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Abstract. We compare two naturally arising notions of “unknotting number” for 2-spheres in the
4-sphere: namely, the minimal number of 1-handle stabilizations needed to obtain an unknotted
surface, and the minimal number of Whitney moves required in a regular homotopy to the unknotted
2-sphere. We refer to these invariants as the stabilization number and the Casson-Whitney number
of the sphere, respectively. Using both algebraic and geometric techniques, we show that the
stabilization number is bounded above by one more than the Casson-Whitney number. We also
provide explicit families of spheres for which these invariants are equal, as well as families for which
they are distinct. Furthermore, we give additional bounds for both invariants, concrete examples of
their non-additivity, and applications to classical unknotting number of 1-knots.

1. Introduction and Motivation

This paper compares and relates a slew of algebraic and geometric measures of complexity of
2-knots in the 4-sphere. What has traditionally been called the “unknotting number” of a 2-knot
K ⊂ S4, which we call the stabilization number ust(K), records the minimal number of stabilizations
of K required to obtain a smoothly embedded surface that bounds a solid handlebody [HMS79].
This is analogous to the minimal number of 1-dimensional stabilizations (i.e. band attachments) of
a 1-knot needed to obtain an unlink. This is bounded above by, but is not in general equal to, the
classical unknotting number: indeed there are many examples of low-crossing knots for which this
inequality is strict.

The classical unknotting number of a 1-knot embedded in the 3-sphere records the minimal
number of double points that occur during any regular homotopy to the unknot. The analogue we
consider in the 4-dimensional setting is the minimal number of Whitney moves needed in a regular
homotopy taking a 2-knot K to the unknot (double points are introduced/removed by a finger
move/Whitney move). We call the minimal number of Whitney moves the Casson-Whitney number
ucw(K) of the knot K, since techniques for manipulating finger moves (the inverse homotopy to a
Whitney move) were pioneered by Casson [Cas86]. In Section 3, we use recent results of [Sin20]
to obtain the following relationship between the stabilization number and the Casson-Whitney
number.

Theorem 1.1. For any 2-knot K, ust(K) ≤ ucw(K) + 1.

A careful manipulation of simple regular homotopies to the unknot in Section 4 also gives settings
in which this inequality is always strict.

Theorem 1.2. Any 2-knot K with ucw(K) = 1 also has ust(K) = 1.

Moreover, by considering the effect of finger moves and stabilizations on the fundamental group
of the complement, we are able to find examples of 2-knots for which equality of these unknotting
invariants does not hold.

Theorem 1.3. There are infinitely many 2-knots K with ust(K) = 1 and ucw(K) = 2.
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In Section 4, we also give some special families of 2-knots in which we can bound both the
stabilization number and the Casson-Whitney number from above, using explicit geometric con-
structions. For instance, we find that the fusion number of a ribbon 2-knot is an upper bound for
the Casson-Whitney number.

Theorem 1.4. For a ribbon 2-knot K, ucw(K) ≤ fus(K).

The analogous result for the stabilization number ust(K) ≤ fus(K) is due to Miyazaki [Miy86].
In Section 5, we develop the algebraic Casson-Whitney number acw, a natural lower bound for ucw,
and prove that for a pair of 2-knots, both admitting a Fox coloring, the Casson-Whitney number
of their connected sum must be at least 2. A Fox coloring of a 2-knot is a surjection from the
fundamental group of its complement onto a dihedral group, which sends meridians of the 2-knot
to reflections. The determinant of a 2-knot is the evaluation of its Alexander ideal ∆(K) at t = −1,
and as in the classical case a 2-knot K has a p-coloring for prime p if and only if p divides its
determinant ∆(K)|−1 [Jos19]. Thus, Casson-Whitney number one 2-knots cannot be factored into
a connected sum of two 2-knots, each with nontrivial determinant (cf. the result of Scharlemann
that unknotting number one 1-knots are prime [Sch85]).

Theorem 1.5. Let K1,K2 be 2-knots with determinants ∆(Ki)|−1 6= 1. Then ucw(K1 #K2) ≥ 2.

Miyazaki found 2-knots K1,K2 with ust(Ki) = 1 but ust(K1 #K2) = 1 as well [Miy86]. Since
his examples have nontrivial determinants, these examples together with the above theorem imply
Theorem 1.3. The non-additivity of both ust and ucw is discussed in Section 6, where we provide
explicit families of 2-knots for which additivity fails by an arbitrarily large amount.

Theorem 1.6. For any positive c, n ∈ N, there exist 2-knots K1, . . . ,Kn with
ust(Ki) = ucw(Ki) = c,

c ≤ ust(K1 # · · ·#Kn) ≤ 2c, and
c ≤ ucw(K1 # · · ·#Kn) ≤ 2c.

In the final section, we suggest some possible directions for further study. Recently, the relationship
between two similar invariants dst and dsing was studied by Singh [Sin20] (the invariant dsing already
appeared as µsing in [JZ18]). His invariants record the minimal “width” of a sequence of stabilizations
and destabilizations of a regular homotopy, meaning the maximum number of stabilizations or
double points that occur simultaneously. The invariants we consider, on the other hand, record the
minimal “length” of a sequence of stabilizations and destabilizations of a regular homotopy, meaning
the total number of stabilizations or double points that occur overall. Many of the geometric
techniques used in our arguments are inspired by those of Singh, as well as both Gabai [Gab20]
and Schneiderman and Teichner [ST19]. A recent paper of Miller and Powell [MP19] also studies
the stabilization distance between arbitrary surfaces in S4, as well as the related relative setting of
properly embedded surfaces in B4.

All manifolds and maps will be smooth unless stated otherwise. All (ambient) manifolds will also
be assumed to be connected, and both manifolds and surfaces will be both compact and orientable.

Acknowledgements. We greatly appreciate the support and advice given to us by David Gay,
Rob Kirby, Mark Powell, Arunima Ray, Rob Schneiderman, and Peter Teichner. In addition, we
would like to thank the entire topology community at MPIM Bonn for providing such a welcoming
and stimulating atmosphere in which to collaborate and learn. A special thank you to Rob, for
lunch in Pisa, and to Mark, Aru and Rob for their helpful edits. We thank the anonymous reviewers
for their careful reading of our manuscript and their many insightful comments and suggestions.

2. Background

For all definitions below, let S be a smoothly immersed surface in S4. We use the shorthand
πS := π1(S4 −N(S), ∗) for the fundamental group of the complement (of a neighborhood N(S) of
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S

α Add 1-handle ∂

Figure 1. The stabilization (right) of a surface S along guiding arc α.

S), where a basepoint ∗ is understood. This section will mainly be spent analyzing the algebraic
impact of the geometric operations we will be interested in.

2.1. The stabilization number.

Definition 2.1. Suppose α is an arc with interior embedded in S4 − S, whose endpoints lie on
the surface S. The normal bundle of α in S4 contains an embedded copy of D2 × I intersecting
S in exactly D2 × ∂I such that the surface (S − (D2 × ∂I)) ∪ (∂D2 × I)1 is orientable. This
resulting surface is called the stabilization of S along α. We call α the guiding arc for the
stabilization.

Observe that, as suggested by our terminology, the isotopy class of the stabilization depends
only on the guiding arc α and not on the choice of sub-bundle D2 × I (see Remark 2.5 for a similar
discussion and Remark 5.3 of [Gab20] for more detail). Since guiding arcs with the same endpoints
that are homotopic rel boundary are also isotopic rel boundary in dimension 4, the stabilizations
along these arcs are isotopic.

Definition 2.2. A smoothly unknotted surface in S4 is a smoothly embedded surface of any
genus that bounds a smoothly embedded solid handlebody.

Indeed, since S4 is simply-connected the cores of the 1-handles of any pair of handlebodies of
the same genus are isotopic. This can be used to guide an isotopy to show that there is a unique
unknotted surface of each genus.

Any closed orientable surface K in the 4-sphere is smoothly isotopic to an unknotted surface
after a finite number of stabilizations. To see this, note that such a surface K bounds a smoothly
embedded 3-manifold M ⊂ S4 called its Seifert solid which can be built as a handlebody from
K × I by attaching 1-handles to K ×{1}, followed by 2 and 3-handles. Performing stabilizations to
K along the core arcs of the 1-handles of M gives a surface K ′ that bounds the solid handlebody
consisting of the 2 and 3-handles of M , and so by definition is unknotted.

Definition 2.3. The stabilization number ust(K) of a 2-knot K is the minimal number of
1-handle stabilizations needed to obtain an unknotted surface.

2.2. The Casson-Whitney number. By Smale [Sma58, Theorem D] and Hirsch [Hir59, Theorem
8.3], embedded surfaces in a orientable 4-manifold are homotopic if and only if they are regularly
homotopic, i.e. homotopic through immersions. Generically, there are only finitely many times
during a regular homotopy at which the immersed sphere is not self-transverse – at these times,
double points of opposite sign are either introduced or cancelled.

Definition 2.4. The local model for the regular homotopy removing pairs of double points is
called a Whitney move; this homotopy is supported in a regular neighborhood of a Whitney
disk W . The inverse to this homotopy is called a finger move, which is supported in a regular
neighborhood of an arc α whose endpoints lie on the surface, and whose interior is embedded in the

1With corners smoothed, as in Figure 1.
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W

α

ω2

ω1

Finger move

Whitney move

Figure 2. The local model of a finger move along the guiding arc α, and Whitney
move along the Whitney disk W with boundary the union of the Whitney arcs ω1
and ω2.

complement. We call the arc α a guiding arc for the finger move (the analog in this context of
the guiding arc from Definition 2.1). These two homotopies are depicted in Figure 2. Also labelled
in the figure are the Whitney arcs ω1 and ω2, whose union is the boundary of the Whitney disk
W . Each Whitney arc connects a pair of double points along a sheet of the immersed surface.

