn−m)/Λ is diffeomorphic to (S1)n+m, f̃ is bounded on Cm × (w + Rn−m)
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and therefore constant on Cm × {w}. Using the fact that Cn/Λ is a Cousin group and
Proposition 2.2 we get tσR /∈ Z2m for all σ ∈ Zn−m \ {0}, hence the group generated by the
column vectors (In−m R) is dense in Rn−m. Consequently, the image of Cm × {w} is dense

in Cm × (w+Rn−m)/Λ and thus, f is constant on Cm × (w+Rn−m)/Λ and f̃ is constant on

Cm × (w + Rn−m). By the identity principle, f̃ has to be constant on Ũ .

We now introduce two notions of dispersiveness which will play an important role in this
paper.

Definition 2.4. A discrete subgroup Λ in normal form (2.2) is said to be strongly dispersive,
(respectively weakly dispersive) if

∀a ∈ (0, 1), (respectively ∃a ∈ (0, 1)), ∃C(a) > 0, ∀σ ∈ Zn−m \ {0}, ∀τ ∈ Z2m

(2.4) ||tσR+t τ ||> C(a)a|σ|.

In [Vog82] the following example of a discrete subgroup Λα is considered with period basis
Pα in normal form:

(2.5) Pα =

ˆ

0 1 i
1 α 0

˙

,

where α is a real number. By Proposition 2.2 C2/Λα is a Cousin group if and only if α is
irrational.

Vogt shows in [Vog82] that for α =
∑∞

j=1
1

1010
j! the discrete subgroup Λα is not weakly

dispersive.

Remark 2.5. Set u0 := 1, uj+1 := 10uj for all j ∈ N, and

α :=

∞
∑

j=1

1

uj
.

Then the discrete subgroup Λα generated by the columns of the matrix Pα given by (2.5) is
weakly dispersive but not strongly dispersive.

Proof. The strong (respectively weak) dispersiveness condition for Λα is rephrased as

∀a ∈ (0, 1), (respectively ∃a ∈ (0, 1)), ∃C(a) > 0, ∀q ∈ Z \ {0}, ∀p ∈ Z

(2.6) |qα− p|> C(a)a|q|.

For q = uk, k > 1, we get

inf
p∈Z

|qα− p|=
∞
∑

j=k+1

uk
uj

<
2uk
uk+1

<
2uk

uk+1
=

1

5q
,

hence Λα cannot be strongly dispersive for our choice of α.

We now check the weak dispersiveness of Λα. For a real number β we denote by {β} its
fractional part. Then for uk 6 q < uk+1, k > 0 we get

{qα} >
1

10uk
>

1

10q
.

It remains to estimate 1− {qα}. But it is clear that the uk + 1-st decimal digit of {qα} is 0,
hence the uk + 1-st decimal digit of 1− {qα} is 9. Thus
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1− {qα} >
9

10

1

10uk
>

9

10

1

10q
,

which proves weak dispersiveness of Λα by taking a = 1
10 .

Examples of strongly dispersive discrete subgroups are provided by the following

Proposition 2.6. If Λ is a discrete subgroup defining a Cousin group and such that all the
entries of some period matrix are algebraic numbers, then Λ is strongly dispersive.

Proof. By using a generalization of Liouville’s Theorem on the approximation of algebraic
numbers ([Sha98, Theorem 1.5]) it is proved in [BO15, Theorem 4.3] that the discrete subgroup
OK is weakly dispersive, see Section 4 for notations.

More precisely in the proof of [BO15, Theorem 4.3] it is shown that if R is a k × l matrix
with elements algebraic numbers, then there exist constants C > 0 and A < 0 such that for
any σ ∈ Zk \ {0} and every τ ∈ Zl, ||tσR +t τ ||> C|σ|A. But this condition is stronger than
strong dispersiveness, since clearly for any a ∈ (0, 1), there exists a constant C(a) such that

|σ|A> C(a)a|σ| for all σ ∈ Zk \ {0}.

The following result proved by Chr. Vogt in [Vog82], [Vog83] will be extended in Section 3
to the case of open sets in Cn/Λ, whose inverse image in Cn are convex domains.

Theorem 2.7 ([Vog82],[Vog83]). If X = Cn/Λ is a Cousin group, then H1(X,O) is finite
dimensional if and only if Λ is weakly dispersive. Moreover, in this situation all the Dolbeault
cohomology groups Hp,q

∂
(X) are finite dimensional and X satisfies the Hodge decomposition.

Additionally, Vogt gives several equivalent conditions for the finite dimensionality ofH1(X,O)
in terms of the discrete subgroup Λ, the holomorphic line bundles on X and the generators
of H1(X,O).

3. Dolbeault cohomology of convex domains in Cousin groups.

In this section we will prove analogous results to those of Theorem 2.7 for open subsets U
in Cousin groups X = Cn/Λ, whose inverse images in Cn are convex domains. We will call
such open sets U in X simply convex since they are the geodesically convex open subsets of
the Lie group X for the unique system of geodesics which are left and right invariant; these
are given by translates of one-parameter subgroups of X. In particular, the definition of a
convex open subset in a Cousin group X does not depend on the chosen presentation Cn/Λ
for X; see also [AK01, Proposition 1.1.8] for an alternative argument.

Theorem 3.1. Let U be a domain of a Cousin group X = Cn/Λ, whose inverse image Ũ in
Cn is a convex domain. If Λ is strongly dispersive then Hq(U,Ωp) is finitely generated and
moreover,

{[dzI ∧ dzJ ] | I ⊆ {1, . . . , n}, J ⊆ {1, . . . ,m}, |I|= p, |J |= q}

is a basis and thus, dimCH
q(U,Ωp) =

`

n
p

˘

·
`

m
q

˘

.

