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SUMMARY

A thread common to many problems of enumeration of surfaces is the idea that complicated
cases can be recovered from simpler ones through a recursive procedure. Solving the problem
for the simplest topologies and expressing how to glue them together provides an algorithm
to solve the enumerative problem of interest. In this dissertation, we consider three distinct
but interconnected topics: integration over the moduli space of curves and its combinatorial
model, the enumeration of curves and quadratic differentials, and the enumeration of branched
covers of the Riemann sphere. The leitmotif that will connect them all is a recursive procedure
known as topological recursion.

The moduli space of curves is a key object of study in algebraic geometry. Its combinatorial
model has provided powerful tools to compute various invariants of the moduli space, such
as the Euler characteristic and Witten’s intersection numbers. In this dissertation we further
develop the (symplectic) geometry of this combinatorial model, providing a complete parallel
with the Weil-Petersson geometry of the hyperbolic model. In particular, we show that certain
length and twist coordinates are Darboux, and propose a new geometric approach to Witten’s
conjecture/Kontsevich’s theorem. Namely, it is obtained by integration of a Mirzakhani-type
identity on the combinatorial Teichmiiller space, which recursively computes the constant
function 1 by excision of embedded pairs of pants.

The second topic of interest is the enumeration of multicurves with respect to either the hy-
perbolic or the combinatorial notion of length. Following ideas of Mirzakhani and Andersen—
Borot-Orantin, we show that such problems can again be recursively solved by excision of
embedded pairs of pants. As a consequence, the average number of multicurves over the
corresponding moduli space can be computed by topological recursion. On the other hand,
since the work of Mirzakhani, the average number of multicurves is known to be related to
the Masur—Veech volumes of the principal stratum of the moduli space of quadratic differ-
entials. Combining these two results, we find a topological recursion formula to compute
Masur—Veech volumes.

To conclude, we turn our attention to spin Hurwitz theory, that is the enumeration of branched
covers of the Riemann sphere with respect to their ramification and parity. Thanks to the
connection between the fermion formalism and Hurwitz theory, we are able to formulate a
precise conjecture to recursively compute spin Hurwitz numbers from the simplest topologies.
We also prove that this recursive formula is equivalent to a description of spin Hurwitz
numbers as intersection numbers on the moduli space of curves, that is a spin version of the
celebrated ELSV formula.
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CHAPTER 1 — INTRODUCTIONS AND OUTLINE

The main topic of this dissertation is the enumerative geometry of surfaces and the computation
of such invariants through topological and geometric recursion techniques, as well as their
relation to the intersection theory on the moduli space of curves.

In this chapter we start by giving a short non-technical introduction to the concept of moduli
spaces and topological recursion, aimed at those who have not yet been initiated into these
topics. We then move to a more technical introduction, which gives a complete overview of
the concepts and the motivations that are crucial for this thesis, as well as the main results
obtained. For more in depth introductions to each topic, we refer to the specific chapters. We
conclude with a detailed outline of the dissertation.

1.1 — NON-TECHNICAL INTRODUCTION

In this first introduction we will not be technical, but rather try to explain the most important
concepts of this dissertation in an intuitive way. In particular, it is aimed at people with little
to no mathematical background. Because of this, some concepts might be formally ill-defined
or even wrong.

The research of this dissertation is a part of the mathematical field of geometry. Since ancient
times, humans have tried to study shapes and geometrical objects like lines and triangles.
Sometimes it is useful to study all geometric objects of interest at once, and pack them together
in a moduli space.

A moduli space is a space whose points correspond to some objects of interest.

For instance, let us consider all possible directions along a straight line. As we all experienced
by driving on a street, there are only two possible directions.

< o \
h) hd 4

If we identify these directions with “left” and “right”, we can simply say that the moduli space
of directions along a straight line is a collection of two points:

{ directions in a straight line } = { <, — }.

Another similar example would be to consider all possible directions in a plane. In this case,
there are infinitely many directions: if you find yourself in the middle of a room, you are
allowed to go straight ahead, go back, left and right, and all possible directions in between.
We can identify each direction in a plane with a point on a circle surrounding you. In other
words, we can say that the moduli space of directions in a plane is a circle.
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Figure 1.1: Surfaces classified by their genus g and number of boundary components n.

{ directions in a plane } = O

Similarly, one can identify the moduli space of directions in 3d space with a sphere.

{ directions in 3d space } =

So, what is the point of identifying families of objects with a specific space? The main advantage
here is that the “shape” of the moduli space can tell us properties of the objects of interest.