Remark 2.5. To explicitly define a Whitney move in local coordinates requires that the normal
disk bundle of the Whitney disk be framed “compatibly” with respect to its boundary on the
immersed sphere; refer to [FQ90] as well as Casson’s lectures in [Cas86] for more details. Likewise,
a framing of the normal B3-bundle of the guiding arc compatible with the surface at its endpoints
is needed to explicitly define a finger move. The choice of framing for the guiding arc will be
suppressed, however, since (as with stabilizations) the resulting immersed surface up to ambient
isotopy is independent of this choice of framing and depends only on the homotopy class of the arc
itself, rel boundary (see the discussion in [Gab20, Remark 5.3] for instance).

From now on, we shall always consider generic regular homotopies, in the sense that they are
compositions of finger and Whitney moves as in Definition 2.4. In fact, since the guiding arcs of the
finger moves can be isotoped away from the Whitney disks in the ambient 4-manifold, a deformation
of the homotopy (without increasing the number of finger and Whitney moves) arranges for all of
the finger moves to occur first, and simultaneously, followed by all of the Whitney moves. A more
detailed discussion of this folklore fact can be found in [Qui86, Section 4.1]. We will also always
assume that our regular homotopies are of this form.

Definition 2.6. The length of a regular homotopy between surfaces is its total number of finger
moves, or equivalently, Whitney moves. The Casson-Whitney number ucw(K) of a 2-knot K is
the minimal length of any regular homotopy from K to the unknot.

In general, finger moves (like stabilizations) depend on the choice of guiding arc up to homotopy
rel boundary. Namely, if two guiding arcs are homotopic and hence isotopic rel endpoints, then
performing finger moves along these arcs results in immersions that are ambiently isotopic in S4.
In particular, it is critical to many of our arguments that all guiding arcs – and hence finger moves
– are isotopic in the complement of the unknot U .
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Definition 2.7. We call the result of performing n finger moves on the unknot U the standard
immersed sphere with 2n double points. Often, we reserve the use of Σ to denote this immersion.

We later observe that there is indeed a unique standard immersed sphere for each n, up to
ambient isotopy of S4.

Definition 2.8. After the finger moves and before the Whitney moves, any regular homotopy from
a 2-knot K to the unknot U restricts to the standard immersion Σ.

2-knot K standard immersion Σ unknot U
finger moves

Whitney moves

Whitney moves

finger moves

K UΣ Σ

FM

WM

WM

FM

Figure 3. Decomposing a regular homotopy from a 2-knot K to the unknot U .
The standard immersed sphere Σ obtained after the finger moves (FM) and before
Whitney moves (WM) on K is drawn from two different perspectives (middle left
and middle right) to show the knotted and standard Whitney disks (red and blue
respectively).

Therefore, a regular homotopy from a 2-knot K to the unknot U is given by two collections of
Whitney disks that pair the double points of the standard immersion: a set of standard Whitney
disks leading to the unknot U , and a set of knotted Whitney disks leading to the knot K, as
illustrated in Figure 3.

2.3. Fundamental group calculations. Below, we describe the effects of finger moves and
stabilizations on π1 of the complement of a (possibly immersed) surface S = S1 ∪ · · · ∪ Sn. In
particular, each move introduces one relation to π1 as stated in the results below. For detailed
proofs, we refer to the original sources [Cas86], [Boy88], [Kir89].

Begin by picking a basepoint ∗ in the complement of the link S and a basepoint ∗i ∈ Si on each
component of S. For each i, fix an arc ρi with interior in S4 − S connecting the basepoint ∗ to the
basepoint ∗i.

Definition 2.9. A meridian of S, and more specifically of the component Si, is an element of
πS that can be represented by a simple closed curve γ : S1 ↪→ S4 − S bounding a disk in S4 that
transversely intersects Si in a single point.

An orientation of S and the ambient space induces a positive orientation on the meridian. The set
of positively oriented meridians of a connected component of a knotted surface forms a conjugacy
class of the fundamental group of its complement. That is, x is a meridian of Si if and only if
xw := w−1xw is as well, for any w ∈ πS. If S is connected, this element w may be chosen to lie in
the commutator subgroup (πS)′, a fact which we exploit in Section 5.

Definition 2.10. Let α be an arc with interior embedded away from S, connecting ∗i to ∗j for
(possibly equal) indices i, j. We call this a guiding arc for S, as we did without specifying base
points in Definitions 2.1 and 2.4. Each push-off of the loop ρiαρ−1

j into the complement of the
surface S gives an element g ∈ πS that is said to correspond to the arc α, see Figure 4. Note
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α

m1 m2

∗

∗1 ∗2

ρ1 ρ2

S1 S2

Figure 4. A choice of pushoff in gray, giving an element of πS corresponding to
the guiding arc α. Also pictured are unbased meridians mi for the components Si.

Si Si Si

α

Si Si Si

β

Figure 5. The guiding arcs from Remark 2.11, before (top) and after (bottom) a
boundary twist.

that the element g is well-defined (i.e. independent of the push-off) up to left multiplication by
meridians of Si and right multiplication by meridians of Sj .

From now on, we will always assume that the guiding arcs used for both stabilizations and
finger moves are of this form, i.e. connecting a basepoint ∗i ∈ Si to a basepoint ∗j ∈ Sj for some
(possibly equal) indices i, j. We often refer to arcs corresponding to the identity element, as well as
stabilizations and finger moves done along such a guiding arc, as “trivial”.

Remark 2.11. Let α and β be guiding arcs for S with the same endpoints ∗i on Si and ∗j on
Sj . Suppose that α corresponds to an element g ∈ πS and β corresponds to mn1

1 gmn2
2 for some

n1, n2 ∈ Z and meridians mi,mj to Si, Sj respectively. Then, the guiding arcs α and β are isotopic
in the complement of S rel boundary via a sequence of “boundary twists” as pictured in Figure 5.
It follows that the surfaces obtained by either stabilizing or performing finger moves along these
arcs are ambiently isotopic.

In particular, it follows from Remark 2.11 that all guiding arcs for the unknot U are isotopic, since
πU ∼= Z. So for any n > 0, there is a unique surface (up to isotopy) resulting from n stabilizations
of U – namely, the genus n unknotted surface, as in Definition 2.2. Similarly, the immersed sphere
resulting from n finger moves on U is ambiently isotopic to the standard immersion with 2n double
points, as in Definition 2.7.
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Lemma 2.12 (Stabilization relation). Let α1, . . . , αk be disjointly embedded guiding arcs along
which stabilizing S gives the surface S′. Then

π(S′) ∼= πS
/
〈〈g−1

i aigib
−1
i 〉〉

where ai, bi are meridians to the components of S containing the endpoints of αi (as in Definition 2.9),
and the element gi corresponds to αi (as in Definition 2.10).

(a) Stabilization (b) Finger move

Figure 6. Illustrating Lemma 2.12 and Lemma 2.14, with the meridian ai in pink
and bi in blue.

Refer to Figure 6a for a schematic of the set-up in Lemma 2.12. Note that each g−1
i aigi is also a

meridian; hence the relation introduced by stabilizing can also be thought of as one which simply
identifies two meridians. We make the following definitions for n-knots, because we will think about
them in reference to 1-knots as well as 2-knots.

Definition 2.13. Let K be an n-knot. The minimal number of relations of the form x = y, where
x, y are meridians of K, which abelianize the knot group is called the algebraic stabilization
number ast(K) of K.

Lemma 2.14 (Finger move relation). Suppose that S′ is the result of performing finger moves on
S along disjointly embedded guiding arcs α1, . . . , αk. Then,

π(S′) ∼= πS
/
〈〈[ai, g−1

i bigi]〉〉
where ai, bi are meridians to the components of S containing the endpoints of αi (as in Definition 2.9),
and the element gi corresponds to αi (as in Definition 2.10).

Figure 6b gives a schematic of the set-up in Lemma 2.14. Note that while the stabilization relation
identifies two meridians, a finger move relation can only make them commute. This discrepancy
leads to our result in Section 5 that the stabilization and Casson-Whitney numbers are not equal
in general.

Definition 2.15. Let K be an n-knot. The minimal number of relations of the form xy = yx which
abelianize the knot group, where x, y are meridians of K, is called the algebraic Casson-Whitney
number acw(K) of K.

This minimum gives an algebraic lower bound for ucw(K), since a regular homotopy from a
2-knot K to the unknot starts with a sequence of finger moves on K to the standard immersion Σ
with π1(S4 − Σ) ∼= Z; thus the corresponding finger move relations abelianize πK.

We summarize the results of this section in the following proposition. To our knowledge, these
are the sharpest algebraic lower bounds for the unknotting numbers.

Proposition 2.16. For any 2-knot K, ast(K) ≤ ust(K) and acw(K) ≤ ucw(K).

Table 1 gives a glossary of the main invariants that will be referred to.
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(a) Stabilization relation (b) Finger move relation

Figure 7. In both figures (A) and (B), oriented meridians x and y to the surface
are drawn in pink and blue, and the basepoint in green. The gray annuli (immersed
in the complement of the surface) are null-homotopies giving the algebraic relations
from Lemma 2.12 and Lemma 2.14. On the right, the image of the grey annulus is
exactly the Clifford torus around the double point, illustrating that the commutator
relation [x, y] = 1 holds.

πK knot group/surface group fundamental group of knot complement S4 −K
µ(K) meridional rank of K minimal number of meridians which generate πK
m(K) Nakanishi index minimal size of generating set of Alexander module of K
a(K) Ma-Qiu index minimal size of normal generating set of commutator

subgroup (πK)′
ust(K) stabilization number minimal number of 1-handle stabilizations needed to ob-

tain an unknotted surface from K
ucw(K) Casson-Whitney number minimal number of Whitney moves in a regular homotopy

from K to the unknot
ast(K) algebr. stabilization number minimal number of 1-handle stabilizations on K needed

to obtain a surface with group Z
acw(K) algebr. Casson-Whitney number minimal number of finger moves on K needed to obtain

an immersed 2-knot with group Z
fus(K) fusion number of a ribbon knot minimal number of fusion tubes in a ribbon presentation

for K

Table 1. Overview of main invariants for a 2-knot K.