We follow the lines of the proofs of Proposition 4 and Proposition 5 in [Vog83] and adapt
them to the new setting.

We start with the following lemma:
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Lemma 3.2. Let q > 1. Any Λ-invariant ∂-closed (0, q)-form ω on Ũ is ∂-cohomologous to

a Λ-invariant (0, q)-form on Ũ , whose coefficients depend holomorphically on zm+1, . . . , zn.

The proof of this Lemma follows the same steps as in [Vog83, Proposition 4]. The only new
thing we have to check is that U is the total space of a locally trivial holomorphic fibration
over a complex torus with fibre a Stein manifold. To this aim we remark as in the proof
of Proposition 2.3 that Ũ = Cm × W , where W is a convex Zn−m-invariant domain. Since
U = Ũ/Λ, the map

(3.1) π : U → Cm/T,

given by π([z1, . . . , zn]) = {(z1, . . . , zm), is well-defined, where [·] and ·̂ are classes with respect
to taking quotients by Λ and by the lattice generated by the columns of T , respectively, cf.
[Vog83, Proposition 2]. Clearly, π is a holomorphic map and in fact, (3.1) is a fibration with
fibre isomorphic to F := W/Zn−m. Via the map exp(2πi ·), Cn−m/Zn−m is biholomorphic
to (C∗)n−m, so we regard F directly as an open subset of (C∗)n−m. In fact, seen in this
way, F is a (relatively complete) logarithmically convex Reinhardt domain in (C∗)n−m and
is therefore a domain of holomorphy in Cn−m and thus Stein, [Car73, Lemma 1.7] (see also
[JP08, Theorem 1.11.13]).

We can now proceed to the proof of Theorem 3.1. Unlike the situation of [Vog83] we need
to deal with domains of holomorphy different from (C∗)n−m. This is no major obstruction
in the case of the proof of the previous Lemma, but will entail substantial modifications in
the proof of Theorem 3.1 as compared to [Vog83, Proposition 5]. More precisely, in loc. cit.
essential use is made of the classical fact that a Laurent series

∑

σ∈Zp aσz
σ is convergent on

(C∗)p if and only if lim supσ∈Zp
|σ|
a

|aσ| = 0. In our set-up this is no longer applicable and we
need to show that we get positive convergence radii of corresponding Laurent series around
each point of our domain of holomorphy. For this the strong dispersiveness condition will be
used in a crucial way.

Proof. We divide the proof in two steps.

Step 1: We will show that any ∂-closed, Λ-periodic (p, q)-form ω on Ũ is ∂-cohomologous to
a form

∑

I,J cIJdzI ∧ dzJ with constant coefficients cIJ ∈ C.

If ω is a (p, 0)-form, the statement is obvious, as ω has to be of type
∑

I fIdzI , with fI
holomorphic Λ-invariant functions on Ũ , but these are constant by Proposition 2.3.

Let now q > 1. Once we prove the statement for (0, q)-forms, it will immediately follow for
(p, q)-forms as well, since ω =

∑

I,J fIJdzI ∧dzJ =
∑

dzI ∧ (
∑

J fIJdzJ) and each
∑

J fIJdzJ

is ∂-closed.

Therefore, take ω =
∑

J fJdzJ on Ũ , ∂-closed, Λ-periodic. By Lemma 3.2, we may assume
that fJ depend holomorphically on zm+1, . . . , zn and J ⊆ {1, 2, . . . ,m}.

The strategy will be, as in the proof of [Vog83, Proposition 5], to define a Λ-invariant (0, q−1)-

form η on Ũ , using the Fourier expansion of the Λ-invariant functions fJ and show there exist
cJ ∈ C such that ω−

∑

J cJdzJ = ∂η. Formally, η has the same expression as in the proof of
[Vog83, Proposition 5], but the difficult part in our case will be to show that η is well defined,
namely, that its coefficients are convergent series.
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Let (z1, . . . , zm) =: x + iy and (zm+1, . . . , zn) =: w. For any π, ρ ∈ Zm and σ ∈ Zn−m, we

define the following function on Ũ :
(3.2)
γπ,ρ,σ(z1, . . . , zn) := exp

`

2πi ·
`

(tπ −t σR1)x+ (tρ−t πM +t σ(R1M −R2)) ·N
−1y +t σw

˘˘

Each γπ,ρ,σ is Λ-invariant and thus, we develop fJ in Fourier series on Ũ :

(3.3) fJ =
∑

π,ρ,σ

fJ,π,ρ,σγπ,ρ,σ,

where fJ,π,ρ,σ ∈ C. We define the following:

(3.4) aπ,ρ,σ :=
1

2

`

(tπ −t σR1) + i(tρ−t πM +t σ(R1M −R2))N
−1

˘

∈ Cm

(3.5) B := {
m
∑

j=1

bjdzj | bj ∈ C}

(3.6) λπ,ρ,σ : B → C, λπ,ρ,σ(
m
∑

j=1

bj · dzj) :=

∑m
j=1 bjaπ,ρ,σ,j

2πi||aπ,ρ,σ ||2
,

where aπ,ρ,σ,j is the j-th component of aπ,ρ,σ. We will see at a further point in the proof that
||aπ,ρ,σ|| does not vanish.