For example, the moduli space of directions along a straight line is formed of two separate
points. This means that you cannot change direction while staying in line without “jumping”
from one direction to the other. In contrast, the moduli space of directions in a plane is
connected: you can easily rotate from one direction to another without having to jump.

One can also study how many objects such moduli spaces contain. For example, the moduli
space of directions along a straight line contains two objects. On the other hand, directions
in a plane are infinite. However, we can still “count” them by saying that there are as many
directions as the perimeter of the circle parametrising them, that is 27, Similarly, the “number”
of directions in 3d space is the same as the area of the sphere parametrising them, that is 4.

In this dissertation, we will consider specific moduli spaces parametrising certain objects on
surfaces. A surface is a gadget that locally looks like a plane: if you zoom way in, it is flat. We
will always consider surfaces that are bounded, like a sphere or a torus, which is the surface
of a doughnut shape. In fact, any surface looks like a torus with many holes, the number of
which is called the genus, which we often denote by g. We will also allow surfaces to have a
boundary, which can be obtained by cutting out a certain number n of small disks around the
surface. If we allow surfaces to be elastic, as if they were made out of rubber, and we define
two surfaces to be equivalent whenever you can stretch and bend one to the other, you can
easily convince yourself that the genus and the number of boundary components uniquely
determine the surface itself (see Figure 1.1).
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What we can consider now is the moduli space of surfaces with some additional structure,
like surfaces with a graph drawn on them. When we impose certain rules for the allowed
graphs, we obtain a finite number of possibilities for each type of surface. For example, one
can consider graphs on surfaces such that, when you cut out the graph from the surface, you
only obtain annuli around the boundary components. In this specific case, we have seven
possible graphs on a sphere with three boundary components

graphs on a surface ;:; g ; g

of genus 0 =

with 3 boundary components @ @ @

and two graphs on a torus with one boundary component:

graphs on a surface
of genus 1 = :
with 1 boundary components

But the main question is: how can we count the number of graphs on a surface of arbitrary
genus and number of boundary components? The basic idea, which is the leitmotif of this
dissertation and goes under the name of topological recursion, is to reconstruct structures on
surfaces by a cutting and gluing procedure. In this way, one can remove pieces of the surface
and recursively compute the desired quantities. For example, one can start from a graph on
a surface with four boundaries, and cut it in half to obtain two graphs on two surfaces with

only three boundaries each.
| g) + @

To summarise, in this dissertation we will consider various moduli spaces of objects on surfaces,
such as graphs, but also curves, quadratic differentials and covers. The aim is to count the
number of such objects (or, more generally, compute the volumes of the associated moduli
spaces) by means of a recursion procedure that simplifies the surfaces and the objects of
interest, reducing the computation to gadgets of lower complexity.

1.2 — MATHEMATICAL INTRODUCTION

In the early ‘gos, Witten formulated a fundamental conjecture [Witgo], proved shortly after
by Kontsevich [Kong2], establishing a new connection between two-dimensional quantum
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Figure 1.2: A schematic representation of topological recursion.

gravity and algebraic geometry. More precisely, he considered some intersection numbers
over the moduli space of curves, called y-classes intersection numbers, and he conjectured that
their generating series satisfies an integrable hierarchy of Korteweg—de Vries (KdV) type.

Many more generating series are solutions to more involved integrable hierarchies. Often the
geometric meaning of these numbers still lies in the intersection theory of certain cohomology
classes on the moduli space of curves. The appropriate mathematical tools capturing the
behaviour of these numbers are called cohomological field theories, introduced by Kontsevich
and Manin in order to formalise the properties of the virtual fundamental class in Gromov—
Witten theory.

The Witten—Kontsevich result turned out to be just the tip of the iceberg of deep interactions
between (1) theoretical physics, (2) algebraic geometry, and (3) mathematical physics. It
corresponds to the simplest possible instance of this interplay, namely (1) the Gromov—Witten
theory of a single point, (2) the trivial cohomological field theory, and (3) a topological solution
of the KdV hierarchy.

