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RATIONAL POINTS ON ELLIPTIC K3 SURFACES

OF QUADRATIC TWIST TYPE

ZHIZHONG HUANG

ABSTRACT. In studying rational points on elliptic K3 surfaces of the form

f (t)y2 = g(x),

where f ,g are cubic or quartic polynomials (without repeated roots), we introduce a condition
on the quadratic twists of two elliptic curves having simultaneously positive Mordell-Weil
rank. We prove a necessary and sufficient condition for the Zariski density of rational points
by using this condition, and we relate it to the Hilbert property. Applying to surfaces of
Cassels-Schinzel type, we prove unconditionally that rational points are dense both in Zariski
topology and in real topology.
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1. INTRODUCTION

1.1. Topology of rational points on elliptic K3 surfaces – an overview. A basic approach
of studying how many rational points an algebraic variety possesses is via their density in
Zariski topology and in analytic topology. A conjecture of Mazur states the following:

Conjecture 1.1 ([14], Conjecture 1). Let X be a smooth variety over Q. Suppose that X(Q)
is Zariski dense. Then the topological closure of X(Q) in X(R) is open (that is, a finite union

of connected components of X(R)). 1

A finer notion than the Zariski density is the so-called Hilbert property (abbreviated as
(HP) in the sequel, cf. [21, Definition 3.1.2]). Recall that for X a variety over a number field k,
the set X(k) is thin if there exist a finite number of dominant generically finite morphisms πi :
Yi → X ,1 6 i 6 r over k without rational sections such that X(k)\∪r

i=1πi(Yi(k)) is contained

2010 Mathematics Subject Classification. 14G05, 14J27, 11G05.
Key words and phrases. Elliptic K3 surfaces, rational points.
1However this conjecture turns out to be false in its full generality, as demonstrated by counter-examples con-

structed by Colliot-Thélène, Skorobogatov and Swinnerton-Dyer in [5, §5]. Several amendments to Conjecture
1.1 have also been proposed, cf. e.g. [15, Conjectures 2 & 3] and [5, Conjectures 4 & 5].
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2 ZHIZHONG HUANG

in a proper Zariski closed subset of X (cf. [21, §3.1], [7, §1.1]). We say that X verifies (HP)
over k if X(k) is not thin. The following conjecture was raised by Corvaja and Zannier:

Conjecture 1.2 ([7], Question-Conjecture 1). Suppose that X is smooth and algebraically

simply connected. If X(k) is Zariski dense, then X verifies (HP) over the number field k.

Throughout this article, by a K3 surface, we mean a projective, smooth, geometrically
integral surface E defined over a field k having trivial canonical class and H1(E ,OE ) = 0.
Moreover it is called elliptic if it admits over k a fibration π : E → B onto a curve B whose
generic fibre is a smooth genus one curve. Results on producing rational points (over the
ground field) on K3 surfaces defined over number fields are rare in current literature, although
a result of Bogomolov-Tschinkel [2] states that rational points are potentially dense on elliptic
K3 surfaces (i.e. rational points defined over a finite extension of the ground field are Zariski
dense).

In the context of an elliptic K3 surface E → P1
Q, Conjecture 1.1 implies2 (cf. [14, p. 40]):

Conjecture 1.3 ([14], Conjecture 4). For t ∈ P1
Q, let Et be the fibre π−1(t). Then the family

{Et}t∈P1
Q

verifies one of the following exclusive conditions.

(1) The elliptic curves Et has Mordell-Weil rank 0 for all but a finite number of elements

t ∈ P1(Q).
(2) The set {t ∈ P1(Q) : rank(Et(Q))> 0} is dense in P1(R).

All the aforementioned conjectures for K3 surfaces are consequences of a stronger one
due to Skorobogatov predicting that they satisfy weak approximation with Brauer-Manin
obstruction (cf. [12, p. 817]).

1.2. Summary of results and layout of the paper. The object of study in this paper is a
family of K3 surfaces of Cassels-Schinzel type [4] with affine model

(1) S
d,1 : d(1+T 4)Y 2 = X3−X ⊂ A

3
X ,Y,T ,

where d ∈ N>1. They arise as quadratic twist type elliptic pencils over Q (parametrized by
the coordinate T ) that are isotrivial (i.e. the j-invariant of this family is constant on T ). Such
elliptic surfaces admit a section over Q at X = ∞ but the Mordell-Weil rank of the group
formed by all sections over Q (sometimes called “geometric rank”) is zero. One main result
of this paper is the following (cf. Section 4):

Theorem 1.4. There exists an infinite set of square-free integers d (including 1,7, · · ·) such

that the surface Sd,1 verifies Conjecture 1.1, and that Sd,1(Q) is Zariski-dense.

Unless otherwise specified, all results in our article are unconditional on standard con-
jectures on elliptic curves. Theorem 1.4 fits into the empirical fact that if there exist extra
rational points outside the evident smooth rational curves on a K3 surface, they tend to be
Zariski dense (cf. [25]). See also a recent result of Gvirtz [10, §4.1] for another quadratic
twist family of j-invariant 0.

Amongst classical approaches to the Zariski density of rational points on isotrivial elliptic
surfaces, the method of variation of the root number is pioneered by Rohrlich [20] and stim-
ulates later works such as [26] and [9]. As the family (1) has constant root number −1 (cf.

2To the best of author’s knowledge, no counter-example to Conjecture 1.1 is currently known for K3 surfaces.
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§4.1), the Zariski density of rational points on such surfaces was previously conditional on the
parity conjecture, asserting that the root number agrees with the parity of the Mordell-Weil
rank of an elliptic curve, which is a weak version of the Birch-Swinnerton–Dyer conjecture.
Our result also covers several elliptic surfaces in (1) with constant root number +1, for which
there were no conditional results about the Zariski density of rational points previously.