We extend λπ,ρ,σ to a homomorphism:
(3.7)

λπ,ρ,σ⌋ : Λ
kB → Λk−1B λπ,ρ,σ⌋(α1∧ . . .∧αk) =

k
∑

p=1

(−1)k−pλπ,ρ,σ(αp)α1∧ . . .∧ α̂p∧ . . .∧αk

and define the Λ-periodic (0, q − 1)-form on Ũ .

(3.8) η =
∑

(π,ρ,σ)6=0

(−1)q−1

˜

λπ,ρ,σ⌋(
∑

J

fJ,π,ρ,σdzJ)

¸

γπ,ρ,σ.

By a straightforward, but lengthy, computation, presented in [Vog83], one gets that ∂η =
ω −

∑

J fJ,0,0,0dzJ . Step 1 will be clear once we show that η is a convergent series. It is at
this point that the strong dispersiveness of Λ will play an essential role.

We now proceed to the proof of the convergence of the series η. We show first by using (2.4)
that for any a ∈ (0, 1), there exists a constant C1(a) > 0 such that for any (π, ρ, σ) 6= 0,
||aπ,ρ,σ||> C1(a)a

|σ|.

Take k1 := ||MN−1||, k2 :=
1

||N || .

Then clearly

(3.9) ||αMN−1||6 k1||α||, ∀α ∈ Rm

(3.10) ||αN−1||> k2||α||, ∀α ∈ Rm

Let k := k2
1+k1+k2

. If (π, ρ, σ) 6= 0 is such that 2||Re(aπ,ρ,σ)||= ||tπ −t σR1||6 kC(a)a|σ|, then

by (2.4), we get ||tρ−t σR2||> (1− k)C(a)a|σ| and therefore by (3.9) and (3.10):
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(3.11)

2||Im(aπ,ρ,σ)||= ||(tρ−tσR2)N
−1−(tπ−tσR1)MN−1||> (k2(1−k)C(a)−k1kC(a))a|σ| = kC(a)a|σ|.

This means that for C1(a) :=
1
2kC(a) we get

(3.12) ||aπ,ρ,σ||> C1(a)a
|σ|,∀(π, ρ, σ) 6= 0.

In particular ||aπ,ρ,σ|| does not vanish for (π, ρ, σ) 6= 0.

By the expression in (3.8), we deduce that:

(3.13) η =
∑

|K|=q−1

¨

˝

∑

(π,ρ,σ)6=0

tπ,ρ,σγπ,ρ,σ

˛

‚dzK ,

where tπ,ρ,σ is a finite sum of terms of type ±fK∪{j},π,ρ,σ
aπ,ρ,σ,j

||aπ,ρ,σ||2
. We need to show that

hK :=
∑

(π,ρ,σ)6=0 tπ,ρ,σγπ,ρ,σ is convergent on Ũ .

We prove that for each |J |= q, hJ :=
∑

(π,ρ,σ)6=0 fJ,π,ρ,σ
aπ,ρ,σ,j

||aπ,ρ,σ||2
γπ,ρ,σ is convergent on Ũ and

this will suffice.

Fix z0 = x0 + iy0 ∈ Cm. Then

hJ(z0, w) =
∑

σ

˜

∑

π,ρ

fJ,π,ρ,σ
aπ,ρ,σ,j

||aπ,ρ,σ||2
exp(2πia(z0))

¸

exp(2πitσ · w),

where a(z) := (tπ −t σR1)x+ (tρ−t πM +t σ(R1M −R2)) ·N
−1y ∈ R , for any z ∈ Cm.

Recall that Ũ = Cm ×W , where W is a Zn−m-invariant convex Stein domain in Cn−m. We

prove now that
∑

σ

´

∑

ρ,π fJ,π,ρ,σ
aπ,ρ,σ,j

||aπ,ρ,σ||2
exp p2πi(a(z))q

¯

wσ is uniformly absolutely conver-

gent on Cm ×W1, where W1 = exp(2πiW ). Note that W1 is a Reinhardt domain, therefore,
W1 = Tn−m · S, where S = {(|w1|, . . . , |wn−m|) | (w1, . . . , wn−m) ∈ W1}.

Choose w0 = (w0
1 , . . . , w

0
n−m) ∈ W1 ∩ Rn−m

+ , a neighbourhood Uz0 of z0 in Cm and Sw0

ε =

(w0
1 − ε, w0

1 + ε)× . . .× (w0
n−m − ε, w0

n−m + ε), for a small ε > 0, such that S
w0

ε ⊂ W1.

For any a ∈ (0, 1), on Uz0 × Tn−m · Sw0

ε

2

, we have by (3.12):

(3.14)

∑

σ

(

∑

ρ,π

|fJ,π,ρ,σ|·|
aπ,ρ,σ,j

||aπ,ρ,σ||2
|·|exp (2πi(a(z))|)

)

|wσ |=
∑

σ

(

∑

ρ,π

|fJ,π,ρ,σ|·|
aπ,ρ,σ,j

||aπ,ρ,σ||2
|

)

|wσ|6

mC1(a)
−1
∑

σ

(

∑

ρ,π

|fJ,π,ρ,σ|·a
−|σ|

)

|wσ |.

We split now the series
∑

σ

´

∑

ρ,π|fJ,π,ρ,σ|·a
−|σ|

¯

|wσ | in a sum of 2n−m series

(3.15) hag :=
∑

σ∈Dg

˜

∑

ρ,π

|fJ,π,ρ,σ|·a
−|σ|

¸

|wσ|,



8 ALEXANDRA OTIMAN AND MATEI TOMA

where g : {1, . . . , n−m} → {−1, 1} and Dg = {(σ1, . . . , σn−m) ∈ Zn−m\{0} | sgn(σi) = g(i)}.