Timely, Eynard and Orantin [EOo7a] proposed a new innovative method motivated by ran-
dom matrix theory: topological recursion, which recursively computes invariants through the
topology of the moduli spaces of curves. When specialised, it recovers many known invariants
such as y-classes intersection numbers, Mirzakhani’s volumes, knot invariants, asymptotics
of expectation values in random matrix ensembles, Hurwitz numbers and Gromov—Witten
invariants. It admits a dictionary with Givental theory, and has deep connections with Hitchin
systems, WKB analysis, conformal field theories and many other topics. Concretely, topo-
logical recursion takes as input a spectral curve — a Riemann surface with some additional
structure —and produces a family of differentials w, , by a universal recursion on 2g—2+n based
on surfaces’ gluing, as schematically represented in Figure 1.2. The enumerative invariants of
interest are often the coefficients of these differentials.

MAIN RESULTS

THE COMBINATORIAL MODEL OF THE MODULI SPACE OF CURVES

In his proof of Witten’s conjecture, Kontsevich [Kong2] realised y-classes intersection num-
bers as symplectic volumes of a certain combinatorial model of the moduli space of curves,
parametrising metric ribbon graphs. A similar situation occurs in Mirzakhani’s work [Miro7a],
where different intersection numbers are realised as symplectic volumes of yet another model
of the moduli space of curves, parametrising hyperbolic metrics. Albeit the striking parallelism

6
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between the two problems and their solutions via topological recursion, a parallel proof of
these two results was unknown.

In Part IT we fill this gap and propose a proof of Kontsevich’s result for the combinatorial
volumes of the moduli space of curves that is completely parallel to Mirzakhani’s work. More
precisely, we study the geometry of the combinatorial Teichmiiller space, that is the space of
marked metric ribbon graphs on a fixed bordered surface. This space carries a natural symplec-
tic structure, the Kontsevich symplectic form, for which we prove a combinatorial Wolpert
formula: we show how some length and twist coordinates (analogous to the Fenchel-Nielsen
coordinates) are Darboux for the Kontsevich symplectic form. We then set up geometric
recursion in the sense of Andersen-Borot—-Orantin [ABO17], proving a combinatorial ana-
logue of Mirzakhani’s identity: we produce the constant function 1 by recursive excision of
embedded pairs of pants.

As applications, we obtain geometric proofs of Witten’s conjecture/Kontsevich’s theorem and
of Norbury’s recursion for the lattice point count in the combinatorial moduli space. These
proofs arise now as part of a unified theory taking care of their natural geometric nature. We
then conclude with the study of a rescaling flow, which allows to effectively carry natural
constructions on Teichmiiller spaces to their combinatorial analogues.

ENUMERATION OF MULTICURVES AND QUADRATIC DIFFERENTIALS

Another problem considered by Mirzakhani is the enumeration of multicurves with bounded
length on a fixed hyperbolic surface. In [Miro8b] she proved that the average over the moduli
space of this multicurve count is computed by a certain sum over graphs.

In Part III we complete her description, proving that the multicurve counting function is
computed by a Mirzakhani-type identity, and its average over the moduli space satisfies
topological recursion. Moreover, following the parallelism drawn in the first part of the
dissertation, we prove analogous results in the combinatorial setting. This second count
admits a sort of discretised version, that is the count of square-tiled surfaces with boundaries,
for which we prove topological recursion too.

We then shift our attention to moduli spaces of quadratic differentials with simple poles and
their associated Masur—Veech volumes. In [Miro8a], Mirzakhani showed how such volumes
are related to the asymptotic number of multicurves on a hyperbolic surface. Combining
her result with the topological recursion for the enumeration of multicurves, we obtain a
new recursive formula for Masur—Veech volumes. By computing a large amount of them, we
were able to propose conjectural formulas for these volumes as functions of the genus and the
number of poles.

Shortly after its formulation, Chen, Moéller and Sauvaget [CMS+19] were able to prove our
conjecture by showing that Masur—Veech volumes arise from the Segre class of the quadratic
Hodge bundle. To complete their description, we then prove how these intersection numbers
can be computed by a second, different topological recursion.

SpiN HURWITZ THEORY

The enumeration of Hurwitz covers, i.e. branched covers of the Riemann sphere with specified
ramification profiles, represents a classical enumerative problem studied since the end of the
19th century. In more recent years, Hurwitz numbers have again become an object of interest,
due to strong ties with the integrable hierarchies of the Kyoto school [Okooo], the intersection
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theory of the moduli spaces of curves via the Ekedahl-Lando—Shapiro—Vainshtein (ELSV)
formula [ELSVo1], and topological recursion [BMo8].