The Cassels-Schinzel surfaces (1) are particular types of (twisted) Kummer surfaces as-
sociated to the product of two (twisted) elliptic curves (cf. Section 2). Let us fix a num-
ber field k, and f ,g two one-variable polynomials without repeated roots and such that
deg f ,degg ∈ {3,4}. We define two hyperelliptic curves

E1 : y2 = g(x), E2 : s2 = f (t)

of genus one. The associated Kummer variety, denoted by Kum(E1×E2), has k-affine model

(2) f (T )Y 2 = g(X)

(cf. Section 2.1). To state our second main result which releases our strategy of proving
Theorem 1.4 and addresses Conjecture 1.2, we introduce the condition “(SPR(C))”3 (with
parameter [C]∈ k∗/k∗2) for the Kummer variety Kum(E1×E2) as follows. Let EC

1 (resp. EC
2 )

denote the quadratic twist of E1 (resp. E2) by [C] ∈ k∗/k∗2. We define the condition

(SPR(C)) rank(EC
1 (k)) rank(EC

2 (k))> 0.

Here by writing “rank” we implicitly mean that Ei(k) 6= ∅ for any i = 1,2, so that they are
equipped with some group law. The condition (SPR(C)) arises in a natural way from our
approach of parametrizing rational points on (2) (cf. Theorem 2.1) in a similar manner to
[5] (except that here we are taking unramified double coverings over an open (non-proper)
variety).

Theorem 1.5.

(i) The set Kum(E1×E2)(k) is Zariski dense if and only if there exists [C] ∈ k∗/k∗2 such

that (SPR(C)) holds.

(ii) If Kum(E1 ×E2) verifies (HP) over k, then there exist infinitely many classes [C] ∈
k∗/k∗2 such that (SPR(C)) holds.

Remark 1.6. Suppose that Conjecture 1.2 holds for Kum(E1×E2). We infer from Theorem
1.5 that the existence of one class [C] ∈ k∗/k∗2 with (SPR(C)) is equivalent to the existence
of infinitely many such [C]. See also the discussion in §3.2.

We shall prove Theorem 1.5 in §3.1, followed by different approaches to the condition
(SPR(C)) in §3.2. Applying to the Cassels-Schinzel type surfaces (1), we point out that the
validity of (HP), and hence that of (SPR(C)) with infinitely many [C] for the surface (1)
has striking consequence on the congruent numbers (cf. Remark 4.4). Based on current
unconditional results towards the detection of congruent numbers, we establish (SPR(C))
with infinitely many [C]∈Q∗/Q∗2 for another family of surfaces similar to (1) with a different
coefficient for the term T 4 (cf. Theorem 4.1), therefore providing evidence in favour of (HP).

It is worth mentioning that, when (deg f ,degg) = (3,3) (so that the surface (2) is un-
twisted) and under some extra assumption on the j-invariants of two elliptic curves defined

3abbreviation for “simultaneously positive rank”



4 ZHIZHONG HUANG

by f and g, the Zariski density is known unconditionally by the work of Kuwata-Wang [13],
where the third elliptic fibration (in coordinate Y ) comes into play in their method. More re-
cently, Demeio [8] surprisingly shows that, the Zariski density is equivalent to (HP), whence
one deduces the equivalence between (SPR(C)) (with a single [C] or infinitely many by Re-
mark 1.6) and (HP) in this case (cf. also Corollary 3.5). There again, the use of the elliptic
fibration in Y is essential. It does not seem evident to extend their results to cases where deg f

or degg is 4 since the fibration in Y is not of genus one any more. We give a short discussion
in Section 5.

Acknowledgements. We thank Marc Hindry for drawing our attention to the Cassels-Schinzel
surfaces as well as enlightening guidance. We are grateful to Mike Bennett, Julian Demeio,
Julie Desjardins, Damián Gvirtz, Emmanuel Lecouturier, Marusia Rebolledo, Alexei Sko-
robogatov for fruitful discussions, and to Yang Cao for generous help. We gratefully thank the
hospitality of Max-Planck-Institut für Mathematik in Bonn and the organizers of the CMO-
BIRS conference 18w5012 in Oaxaca, where part of this work was done and reported. The
numerous suggestions and corrections of anonymous referees have greatly improved the ex-
position. While working on this project the author was partially supported by the project
ANR Gardio and a Riemann Fellowship.

2. QUADRATIC TWIST TYPE K3 SURFACES

Twisted Kummer surfaces (2) are examples of Kummer varieties (in the sense of [12]).
We start by recalling some basic facts on Kummer varieties in §2.1. For more details, see
[12, §6]. In §2.2 we recall a classical covering map between a hyperelliptic quartic and the
elliptic curve defined its cubic resolvent. In §2.3, we turn to giving affine models and quotient
maps defining Kum(A ) when A is the product of two hyperelliptic curves. In §2.4 we give
explicit parametrization of rational points on Kum(A ) by quadratic twists of A . Throughout
this section, we fix k a field of characteristic 0 and k̄ an algebraic closure.