By convention we consider sgn(0) = 1. Then on Uz0 × Tn−m · Sw0
ε
2
:

hag =
∑

σ∈Dg ,ρ,π

|fJ,π,ρ,σ|·a
−|σ||

w1

w0
1 + g(1)ε

|σ1 . . . |
wn−m

w0
n−m + g(n−m)ε

|σn−m |w0
1 + g(1)ε|σ1 . . . |w0

n + g(n −m)ε|σn−m

6
∑

σ∈Dg ,ρ,π

|fJ,π,ρ,σ|·a
−|σ|δ

|σ|

(w0
1 ,...,w

0
n−m),ε

|w0
1 + g(1)ε|σ1 . . . |w0

n + g(n −m)ε|σn−m ,

where δ(w0
1 ,...,w

0
n−m),ε = max{|

w0
1 + g(j)

ε

2
w0
1 + g(j)ε

|sgn(σj) | σj 6= 0} < 1.

We can choose now a to be δ(w0
1 ,...,w

0
n−m),ε and thus,

hδg 6
∑

σ∈Dg,ρ,π

|fJ,π,ρ,σ|·|w
0
1 + g(1)ε|σ1 . . . |w0

n + g(n −m)ε|σn−m .

But the series in the right hand side above is bounded by a constant C((w0
1, . . . , w

0
n−m), ε),

since fJ is holomorphic in zm+1, . . . , zn and thus, the series
∑

σ,π,ρ fJ,π,ρ,σexp(2πiz)w
σ is

absolutely uniformly convergent on Uz0 × Tn−m · Sw0
ε
2
.

What we actually proved above is that
∑

σ 6=0

∑

(π,ρ) fJ,π,ρ,σ
aπ,ρ,σ,j

||aπ,ρ,σ||2
γπ,ρ,σ is convergent. But

if σ = 0, we observe that for (π, ρ) 6= 0, ||aπ,ρ,0||> 1. Indeed, it is clear by 2||Re aπ,ρ,0||= ||tπ||
and 2||Im aπ,ρ,0||= ||tρ−t π||.

Consequently, the missing part of hJ , which is
∑

(π,ρ)6=0 fJ,π,ρ,0
aπ,ρ,0,j

||aπ,ρ,0||2
γπ,ρ,0, is dominated by

∑

(π,ρ)6=0 fJ,π,ρ,0γπ,ρ,0, which is convergent since fJ is. We conclude that η is convergent on Ũ

and Step 1 is proved.

Step 2. We prove now that {[dzI ∧ dzJ ] | I = (1 6 i1 < . . . < ip 6 n), J = (1 6 i1 <
. . . < iq 6 m)} is a basis for Hq(U,Ωp). Step 1 tells us that Hq(U,Ωp) is generated by
{[dzI ∧ dzJ ] | I = (1 6 i1 < . . . < ip 6 n), J = (1 6 i1 < . . . < iq 6 m)}, therefore
dimCH

q(U,Ωp) 6
`

n
p

˘`

m
q

˘

. Since all Hq(U,Ωp) and H∗
dR(U,C) are finitely generated, we can

apply Frölicher’s inequality and get:

(3.16) dimCH
l
dR(U,C) 6

∑

p+q=l

dimCH
q(U,Ωp) 6

∑

p+q=l

ˆ

n

p

˙ˆ

m

q

˙

=

ˆ

n+m

l

˙

As U ≃ (S1)n+m × Rn−m, dimCH
l
dR(U,C) =

`

n+m
l

˘

, therefore we have equality in (3.16) and
the conclusion follows.

The fact that equality holds in (3.16) immediately implies

Corollary 3.3. If Λ is strongly dispersive, then the Hodge decomposition holds for any convex
domain U in the Cousin group Cn/Λ.

We next state and prove a converse of Theorem 3.1:
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Theorem 3.4. If H1(U,O) is finite dimensional for every open subset U of the Cousin group

X = Cn/Λ such that its inverse image Ũ in Cn is convex, then Λ is strongly dispersive.

Proof. We shall argue by contradiction, namely, we show that if Λ is not strongly dispersive,
then there exists an open convex U such that H1(U,O) is infinite dimensional. Indeed, if Λ
is not strongly dispersive,

∃a ∈ (0, 1),∀C > 0,∃σ(C) ∈ Zn−m \ {0},∃τ(C) ∈ Z2m, ||tσ(C)R−t τ(C)||< Ca|σ(C)|,

which by taking C = 1
k
, with k ∈ N∗, implies that:

(3.17) ∃a ∈ (0, 1),∀k ∈ N∗,∃σ(
1

k
) ∈ Zn−m \{0},∃τ(

1

k
) ∈ Z2m, ||tσ(

1

k
)R−t τ(

1

k
)||<

1

k
a
|σ(

1

k
)|
.