3. Relating the stabilization and Casson-Whitney numbers

Fix a 2-knot K ⊂ S4 and let U ⊂ S4 denote the unknotted 2-sphere. We begin by introducing
some terminology needed only in this section.

Definition 3.1. Given an immersed surface Σ in S4 with algebraically zero double points, and
any choice of disjointly embedded arcs on Σ pairing double points of opposite sign, there is an
associated tubed surface obtained by tubing the double points along these arcs as in Figure 8.
Note that this surface is oriented, since the endpoints of each arc are double points of opposite
orientation, and that a priori the smooth (and even topological) isotopy class of the resulting surface
depends on the arcs along which the tubing is done.

Although we choose not to define it rigorously here, the procedure of “tubing” employed in
the definition above is described in Remark 5.3 of [Gab20], as well as in Definition 2.6 of [Sin20].
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α

(a) Double points and connecting arc.

linking annulus of α

(b) After the tubing.

Figure 8. Tubing an immersed surface along an arc α (red) that connects oppositely
signed double points. Sheets of the surface are drawn in pink and blue; the pink
sheet is an arc persisting into the past and future. To tube the double points
together, remove a disk in the blue sheet around each double point and add the
linking annulus of the guiding arc α as shown on the right.

Indeed, isotopies between associated tubed surfaces are the focus of both papers. To ensure that the
associated tubed surfaces that arise in our discussions are isotopic, we will be especially interested
in regular homotopies of the following type.

Definition 3.2. A regular homotopy of length n from K to U in S4 is called arc-standard if
its standard Whitney disks W1, . . . ,Wn and knotted Whitney disks V1, . . . , Vn have at least one
Whitney arc in common for each i.

Remark 3.3. It is unknown whether or not every 2-knot in S4 admits an arc-standard regular
homotopy to the unknot, let alone one of minimal length. There are many non-simply connected
4-manifolds containing pairs of 2-spheres between which there is no analog of an arc-standard
homotopy. For instance, any pair of spheres related by such a homotopy must have vanishing
Freedman-Quinn invariant2 since in this case all double curves of the trace of the homotopy are
trivially double covered. However, there are many instances where this does not hold – see [ST19],
[Gab20], or [Sch19] for example.

With this terminology in place, we state our first result. Although this fact is implied by Singh’s
proof of Theorem 1.4 in [Sin20], we state and prove it here in our setting.

Proposition 3.4. If there is a length n arc-standard homotopy from K to U , then K can be
unknotted with n stabilizations.

Proof. Such a regular homotopy is given by a set of standard Whitney disksW1, . . . ,Wn and knotted
Whitney disks V1, . . . , Vn for the standard immersion Σ with 2n double points, as in Definition 2.7
and Definition 2.8. Since the regular homotopy is arc-standard, by definition for each i the standard
and knotted Whitney disks have at least one common Whitney arc αi.

The end of the Whitney homotopy for each Whitney disk Wi and Vi gives a “local model” of the
resulting embedded 2-sphere, as illustrated in the top left and right of Figure 9. Stabilizing K along
guiding arcs connecting the sheets of K parallel to each knotted Whitney disk gives an embedded
genus n surface FK shown on the bottom left of Figure 9. Likewise, stabilizing the unknot U along
guiding arcs connecting the sheets of U parallel to each standard Whitney disk gives a genus n
standard surface FU shown on the bottom right of Figure 9. Both FK and FU are isotopic to the
associated tubed surface Σ stabilized along the common Whitney arcs α1, . . . , αn depicted on the
bottom center of Figure 9 (the tube along the Whitney arc αi is shown in green). Since the surface
FU is a stabilization of the unknot, it follows that FU and hence FK is unknotted. �

2This concordance invariant was defined by Freedman and Quinn [FQ90] in the ’90s, and later corrected by Stong
[Sto94]. Schneiderman and Teichner give a nice exposition in [ST19].
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Σ

FK FU

K U

Whitney moveWhitney move
along Wialong Vi

Attach
1-handle

Attach
1-handle

Tube
along αi

αi

Figure 9. “Standard pictures” of the spheres U and K (top right and left) given
by Whitney moves on the immersion Σ, and their isotopic stabilizations FU and FK
along the red or blue guiding arcs (lower right and left). Note that although the
local models of U and K after the Whitney moves look identical, the interiors of the
Whitney disks Wi and Vi, and hence these portions of U and K, may be embedded
very differently in S4.

ai bi
gi

pi qiαi

Figure 10. The initial situation in Lemma 3.5 before the tubing, where the
horizontal pink sheet (with the red arc αi) lives completely in the present, while the
vertical blue sheet is spread out in time. Also pictured are two meridians ai, bi to
the blue sheet, and the group element gi associated to the arc αi.

The following π1 calculation is used in the proof of Theorem 1.1 and is very similar to Casson’s
proof of Lemma 2.14, see [Cas86]. Before stating the lemma, we establish some necessary notation.
For any 4-manifold X, suppose that S ⊂ X is an immersed surface with positive and negative
double points p1, . . . , pn and q1, . . . , qn, respectively. For each i, let αi ⊂ S be an embedded arc
connecting pi to qi, and let ai, bi ∈ πS be positively oriented meridians for the sheets of the double
points that do not contain αi. As illustrated in Figure 10, the meridian ai is constructed by running
along ρi, around the boundary of a disk normal to S, and back along ρ−1

i to the base point ∗ of
π1S. The meridian bi is constructed analogously, but using the path ηi.
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Di

D′i

γi

γi
normal circle

Figure 11. The figure depicts a homotopy equivalence between the complements
of (S′ ∪ γi)−D′i (left) and S (right), where we keep track of where the gray circle
normal to the disk D′i is taken.

The arc αi ⊂ S corresponds to an element gi ∈ πS given by the composition of paths ρiα′iη−1
i ,

where α′i is a push-off of the arc αi into the normal disk bundle of S – this element is hence
well-defined only up to twists around the normal disk bundle of S restricted to αi. However, as
this indeterminacy does not affect the fundamental group calculations below3, we suppress it from
notation.
Lemma 3.5 (Tubing relation). Let S ⊂ X4 be an immersed surface whose associated tubed surface
S′ is constructed by tubing together oppositely signed double points pi and qi along arcs αi ⊂ S, as
in Definition 3.1. Then,

π(S′) ∼= πS
/
〈〈g−1

i aigib
−1
i 〉〉

for elements ai, bi, gi ∈ πS defined both in the paragraph above and illustrated in Figure 10.
Proof. For each i, consider a disk Di normal to S at an interior point of the arc αi, as in Figure 11.
The intersection of this disk with the tubed surface S′ then consists of ∂Di, together with the
point where αi intersects Di. Notice that the complement of S′ ∪ D1 ∪ · · · ∪ Dn is homotopy
equivalent to the complement of the immersion S. So, to compare π(S′) and πS, we remove the
regular neighborhoods of each disk Di from X − S′ to obtain X − S in two stages: first we delete
neighborhoods of embedded arcs γi ⊂ Di connecting αi to ∂Di, and then delete neighborhoods of
the remaining disks D′i ⊂ Di whose boundary circles run around ∂Di and then forward and back
along γi, as in Figure 11.

Let S′γ denote the union S′ ∪ N(γ1) ∪ · · · ∪ N(γn). Note that π(S′) ∼= π1(S4 − S′γ) since each
γi has codimension three. The complement X − S is obtained from X − S′γ by removing regular
neighborhoods of the disks D′i. Dually, this implies that the complement X − S′γ is obtained from
X − S by attaching n many 2-handles to X − S along the boundaries of disks normal to D′i in the
complement of S′γ ∪N(D′1) ∪ · · · ∪N(D′n), which is diffeomorphic to X − S. Therefore, π(S′) is
obtained from πS by adding n relators – namely the boundaries of these 2-handles. The boundaries
of these 2-handles are exactly the small gray circles as show in Figure 11. We make these into
elements of πS by pre- and post-composing the circles with the gray arc from the basepoint as
shown in Figure 11. These elements are then exactly the elements g−1

i aigib
−1
i ∈ πS as is shown by

the homotopy-equivalence in Figure 11. �

3This follows since the Clifford tori around the double points pi and qi allow the meridians ai and bi to commute
with twists around α.
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w∗

p

p∗

n

γ

n∗

p

p∗

n

n∗

τ(w)

τ(w∗)

w

Braid twist τ

Figure 12. The automorphism τ of the domain of the immersion f : S2 # S4 with
image Σ.

We conclude the section by proving Theorem 1.1 and Theorem 1.2. Note that Singh gives the
analog of Theorem 1.1 for his related invariants dst and dsing in [Sin20, Theorem 1.4], and in fact,
our proof of Theorem 1.1 relies on Lemmas 3.1 and 4.1 of his paper. We are unable to provide
any examples in which the +1 term is necessary, and so leave this as a question in Section 7; this
question is also left open in Singh’s setting.

Proof of Theorem 1.1. Take a length ucw(K) regular homotopy from K to U , with associated tubed
surfaces FU and FK constructed as in the proof of Proposition 3.4. Note that since the homotopy
is not necessarily arc-standard, the double points of Σ are tubed together along different arcs; thus
it unclear whether or not FU and FK are isotopic. In his proof of [Sin20, Theorem 1.4], Singh
produces a sequence of tubed surfaces T1, . . . , Tm for the standard immersed sphere Σ such that
T1 = FU , Tm = FK , and such that each consecutive pair Ti and Ti+1 become isotopic after a single
stabilization.

Note that πTi ∼= Z for each i. This follows from Lemma 3.5, since each Ti is an associated tubed
surface for the standard immersion Σ with πΣ ∼= Z. Thus, any stabilization of Ti is isotopic to
the stabilization done along the trivial guiding arc. This, combined with the fact that Ti and
Ti+1 become isotopic after a single stabilization, implies that the trivial stabilizations of the tubed
surfaces T1, . . . , Tm are all pairwise isotopic; in particular FU and FK become isotopic after a single
stabilization. �

Remark 3.6. Note that in the proof of Theorem 1.1 above, it is critical that each “intermediate”
tubed surface Ti has πTi ∼= Z. It was pointed out to us by Peter Teichner that these surfaces
give interesting candidates for “exotic” unknotted surfaces. Although each Ti becomes smoothly
unknotted after a single stabilization, it is unclear whether each Ti is even topologically unknotted
(see the discussion in Section 7).

