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Abstract Perception of sensory information is determined by stimulus features (e.g., intensity) 
and instantaneous neural states (e.g., excitability). Commonly, it is assumed that both are reflected 
similarly in evoked brain potentials, that is, larger amplitudes are associated with a stronger percept 
of a stimulus. We tested this assumption in a somatosensory discrimination task in humans, simulta-
neously assessing (i) single-trial excitatory post-synaptic currents inferred from short-latency somato-
sensory evoked potentials (SEPs), (ii) pre-stimulus alpha oscillations (8–13 Hz), and (iii) peripheral 
nerve measures. Fluctuations of neural excitability shaped the perceived stimulus intensity already 
during the very first cortical response (at ~20 ms) yet demonstrating opposite neural signatures as 
compared to the effect of presented stimulus intensity. We reconcile this discrepancy via a common 
framework based on the modulation of electro-chemical membrane gradients linking neural states 
and responses, which calls for reconsidering conventional interpretations of brain potential magni-
tudes in stimulus intensity encoding.

Introduction
Even for the very same stimulus, the brain’s response differs from moment to moment. This has been 
explained by ever-changing neural states (Arieli et al., 1996), with behaviorally relevant consequences 
(Waschke et al., 2021). Specifically, these changes of neural states are often conceptualized as fluctu-
ations of cortical excitability (Jensen and Mazaheri, 2010; Klimesch et al., 2007; Romei et al., 2008). 
In the human brain, a commonly hypothesized marker of cortical excitability is oscillatory activity in 
the alpha band (8–13 Hz), which can be measured with electro- and magnetoencephalography (EEG/
MEG). This marker has been associated with modulations of a stimulus’ percept in various sensory 
domains including the visual (Busch et al., 2009; Iemi et al., 2017), auditory (Müller et al., 2013), 
and somatosensory domain (Baumgarten et  al., 2016; Craddock et  al., 2017; Forschack et  al., 
2020). According to the baseline sensory excitability model (BSEM; Samaha et  al., 2020), higher 
alpha activity preceding a stimulus indicates a generally lower excitability level of the neural system, 
resulting in smaller stimulus-evoked responses, which are in turn associated with a lower detection 
rate of near-threshold stimuli but no changes in the discriminability of sensory stimuli (since neural 
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noise and signal are assumed to be affected likewise). On a cellular level, such excitability modulations 
may be reflected in changes of membrane potentials (Castro-Alamancos, 2009), which may occur in 
an oscillatory manner (Lakatos et al., 2005) and shift the threshold for incoming sensory information 
to be processed further downstream in the neural system. This notion has been further supported 
by monkey studies showing that higher oscillatory activity within the alpha band is associated with a 
lower neural firing rate (Bollimunta et al., 2011; Haegens et al., 2011).

However, it remains unclear up to now whether the influence of instantaneous excitability on 
perceptual processes can be generalized to the intensity perception of stimuli per se (i.e., beyond 
the sensory threshold) – which would have far-reaching implications for a wide variety of studies in 
the field of perception. Moreover, if such modulation indeed occurs, the question remains: At which 
stage of the neural response cascade do instantaneous excitability changes begin to interact with the 
sensory input in order to shape the brain’s response in a behaviorally relevant way?