For convenience, we shall use the notation σ(k) instead of σ( 1
k
). We can assume that σ(k) 6=

σ(l) for k 6= l, otherwise we can extract a subsequence (ki)i∈N such that σ(ki) are all different.
Indeed, if we had a finite set of values for the sequence (σ(k))k∈N, we would have a subsequence
(kj)j∈N such that σ(kj) = c 6= 0, for all kj . Then by (3.17), we get that tcR ∈ Z2m, which
is impossible by Proposition 2.2. Moreover, by taking again a subsequence if needed, we can
consider that for any position i ∈ {1, . . . , n − m}, sgn(σ(k)i) is constant. Therefore, (3.17)
tells us that:
(3.18)

∃a ∈ (0, 1),∀k ∈ N∗,∃σ(k) ∈ Zn−m \ {0},∃τ(k) ∈ Z2m, ||tσ(k)R −t τ(k)||<
1

k
a|σ(k)| 6 a|σ(k)|,

such that σ(k) 6= σ(l), whenever k 6= l and hence |σ(k)|−−−→
k→∞

∞.

We are led to consider Ũ := Cm ×
∏n−m

i=1 Hsgn(σ(k)i) and U := Ũ/Λ, where we set H+1 := H,
H−1 := −H = {z ∈ C | Im z < 0}. Here we have set sgn(0) = +1 by abuse of notation. In
fact by applying the automorphism

z 7→ (z1, ..., zm, sgn(σ(k)1) · zm+1, ..., sgn(σ(k)n−m) · zn)

of Cn we reduce ourselves to the situation where all σ(k)i are non-negative. In the sequel
we will suppose that this is the case. Thus the considered convex domain in Cn will be
Ũ = Cm ×Hn−m.

We are in a situation where the sheaf cohomology H1(U,O) may be computed as the group co-

homologyH1(Λ,H0(Ũ ,O)), where Λ onH0(Ũ ,O) naturally via translation on Ũ , see [Mum70,
Appendix to Section 2]. Thus

H1(U,O) ∼= H1(Λ,H0(Ũ ,O)) = Z1(Λ,H0(Ũ ,O))/B1(Λ,H0(Ũ ,O)),

where

Z1(Λ,H0(Ũ ,O)) :={A : Λ× Ũ → C |

A(λ, ·) ∈ H0(Ũ ,O) ∀λ ∈ Λ,

A(λ1 + λ2, z) = A(λ1, z + λ2) +A(λ2, z), ∀λ1, λ2 ∈ Λ, ∀z ∈ Ũ},

B1(Λ,H0(Ũ ,O)) :={A : Λ× Ũ → C | ∃g ∈ H0(Ũ ,O)

A(λ, z) = g(z + λ)− g(z) ∀λ ∈ Λ, ∀z ∈ Ũ}.

The strategy is to define an infinite family of linearly independent elements inH1(Λ,H0(Ũ ,O)).
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For any σ ∈ Zn−m \ {0} we set ησ := maxrj |exp(2πi
tσ · rj)− 1|, where rj for j ∈ {1, . . . , 2m}

are the columns of R. We shall denote by vi the columns of P .

For λ =
∑n+m

j=1 njvj ∈ Λ, nj ∈ Z we will further denote by l(λ) :=
∑n+m

j=1 |nj |.

For each x ∈ (0, 1), we define an element A(x) ∈ Z1(Λ,H0(Ũ ,O)) by:

A(x)(λ, z) :=
∑

k∈N

ax|σ(k)|
ˆ

exp(2πitσ(k) · (λm+1, . . . , λn))− 1

ησ(k)

˙

exp
`

2πitσ(k) · (zm+1, . . . , zn)
˘

.

(3.19)

Let us check the holomorphicity of A(x)(λ, ·) on Ũ for every λ, the other condition being

clearly satisfied. To this aim, as exp(2πitσ(k)·(λm+1,...,λn))−1
ησ(k)

is bounded by l(λ) it suffices to

check that the series S :=
∑

k∈N ax|σ(k)||wm+1|
σ(k)1 · · · |wn|

σ(k)n−m is uniformly convergent on
Dn−m. But this is clear since ax < 1.

Note that

(3.20) A(x)(vi, z) = 0, ∀z ∈ Ũ , ∀i ∈ {1, . . . , n−m}.

Take now s > 0 and 0 < x1 < . . . < xs < 1. We will show that the classes of A(x1), . . . , A(xs)

are C-linearly independent in H1(Λ,H0(Ũ ,O)).

Suppose that this is not the case. Then there exist c1, . . . , cs ∈ C, not all zero and a holo-
morphic function g on Ũ such that

(3.21)

s
∑

i=1

ciA
(xi)(λ, z) = g(z + λ)− g(z).

From (3.20) and (3.21) we deduce that g is (0,Zn−m)-periodic and therefore has a Fourier
series expansion

(3.22) g =
∑

σ∈Zn−m\{0}

gσexp(2πi
tσ · (zm+1, . . . , zn)).

Using now (3.19) and plugging (3.22) in (3.21), we get gσ =
∑s

i=1 ci
axi|σ(k)|

ησ(k)
if σ = σ(k) for

some k ∈ N and gσ = 0 otherwise. Therefore

g =
∑

σ(k)∈Zn−m\{0}

˜

s
∑

i=1

ci
axi|σ(k)|

ησ(k)

¸

exp(2πitσ(k) · (zm+1, . . . , zn)).

Since g is holomorphic, the following series is absolutely uniformly convergent on Dn−m:

g1 :=
∑

σ(k)∈Zn−m\{0}

˜

s
∑

i=1

ci
axi|σ(k)|

ησ(k)

¸

w
σ(k)1
m+1 · · ·wσ(k)n−m

n .

A straightforward computation shows that ||tσ(k)R −t τ(k)||< a|σ(k)| for some τ(k) ∈ Z2m

entails ησ < 2πa|σ(k)|, for all k. It follows that

L := lim supk
1

|σ(k)|
a

ησ(k)
> a−1.