Proof of Theorem 1.2. We argue that for K with ucw(K) = 1, there is an arc-standard length one
regular homotopy from K to the unknot U . It then follows from Proposition 3.4 that ust(K) = 1.
Start by letting Σ denote the standard immersion with two oppositely signed double points. Fix a
parametrization f : S2 # S4 of Σ with double point pre-images p = {p, p∗} and n = {n, n∗}. By
definition of the Casson-Whitney number, there is a regular homotopy from Σ to K consisting of a
single Whitney move along a knotted Whitney disk V with pre-image f−1(∂V ) equal to a pair of
“knotted” arcs v, v∗ ⊂ S2 with ∂v = {p, n} and ∂v∗ = {p∗, n∗}. We claim that there is a standard
Whitney disk W one of whose boundary arcs has pre-image equal to v. To see this, let W be any
standard Whitney disk with f−1(∂W ) equal to the “standard” arcs w,w∗ ⊂ S2. Consider the map
τ : S2 → S2 given by a braid twist about the points p ∪ p∗, as in Figure 12, that fixes the arc γ
connecting p to p∗ setwise. Since Σ is a standard immersion, the loop f(γ) bounds an embedded
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(braid twist)

τ2

τ
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n∗
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n∗

p

p∗

p

p∗

n

n∗

n

n∗

p

p∗

p

p∗

τ2(w)

τ2(w∗)

τ(w)

τ(w∗)

Figure 13. The ambient isotopies ρ and ρ2 from the proof of Theorem 1.2 used
to move the standard disk W to one with w = v. The result of each isotopy is
illustrated from the perspective of the induced maps τ and τ2 on the domain of the
immersion f : S2 # S4 with image Σ.

disk (usually referred to in the literature as an accessory disk) in S4 away from Σ. It therefore
follows from [ST19, Lemma 3.9]4 that there is an ambient isotopy ρ : S4 × I → S4 with ρ1(Σ) = Σ
carrying the standard Whitney disk W to one whose boundary arcs are the image under τ of those
for W , as illustrated in Figure 12 as well as [ST19, Figure 18]. We retain the labels w, w∗, and W
even after such an isotopy occurs.

The isotopy ρ can be applied once if necessary, as shown in the top row of Figure 13, so that
∂w = {p, n} = ∂v for some choice of labelling of the standard arcs. Note that w and v are now
isotopic rel the points in p ∪ n if and only if the loop w ∪ v (with either orientation) is null
homologous in the annulus S2−{p∗, n∗}. This can be arranged by applying the isotopy ρ2 as shown
in the bottom row of Figure 13 to insert full twists of w around p∗. For the standard Whitney disk
W with w = v, the regular homotopy from K to U consisting of the finger move that is inverse to
the Whitney move along the knotted Whitney disk V , followed by the Whitney move along W , is
arc-standard. �

4Although Schneiderman and Teichner are working in a different context, their Lemma 3.9 applies in our case
since (as they note in the discussion in Section 3.G.) their isotopy is supported locally, in the neighborhood of an
accessory disk.
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U1 U2 U3

Figure 14. Ribbon 2-knot

WM

FM

FM

WM
Ui Ui Ui

Figure 15. A regular homotopy of a ribbon 2-knotK, as in Definition 4.1, supported
near one component Ui of the unlink and one guiding arc of a stabilization. The
various shadings of K suggest its fourth coordinates – so, the red and blue portions
of the surface are disjoint from the black ones. The homotopy consists of one finger
move followed by one Whitney move, and (thought of from left to right) has the
effect of removing a meridian of Ui from the word in π(U1 t · · · t Un+1) giving the
homotopy class of the guiding arc of the stabilization.

4. Geometric upper bounds

The Casson-Whitney unknotting number can be bounded from above geometrically, by con-
structing simple regular homotopies to the unknot. We do this for some well-known families of
spheres.

Definition 4.1. A ribbon 2-knot is formed from n stabilizations of the (n+ 1)-component unlink
U1 t · · · t Un+1 in S4, as in Figure 14. The minimal number n needed to put a ribbon 2-knot K in
this form is called the fusion number of K, denoted fus(K).

Remark 4.2 (Tube map). Satoh proved in [Sat00] that every ribbon 2-knot is the tube of a virtual
arc. Essentially, one can use virtual diagrams to make a shorthand picture for a broken surface
diagram of a ribbon 2-knot. In this language, changing a virtual crossing to a positive or a negative
classical crossing is achieved by a finger move and then a Whitney move on its tube (the analog in
this setting of the homotopy in Figure 15). Thus if K is a ribbon 2-knot and k is any virtual arc
such that Tube(k) = K, any sequence of crossing changes which unknots k as a virtual (or welded)
arc yields a sequence of finger and Whitney moves which unknots K.
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U1 U2 U3

Figure 16. Miyazaki’s proof that ust(K) ≤ fus(K): The red stabilization of the
black unlink is the unknot U . Hence, the guiding arcs for the blue stabilizations are
isotopic rel boundary to trivial arcs in the complement of U .

In [Miy86], Miyazaki proved that ust(K) ≤ fus(K) for a ribbon 2-knot K. We prove the
corresponding statement for the Casson-Whitney number in Theorem 1.4 below. The proof is
inspired by Miyazaki’s, however the argument is subtler, so we first sketch Miyazaki’s argument.

Let K be a ribbon 2-knot, formed by stabilizing the unlink U1 t · · · t Un+1 along guiding arcs
connecting consecutive components Ui and Ui+1, as in Definition 4.1. The ‘obvious’ stabilizations
of K which fuse Ui to Ui+1 as in Figure 16 result in an unknotted surface K ′: thinking of K ′ as
first formed by attaching this second set of tubes, and then the original tubes defining K, produces
the same surface K ′. However, this is clearly unknotted, since the ‘obvious’ tubes result in an
unknotted sphere, and so the original tubes are (trivial) stabilizations of an unknotted surface,
which must be unknotted.

Although one could perform fus(K) finger moves to abelianize the group of K, the rest of
Miyazaki’s argument breaks down in our case: if one thinks of the finger moves as performed on
the n+ 1 component unlink, then the group of the complement is not abelian since it takes

(n+1
2
)

finger moves to abelianize the group of the complement of this unlink. To remedy this, we think of
all but one of the tubes as already attached and proceed by induction, allowing us to work with 2
components instead of n+ 1.

Theorem 1.4. For a ribbon 2-knot K, ucw(K) ≤ fus(K).

Proof. Let n = fus(K). Then, as in Definition 4.1, the knot K can be obtained from the unlink
U = U1 t · · · t Un+1 by n stabilizations along guiding arcs α1, . . . , αn. After an isotopy, we may
assume that each αi connects Ui to Ui+1 as in Figure 14. Let L be the 2-component link obtained
by stabilizing the unlink only along the guiding arcs α2, . . . , αn. Recall from Section 2, in particular
Lemma 2.12, that

πL ∼= 〈m1,m2, . . . ,mn+1 | m
gj

j = mj+1 for 1 < j < n+ 1〉

where the gj correspond to the guiding arcs αi as in Definition 2.10, and m1, . . . ,mn+1 ∈ πU are
meridians of each component U1, . . . , Un+1.

Perform n finger moves to L along trivial guiding arcs from Un+1 to Ui, i ≤ n as in Figure 17b
and call the resulting immersed 2-component link S. By Lemma 2.14, we have made mn+1 commute
with mi for all i < n+ 1, therefore by considering the previous relations we see that πS ∼= Z⊕ Z
generated by m1 and m2.

Now consider the element g1 corresponding to the guiding arc α1 as in Figure 17b. Since πS is
both abelian and generated by m1 and m2, by Remark 2.11, α1 is isotopic to a trivial arc between
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U1 and U2 as shown in Figure 17c. We can now undo the finger move that intersects U1 (i.e. do the
Whitney move) and proceed, by the same reasoning, to straighten out all of the other arcs αi to be
trivial arcs as in Figure 17d. Proceeding in this way unknots K (by trivializing the guiding arcs
α1, . . . , αn) with n finger moves and n Whitney moves. �

(a) Ribbon presentation of K with the first stabi-
lization along the guiding arc α1 drawn as a blue
tube. Only the guiding arcs (blue) of all the other
stabilizations are shown.

(b) Finger moves (red) along trivial arcs.

(c) The guiding arc of the first stabilization is iso-
topic to a trivial arc in the complement of the im-
mersion.

(d) Undo the first finger move in order to proceed in-
ductively and trivialize the remaining stabilizations.

Figure 17. Illustrating the proof of the fusion number upper bound in Theorem 1.4.

Remark 4.3. The regular homotopy in the proof of Theorem 1.4 above has standard and knotted
Whitney disks whose entire boundaries agree (so, they are “doubly” arc-standard). However, since
the homotopy of the tubes in the proof interacts with the standard Whitney disks, the interiors of
the standard and knotted Whitney disks are necessarily distinct.

The inequality ucw(K) ≤ fus(K) from Theorem 1.4 is sometimes strict. For instance, let k be
a 1-knot with unknotting number u(k) = 1 and meridional rank µ(k) > 2 (in fact, it is shown
in [BK20] that there exist unknotting number one knots with arbitrarily large meridional rank).
Then, we will see that the spun knot K = τ0(k), defined below, has ucw(K) = 1 by Corollary 4.6.
Moreover, the isomorphism between πK and πk preserves the meridians, and so the meridional
ranks of K and k are equal. This gives ucw(K) < fus(K), since spun knots are ribbon and the
meridional rank of any ribbon 2-knot is less than or equal to one more than its fusion number.

A generalization of this family of spheres for which ucw is particularly convenient to analyze is
constructed by ‘spinning’ 3-balls containing properly embedded knotted arcs through an open book
decomposition of S4.