Part IV focuses on a spin version of Hurwitz numbers, which enumerate branched covers of
the Riemann sphere with respect to their ramification and parity. Thanks to their fermionic
realisation related to simple Lie algebras of type B, the generating function of spin Hurwitz
numbers is known to be a tau function of the BKP hierarchy. In the last part of the disserta-
tion, we study the connections between spin Hurwitz numbers, topological recursion, and
intersection theory on the moduli space of curve. Via Fock space techniques, we compute
the (0, 1) and (0, 2) correlators, which suggest a conjectural spectral curve associated to spin
Hurwitz numbers. In particular, we prove that topological recursion on this spectral curve is
equivalent to an ELSV-type formula that involves Witten 2-spin class (and, in the easiest case,
it reduces to double Hodge integrals).

Shortly after the formulation of our conjecture, Alexandrov and Shadrin [ASz1] proved
topological recursion for a wide class of BKP tau functions, including the ones associated
to spin Hurwitz numbers. In particular, combining their result with the aforementioned
equivalence, we obtain a complete proof of a spin ELSV formula.

1.3 — OUTLINE

This dissertation is based on the following preprints.

[And+19] J. E. Andersen, G. Borot, S. Charbonnier, V. Delecroix, A. Giacchetto, D.
Lewanski, and C. Wheeler. “Topological recursion for Masur—Veech volumes”
(2019). Submitted. arXiv: 1905.10352 [math.GT].

[And+20] J. E. Andersen, G. Borot, S. Charbonnier, A. Giacchetto, D. Lewariski, and

C. Wheeler. “On the Kontsevich geometry of the combinatorial Teichmiiller
space” (2020). Submitted. arXiv: 2010.11806 [math.DG].

[CMS+19]  D. Chen, M. Moller, and A. Sauvaget. “Masur—Veech volumes and intersection
theory: the principal strata of quadratic differentials” (2019). Appendix by
G. Borot, A. Giacchetto and D. Lewaniski. Submitted. arXiv: 1912 .02267
[math.AG].

[GKL21] A. Giacchetto, R. Kramer, and D. Lewaniski. “A new spin on Hurwitz theory
and ELSV via theta characteristics” (2021). Submitted. arXiv: 2104 .05697
[math-ph].

[GLN] A. Giacchetto, D. Lewanski, and P. Norbury. In preparation.

It is organised in the following way.

e Part II deals with the combinatorial model of the moduli space of curves, and is all based
on [And+20].

— In Chapter 3 we introduce the combinatorial moduli spaces parametrising metric
ribbon graphs and the associated Teichmiiller spaces, and prove various topological
and geometric properties. In particular, we discuss cutting and gluing of metric
ribbon graphs, as well as Fenchel-Nielsen-type coordinates.


https://arxiv.org/abs/1905.10352
https://arxiv.org/abs/2010.11806
https://arxiv.org/abs/1912.02267
https://arxiv.org/abs/1912.02267
https://arxiv.org/abs/2104.05697
https://arxiv.org/abs/2104.05697
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— In Chapter 4 we recall the symplectic properties of the combinatorial moduli and
Teichmiiller spaces, due to Kontsevich, and prove a Wolpert-type formula for this
symplectic structure.

- In Chapter 5 we set-up geometric recursion in this combinatorial setting. In par-
ticular, we prove a combinatorial analogue of the Mirzakhani-McShane identity,
which yields to a recursion formula for the symplectic volumes of the combinato-
rial moduli spaces. After integration, it gives a new geometric proof of Witten’s
conjecture.

— In Chapter 6 we extend known results about the connection between hyperbolic
structures and metric ribbon graphs, exploiting the geometric idea that metric
ribbon graphs approximate hyperbolic surfaces with large boundaries.

® Part 1T deals with the enumeration of multicurves in both the hyperbolic and combinato-
rial settings, as well as its connection with Masur—Veech volumes and area Siegel-Veech
constants of the principal stratum of the moduli space of quadratic differentials. It con-
tains some results from [And+19; And+20], and new unpublished material originated
from these works.

— Chapter 7 is based on [And+19] and on the last section of [And+20]. We discuss the
enumeration of multicurves in the hyperbolic and combinatorial setting, proving a
Mirzakhani-type identity and a recursion for the average number of multicurves.
We also discuss the enumeration of square-tiled surfaces with boundaries, weighted
by their core area.

— Chapter 8 builds again on ideas from [And+19; And+20]. We show that the
asymptotic number of multicurves in the hyperbolic and combinatorial settings
are equal, and that they coincide with the Masur-Veech volumes of the principal
stratum of the moduli space of quadratic differentials. This gives a way to compute
such volumes, and we were able to conjecture the behaviour of Masur—Veech
volumes and Siegel-Veech constants as a function of the genus and the number of
simple poles. We also discuss the connection between the asymptotic enumeration
of square-tiled surfaces with boundaries and Masur—Veech volumes.