Set ρ := 1
L
. We have ρ 6 a.
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Define

Si := ci
∑

k∈N

˜

axi|σ(k)|

ησ(k)

¸

w
σ(k)1
m+1 · · ·wσ(k)n−m

n .

We may suppose that all coefficients ci are non-zero. Restricting g and the series Si to D via
the diagonal embedding D →֒ Dn−m we get

(3.23) S1|D= g1|D−S2|D− . . .− Ss|D.

But the convergence radius of each Si|D equals a−xiρ and is thus lower or equal to a1−xi and
also lower than 1. It follows that the convergence radius of the series appearing on the left
hand side of equation (3.23) is strictly smaller than the convergence radius of the right hand
side. This is a contradiction.

In fact the family A(x), x ∈ (0, 1) provides an infinite set of linearly independent elements of
H1(U,O).

Corollary 3.5. Let X = Cn/Λ be a Cousin group. Then Λ is strongly dispersive if and only
if H1(U,O) is finitely generated for every convex domain U in X.

4. Dolbeault cohomology of Oeljeklaus-Toma manifolds

In this section we will apply Theorem 3.1 to determine the Dolbeault cohomology of Oeljeklaus-
Toma manifolds. We start by a brief presentation of their construction following [OT05].

Let Q ⊆ K be an algebraic number field with n embeddings in C, out of which s are real,
σ1, . . . , σs:K → R, and 2t are complex conjugated embeddings, σs+1, . . . , σs+t, σs+t+1 =
σs+1, . . . , σs+2t = σs+t:K → C. Clearly, n = s + 2t. In the sequel we shall only consider
algebraic number fields for which s, t > 1.

Let OK be the ring of algebraic integers of K, and O∗,+
K be the group of totally positive units,

which is the subset of OK consisting of those units with positive image through all the real
embeddings.

Consider the action OK 	 Hs × Ct given by:

Ta(w1, . . . , ws, zs+1, . . . , zs+t) := (w1 + σ1(a), . . . , zs+t + σs+t(a)),

where H denotes the upper half-plane and the action O∗,+
K 	 Hs × Ct given by dilatations,

Ru(w1, . . . , ws, zs+1, . . . , zs+t) := (w1 · σ1(u), . . . , zs+t · σs+t(u)).

In [OT05] it is shown that there always exists a subgroup U ⊆ O∗,+
K such that the action

OK ⋊ U 	 Hs × Ct has no fixed point, is properly discontinuous and co-compact. We shall
call such a subgroup admissible. The Oeljeklaus-Toma manifold (OT, shortly) associated to
the algebraic number field K and to the admissible subgroup of positive units U is

X(K,U) := Hs × Ct
L

OK ⋊ U.

Note that the admissibility of U is equivalent to the fact that the action of U on Rs
>0 by

u · (r1, . . . , rs) = (σ1(u)r1, . . . , σs(u)rs) is properly discontinuous and co-compact. By con-
struction, X(K,U) is a smooth fibre bundle over Rs

>0/U , which is diffeomorphic to a real
s-dimensional torus Ts. Moreover, the fibre is again a real torus:

(4.1) Ts+2t → X(K,U)
π
−→ Ts,
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but the fibration is not principal (and of course not holomorphic). The submersion map π is
given by:

(4.2) π([w1, . . . , ws, z1, . . . , zt]) = {(Imw1, . . . , Imws).

We call X(K,U) of simple type if there exists no proper intermediate extension Q ⊂ K
′
⊂ K

such that U ⊂ O∗
K

′ .

By [OT05, Lemma 2.4] Cs+t/OK is a Cousin group and by Proposition 2.6 one has

Proposition 4.1. The discrete subgroup OK is strongly dispersive.

Theorem 3.1 will be applied to the convex open subset (Hs × Ct)/OK of the Cousin group
Cs+t/OK .

Warning: In the previous section, we denoted by U a convex domain in a Cousin group, but
for the rest of the exposition, U shall only stand for an admissible group of positive units.
Also n equals now s+2t and no longer denotes the dimension of the Cousin group we consider.
From now on, we use the notation X instead of X(K,U) for the Oeljeklaus-Toma manifold
and not for the Cousin group Cs+t/OK .

Remark 4.2. In [MT15] the construction of Oeljeklaus-Toma manifolds was slightly gener-
alized by replacing the discrete subgroup OK by an additive subgroup M of rank s+ 2t which
is stable under the action of U . The resulting manifolds X(M,U) were shown to admit finite
unramified covers of type X(OK , U). All our results extend without difficulty to this larger
class of compact complex manifolds. When s = t = 1 the class of manifolds of type X(M,U)
coincides with the class of Inoue-Bombieri surfaces, [MT15, Remark 8].

By the Dolbeault isomorphism, Hp,q

∂
(X) ≃ Hq(X,Ωp), where Ωp is the sheaf of germs of

holomorphic p-forms.

We shall compute Hq(X,Ωp) by using three instruments: the Leray-Serre spectral sequence
associated to the fibration (4.1), Theorem 3.1 and Frölicher-type inequalities.

We denote by pE·,·
r the Leray-Serre spectral sequence associated to (4.1) and the sheaf Ωp.

Then pEi,j
2 = H i(Ts, Rjπ∗Ω

p), where Rjπ∗Ω
p is the sheafification of the presheaf T p

j given
by:

(4.3) T p
j (W ) = Hj(π−1(W ),Ωp

|π−1(W )
),

for any open set W of Ts. We use the notation T̂ p
j from now on, instead of RjΩp.