2.1. Preliminaries on Kummer varieties. Let A be an abelian variety over k. Let T be a k-
torsor under A[2], and A be a k-torsor under A whose class is the image of [T ] ∈ H1(k,A[2])
in H1(k,A). Then [T ] ∈ H1(k,A)[2] and A is equipped with a 2-covering map Φ : A → A

(cf. [24, Proposition 3.3.2]) such that T = Φ−1(0). Indeed, we have A ≃ (A×T )/A[2],
where A[2] acts diagonally on A ×T and Φ is induced by the first projection to A. The
antipodal involution ιA : A → A (i.e. the multiplication by −1 morphism) commutes with the
action of A[2] and induces an involution ιA : A → A . Let

πA : A → K̃um(A ) := A /〈ιA 〉
be the quotient map. Note that the singular locus of the variety K̃um(A ) comprises pre-
cisely the fixed points of ιA . The Kummer variety Kum(A ) associated to A is the minimal
desingulization of K̃um(A ).

To C ∈ k∗ we associate a k-torsor

(3) RC = Spec(k[T ]/(CT 2 −1))

under Z/2. By quadratic twist of A (resp. A ) by C, denoted by AC (resp. A C), we mean
the diagonal quotient of A×k RC (resp. A ×k RC) by Z/2, where Z/2 acts on A (resp. A )



RATIONAL POINTS ON K3 SURFACES 5

as ιA (resp. ιA ). The projection A ×k RC → A induces a morphism A C → K̃um(A ). The
antipodal involution ιA on A induces an involution ιA C on A C, so that the quotient

πA C : A
C → K̃um(A C) := A

C/〈ιA C〉
identifies K̃um(A C) with K̃um(A ). Since AC[2] ≃k A[2] canonically, we identify A C as
the torsor under AC defined by [T ] ∈ H1(k,A[2])≃ H1(k,AC[2]), equipped with a 2-covering
map ΦC : A C → AC.

Since the action of the involution ιAC commutes with that of AC[2] on AC, the 2-covering
map ΦC commutes with the involutions on AC and A C:

ΦC ◦ ιA C = ιAC ◦ΦC.

So ΦC induces a covering map Φ̃ : K̃um(A ) → K̃um(A) between (singular) Kummer vari-
eties.

2.2. Hyperelliptic quartics. Recall that a (smooth) hyperelliptic quartic has a smooth model
as the intersection of two quadrics in P3, whose affine plane model can be written as

(4) H : Y 2 = G(X) = aX4 + cX2 +dX + e, a,c,d,e ∈ k,a 6= 0,

such that G has no multiple roots. The hyperelliptic involution ιH is given by (X ,Y ) 7→
(X ,−Y ). Its geometric genus is 1. It is classically known that the curve (4) has the following
(k̄/k)-Weierstrass form (cf. [24, Proposition 3.3.6])

(5) E : u2 = v3 −27Iv−27J,

where
I = 12ae+ c2, J = 72ace−27ad2 −2c3,

are the cubic invariants of the polynomial G, and H is a k-torsor under E, whose class is the
image of that of the zero-dimensional scheme TG = Spec(k[X ]/(G(X))), as a torsor under the
finite group scheme E[2]. In particular, H is equipped with a 2-covering map Φ : H → E.
See [6, Theorem 1 (ii)] for explicit formulas. If G(X) = 0 has a root over k, then TG ≃k E[2],
and by choosing this root as the origin, the isomorphism H ≃k E of elliptic curves arsing
from the projection (E×k TG)/E[2]→ E commutes with the involutions on both sides 4. For
any C ∈ k∗, the quadratic twist H C is defined by the affine equation CY 2 = G(X). As before,
[H C] ∈ H1(k,EC) is induced by the k-torsor TG under EC[2] ≃ E[2]. In this way H C is
equipped with a 2-covering map ΦC : H C → EC over k.

2.3. Affine models of Kummer varieties associated to products of two hyperelliptic

curves. We fix two separable polynomials f ,g. We assume that deg f ,degg ∈ {3,4}. Define
two hyperelliptic curves

E1 : y2 = g(x)⊂ A2
x,y;

E2 : s2 = f (t)⊂ A2
s,t .

(6)

The quadratic twists of E1 and E2 by C ∈ k∗ have affine models

EC
1 : Cy2 = g(x), EC

2 : Cs2 = f (t).

4If H (k) 6= ∅, we have H ≃k E by choosing some point as the origin. In general if this point is not a root
of G, then the involution ιH does not commute with the group law.
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Their respective hyperelliptic involutions are

(7) ιEC
1

: (x,y) 7→ (x,−y), ιEC
2

: (t,s) 7→ (t,−s).

We now choose the affine model of Kum(E1×E2) and the map πEC
1 ×EC

2
as follows. Let S

be defined by (2):

(8) S : f (T )Y 2 = g(X) ⊂ A3
X ,Y,T

Then outside the fixed point locus (y = 0)× (s = 0) of ιEC
1
× ιEC

2
, the map

φC : EC
1 ×k EC

2 99K S ,(9)

(x,y)× (t,s) 7−→ (X ,Y,T ) = (x,
y

s
, t)(10)

is a (generically) double covering from the abelian surface EC
1 ×EC

2 to S .
When any one of the polynomials, say f , has degree 4, we can suppose that f = 0 has

no root over k. Otherwise by the discussion in §2.2, consider the elliptic curve E ′
2 defined

by the cubic resolvent (5) of f (which is of degree 3). We have E2 ≃k E ′
2 commuting with

involutions ιE2 and ιE ′
2

and therefore Kum(E1 ×E2)≃k Kum(E1 ×E ′
2).

2.4. Parametrization of rational points. With the affine model above, we prove the fol-
lowing folklore result, saying that rational points on (a Zariski open subset of) Kum(E1×E2)
are parametrized by those on a family of twisted abelian varieties.