- Chapter 9 is based on [CMS+19]. We briefly summarise how the authors proved
the above conjecture from [And+19] through intersection theory of the Segre
class of the quadratic Hodge bundle, and present our contribution which is a
recursion formula for the Segre class intersection numbers. Based on [GLN], we
also show how the Chern class of the quadratic Hodge bundle computes the Euler
characteristic of the moduli space of curves, providing a new intersection-theoretic
proof of the Harer-Zagier formula.

® Part IV deals with spin Hurwitz numbers, and is all based on [GKL21].

— In Chapter 10 we review the representation theory of the spin algebra and the
theory of neutral fermions. This allows us to represent spin Hurwitz numbers in
terms of characters of the Sergeev group and vacuum expectation values on the
neutral Fock space.

- In Chapter 11 we derive the spin analogue of the Okounkov-Pandharipande
operators on neutral fermions, which is then employed for the analysis of the
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polynomiality structure of spin double Hurwitz numbers and their wall-crossing
formulae. We also provide an explicit expression for the generating series of spin
cut-and-join-operators, which can then be computed directly and algorithmically.

— Chapter 12 contains the main conjecture concerning spin Hurwitz theory: single
spin Hurwitz numbers are generated by topological recursion on a specific spectral
curve. We also give evidence for this conjecture by proving it in genus zero. Since
the conjectural spectral curve differs from the usual definition, we define and
analyse G-quotients of spectral curves, and reduce them to the usual setting of
topological recursion. We then employ the correspondence with cohomological
field theories to derive a representation of spin Hurwitz numbers as intersection
numbers on M, ,. To conclude, we express the cohomological field theory as the
Chiodo class twisted by the Witten 2-spin class.

I0



CHAPTER 2 — PREREQUISITES

The main purpose of this chapter is to make the thesis as self-contained as possible, giving
an overview of different (but quite related) topics that are relevant for this dissertation: the
moduli space of curves and cohomological field theories, topological recursion, geometric
recursion and Teichmiiller theory, fermion formalism and its connections with integrable
hierarchies, and Hurwitz theory. This of course very often implies providing references for
more details whenever we consider it necessary or interesting.

2.1 — MODULI SPACE OF CURVES

In this section we recall some facts about smooth connected compact complex curves of genus
g, also called Riemann surfaces, with n marked points. Their moduli space M, , has been a
central object in mathematics since Riemann’s work in the middle of the 19th century, and its
compactification M, , was defined more that 5o years ago by Deligne and Mumford [DM69]
by including stable curves. Either such moduli spaces can be seen as smooth Deligne-Mumford
stacks (in the algebraic-geometric setting) or as smooth complex orbifolds (in the analytic
setting). The latter notion is simpler and will be discussed here.

DErFINTTION 2.1.1. Let g,n > 0 such that 29 — 2+ n > 0. A stable curve of type (g,n) is a
complex algebraic curve C of arithmetic genus g with n labeled marked points x1, .. ., x, such
that

e the only singularities of C are simple nodes,
e the marked points are distinct and do not coincide with the nodes, and
e the curve (C,x1,...,x,) has a finite number of automorphisms.

We will not formally construct the moduli space of stable curves M., but we will list some
of its properties and refer to [ACG11, Chapter XII] for further readings.

PROPOSITION 2.1.2. The moduli space of stable curves M., is a smooth complex compact
orbifold of dimension 3g — 3 +n. Moreover, it contains the moduli space of smooth curves Mg ,,
as a smooth open dense suborbifold.

We will call M, , = My, \ M, the boundary of the moduli space of stable curves. Beware
that, as M, , is a closed smooth orbifold, the boundary here is not meant in the sense of
orbifold with boundary.

ExamPLE 2.1.3. We describe here the moduli spaces of curves for the simplest topologies,
namely genus zero (or rational) curves with three or four marked points, and genus one curves
with one marked point (also called elliptic curves).

II
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Figure 2.1: On the left, the moduli space M ;. The arcs AB and AB’ and the half-lines BC
and B’C’ are identified. On the right, the point at infinity, corresponding to a pinched torus
with one marked point.

e Mo = {*}. Every stable rational curve (C, x1, x2, x3) with three marked points can be
identified with (P, 0,1, o) in a unique way.