Lemma 4.3. For any 0 6 p, j 6 s + t, T̂ p
j is the local system on Ts associated to the

representation ρ : U → GL pN(p, j),Cq,

(4.4) ρ(u) = diag(σI(u)σJ(u)),

where N(p, j) =
`

s+t
p

˘`

t
j

˘

, I runs through all the subsets of length p of {1, . . . , s+t}, J through

all the subsets of length j of {1, . . . , t} and for any K = {i1, . . . ik} ⊆ {1, . . . , s+ t}, σK(u) :=

σi1(u) · . . . ·σik(u), with the convention that if K ⊆ {1, . . . , t}, σK(u) := σs+i1(u) · . . . ·σs+ik(u).

Remark 4.4. In particular, when j > t, T̂ p
j is the sheaf that vanishes on every open set of

Ts. Note that π1(T
s) = U .
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Proof. We show first that T̂ p
j is locally constant, namely, that for any x ∈ Ts, there exists

an open set W ∋ x such that T̂ p
j |W

is constant. Indeed, let W ∋ x be a trivialization

open set for (4.1), which can be assumed, by shrinking it if needed, to be the image of an
open set W1 × · · · × Ws ⊂ Rs

>0, where each Wj ⊂ R>0 is an open interval. Then for every

1 6 j 6 s we set W̃i := R × iWj ⊂ H. This is an open convex set in H. We further set

W̃ := W̃1× . . .× W̃s ⊂ Hs. By (4.2) π−1(W ) = W̃ ×Ct/OK . Since W̃ ×Ct is an open convex
OK -invariant subset of Cs+t and since OK is strongly dispersive by Proposition 4.1, we are
in a situation where Theorem 3.1 applies.

By Theorem 3.1 applied to W̃ × Ct and OK , we get that for any open convex trivialization
set W

(4.5) dimCH
j(π−1(W ),Ωp

|π−1(W )
) =

ˆ

s+ t

p

˙ˆ

t

j

˙

= N(p, j).

The basis of Hj(π−1(W ),Ωp

|π−1(W )
) is, therefore, given by {[dzI ∧ dzJ ] | |I|= p, |J |= j, I ⊆

{1, . . . , s+ t}, J ⊆ {1, . . . , t}}.

Since the set of convex open sets W is co-final, in the sense that

(T p
j )x = lim

−→
V ∋x

T p
j (V ) = lim

−→
W∋x,Wconvex

T p
j (W ),

we have (T̂ p
j )x = (T p

j )x = CN(p,j), meaning that T̂ p
j is locally constant.

In order to determine the corresponding representation of U , we need to check how an element
u ∈ U acts on the basis [dzI ∧ dzJ ]. From the definition of OT -manifolds, we have:

u∗(dzI ∧ dzJ) = σI(u)σJ(u)dzI ∧ dzJ

and consequently the representation associated to T̂ p
j is precisely ρ. Since ρ is diagonal, we

deduce moreover that

(4.6) T̂ p
j =

⊕

I,J

LI,J ,

where LI,J is the flat complex line bundle over Ts associated to the representation ρI,J : U →
C∗, ρI,J(u) = σI(u)σJ(u).

Theorem 4.5. Any OT-manifold X satisfies the Hodge decomposition, in the sense that

dimCH
l
dR(X) =

∑

p+q=l

dimCH
q(X,Ωp).

Proof. By the Frölicher inequality, we have:

(4.7) dimCH
l
dR(X) 6

∑

p+q=l

dimCH
q(X,Ωp).

Since pE·,·
r ⇒ H∗(X,Ωp), by a Frölicher type inequality, we get:

(4.8) dimCH
q(X,Ωp) 6

∑

i+j=q

dimCH
i(Ts, T̂ p

j ).

By (4.6), dimCH
i(Ts, T̂ p

j ) = dimCH
i(Ts,

⊕

I,J LI,J) and using now Lemma 2.4 in [IO], the
following holds:
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dimCH
i(Ts,

⊕

I,J

LI,J) = dimCH
i(Ts) · ♯{I ⊆ {1, . . . , s + t}, J ⊆ {1, . . . , t} | |I|= p, |J |= j, ρI,J ≡ 1}

(4.9)

=

ˆ

s

i

˙

· ♯{I ⊆ {1, . . . , s+ t}, J ⊆ {1, . . . , t} | |I|= p, |J |= j, σI(u) · σJ(u) ≡ 1}(4.10)

Putting together (4.7), (4.8) and (4.9), we have:

(4.11)

dimCH
l
dR(X) 6

∑

p+q =l

dimCH
q(X,Ωp) 6

∑

p+q =l

∑

i+j =q

ˆ

s

i

˙

· ♯{I ⊆ {1, . . . , s+ t}, J ⊆ {1, . . . , t} | |I|= p, |J |= j, σI(u) ·σJ(u) ≡ 1}

Using the fact that for any 1 6 r 6 t, σs+r(u) = σs+t+r(u), the last term of the inequality can
be rewritten as

∑

p+q=l

`

s
q

˘

·♯{I = {i1, . . . , ip} ⊆ {1, . . . , s+2t} | σi1(u)·. . .·σip(u) = 1,∀u ∈ U}.

By Theorem 3.1 in [IO], this is exactly dimCH
l
dR(X). Hence all the inequalities above are

actually equalities and we obtain Hodge decomposition.

Corollary 4.6. For any OT manifold X of type (s, t), dimCH
1(X,O) = s.

Proof. By [OT05], we know that b1 = s and H0(X,Ω1) = 0. Applying now Theorem 4.5 for
l = 1, we immediately get dimCH

1(X,O) = s.