The surface Kum(E1 ×E2) has two genus one fibrations ψX ,ψT to P1, that is, projections
to X and T coordinates from the affine model S (8) in §2.3. They are respectively induced
by the projections E1 ×E2 → E1,E1 × E2 → E2. Let F1 (resp. F2) be the image of E1[2]
(resp. E2[2]) in P1. Then ψ−1

X (F1) (resp. ψ−1
T (F2)) are four disjoint rational curves which are

(geometrically) sections of ψX (resp. ψT ). Let

V = Kum(E1 ×E2)\ (ψ−1
X (F1)∪ψ−1

T (F2)).

We identify V with the open set S \ (Y = 0,∞). For each [C] ∈ k∗/k∗2, consider the open
subset of EC

1 ×EC
2 :

(11) UC = (EC
1 ×EC

2 )\
(
(EC

1 [2]×EC
2 )∪ (EC

1 ×EC
2 [2])

)
.

Theorem 2.1. We have:

(i) (UC)[C]∈k∗/k∗2 is a family of Z/2-torsors over V ;

(ii)

V (k) =
⊔

[C]∈k∗/k∗2

πEC
1 ×EC

2
(UC(k)).

Proof. The restricted morphism πEC
1 ×EC

2
|UC

: UC → V is clearly flat and étale. Moreover, the

divisor ψ−1
T (F2) is a double fibre on V (with respect to the fibration ψT ) (cf. [5, §2 p. 117]).

The function defining ψ−1
T (F2) (an affine equation is given by f ) is invertible on V . Applying

[5, Proposition 1.1 & Theorem 2.1] shows (i). The decomposition of rational points in (ii)
now follows from the evaluation map

V (k)−→ H1
ét(k,Z/2) = k∗/k∗2.
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Indeed, for any [C] ∈ k∗/k∗2, the Kummer exact sequence twisted by [C] gives

1 // RC
// Gm

ξC
// Gm

// 1 ,

where RC is defined by (3) and ξC : Gm → Gm is t 7→ Ct2. The Z/2-torsor with class
[U1]− [C]∈H1

ét(V,Z/2) is isomorphic to V ×Gm,ξC
Gm where V →Gm given by the invertible

function f . An affine model is then defined by (an open subset of)

f (t) =Cs2, f (t)w2 = g(x).

And it is clearly isomorphic to UC, under the change of variables y = sw. �

Remark 2.2. The proof above shows that, if we view the surface (8) as a family of quadratic
twists of E1 by values of the polynomial f (T ), the fibres of ψT which are isomorphic to EC

1
for certain [C] ∈ k∗/k∗2 are parametrized by rational points on the curve f (t) =Cs2, namely
EC

2 .

3. THE CONDITION (SPR(C))

In this section we fix k a number field, and f ,g two polynomials without repeated roots
satisfying 3 6 deg f ,degg 6 4 and defining two hyperelliptic curves E1,E2 (6).

The goal of this section is firstly to show Theorem 1.5 (cf. §3.1). Secondly, we discuss
various geometric and analytic methods towards the condition (SPR(C)) (cf. §3.2).

3.1. Proof of Theorem 1.5. We begin with a basic observation towards the condition (SPR(C)).

Lemma 3.1. For any [C] ∈ k∗/k∗2, the condition (SPR(C)) holds if and only if (EC
1 ×EC

2 )(k)
is Zariski dense.

Proof. This follows from the general fact that for an elliptic surface π : E → B, where B is P1

or an elliptic curve, E (k) is Zariski dense if and only if infinitely many fibres have positive
rank. A proof goes as follows. Take D ⊂ E to be any integral curve. Then π |D is either
constant or surjective . In the former case D is contained in a fibre of π . For the latter case,
D intersects transversally with the generic fibre of π , and therefore it intersects transversally
with all but finitely many fibres of π . So if rank(Et(k))> 0 for infinitely many t ∈ B(k), then
E (k) cannot not be contained in any finite union of integral curves, i.e., E (k) is Zariski dense.
Conversely, a standard application of Merel’s uniformity theorem [16, Corollaire] shows that
every point of E (k) which is a torsion point of Et(k) for certain t ∈ B(k) lies in a proper
Zariski closed subset of E . Therefore if all but finitely many fibres have only torsion points,
E (k) cannot be Zariski dense.

Using the fact above, the statement of the lemma follows from considering the projections
EC

1 ×EC
2 → EC

1 and EC
1 ×EC

2 → EC
2 . �

The next finiteness result is a slight generalization of an observation due to Rohrlich [20,
§8 Lemma, p. 147], who proved the statement over Q.

Lemma 3.2. Let E be an elliptic curve over a number field k with equation v2 = h(u), where

h(u) ∈ k[u] is separable of degree 3. We fix the equation for EC the quadratic twist by C ∈ k×

to be Cv2 = h(u). Then

#{u ∈ k : ∃[C] ∈ k∗/k∗2,∃v ∈ k,(u,v) ∈ EC(k)tor}< ∞.
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Proof. We make use of Merel’s uniformity theorem [16] to extend the statement to arbitrary
number fields. To simplify the reading we give details.

Since E[2]≃ EC[2] for any [C]∈ k∗/k∗2, the u-coordinates appearing in any 2-torsion point
different from the one at infinity of EC for some [C] satisfy h(u) = 0.

We claim that, for any fixed integer N > 3, if E[N](k) 6= {0E}, then for any [C]∈ k∗/k∗2, [C] 6=
[1], one has EC[N](k)= {0E}. Indeed, by choosing P∈ E[N](k) together with 0E as a basis of
E[N], the image of the mod N Galois representation ρE,N : Gal(k̄/k)→ GL2(Z/N) attached
to E is

(12)

(
1 ∗
0 χN

)
,

where χN is the mod N cyclotomic character. And that of ρEC,N attached to EC is conjugate
inside GL2(Z/N) to

(13) µC ·
(

1 ∗
0 χN

)
,

where µC : Gal(k̄/k)→{±1} is the quadratic character associated to the extension k(
√

C)/k.
We see that elements of the form (13) cannot be conjugate to (12), unless [C] = [1]. This
proves our claim.