Definition 4.4 (Twist spun knots). Given a 1-knot k ∈ S3, let k′ be the properly embedded knotted
arc in the 3-ball whose tubular neighborhood N(k′) has complement B3 −N(k′) diffeomorphic to
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−k′ B3
θ

U Uk′

k′

k′

−k′

Figure 18. A schematic for the spin τ0k and the twist spins τnk of a 1-knot k.
The open book decomposition of S4 from Definition Definition 4.4 has been knocked
down one dimension on the left, and so the blue 2-sphere U around which the
knotted arc is spun is instead a blue circle (only an arc of which is drawn). Note that
viewing a page B3

θ from the “opposite side” reverses its orientation, and therefore
also the orientation of k.

S3 −N(k). For n ∈ Z, consider the quotient
(B3, k′)× S1/

(rn,θ(x), θ) ∼ (x, 0), x ∈ ∂B3, θ ∈ [0, 2π]
where rn,θ : B3 → B3 denotes the ambient isotopy rotating B3 by an angle of nθ about an axis
with endpoints ∂k′ ⊂ ∂B3. For each n, this quotient space is diffeomorphic to S4, and gives an
open book decomposition with binding an unknotted 2-sphere U and 3-ball pages B3

θ for all θ ∈ S1.
The quotient of k′ × S1 is a 2-sphere τnk ⊂ S4 called the n-twist spin of k.

Due to Artin [Art25], the collection of 0-twist spun knots, often simply called ‘spun knots’, were
the first examples of non-trivially knotted spheres in S4. Artin proved that the group of the spun
knot τ0(k) is isomorphic to the group of the classical knot k, showing that every 1-knot group is
also a 2-knot group.

Twist spinning was introduced by Zeeman in [Zee65] as a generalization of the spinning con-
struction. For n 6= 0, Zeeman proved that the resulting twist spun knot is fibered by the n-fold
cyclic branched cover of k. Thus τ±1k is unknotted, for all k. Twist spun knots provide a large
generalization of spun knots. Cochran proved that any non-trivial twist spun knot τnk with n 6= 0
is not ribbon [Coc83], in contrast to spun knots, which are always ribbon.
Lemma 4.5. Fix two parallel strands of a 1-knot k ⊂ S3, and let ks denote the knot obtained
by inserting s full twists into these strands. Then, for any n ∈ Z, there is a length one regular
homotopy between the twist spins τn(k) and τn(ks).
Proof. By performing a finger move on τn(ks+1) along the arc αs+1 ⊂ B3

0 as in Figure 19, we obtain
an immersed surface Σs+1 that is also obtained by a finger move to τn(ks) along α′s ⊂ B3

π, which
we will also denote Σ′s, so that Σ′s = Σs+1. Note that the twist parameter n is unchanged since
the twisting can be assumed to occur in a small interval in S1 away from the double points of the
immersion, the knotted arc ks twists n times in both Σ′s and Σs+1.

By instead performing a finger move on τn(ks) along the arc αs ⊂ B3
0 , we obtain a surface

Σs where Σs = Σ′s by rotation. Similarly by performing a finger move to τn(ks−1) along the arc
α′s−1 ⊂ B′π we obtain a surface Σ′s−1 with Σ′s−1 = Σs.

Thus, we have equivalent immersed surfaces
. . . = Σs+1 = Σ′s = Σs = Σ′s−1 = . . .
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FM αs+1 ⊂ B3
0 FM FM α′s ⊂ B3

π; αs ⊂ B3
0 FM FM α′s−1 ⊂ B3

π FM

Σs+1 = Σ′s Σs = Σ′s−1

=· · · = = · · ·

· · · · · ·

Figure 19. Top row: The intersections of the twist spins τn(ks+1), τn(ks) and
τn(ks−1) with B3

0 and B3
π, as in Definition 4.4. Only the relevant crossing of each

cross section is drawn. Bottom row: Schematics of the immersed spheres (compare
to the embedded spheres in Figure 18) obtained by doing finger moves along the red
guiding arcs in each diagram of the top row. Again, only the relevant crossing of the
cross section in each page B3

θ is shown. The isotopy between the two immersions Σ′s
and Σs is via a rotation by π.

so that for any s, t ∈ Z, the two knots τn(ks), τn(kt) are related by a single finger and Whitney
move. �

Some implications of Lemma 4.5 are immediate. For instance, as there is a length one regular
homotopy between 1-knots related by a single crossing change, we obtain the following corollary.

Corollary 4.6. Let k : S1 ↪→ S3 be a classical knot. For any twist spin τnk, ucw(τnk) ≤ u(k),
where u(k) is the classical unknotting number of k.

Although we are not aware of another instance of Corollary 4.6 in the literature, the analogous
result for ust was proved by Satoh [Sat04], and also follows from Proposition 9 of [BS16]. Furthermore,
Satoh proved in [Sat04] that for any twist spin of a b-bridge knot, the stabilization number is strictly
less than b. When b = 2, we prove that the same inequality holds for the Casson-Whitney number
of any twist spin.

Theorem 4.7. If the twist spin τnk of a 2-bridge knot k is not unknotted, then it has ucw(τnk) = 1.

Proof. Since k is 2-bridge, it can be put into normal form [Con70] with non-zero twist parameters
a1, b1, . . . , am, bm indicating the number of half twists in each region, as in Figure 20. In fact, we
may assume that the terms ai and bi are all even5. Start by performing a finger move of τnk along
the red guiding arc pictured in the leftmost diagram of Figure 20, at some angle θ ∈ S1. This

5It was pointed out in [Baa+19] that this can be shown using the continued fraction notation for 2-bridge knots,
for instance see [Kaw96].



UNKNOTTING NUMBERS OF 2-SPHERES IN THE 4-SPHERE 19

b

a m

bm-1

a

m

b bm-1 m-1
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a 1 a a

IsotopyFM FM
Σk = Σ

Figure 20. The intersection of the twist spins τnk (left) and τnk̂ (middle and
right) with the 3-ball B3

θ from Definition 4.4, for each θ ∈ S1.

results in an immersed sphere Σk that we will prove is the standard immersed sphere gotten by one
finger move on the unknot, by induction on the number m of twist region pairs ai, bi.

When m = 0, the knot k and hence also its n-twist spin τnk are unknotted. Therefore, Σk is
the standard immersion by definition. So, suppose m ≥ 1. Let k̂ denote the 2-bridge knot with
two fewer twist parameters a1, b1, . . . , am−1, bm−1 and assume as the inductive hypothesis that the
immersed sphere gotten by a finger move of the twist spin τnk̂ along the red guiding arc pictured
in the rightmost diagram of Figure 20 is ambiently isotopic to the standard immersion Σ. Observe
that the guiding arc for this finger move is isotopic to the red guiding arc shown in the middle
diagram of Figure 20; therefore doing a finger move of τnk̂ along this arc also gives the standard
immersion Σ.

Now, since the knots k and k̂ differ only along a single twist region, by Lemma 4.5, the twist
spins τnk and τnk̂ must give ambiently isotopic immersions after one finger move. Indeed, the
guiding arcs for the finger moves of τnk and τnk̂ that are used in the proof of Lemma 4.5 (i.e.
those from Figure 19) are equal to the red guiding arcs from the middle and leftmost diagrams of
Figure 20. It follows that Σk is ambiently isotopic to the standard immersion Σ, as desired. �

Remark 4.8. The quantities in the inequality Corollary 4.6 can be arbitrarily far apart. For
instance, each nontrivial (2, p) torus knot kp has unknotting number |p− 1|/2 by [KM93] and bridge
number equal to two. Therefore, by Theorem 4.7, ucw(τnkp) = 1 < u(kp) for any nontrivial twist
spin of kp, whenever p ≥ 5.

Remark 4.9. Satoh’s proof [Sat04] that ust(K) ≤ b− 1 for any twist spin of a b-bridge knot relies
on the fact that 1-handles can be slid over one another when b > 2. However, this cannot be done
with finger moves, making our proof of Theorem 4.7 difficult to extend to knots with higher bridge
number.

5. Algebraic lower bounds

In this section, we discuss the algebraic Casson-Whitney number acw(K) of a 2-knot K, the
minimal number of meridian-commuting relations which abelianize the knot group of K (see
Definition 2.15 for the precise definition). This algebraic invariant is the sharpest lower bound
we are aware of for the Casson-Whitney number ucw, and in Section 5.3 we show that it is also a
lower bound for the classical unknotting number. It is clear that ast(K) ≤ acw(K), as stabilization
relations identify two meridians, while finger move relations merely force them to commute (see
Section 2.3 for a thorough description of the effects of the corresponding geometric operations on
the knot group). This subtle difference is used to prove Theorem 1.3, in which we give 2-knots for
which ast(K) < acw(K) and for which this difference is realized geometrically.

5.1. Previously known results. The minimal number of generators of the Alexander module,
called the Nakanishi index m(K), is a classical lower bound for the unknotting number of 1-knots
[Nak81]. In [Miy86], [MP19] it is shown that the Nakanishi index is also a lower bound for the
stabilization number ust(K) of 2-knots. Indeed, any set of relators which abelianize the group of
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a knot must normally generate its commutator subgroup. It is an exercise (cf. [Rol90, Exercise
7.D.5]) to show that the images of these relators generate the Alexander module.

A subtler but sharper bound for the classical unknotting number is the Ma-Qiu index a(K),
defined as the minimal number of relations needed to abelianize the knot group [MQ06]. In fact, the
algebraic stabilization number ast(K) (Definition 2.13), the minimal number of stabilization relations
needed to abelianize the knot group, is also a lower bound for the classical unknotting number. This
is evident from the proof of [MQ06], and also by combining the inequalities from Proposition 2.16 and
Corollary 4.6, applied to the spin of a 1-knot k: ast(k) = ast(τ0k) ≤ acw(τ0k) ≤ ucw(τ0k) ≤ u(k).