In [IO] it is shown that the de Rham cohomology of an OT manifold X can be easily computed
if X satisfies the following condition:

Condition (C): σIσJ ≡ 1 if and only if I = J = ∅ or I = {1, . . . , s + t} and J = {1, . . . , t},
where σI and σJ are defined on U as in Lemma 4.3.

Remark 4.7. From a number theoretical point of view, Condition (C) means that if a product
of embeddings σL equals 1 on U then this must be a power of σ1 · . . . · σs+2t. Moreover, it
automatically implies that X(K,U) is of simple type. Indeed, if there existed Q ⊂ K

′
⊂ K an

intermediate extension such that U ⊂ K
′
, then there would exist a product σi1 · . . . · σik giving

1 on U , where k = [K
′
: Q] < s+ 2t.

A specific situation when Condition (C) holds is when |σs+1(u)|
2= . . . = |σs+t(u)|

2, for any
u ∈ U , as shown in the proof of [IO, Proposition 6.4]. Geometrically, this particular condition
is equivalent to the existence of a locally conformally Kähler metric on X(K,U), as proven
in [OT05, Proposition 2.9] and in the appendix of L. Battisti of [Dub14], Theorem 8.

On the topological side, Condition (C) can also be interpreted as X(K,U) having the lowest
possible Betti numbers among the OT-manifolds of type (s, t), see [IO, Theorem 3.1].

By a straightforward computation that results from (4.11) being an equality, we also have the
following:

Corollary 4.8. If X satisfies Condition (C), then

dimCH
q(X,O) =

ˆ

s

q

˙

if q 6 s, dimCH
q(X,Ωs+t) =

ˆ

s

q − t

˙

if q > t

and the rest of the Dolbeault cohomology groups are trivial.
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Remark 4.9. In [Kas13] it is shown that any OT manifold X admits a solvmanifold presen-
tation Γ \G, in such a way that the natural complex structure on G is G-left invariant. It is
well known that the Lie algebra cohomology H∗(g) injects into H∗

dR(X). If X satisfies Condi-
tion (C), one can check that the generators given in [IO] are G-invariant, hence the inclusion
morphism H∗(g) → H∗

dR(X) is an isomorphism. This and the Hodge decomoposition for X
gives an isomorphism at the level of Dolbeault cohomologies H∗,∗(g) ∼= H∗,∗(X).

Corollary 4.10. If X is of simple type, then H0(X,Ω2) = 0 = H1(X,Ω1) and dimCH
2(X,O) =

`

s
2

˘

.

Proof. By the proof of [OT05, Proposition 2.3], we deduce that if X is of simple type, then
for any different indices i1, i2 ∈ {1, . . . , s + 2t}, σi1σi2 : U → C∗ is not trivial and moreover,
b2 =

`

s
2

˘

. Therefore, using again (4.11) for l = 2, we obtain the stated dimensions.

Finally by Corollary 4.6 and Remark 4.2 we get

Corollary 4.11. For an Inoue-Bombieri surface X one has dimCH
1(X,O) = 1.
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(Cited on page 5.)

[Kas13] Hisashi Kasuya, Vaisman metrics on solvmanifolds and Oeljeklaus-Toma manifolds, Bull. Lond.
Math. Soc. 45 (2013), no. 1, 15–26. MR 3033950 (Cited on page 15.)

[MT15] Rahim Moosa and Matei Toma, A note on subvarieties of powers of OT-manifolds, Bull. Math. Soc.
Sci. Math. Roumanie (N.S.) 58(106) (2015), no. 3, 311–316. MR 3410259 (Cited on page 12.)

[Mum70] David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics,
No. 5, Published for the Tata Institute of Fundamental Research, Bombay, 1970. MR MR0282985
(44 #219) (Cited on page 9.)

[OT05] Karl Oeljeklaus and Matei Toma, Non-Kähler compact complex manifolds associated to number fields,
Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 161–171. MR 2141693 (Cited on pages 1, 2, 11, 12,
14, and 15.)

[Sha98] I. R. Shafarevich (ed.), Number theory. IV, Encyclopaedia of Mathematical Sciences, vol. 44,
Springer-Verlag, Berlin, 1998, Transcendental numbers, A translation of ıt Number theory. 4 (Rus-
sian), Ross. Akad. Nauk, Vseross. Inst. Nauchn. i Tekhn. Inform., Moscow, Translation by N. Koblitz,
Translation edited by A. N. Parshin and I. R. Shafarevich. MR 1603604 (Cited on page 4.)

[Vog82] Christian Vogt, Line bundles on toroidal groups, J. Reine Angew. Math. 335 (1982), 197–215.
MR 667467 (Cited on pages 2, 3, and 4.)

[Vog83] , Two remarks concerning toroidal groups, Manuscripta Math. 41 (1983), no. 1-3, 217–232.
MR 689137 (Cited on pages 1, 2, 4, 5, and 6.)



16 ALEXANDRA OTIMAN AND MATEI TOMA

Alexandra Otiman, Roma Tre University, Department of Mathematics and Physics, Largo San

Leonardo Murialdo, Rome, Italy AND

Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 21, Calea Grivitei,

010702, Bucharest, Romania, AND

University of Bucharest, Research Center in Geometry, Topology and Algebra, Faculty of

Mathematics and Computer Science, 14 Academiei Str., Bucharest, Romania

Email address: aiotiman@mat.uniroma3.it, alexandra.otiman@imar.ro
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