Finally, by [16, Corollaire], there exists a constant B = B(k) such that for every elliptic
curve E defined over k, every point in E(k)tor has order < B. We have therefore proved that
there are at most finitely many classes [C] ∈ k∗/k∗2 such that EC has a non-zero torsion point
over k of order > 2. Therefore the collection of all possible u-coordinates of points of order
> 2 in EC(k)tor for all [C] ∈ k∗/k∗2 is finite. This finishes the proof. �

We now deduce the following, which may be seen as a quantitative version of [8, Lemma
3.2]. Recall (11) the open set UC ⊂ EC

1 ×EC
2 .

Lemma 3.3. The union ⋃

[C]∈k∗/k∗2

(SPR(C)) does not hold

πEC
1 ×EC

2
(UC(k))

is contained in a proper Zariski closed subset of Kum(E1 ×E2).

Proof. We first suppose that deg f = degg = 3. Then for any [C]∈ k∗/k∗2 such that (SPR(C))
does not hold, at least one of the groups EC

1 (k),E
C
2 (k) contains only torsion points by Lemma

3.1. According to the equation of affine model S (8) and the expression of the map φC (9),
on applying Lemma 3.2 to both curves E1,E2, we conclude that there exists a Zariski closed
subset Z of S consisting of points (X ,Y,T ) ∈ S (k) with finitely many possible choices of
X -coordinates or T -coordinates, so that

φC(UC(k))⊂ Z∪ (((Y = 0)∪ (Y = ∞))∩S ) ,

the right-hand-side being a proper closed subset of S .
Next, without loss of generality, let us assume deg f = 4,degg = 3. Let E ′

2 be the elliptic
curve defined by the cubic resolvent (5) of f (cf. §2.2). Fix C ∈ k∗. If EC

2 (k) = ∅ then
(EC

1 ×EC
2 )(k)=∅. So it suffices to consider the case where EC

2 (k) 6=∅, and that the condition
(SPR(C)) holds for Kum(E1 × E2) amounts to saying it holds for Kum(E1 × E ′

2). Let us
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consider the commutative diagram (the maps πEC
1 ×EC

2
, πEC

1 ×(E ′
2)

C and Φ̃ are constructed in

§2.1 and §2.3)

(14) EC
1 ×EC

2

Id
EC

1
×ΦC

//

π
EC

1 ×EC
2

��

EC
1 × (E ′

2)
C

π
EC

1 ×(E′
2)

C

��

K̃um(E1 ×E2)
Φ̃

// K̃um(E1 ×E ′
2),

where ΦC : EC
2 → (E ′

2)
C is the 2-covering map (cf. §2.2). By the argument in the preceding

paragraph, we know that, by Lemma 3.1,
⋃

[C]∈k∗/k∗2

(EC
1 ×(E ′

2)
C)(k) is not Zariski dense

πEC
1 ×(E ′

2)
C(U

′
C(k)),

where U ′
C = (EC

1 × (E ′
2)

C) \ ((EC
1 [2]× (E ′

2)
C)∪ (EC

1 × (E ′
2)

C[2])), is contained in a proper

closed subset W ′ ⊂ K̃um(E1 ×E ′
2). Therefore

⋃

[C]∈k∗/k∗2

(EC
1 ×EC

2 )(k) is not Zariski dense

πEC
1 ×EC

2
(UC(k))⊂W := Φ̃−1(W ′),

where W ⊂ Kum(E1 ×E2) is also proper Zariski closed.
Finally, the case where deg f = degg = 4 is reduced to the above one, by considering the

2-covering map between E1 and the elliptic curve E ′
1 defined by the cubic resolvent (5) of g

and the covering map between K̃um(E1 ×E2) and K̃um(E ′
1 ×E ′

2). �

Remark 3.4. Our proof above shows that, on the open subset U = Kum(E1 ×E2) \W , for
any P ∈U(k) (which might be empty), the fibres above ψX(P) and ψT (P) containing P both
have positive Mordell-Weil rank.

Proof of Theorem 1.5. It is clear that both Zariski density and (HP) do not depend on the
choice of birational models. By Theorem 2.1, outside a proper Zariski closed subset, rational
points on Kum(E1 ×E2) are parametrized by the family (UC(k))[C]∈k∗/k∗2 . Now (i) follows
immediately from Lemmas 3.1 and 3.3. If Kum(E1×E2) verifies (HP) over k, then Kum(E1×
E2)(k) is not dominated by rational points on any finite collection of twisted abelian surfaces
EC

1 ×EC
2 . On applying again Lemma 3.3, the number of [C] ∈ k∗/k∗2 such that the condition

(SPR(C)) holds is necessarily infinite. �

3.2. Remarks on simultaneous non-vanishing. Let jE1 (resp. jE2) be the j-invariant of E1

(resp. E2). The following result had been discovered by Kuwata-Wang [13, Theorem 5] over
Q by making use of the existence of a rational curve on Kum(E1×E2). We present a different
proof based on Theorem 1.5 and work of Demeio [8].