. MOA = P!. Every smooth rational curve (C,x1,x2,x3,x4) can be uniquely identified
with (P1,0,1, 0, 1), for some A # 0, 1, co. The value A is determined by the positions of
the marked points on C via the cross-ratio:

_ (xg = x1)(x2 — x3)

(x4 = x3)(x2 — x1)
The moduli space Mo 4 is the set of values of 4, thatis Mg 4 = P!\ {0, 1, 00 }. The nodal
curves in My 4 correspond to two rational curves intersecting in one point and with

two marked points each. These three nodal curves, corresponding to the three way of
splitting four points in two sets of two, can be identified with A tending to 0, 1 and .

e M. Every smooth elliptic curve is given by a quotient C/A of the complex plane by
a lattice, and the image of A is a natural marked point on the quotient. Further, two
elliptic curves C/A; and C/Ag are isomorphic if and only if Ay = aA; for some a € C*.
Consider now A = e1Z & e3Z; multiplying by 1/e1, we obtain Z & 7Z with 7 lying
in the upper-half plane . Moreover, the elliptic curve defined by the lattice Z & 7Z is
isomorphic to the curve defined by Z @ v'Z, for v/ given by the modular action

, _at+b a b
Cer+d’ d

) e SL(2,0).

Thus, M; 1 = [h/SL(2, C)] as an orbifold, with generic point of stabiliser Z/2Z. Notice
that the moduli space has two non-smooth points as a variety, corresponding to 7 = i
and 7 = ¢™/3, with stabiliser given by Z/4Z and Z/6Z respectively. In this case there
is only one nodal curve, that is a rational curve with two points identified (a pinched
torus), and it corresponds to the point at infinity in Figure 2.1.

Some of the main features of the moduli spaces of stable curves come from the existence of
natural maps between them: the forgetful and gluing maps.
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2 2

Figure 2.2: An example of forgetful morphism po: M3z 4 — Mas.o. Forgetting the last two
marked points, both rational components become unstable and have to be contracted.

The idea of a forgetful map is to assign to a genus g stable curve (C,x1, ..., Xu4m) the curve
(C,x1,...,x,), where we have forgotten the last m marked points. However, the resulting
curve is not necessarily stable. Assuming that 29—2+n > 0, then either the curve (C,x1, ..., x,)
is stable, or it has at least one rational component with one or two special points (that is, a
marked point or a node). In the latter case, this component can be contracted into a point
(see Figure 2.2). If the curve thus obtained is not stable, we can find another component to
contract. Since the number of irreducible components decreases with each operation, in the
end we will obtain a stable curve (C, x1,...,x,)%.

DEFINITION 2.1.4. Define the forgetful map
Pm: ﬂg,nﬂn — ﬂg,n, (C,x1s ..oy Xpam) — (C,x1, ..., x,)%" (2.1.1)

In the following, we will denote p; simply by p.

The forgetful map is very important from the deformation theory point of view: it coincides
with the universal curve.

PROPOSITION 2.1.5. The forgetful map p: My ps1 — M, is the universal curve
m: Cyn — Mgon. (2.1.2)

In other words, the following universal property holds: for any family X — B of genus g stable
curves with n marked points, there exists a unique morphism ¢: B — My, such that the family

X is a pullback by ¢.

For the gluing maps, the idea is simply to identify marked points of stable curve(s), creating a
new curve of simpler type.

DEFINITION 2.1.6. Define the gluing map of non-separating kind by identifying the last two
marked points of a single stable curve:

q: M_,,_l,m — Mg,n. (2.1.3)

Define the gluing map of separating kind by identifying the last marked points of different
stable curves:

i Mgyner X Mgy nper — Mg, (2.1.4)

where g1 + g0 = gand ny + ny = n.
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Together, we will call the maps p, ¢ and r the tautological maps. Notice that tautological maps
simplify the topology of a curve by making its Euler characteristic higher. This simple feature
will be the fil rouge of the whole dissertation, appearing in the context of cohomological field
theories, topological and geometric recursion, Hurwitz theory, etc.

Notice that the image of both ¢ and r lie in the boundary M, , € M, ,. In particular, this
defines a stratification of the moduli space of curves via combinatorial data called stable graphs.