As noted in Proposition 2.16, the algebraic stabilization number, ast(K), is a natural lower bound
for the stabilization number ust(K). This is also studied in [Kan96], where it is called the weak
unknotting number. In this section, we investigate the algebraic Casson-Whitney number, which
is a natural lower bound for the Casson-Whitney number. By Corollary 4.6, it also provides a
lower bound for the classical unknotting number via spinning, which as we show in Theorem 1.5 is
sharper than the bounds provided by ast(K) and ust(K).

We summarize the previously known results regarding these invariants in the proposition below.

Proposition 5.1 (Kanenobu, Ma-Qiu, Miyazaki, Nakanishi). If k is a 1-knot, then

m(k) ≤ a(k) ≤ ast(k) ≤ u(k).

If K is a 2-knot, then
m(K) ≤ a(K) ≤ ast(K) ≤ ust(K).

As pointed out in [MQ06], the first inequality above is often strict: the Ma-Qiu index is positive
whenever πK is not abelian, but the Alexander module and hence the Nakanishi index can be
zero for nontrivial knots, e.g. Alexander polynomial one 1-knots. While m(k), a(k), and ast(k) are
known to be nonadditive on certain classical knots (see the end of Section 5.2), we are unaware
of any classical knots for which acw is nonadditive. We show in Section 6 that is nonadditive on
certain 2-knots.

5.2. The algebraic Casson-Whitney number. Recall from Section 2.3 that each finger move
on a 2-knot K adds a relation of the form [x, y] = 1, where x, y are meridians of K. As noted
after Definition 2.9, y is equal to xw for some w ∈ (πK)′. Therefore, the algebraic Casson-Whitney
number acw(K) is equal to the minimal number of elements wi ∈ (πK)′ such that the relations
{[x, xwi ] = 1} abelianize πK.

These finger move relations are ‘weaker’ than the relations induced by stabilizations, in that every
finger move relation is also a stabilization relation. Recall from Definition 2.13 that ast(K) denotes
the minimal number of stabilization relations needed to abelianize the knot group; these relations
are of the form x = y, where x and y are meridians, or equivalently [x,w] = 1, where w ∈ (πK)′ and
y = xw. Thus ast(K) is the minimal number of elements wi ∈ (πK)′ such the relations {[x,wi] = 1}
abelianize πK. Although xw is not in the commutator subgroup, xw = x[x,w], so the finger
move relation [x, xw] = 1 is equivalent to the stabilization relation [x, [x,w]] = 1, and we see that
ast(K) ≤ acw(K).

On the other hand, an obvious upper bound for acw(K) is µ(K)−1, where µ(K) is the meridional
rank of K: forcing any single meridian to commute with the rest of a generating set of meridians will
force that meridian into the center of the group. Since all knot groups are normally generated by
any meridian, this abelianizes the group. We summarize the relationships between these invariants
below, which are defined for n-knots because we will later refer to the case n = 1 as well as our
usual case n = 2 (although these invariants are well-defined for all n ≥ 1 because they only depend
on the knot group and the information of a meridian).

Proposition 5.2. For any n-knot K,

m(K) ≤ a(K) ≤ ast(K) ≤ acw(K) ≤ µ(K)− 1.
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In Theorem 1.5 we show that the inequality ast(K) ≤ acw(K) can be strict. In fact, we find
infinitely many 2-knots K with ast(K) = ust(K) = 1 and acw(K) = 2, enabling us to prove in
Theorem 1.3 that ust(K) < ucw(K) for infinitely many 2-knots K. The last inequality may also be
strict, for the same reason pointed out after Remark 4.3.
Proposition 5.3. For α ∈ {a, ast, acw} and for n-knots K1 and K2,

max{α(K1), α(K2)} ≤ α(K1 #K2) ≤ α(K1) + α(K2).
Proof. The proof is the same in all three cases; we follow Kanenobu in [Kan96] for α = ast. Let
g1, . . . , gn be a minimal set of relators of the required form (depending on α) which abelianize
π(K1 #K2). Let φ be the surjection φ : π(K1 #K2) � πK1 which sends all meridians of K2 to
the meridian of amalgamation. Notice that πK1/〈〈φ(g1), . . . , φ(gn)〉〉 ∼= Z and that each φ(gi) is a
relator of the required form for computing α(K1). Therefore, α(K1 #K2) ≥ α(K1). Repeating the
argument for K2 obtains the first inequality.

The second is obtained by imposing relations on the group of K1 #K2 which abelianize K1 and
K2 separately. Since π(K1 #K2) ∼= (πK1 ∗ πK2)/〈〈x−1

1 x2〉〉, where xi are meridians of Ki, these
relations abelianize the group of the connected sum. �

As a first application of Proposition 5.2, we show that any natural number can occur as the
Casson-Whitney number of a 2-knot. We will make use of determinants in the following proposition
and in Theorem 1.5, which we introduce now.

The Alexander module of a 2-knot is the first homology of the infinite cyclic cover, viewed as a
Z[t±1]-module. The determinant of a 2-knot K is defined in [Jos19] as the positive generator of
the evaluation of the Alexander ideal at t = −1, i.e. ∆(K)|−1 := n, where n > 0 is the generator
of the principal ideal {f(−1) : f(t) ∈ ∆(K)} ⊆ Z. Equivalently, it is the order of the Z-module
induced by setting t = −1 in the Alexander module. As with classical knots this is always an
odd integer, and in [Jos19, Proposition 5.9] it is shown that even twist-spinning preserves the
determinant, while odd twist-spins always have determinant 1. The classical fact that a 1-knot
k admits a Fox p-coloring for prime p if and only if p divides the classical determinant |∆k(−1)|,
where ∆k(t) is the Alexander polynomial of k, carries over without change to this definition of
determinant for nonprincipal ideals. A Fox p-coloring of a 2-knot is a surjection from its knot
group onto the dihedral group Dp

∼= Zp o Z2, which sends meridians of the 2-knot to reflections.
Proposition 5.4. Let n ∈ N. Then there exists a 2-knot K with ucw(K) = n.
Proof. Let J be any 2-knot with ucw(J) = 1 and Nakanishi index m(J) = 1, for instance J
could be any even twist-spin of a 2-bridge knot, by Theorem 4.7: 2-bridge knots have nontrivial
determinants, which are preserved by even twist-spinning [Jos19]. Therefore the Alexander module
of J is nontrivial, so it must be cyclic since it is a quotient of the original 2-bridge knot’s Alexander
module.

Then letting K = #n J obtains the desired result: the Nakanishi index m(K) = n, since the
Alexander module of K is generated by n elements and surjects onto a vector space of dimension n,
so by Proposition 5.2 ucw(K) ≥ n. Conversely, K can be unknotted in n pairs of finger and Whitney
moves by performing the optimal length one regular homotopy for J on each summand. �

Scharlemann proved that unknotting number one knots are prime, i.e. if K1 and K2 are nontrivial
classical knots, then the unknotting number of K1 #K2 is at least 2 [Sch85]. Here we prove a
special case of the analogous statement for ucw, which works whenever the 2-knots in question have
nontrivial determinants, or equivalently whenever their knot groups admit nontrivial Fox colorings.
This reproves the same special case of Scharlemann’s theorem for classical knots, via the bound
given by Corollary 4.6. The technical core of our proof is a Freiheitssatz for one-relator quotients of
free products of cyclic groups due to Fine, Howie, and Rosenberger [FHR88].
Theorem (Fine, Howie, Rosenberger). Suppose G = 〈a1, . . . , an | ae1

1 , . . . , a
en
n , R

m〉, where n ≥ 2,
m ≥ 2, ei = 0 or ei ≥ 2 for all i, and R(a1, . . . , an) is a cyclically reduced word which involves all
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of a1, . . . , an. Then the subgroup of G generated by a1, . . . , an−1 is isomorphic to 〈a1, . . . , an−1 |
ae1

1 , . . . , a
en−1
n−1 〉.

Their result generalizes the more well-known Freiheitssatz for one-relator groups, a classical
result in combinatorial group theory characterizing the torsion in a one-relator group. It is proved
by finding explicit representations of these groups into PSL2(C).

Theorem 1.5. Let K1,K2 be 2-knots with determinants ∆(Ki)|−1 6= 1. Then ucw(K1 #K2) ≥ 2.

Proof. Let x1 and x2 be meridians of K1 and K2 respectively, and form the connected sum so that
x1 and x2 become identified in the group of K1 #K2, i.e.

π(K1 #K2) ∼=
πK1 ∗ πK2

〈〈x−1
1 x2〉〉

.

Denote x as the image of these meridians.
The claim to be proved is that for any w ∈ π(K1 #K2)′, the relation [x, xw] = 1 does not

abelianize π(K1 #K2), since then ucw(K1 #K2) ≥ acw(K1 #K2) ≥ 2.
Let p1 and p2 be prime divisors of ∆(K1)|−1 and ∆(K2)|−1, respectively. Then Ki admits a Fox

pi-coloring
φi : πKi � Dpi

∼= Zpi o Z2 = 〈zi, ai | z2
i = api

i = 1, zaiz = a−1
i 〉

with xi mapping to zi, the generator of Z2. The group of the connected sum naturally surjects onto
the group

G := 〈z, a1, a2 | z2 = ap1
1 = ap2

2 = 1, za1z = a−1
1 , za2z = a−1

2 〉
∼= (Zp1 ∗ Zp2) o Z2,

by mimicking the connected sum operation on the dihedral groups. To be explicit, first define
φ1 ∗ φ2 : πK1 ∗ πK2 → Dp1 ∗Dp2 in the obvious way. Then G can be constructed from Dp1 ∗Dp2
by identifying the images of the meridians:

G ∼=
Dp1 ∗Dp2

〈〈z−1
1 z2〉〉

We will show that G/〈〈φ([x, xw])〉〉 is not abelian, hence π(K1 #K2)/〈〈[x, xw]〉〉 is not abelian
either.

Note that φ(x) = z and φ([x, xw]) = [z, zv], where v = φ(w) is in the commutator subgroup
Zp1 ∗ Zp2 of G. Then G/〈〈[z, zv]〉〉 is the image of the induced homomorphism which we would like
to show is nonabelian. We will do this by showing that its commutator subgroup is nontrivial. Let
N = 〈〈[z, zv]〉〉, the normal closure of [z, zv] in G. As [z, zv] is a commutator, N is contained in the
commutator subgroup Zp1 ∗Zp2 of G. The goal now is to show that (Zp1 ∗Zp2)/N is not the trivial
group.