Corollary 3.5. Assume that deg f = degg = 3 and that ( jE1, jE2) 6= (0,0) or (1728,1728).
Then (SPR(C)) holds for Kum(E1 ×E2) with infinitely many classes [C] ∈ k∗/k∗2.
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Proof. The assumption fits into Kuwata-Wang’s result [13, Theorem 1]. We briefly explain
here how their method (stated over Q) can deduce that the rational points over k an arbitrary
number field are Zariski dense on Kum(E1 ×E2). Indeed, after the base change ζ : P1

k →
P1

k,Y 7→ Y 6, we obtain a non-torsion section (the notation σ1 in [13, p. 116]) with respect
to the new elliptic fibration S ×ζ ,P1

k
P1

k → P1
k in coordinate Y . Therefore by Silverman’s

specialization theorem [23], almost all fibres have positive Mordell-Weil rank, whence the
Zariski density (even the density in real topology if k = Q) holds. By Demeio’s theorem [8,
Proposition 4.4], the surface Kum(E1 ×E2) verifies (HP) over k. The assertion now follows
from Theorem 1.5 (2). �

It would be interesting to compare with analytic approaches the condition (SPR(C)). A re-
cent result of Petrow [19, Theorem 2.2] studies simultaneous non-vanishing of derivatives of
L-functions at the central value attached to two modular forms. He shows that, conditionally
on GRH and under some assumption on conductors and root numbers, there exist infinitely
many square-free integers C such that rank(EC

1 (Q)) rank(EC
2 (Q)) = 1. See also a result Mun-

shi [18] concerning simultaneous non-vanishing of L-functions at the central value, which
has consequence in the number of [C] ∈ Q∗/Q∗2 such that EC

1 and EC
2 have simultaneously

rank zero.

4. CASSELS-SCHINZEL TYPE K3 SURFACES

From now on assume k = Q. We study in this section the isotrivial elliptic pencil over Q

of j-invariant 1728 with affine model

(15) S
d,a : d(1+a2T 4)Y 2 = X3−X ,

for which we refer to being of Cassels-Schinzel type. Here d,a ∈ Z6=0 are square-free param-
eters. (The original one constructed in [4] is given by a = 1,d = 7.) Let ψT : Sd,a → P1 be
the elliptic fibration in coordinate T , write Sd,a

t for the fibre over t ∈ P1(Q) and consider the
set

F
d,a = {t ∈ P1(Q) : rank(Sd,a

t (Q))> 0}.
Cassels and Schinzel proved that the all sections with respect to ψT are torsion (cf. [4,
Theorem 1 & Corollary]. Their argument yields the same result for twists by the polynomial
(1+ 4T 4)). So the Néron-Silverman specialization theorem [23] does not provide useful
information on the ranks of fibres. We shall focus on the validity of condition (SPR(C)) and
its consequence on the density of rational points. Our main theorems are concerned with two
families of surfaces of Cassels-Schinzel type and include Theorem 1.4 as a special case.

Theorem 4.1.

(1) There exists an infinite set D1 of square-free integers d containing 1,7,41, · · · such

that for the Kummer variety

(16) S
d,1 : d(1+T 4)Y 2 = X3 −X ,

the condition (SPR(C)) holds with at least one [C] ∈ Q∗/Q∗2

(2) There exists an infinite set D2 of square-free integers d such that for the Kummer

variety

(17) S
d,2 : d(1+4T 4)Y 2 = X3 −X ,
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the condition (SPR(C)) holds with infinitely many [C] ∈ Q∗/Q∗2.

(3) For any d ∈D1 (resp. d ∈ D2) rational points on (16) (resp. on (17)) are dense in

the real topology, and the set F d,1 (resp. F d,2) is dense in P1(R).

4.1. Root number of congruent number elliptic curves. The root number of an elliptic
curve (denoted by ω(·)) appears in the functional equation of its L-function (cf. [22, §C.16],
where it is called “sign of the functional equation”). Although the connection between root
numbers and rational points of elliptic curves remains mostly conjectural, we find helpful in
giving a short discussion here with regard to the variation of root numbers in the families (16)
(17). Let

(18) E : y2 = x3 − x

be the congruent number elliptic curve. As usual ED denotes the quadratic twist of E by a
square-free integer D. We say that D > 0 is a congruent number if rank(ED(Q)) > 0. A
classical computation carried out by Birch and Stephens [1] shows that

(19) ω(ED) =

{
1 D ≡ 1,2,3 mod 8;

−1 D ≡ 5,6,7 mod 8.

The parity conjecture (cf. [20, p. 119]) predicts that all such integers D satisfying ω(ED) =
−1 should be congruent numbers.

We proceed to compute the root numbers of the family (16) (as in [4, p.347]). Write T = l
m

,
with (l,m) ∈ Z,gcd(l,m) = 1. A change of variables yields the equation

d(l4 +m4)Y 2 = X3 −X

for (16). Since for any odd prime p | l4 +m4, we have p ≡ 1 mod 8 (cf. Proposition 4.2).
We thus obtain a complete description of root numbers for fibres of (16), depending on the
parity and the class modulo 8 of d. For instance, if d ≡ 7 mod 8 (resp. d ≡ 1 mod 8) then
the surface (16) has constant root number −1 (resp. +1). For the family (17) however, fibres
tend to have varying root numbers (cf. [3, Proposition 6.5.1]).

4.2. Torsors under congruent number elliptic curves. The purpose of this section is to
discuss rational points on the hyperelliptic quartics

(20) H
C

a : Cs2 = 1+a2t4 ⊂ A
2
s,t,

with C ∈ N>1 square-free and a ∈ Z6=0.
The (affine) real locus H C

a (R) of (20) has two symmetric branches (one on the upside of
the t-axis and the other one below). We see that even though the curve (20) is not real con-
nected, the involution (s, t) 7→ (−s, t) exchanges rational points between the two real com-
ponents of (20). Consequently, if H C

a (Q) is infinite, then it is dense in all real connected
components.