DEFINITION 2.1.7. A stable graph is the dataT' = (V,H, A, E, g,v,¢) of
e aset V of vertices,

* aset H of half-edges, together with a map v: H — V that sends a half-edge to the vertex
it is attached to, and an involution ¢: H — H pairing half-edges together,

* asubset A C H of leaves, that is the set of fixed points of ¢,
e the set E of edges is the set of orbits of ¢ of cardinality 2,
® agenusmap g: V — Zs,
such that the following conditions hold:
e the graph (V, E) is connected,

e for each vertex v € V, the stability condition holds: 2g(v) — 2 + n(v) > 0, where
n(v) = |[v~1(v)] is the valence of v (i.e. the number of edges and leaves attached to v).

For a given stable graph T, we define its genus as g(I') = Y, ¢y g(v) + A (T), where 1! (T) is
the first Betti number of the graph I'. An automorphism of a stable graph is an automorphism
of the underlying graph that preserves individually the leaves and the genus of each vertex.
Define the type of I as (¢(I'), |Al), and denote the set of stable graphs of type (g,n) by G, .

If necessary, we will denote the sets of vertices, edges, half-edges and leaves of a stable graph
" with a subscript I".

For a given stable graph I', we define

Mr = 1—[ My(v%n(v)’ éri M — Mg,n, (2.1.5)

veVr

where the map ¢r is defined by gluing all the marked points on the components as indicated
by the edges of I'. The images of Mr = [1,cvi. My(v).n(v) (resp. Mr) via ér under all stable
graphs of type (g,n) gives the open (resp. closed) boundary stratification of M,,,. Clearly,

Mgn € Myn corresponds to the open boundary stratum given by the unique stable graph
with one vertex of genus g, n leaves and no edges.

ExaMPLE 2.1.8. In the following, the genus of a vertex is represented by a number inside the
vertex itself, while the leaves are labelled by natural numbers 1,2, . ...

® Go.s. There is a single stable graph of type (0, 3), namely

I'= 14(2

3

This corresponds to the identification Mo,g =Mps={=*}
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® Go.a. There are four stable graphs of type (0,4), namely

1 1
r= : T34 = 2)»—4(3 :
2)(431 12|34 .

and similarly I'j3j24 and ['j4j23, all with trivial automorphism group. This corresponds
to the open boundary stratification Mg 4 = M4 U (Mo 3 X Mo 3)"2.

® Gi.1. There are two stable graphs of type (1, 1), namely
'= 1@ and ['=1-@)

with automorphism groups of order 1 and 2 respectively. This corresponds to the
open boundary stratification M1 = My 1 U (Mo 3/(Z/2Z)), with the single point
corresponding to the pinched torus in Figure 2.1.

One of the main application of the boundary structure of the moduli space is discussed in the
next section: intersection theory on M, .

2.1.1 — TAUTOLOGICAL RING

The generalisation of various topological invariants, such as homology and cohomology,
from the manifold setting to that of orbifold is relatively easy, albeit it brings some technical
differences. In particular, for an orbifold X it is natural to consider its cohomology ring with
rational coefficients, rather than integers, which coincides with the cohomology ring of its
underlying topological space (also over Q). In particular, we can safely consider the rational
cohomology ring of the moduli space of stable curves H*(M,.,), where Poincaré duality
holds. However, as we will see, it is more natural to consider subrings which behave well
under pushforwards by tautological maps.

DEFINITION 2.1.9. Define the rautological ring of the moduli spaces of stable curves as the
minimal family of unital subrings R*(Mg.,) € H?*(My,,,) that is stable under pushforwards
by tautological maps’. Elements of the tautological ring are called tautological classes.

Clearly, 1 € R°(M,_,), since a subring contains the unity element by definition. Moreover, all
boundary strata are tautological, since they are pushforward of the unit element by gluing
maps. The same holds for intersections and self-intersections of boundary strata.

Let us introduce now some more tautological classes. The definition of A- and x-classes on
the moduli spaces without marked points was firstly given by Mumford in [Mum83], along
with the term “tautological classes”. The y-classes were first defined by Miller in [Mil86], and
became truly important after Witten formulated his fundamental conjecture [Witgo] on their
intersection numbers in connection with the Korteweg—de Vries (KdV) hierarchy.

DEFINITION 2.1.10. Let w, be the relative dualising sheaf for x: Eg,n — Mg,n, that 1s w,
restricted to each fiber is the canonical bundle of the corresponding curve.