Note that [z, zv] = z(v−1zv)z(v−1zv) = (zv−1zv)2 = [z, v]2. It will be convenient to describe N
as the normal closure inside of Zp1 ∗ Zp2 of some elements of Zp1 ∗ Zp2 . Denote g = [z, v]. Now, N
is the normal subgroup generated by all elements of the form h−1g2h, where h ∈ G is arbitrary.
Any h ∈ G can be written as znc, where n = 0 or 1 and c ∈ Zp1 ∗ Zp2 . Then h−1g2h = c−1zng2znc.
Since c−1g2c is already in the normal closure of g2 in Zp1 ∗ Zp2 , it suffices to consider n = 1, i.e.
h = zc. Notice that zg2z = (zgz)2 = (z[z, v]z)2 = (v−1zvz)2 = [v, z]2 = [z, v]−2 = (g2)−1. Then
c−1zg2zc = c−1g−2c = (c−1g2c)−1, so in fact N is the normal closure in Zp1 ∗ Zp2 of just g2. By
the Freiheitssatz, (Zp1 ∗Zp2)/〈〈g2〉〉 is nontrivial for any element g ∈ Zp1 ∗Zp2 (we may assume g is
cyclically reduced, since this does not change the isomorphism type of the quotient. If g involves
only one of the generators a1 or a2, then clearly the other factor survives in the quotient). �

Corollary 5.5. Let k1 and k2 be classical knots with determinants |∆ki
(−1)| 6= 1. Then

ucw(τnk1 # τmk2) ≥ 2
for any even integers n,m.
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Corollary 5.6. Let K1 and K2 be even twist-spins of 2-bridge knots. Then ucw(K1 #K2) = 2.

Proof. Since 2-bridge knots have nontrivial determinants, their even twist spins do as well [Jos19].
Then ucw(K1 #K2) ≥ 2 follows from Theorem 1.5. The reverse inequality follows from Theorem 4.7
and the elementary fact that ucw(K1 #K2) ≤ ucw(K1) + ucw(K2). �

It is interesting to note that in the case of 2-bridge knots k1, k2, the knot group π(τ2k1 # τ2k2) ∼=
(Zp1 ∗Zp2)oZ, where pi = |∆ki

(−1)|, and that the proof of Theorem 1.5 goes through in that setting
without the further quotient to G. In fact, G arises naturally as the group of τnk1 # τmk2 #RP 2,
where n,m are even and RP 2 denotes a standard projective plane.

For odd integers p, q ∈ Z, let Kp,q denote the spin of T (2, p) #T (2, q). Miyazaki proved that
ust(Kp,q) = 1, whenever q = p+ 2, p+ 4, or p+ 6, when gcd(p, p+ 6) = 1 [Miy86]. Therefore, ust
fails to be additive in these cases. However, it follows from Corollary 5.6 that ucw is additive in
these cases, and in particular that ucw(Kp,q) = 2. This proves Theorem 1.3.

Theorem 1.3. There are infinitely many 2-knots K with ust(K) = 1 and ucw(K) = 2.

5.3. Application to classical unknotting number. As noted at the start of Section 5.1, the
Nakanishi index, Ma-Qiu index, and algebraic stabilization number are all previously established
lower bounds for the classical unknotting number. In this section we point out that the algebraic
Casson-Whitney number is also a lower bound for the classical unknotting number, which is sharper
than the aforementioned invariants in many cases.

Perhaps the most interesting reason to study acw as a lower bound for the unknotting number is
that the above three invariants all fail to be additive in many simple cases, such as T (2, p) #T (2, q)
when p, q are coprime [KY10]. By Theorem 1.5, acw(T (2, p) #T (2, q)) = 2 for all (odd) p, q. We do
not know any cases where acw fails to be additive on classical knots, although it seems difficult to
prove this is always the case. Still, this poses a potentially interesting avenue to study the classical
unknotting number, via a lower bound which comes from four dimensional techniques.

Let k be a 1-knot. Remembering that spinning preserves the knot group (and its meridians),
acw(k) = acw(τ0k). By Proposition 2.16 acw(τ0k) ≤ ucw(τ0k), and by Corollary 4.6, ucw(τ0k) ≤
u(k). Putting these facts together, we have:

Proposition 5.7. For any 1-knot k, acw(k) ≤ u(k).

As noted in Section 5.2, this reproves a special case of Scharlemann’s theorem that unknotting
number one knots are prime [Sch85]. Namely, if k1 and k2 are classical knots with nontrivial
determinants, then u(k1 # k2) ≥ 2.

6. Strong non-additivity of ust and ucw

As noted in Section 5.2, Miyazaki was the first to prove that ust is non-additive. For certain
p, q (see section for precise description) he showed that ust(τ(T (2, p) #T (2, q))) = 1. As pointed
out by Kanenobu [Kan96], the Nakanishi index proves that taking iterated connected sums of
K = τ(T (2, p) #T (2, q)) has ust(#nK) = n, while ust(#n T (2, p)) + ust(#n T (2, q)) = 2n. This
shows the existence of 2-knots K1, K2 with ust(K1) + ust(K2)− ust(K1 #K2) arbitrarily large. In
this section we investigate and prove a stronger version of non-additivity for both the stabilization
and Casson-Whitney number. For notational convenience, throughout the section we use α to
denote either ast or acw, and ν to denote the corresponding ust or ucw.

Our geometric study of strong non-additivity is inspired by Kanenobu’s work in [Kan96] estab-
lishing the non-additivity of ast. In particular, for each n ≥ 1, Kanenobu gave examples of 2-knots
K1, . . . ,Kn with ast(Ki) = 1 and ast(K1 # · · ·#Kn) = 1.

Question 6.1 (Kanenobu). Is ust(K1 # · · ·#Kn) = 1 as well?

We generalize Kanenobu’s result for ast and prove a corresponding result for acw. We then
prove analogous results for the geometric versions ust and ucw, answering Kanenobu’s question in
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the affirmative at the expense of a small correction factor. In fact, Corollary 6.6 shows that the
connected sums K1 # · · ·#Kn in Kanenobu’s original examples have both stabilization number
and Casson-Whitney number at most 2.

Theorem 6.2. Let α ∈ {ast, acw}. Let K1, . . . ,Kn be 2-knots with α(Ki) ≤ c for some c ∈ N.
Suppose that there exist meridians xi ∈ πKi and relatively prime integers ji ∈ Z such that each xjii
lies in the center Z(πKi) of the knot group of Ki. Then, α(K1 # · · ·#Kn) ≤ c.

Proof. We will prove the case α = ast and c = 1 in detail, then point out the changes necessary for
the general result.

Since α(Ki) = 1, there exists an element wi ∈ (πKi)′ such that πKi/〈〈[xi, wi]〉〉 ∼= Z. Let
K = K1 # · · ·#Kn, and let x = xi be the meridian of amalgamation. We will show that
πK/〈〈[x,w1w2 · · ·wn]〉〉 ∼= Z. For m ≤ n, let

Rm = [x,w1w2 · · ·wm] and

Gm = π(K1 # · · ·#Km)
/
〈〈Rm〉〉

Note that G1 ∼= Z by assumption; we will show that Gm ∼= Gm−1, so that by induction Gn ∼= Z.
Since j1 and j2j3 · · · jm are coprime, there exist integers s and t so that sj1 + tj2j3 · · · jm = 1.

Notice that xsj1 ∈ Z(πK1) and xsj1−1 = x−tj2···jm ∈ Z(π(K2 # · · ·#Km)). The relation Rm is
equivalent to x = (w1 · · ·wm)−1x(w1 · · ·wm). Raising both sides to the sj1 we obtain:

xsj1 = (w2 · · ·wm)−1w−1
1 xsj1w1(w2 · · ·wm)

= (w2 · · ·wm)−1xsj1(w2 · · ·wm)
= (w2 · · ·wm)−1x(w2 · · ·wm)xsj1−1

which is equivalent to x = (w2 · · ·wm)−1x(w2 · · ·wm). We can repeat this procedure until we
reach x = w−1

m xwm, or [x,wm] = 1, the relation which abelianizes πKm. Since wm is in the
commutator subgroup of πKm, it is trivial in the abelianization, so the relation [x,wm] = 1
abelianizes the subgroup of π(K1 # · · ·#Km) corresponding to πKm, and the induced relation on
π(K1 # · · ·#Km−1) is [x,w1w2 · · ·wm−1] = 1:

Gm = π(K1 # · · ·#Km)
/
〈〈[x,w1w2 · · ·wm]〉〉

∼= π(K1 # · · ·#Km−1)
/
〈〈[x,w1w2 · · ·wm−1]〉〉 = Gm−1.

Now, if c > 1, we simply repeat the previous argument c times, making a choice to group the nc
assumed relations into c relations, each one the combination of one of the assumed relations from
each knot group, as above.