By the discussion in §2.2, we know that H C
a is a torsor under E2aC, the quadratic twist

of E (18) by 2aC. Hence if H C
a (Q) 6= ∅, then H C

a ≃Q E2aC. However it happens that
even if H C

a is everywhere locally soluble, it still has no Q-point. Indeed, consider the class
[H C

a ] ∈ H1(Q,E2aC). According to the exact sequence of F2-vector spaces (cf. [22, X.4.
Theorem 4.2]) induced by multiplication by [2] map,

(21) 0 → E2aC(Q)/2E2aC(Q)→ Sel2(Q,E2aC)→X
1(Q,E2aC)[2]→ 0,
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if [H C
a ] maps to a non-zero element in X

1(Q,E2aC)[2], then H C
a (Q) =∅. It follows from

a formula of Monsky (cf. [11, Appendix]) that for D ∈ N>1 square-free,

(22) dimF2 Sel2(Q,ED)6 2Ω(D)+2,

where Ω(D) is the number of odd prime divisors of D.
Up to sign, rational points on H C

a are in one-to-one correspondence with non-zero primi-
tive integral solutions of the Fermat-type equation

X4 +a2Y 4 =CZ2

by putting

t =
Y

X
, s =

Z

X2
.

Having Cassels-Schinzel’s surface (16) (17) in mind, in what follows we shall be interested
exclusively in the cases where a = 1 and a = 2.

4.2.1. Case a = 1.

Proposition 4.2. The curve H C
1 is everywhere locally soluble if and only if

(∗) all odd prime factors of C are ≡ 1 mod 8.

Proof. This follows from the local solubility criterion [3, Proposition 6.5.2] for the equation
X4+Y 4 =CZ2. �

According to (19), under the hypothesis (∗), the root number of E2C is zero, which con-
jecturally implies that rank(E2C(Q)) is even. Although most of such curves (are believed
to) have rank zero, the following supplementary condition (∗∗) guarantees the existence of
infinitely many points on H C

1 .

Corollary 4.3. Let C ∈ N>1 be square-free verifying (∗) and

(∗∗) 2Ω(C) = rank(E2C(Q)).

Then #H C
1 (Q) = ∞.

Proof. Indeed, from the exact sequence (21) and inequality (22), we have

dimF2(E
2aC(Q)/2E2aC(Q)) = rank(E2C(Q))+dimF2(E

2C(Q)[2])

= rank(E2C(Q))+2

6 dimF2 Sel2(Q,E2C)6 2Ω(C)+2.

Hence under the assumption (∗∗), the inequalities above are all equalities. So in particular
X

1(Q,E2C)[2] = 0. This implies that H C
1 ≃Q E2C. �

Remark 4.4. Theorem 1.5 (2) shows that the validity of (HP) for the surface S
d,1 implies

the existence of infinitely many square-free integers C verifying (∗) and (∗∗). We refer to
Cohen’s table [3, p. 395] for all such C’s less than 10000. However, such numbers seem to
be very sparse. To the best of the author’s knowledge, it is even not currently known whether
there exist infinitely many congruent numbers verifying (∗). Even though elliptic surfaces in
the family (16) can have constant root number −1, preceding results indicate that it seems
difficult to produce rational points on them, as the hyperelliptic curves H C

1 parametrizing
fibres of (16) have few chances to possess infinitely many rational points.
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4.2.2. Case a= 2. The curve H C
2 is a Q-torsor under E4C ≃Q EC. Let us begin by describing

a sufficient criterion of local solubility.

Proposition 4.5. Assume that C ≡ 5 mod 8, and that for any prime p |C, −4 is a fourth root

in Fp. Then H C
2 is everywhere locally soluble.

Proof. This follows from the sufficient local solubility condition [3, Proposition 6.5.1 (2c)&(3e)]
for non-zero integral solutions of the equation X4+4Y 4 −CZ2 = 0. �

The condition C ≡ 5 mod 8 implies that ω(EC) =−1 by (19). Standard conjectures pre-
dict that

dimF2 Sel2(Q,EC)≡ rank(EC(Q))≡ 1 mod 2.

The following unconditional result provides an infinite set of square-free integers C such that
H C

2 has infinitely many rational points.

Proposition 4.6. For every prime number p ≡ 5 mod 8, we have #H
p

2 (Q) = ∞.

Proof. First we check local solubility. Write
( ·
·
)

(resp.
( ·
·
)

4) for the quadratic (resp. quartic)
residue symbol. First, note that for any odd prime p,

(
4

p

)

4

= 1 ⇔ either

(
2

p

)
= 1 or

(−2

p

)
= 1.

Now for any prime p ≡ 5 mod 8, we have(−1

p

)
= 1,

(−1

p

)

4
=

(
2

p

)
=

(−2

p

)
=−1.

We deduce that (
4

p

)

4

=−1.

Therefore (−4

p

)

4
= 1.

So for any prime p ≡ 5 mod 8, H
p

2 verifies the hypotheses of Proposition 4.5. Now we
make use of a classical result due to Heegner (cf. [17, Corollary 5.15 (1)]) affirming that

rank(Ep(Q)) = 1, dimF2 Sel2(Q,Ep) = 3.

Going back to the exact sequence (21) we get X
1(Q,Ep)[2] = 0. So H

p
2 ≃Q Ep and

rank(H p
2 (Q)) = rank(Ep(Q)) = 1. �

4.2.3. Remark on 2-descent. Following Cohen [3, §6.5], one can give explicit criterion to
determine whether the class [H C

a ] ∈ Sel2(Q,E2aC) comes from some non-torsion point of
E2aC(Q) using descent by 2-isogeny. Indeed, consider the elliptic curve E

aC : aCy2 = x3 + x.
There exists a 2-isogeny φ : E2aC → E

aC, so that we get an exact sequence

0 // Z/2 // E2aC
φ

// E
aC // 0 .