From the algebraic-geometric point of view, a more natural choice is to consider Chow groups A4(M,,,)

instead of even cohomology group H2?(Mg, ). Except for the Givental-Teleman classification of CohFTs,
Theorem 2.2.12, every construction and result from this chapter holds in the Chow setting.
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* Define the Hodge bundle as & = m.w,. The fiber over a point (C,x1,...,x,) is the
vector space of abelian differentials H%(C, wc), i.e. the space of forms over C that are
meromorphic, with poles at the nodes only and with residues on the two branches
meeting at a node of opposite sign. Hence, & is a rank g vector bundle, and define the
Hodge classes

Ak = ci(8) € H* (M), k=0,...,q. (2.1.6)
Define the full Hodge class as the Chern polynomial A(r) = ¢(&;1) = X_, t* Ax.

e Let 0; be the section of 7 corresponding to the i-th marked point. Define the line
bundles £; = 0wx. The fiber over a point (C,x1,...,x,) is the cotangent space T;,C
of C at x;. Define the y-classes

i =ci1(Li) € HQ(Mg,n)~ (2.1.7)
¢ Define the k-classes o
Kd = P+ (W,Cf:ll) € H2d(Mg,n)’ (2.1.8)

where p: Mg,nﬂ - Mg,n is the forgetful map. We also define the multi-index k-classes:

1 m+1 A Vi .
for = (u1. ..., pm), define Ku = Pm,*(lﬁfﬁf T rlzl+n: ), where p,, : Mg.nem — Mg is

the m-th forgetful map.

PrOPOSITION 2.1.11 (See for instance [Zvo12, Theorem 2.27]). All A-, - and k-classes are
tautological classes.

TAUTOLOGICAL RELATIONS

One of the most natural questions to ask is an explicit presentation of the tautological ring
in terms of generators and relations. This can be achieved via strata algebra classes and
tautological relations. The following definition is due to Pixton [Pix13].

DEFINITION 2.1.12. Fix a stable graph T'. A basic class on My is a product of monomials in
k-classes at each vertex of the graph and powers of ¢/-classes at each half-edge:

y=11]]xa@™ ]| v" e R Mp), (2.1.9)

veVrd>0 heHr

where k4(v) is the d-th k-class on My (y).(s)- We suppose that the weights satisfy

Z d-mg(v) + Z k(h) < 3g(v) — 3 + 2n(v) (2.1.10)

d>0 heHr (v)

at each vertex to avoid trivial vanishing, where Hr(v) € Hr denotes the set of half-edges
(including the leaves) incident to v. Define the degree of [T, y] by setting

deg[I', y] = degc y + |E|. (2.1.11)

Consider the graded Q-vector space S; ,, whose basis is given by isomorphism classes of pairs
[T, y], where I is a stable graph of type (g,n) and y is a basic class on Mr. Since there are
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2. Prerequisites

only finitely many pairs [I', y] up to isomorphism, S; , is finite dimensional. Define a graded
algebra structure on Sy , as follows:

[F19 ')’1] : [FQa 72] = E [F’ 71726F], €r = — | | (wh +l,bh’) (Z.I.IZ)
r ecE1NEy
e=(h,h")

where the sum is over all stable graphs I whose set of edges Er is a union (not necessarily
disjoint) of two subsets E = E; U E3 such that contracting all edges outside E; results in I';.
Here ¢, and ¢ are the y-classes corresponding to the two half-edges of e, and er is the excess
class given by Fulton’s excess theory.

DEFINITION 2.1.13. Via the above intersection product, S , is a finite dimensional graded
Q-algebra called the strata algebra. Pushforward along &r defines a canonical surjective ring
homomorphism

o8, — R*(M,.0), oL, y] =ér.y. (2.1.13)

An element of the kernel of o is called a tautological relation.

A natural question, then, is how to explicitly construct tautological relations. In his PhD
thesis [Pix13], Pixton constructed a set of relations based on the known Faber—Zagier relations
for the moduli space of smooth curves M, o and conjectured that they constitute all tautolog-
ical relations. Such relations were later proved to hold in cohomology by Pandharipande—
Pixton—Zvonkine [PPZ15] using cohomological field theories techniques (a more precise
definition of such relations will be given in Section 2.2 via the Witten 3-spin class). The
above (conjectural) presentation has many practical applications. For instance, Delecroix—
Schmitt-van Zelm [DSZ20] implemented Pixton’s presentation of the tautological ring as
a SageMath package, called admcycles, which allows various checks on cohomology or
intersection theory on the moduli space of curves. In particular, admcycles has been used to
numerically check Theorem 12.3.6, expressing spin Hurwitz numbers in terms of intersection
theo