The proof for α = acw is similar, so we only list the changes here. When c = 1, each πKi has a
finger move relation [xi, xwi

i ] = 1 such that πKi/〈〈[xi, xwi
i ]〉〉 ∼= Z, for some wi ∈ (πKi)′. We combine

these into one relation: [x, xwnwn−1···w1 ] = 1, which will abelianize the group of K1 # · · ·#Kn.
Let Rm = [x, xwmwm−1···w1 ] and let vi = wmwm−1 · · ·wi, so e.g. v1 = v2w1, and choose s and t as

before. Let Gm = π(K1 # · · ·#Km)/〈〈Rm〉〉. As before, we will show by induction that Gn ∼= G1,
which is infinite cyclic by assumption. The relation which kills Rm, [x, xv1 ] = 1, is equivalent to
x = (xv1)−1xxv1 . Raising both sides to the power sj1, we obtain

xsj1 = v−1
1 x−1v1x

sj1v−1
1 xv1

= v−1
1 x−1v2w1x

sj1w−1
1 v−1

2 xv1

= v−1
1 x−1v2x

sj1v−1
2 xv1

= v−1
1 x−1v2xv

−1
2 xv2x

sj1−1w1
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= w−1
1 v−1

2 x−1v2xv
−1
2 xv2x

−1w1x
sj1

After canceling the xsj1 terms from both sides, we can further cancel the w1 terms to obtain
x = v−1

2 x−1v2xv
−1
2 xv2, or 1 = [x, xv2 ]. Repeating this procedure we eventually reach 1 = [x, xvm ] =

[x, xwm ], the relation which abelianizes πKm. Thus

Gm = π(K1 # · · ·#Km)
/
〈〈[x, xwmwm−1···w1 ]〉〉

∼= π(K1 # · · ·#Km−1)
/
〈〈[x, xwm−1···w1 ]〉〉 = Gm−1,

and by induction Gn ∼= Z. The adaptation to c > 1 is the same as in the previous case. �

Remark 6.3. There are many nontrivial examples of 2-knots K1, . . . ,Kn satisfying the hypotheses
of Theorem 1.6. For instance, the technical condition that the jth power of a meridian is central is
satisfied by any j-twist spun knot [Zee65]. Indeed, Kanenobu uses twist-spun knots with coprime
twist indices to construct his examples of strong algebraic non-additivity in [Kan96].

Recall Proposition 5.3, which says that for a pair of 2-knots K1,K2, the algebraic lower bounds
satisfy max{α(K1), α(K2)} ≤ α(K1 #K2) ≤ α(K1) + α(K2). Kanenobu used his nonadditivity
result for ast to prove the following theorem. We note that by Theorem 1.6, his original examples
work to prove the following corollary for α = acw as well.

Corollary 6.4 (Kanenobu). For any positive integers p1, . . . , pn and any integer q with max{pi} ≤
q ≤ p1 + · · ·+ pn, there exist 2-knots K1, . . . ,Kn satisfying:

(1) ast(Ki) = acw(Ki) = pi for all i, and
(2) ast(K1 # · · ·#Kn) = acw(K1 # · · ·#Kn) = q.

While these examples show that the algebraic Casson-Whitney index acw is non-additive on
general 2-knot groups, we do not know of any classical knot groups for which this is the case. This
is in contrast with the algebraic stabilization number ast, which fails to be additive for classical
knots by [Miy86] (see the discussion at the end of Section 5). Now, to extend these algebraic results
on the non-additivity of ast and acw to their geometric counterparts ust and ucw, we first relate
these invariants through the following lemma.

K1 K2 · · · Kn

Figure 21. A schematic for the proof of Lemma 6.5, where ust(K1) = 2 and
ast(K1 # · · ·#Kn) = 1. The blue handle abelianizes the group of K1 # · · ·#Kn

and the trivial red handles allow us to inductively unknot each summand.

Lemma 6.5. For 1 ≤ i ≤ n, let Ki be a 2-knot and let K = K1 # · · ·#Kn. If ust(Ki) ≤ c for
each i, then ust(K) ≤ c+ ast(K). Similarly, if ucw(Ki) ≤ c for each i, then ucw(K) ≤ c+ acw(K).

Proof. We prove the statement for the stabilization number by induction on the number n of
summands. The proof for the Casson-Whitney number is similar. Indeed, it will be convenient
for the inductive step to prove a slightly stronger statement: For each n, any connected sum
K = K1 # · · ·#Kn can be unknotted by first stabilizing at least ast(K) times to obtain a surface
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F with πF ∼= Z, and then by stabilizing c times along guiding arcs which are necessarily trivial,
since πF is cyclic. This statement holds in the case n = 1 since the guiding arcs for the trivial
stabilizations can be isotoped in the complement of F to be guiding arcs for a collection of c
stabilizations that smoothly unknot K = K1. To proceed with the inductive step, we assume that
the statement holds when n = ` and show that it holds when n = `+ 1.

Let K = K1 # · · ·#K`+1. Stabilize K ast(K)-times to obtain a surface F with πF ∼= Z, as
before, and let F ′ be the result of (trivially) stabilizing F an additional c-times. We claim that
F ′ is unknotted. Since πF ∼= Z, the guiding arcs for the c trivial stabilizations are isotopic in
the complement of F to guiding arcs for a different set of c stabilizations which unknot the first
summand K1. Therefore, F ′ is the result of trivially stabilizing the surface F ′′ c-times, where F ′′
is the surface obtained from K2 # · · ·#K`+1 by the stabilizations induced by the original ast(K)
stabilizations which produced F from K. By the proof of Proposition 5.3 these stabilizations
abelianize π(K2 # · · ·#K`+1), so π(F ′′) ∼= Z and by induction the c trivial stabilizations unknot
F ′′.

�

Our first examples of the non-additivity of the stabilization and Casson-Whitney number now
follow as a corollary of Theorem 1.6 and Lemma 6.5.
Corollary 6.6. For n ≥ 1, consider the ji-twist spins Ki = τ jiki of classical knots k1, . . . , kn,
where each ki is either 2-bridge or has unknotting number one, with pairwise coprime twist indices
ji ≥ 2. Then,

ust(Ki) = ucw(Ki) = 1 for all i,
ust(K1 # · · ·#Kn) ≤ 2 and ucw(K1 # · · ·#Kn) ≤ 2.

Proof. First note that by either Corollary 4.6 or Theorem 4.7 (depending on whether the knot ki
is 2-bridge or unknotting number one), ucw(Ki) = 1 for each i. So, it just remains to show that
ust(K1 # · · ·#Kn) ≤ 2 and ucw(K1 # · · ·#Kn) ≤ 2. This follows from the previous results of this
section. In particular, as noted in Remark 6.3 above, the twist spins Ki have ast(Ki) = 1 as well
as meridians xi ∈ πKi such that xjii ∈ Z(πKi). Therefore, these knots satisfy the hypotheses of
Theorem 1.6, and so ast(K) = acw(K) = 1 as well. Now Lemma 6.5 applies, and we can conclude
that both ust(K1 # · · ·#Kn), ucw(K1 # · · ·#Kn) ≤ 2, as desired. �

Moreover, using a different family of twist spun 2-knots, we formulate the more general non-
additivity result featured in the introduction.
Theorem 1.6. For any positive c, n ∈ N, there exist 2-knots K1, . . . ,Kn with

ust(Ki) = ucw(Ki) = c,

c ≤ ust(K1 # · · ·#Kn) ≤ 2c, and
c ≤ ucw(K1 # · · ·#Kn) ≤ 2c.

Proof. Let ν ∈ {ust, ucw}. For the ith prime pi ∈ N, let Ki be the connected sum of c copies of
τpiT (2, pi), the pi-twist spin of the (2, pi)-torus knot. Since the Alexander module of each summand
τpiT (2, pi) is cyclic, the Nakanishi index m(Ki) of the connected sum is equal to c. This matches
the upper bound for ν given by Theorem 4.7, and so ν(Ki) = c. Now, each Ki can also be thought of
as a single pi-twist spin of the connected sum of c copies of T (2, pi). Therefore K = K1 # · · ·#Kn

is a connected sum of twist-spun knots with coprime twist indices, and so Theorem 1.6 applies to
show that ast(K) = c. Then by Lemma 6.5, ν(K) ≤ 2c. �

The proof of the next corollary follows from Corollary 4.6, Theorem 4.7, and Lemma 6.5.
Corollary 6.7. Let n ∈ N and let k1, . . . , kn be 1-knots, each either 2-bridge or with unknotting
number one. Let j1, . . . , jn be coprime integers at least 2 and let Ki = τ jiki. Then ν(Ki) = 1 for
all i and ν(K1 # · · ·#Kn) ≤ 2, where ν ∈ {ust, ucw}.
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α1

β1
α2

β2

α∗1

β∗1
α∗2

β∗2

Figure 22. Can the red & orange above appear as the standard Whitney arcs and
the blue & green as the knotted Whitney arcs in a regular homotopy to the unknot?

7. Questions

Here we present some questions that remain.
1. Is ust ≤ ucw, ust = ast, or ucw = acw? A 2-knotK with ust(K) > ucw(K) or ust(K) > ast(K)

would yield a counterexample to the conjecture that smoothly embedded orientable surfaces
in S4 with knot group Z are smoothly unknotted,6 since in both cases a surface could
be obtained whose complement has cyclic fundamental group but which is not smoothly
unknotted. On the other hand, a 2-knot K with ucw(K) > acw(K) would give an immersed
2-sphere Σ∗ with π1(S4 − Σ∗) ∼= Z that is not the result of finger moves on the unknot.

2. Is having a regular homotopy to the unknot where the boundaries of the knotted and
standard Whitney disks agree (as in the proof of Theorem 1.4) a characterization of ribbon
2-knots?

3. Given a 2-knot K in S4, are Singh’s invariants dst(K) and dsing(K) from [Sin20] ever greater
than 1?

4. Does there exist a 2-knot K such that ucw(K)− ust(K) > 1?
5. Are Casson-Whitney number one 2-knots K “algebraically prime”, i.e. if K = K1 #K2,

then at least one summand K1 or K2 has knot group Z?
6. Are pairs of 2-knots in S4 always related by an arc-standard regular homotopy? Recall that

in the proof of Theorem 1.2, we prove this for 2-knots with a length 1 regular homotopy to
the unknot, by starting with a homotopy for which all pairs of knotted and unknotted arcs
in the pre-image of the standard immersion have the same endpoints, and then performing
‘standard braid twists’ and isotopies rel endpoints until certain pairs of arcs agree. However,
even allowing additional manipulations like ‘slides’ of Whitney disks (as in Figure 4 of
[ST19]), such an argument seems to fail for certain initial configurations of Whitney arcs for
regular homotopies of higher length, including the one in Figure 22. Thus we ask: can the
arcs in Figure 22 actually appear as the pre-images of the knotted and standard Whitney
arcs of a length 2 regular homotopy from a 2-knot K with ucw(K) = 2 to the unknot?
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