This gives rise to

E
aC(Q)

α
// H1(Q,Z/2) // H1(Q,E2aC)

φ ′
// H1(Q,EaC) ,
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where α is a partial 2-descent map and φ ′ is induced by φ . There is an elementary way of
transforming points on H C

a into E
aC (cf. [3, Proposition 6.5.5]). We conclude that ψ ′[H C

a ] =
0 in H1(Q,EaC). So whether [H C

a ]∈H1(Q,E2aC) is zero or not is characterised by the image
of the map α . See [3, §6.5.3] for a simple description of α .

4.3. Proof of Theorem 4.1. By Theorem 2.1, outside a proper Zariski closed subset (com-
prising 24 rational curves), rational points on the surface S

d,a (15) are parametrized by the
family ((H C

a ×ECd)(Q))C square-free (an open subset of each), where H C
a is defined by (20)

and E is given by (18).

4.3.1. Proof of (1). We show that the infinite family of surfaces S
d,1 with d = 17p with p

prime ≡ 5 or 7 mod 8 verifies (SPR(C)) for at least one square-free C > 0. We first extract
the value C = 17 from Cohen’s table [3, p. 395] satisfying the hypotheses of Corollary 4.3,
so that #H 17

1 (Q) = ∞. On the other hand, with this choice of d, we have E17×17p ≃Q Ep.
Thanks to [17, Corollary 5.15 (2)], any prime number ≡ 5,7 mod 8 is a congruent number.
Therefore the condition (SPR(17)) holds for the infinite family (S17p,1, p ≡ 5,7 mod 8).

To derive similar result for the surfaces S1,1,S7,1 and S
41,1 with constant root numbers, it

suffices to take C= 113 and C= 257 from Cohen’s table [3, p. 395] so that #H 257
1 (Q),#H 113

1 (Q)=

∞ and a consultation of elliptic curve database shows that rank(E257(Q))= 2, rank(E7×17(Q))=
1 and rank(E41×113(Q))= 2. So the condition (SPR(257)) (resp. (SPR(17)), resp. (SPR(113)))
holds for S1,1 (resp. S7,1, resp. S41,1).

We conclude that for any d ∈D1, where

D1 = {1,7,41,17p, (p ≡ 5,7 mod 8)},
the condition (SPR(C)) holds for at least one square-free C. �

4.3.2. Proof of (2). Now we consider the family of surfaces Sd,2. By a result of Monsky [17,
Corollary 5.15 (2)], we have rank(EC(Q))> 0 for any square-free integer C of the form pq

or 2pq where p ≡ 5 mod 8,q ≡ 3 or 7 mod 8 are prime numbers. Therefore, for any d = q

or 2q with q prime ≡ 3 or 7 mod 8, we have rank(Epd(Q)) rank(H p
2 (Q))> 0 for any prime

p ≡ 5 mod 8, using Proposition 4.6. We have shown that, for the infinite family (Sd,2)d∈D2

of surfaces with

D2 = {q,2q, (q ≡ 3 or 7 mod 8)},
the condition (SPR(p)) holds for any prime p ≡ 5 mod 8. �

4.3.3. Proof of (3). For any C > 0, if rank(EC(Q)) > 0, then EC(Q) is dense in EC(R),
since EC[2]≃ (Z/2)2 is defined over Q. The discussion in the beginning of §4.2 shows that
#H C

a (Q) = ∞ implies H C
a (Q) is dense in H C

a (R). Once the condition (SPR(C)) holds for
one square-free C > 0, the set (EC ×H C

a )(Q) is dense in real topology. Since the map φC

(9) is generically étale, this implies that Sd,a(Q) is dense in S
d,a(R). Moreover, the fibres

(Sd,a
t , t ∈ P1(Q)) are parametrized by rational points on the family of hyperelliptic curves

(H C
a )C square-free. Then #H C

a (Q) = ∞ shows that the image of rational points under the
projection H C

a → P1 (in coordinate t), as a subset of F d,a, is dense in P1(R), so is the set
F d,a itself. Thus the proof of Theorem 4.1 is completed. �
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5. REMARKS AND QUESTIONS

The property (HP) for a variety X over k amounts to saying that the complement of the
image of rational points on any finite collection of covers (that is, dominant generically finite
rational maps of degree greater than two without rational sections) in X(k) is still Zariski
dense. As K3 surfaces are simply connected, any cover has non-empty ramification locus.
For elliptic K3 surfaces of quadratic twist type (8), there is one particular type of covers which
merits consideration. That is, those whose ramification locus is within the 16 exceptional
lines as blow-ups of the 16 fixed points of the antipodal involution. One can show that
any such cover which does not factor through an abelian surface of the form EC

1 ×EC
2 is a

cover between Kummer varieties (cf. the map Φ̃ constructed in §2.1). We have already seen a
typical example in (14). The essential use of the third elliptic fibration in Demeio’s argument,
which does not exist for surfaces of Cassels-Schinzel type, successfully tackles with such
covers, since it turns out that their generic fibres with respect to this fibration are curves
of genus greater than two. We conclude by asking whether the validity of (SPR(C)) with
infinitely many square-free integers C 5 suffices to guarantee (HP) for surfaces of Cassels-
Schinzel type (15), or in an equivalent manner, whether or not there exist a finite number of
coverings of Kummer varieties such that the images of the induced isogenies between twisted
abelian surfaces contain (ECd ×H C

a )(Q) for any such C.
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