A unique opportunity to non-invasively measure instantaneous excitability changes of neurons 
involved in the first cortical response to sensory stimuli in humans is offered by the N20 component 
of the somatosensory evoked potential (SEP) as measured with EEG: The N20 component, a negative 
deflection after around 20 ms at centro-parietal electrode sites in response to median nerve stimu-
lation, reflects excitatory post-synaptic potentials (EPSPs) of the first thalamo-cortical volley (Bruyns-
Haylett et  al., 2017; Peterson et  al., 1995; Wikström et  al., 1996) which are generated in the 
anterior wall of the postcentral gyrus, Brodmann area 3b (Allison et al., 1991). Thus, the N20 directly 
reflects the intensity of a given stimulus. However, when keeping the sensory input constant, the 
amplitude of this early part of the SEP only depends on the excitability of the involved, well-defined 
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Figure 1. Experimental paradigm and main electrophysiological measures. (a) The relationships between pre-stimulus alpha oscillations, stimulus-
evoked responses, and perceived intensity of somatosensory stimuli were examined in a continuous sequence of median nerve stimuli of two intensities 
with inter-stimulus intervals of ISI = 1513 ± 50 ms. After every stimulus, participants were to rate the perceived intensity as either ‘strong’ or ‘weak’ as 
fast as possible by button press. The raster plots represent the data of an exemplary subject with the rows corresponding to single trials. Displayed from 
left to right: Average pre-stimulus alpha amplitude, intensity of the presented stimuli (red = strong; blue = weak intensity), short-latency somatosensory 
evoked potentials (SEPs), and the perceived intensity as reported by the participants (red = strong; blue = weak intensity). Alpha activity and the 
SEP were both retrieved from the same tangentially oriented canonical correlation analysis (CCA) component (displayed in panels b–e) and hence 
reflect activity of the same neuronal sources. (b) Grand average of the SEP (N = 32) in sensor space (electrodes F4, CP4, and P4) and for the tangential 
CCA component as derived from the single-trial extraction approach using CCA. (c) Activation pattern of the tangential CCA component displaying 
a tangential dipole contralateral to stimulation site over the central sulcus which is typical for the N20-P35 complex of the SEP. Averaged across 
participants (N = 32). (d) Neuronal sources (absolute values) underlying the activation pattern of the tangential CCA component, reconstructed using 
eLoreta inverse modeling. Averaged across participants (N = 32). (e) Same as d but applying an amplitude threshold of 95 % in order to indicate the 
strongest generators of neural activity (displayed on a smoothed cortex surface).
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neuronal population in the primary somatosensory cortex, and therefore represents an excellent 
instantaneous probe thereof. Notably, amplitude fluctuations of the N20 component have recently 
been found to relate to pre-stimulus alpha activity both at a given instance and through their long-
term temporal dynamics, which suggests that both measures reflect a common modulating factor, that 
is, cortical excitability (Stephani et al., 2020).

In the current study, we set out to examine the implications of instantaneous excitability fluctua-
tions at initial cortical processing – as measured by both pre-stimulus alpha activity and N20 ampli-
tudes – on the perceived intensity of somatosensory stimuli. We used a binary intensity rating task in 
which participants were to discriminate supra-threshold median nerve stimuli of two intensities in a 
continuous stimulation sequence (Figure 1a). Our results show that both pre-stimulus alpha activity 
and N20 amplitudes are associated with a bias in the perceived intensity of somatosensory stimuli. 
Thus, instantaneous excitability fluctuations affect sensory brain responses already at earliest possible 
cortical processing with behaviorally relevant consequences. Counter-intuitively, elevated neural 
excitability and stronger stimulus intensity resulted in reverse effects on short-latency SEP amplitudes, 
which in turn may offer further insights into the neural mechanisms of excitability regulation through 
resting membrane potentials.

Results
Behavioral results
Participants discriminated the weak and the strong stimuli with an average accuracy of accmean = 69.72% 
(SD = 7.94%; CI95%: [66.86%, 72.58%]), suggesting a moderate to high task difficulty. As confirmed 
by permutation tests, every individual participant performed better than chance level, all p < 0.05 
(Bonferroni-corrected). The average discrimination sensitivity was d’mean = 1.14 (SD = 0.46; CI95%: [0.98, 
1.31]) and the average criterion cmean = 0.01 (SD = 0.22; CI95%: [–0.066, 0.094]), according to signal 
detection theory (Green and Swets, 1966). Participants pressed the respective response button with 
an average reaction time of RTmean = 642.42 ms (SD = 95.79 ms; CI95%: [607.89 ms, 676.96 ms]).

Extraction of single-trial SEPs
Single-trial activity of the early SEP was extracted using a variant of canonical correlation analysis 
(CCA; Scheer et al., 2013; Waterstraat et al., 2015), as previously reported for a similar paradigm 
examining the fluctuation of single-trial SEPs in response to stimuli with constant intensity (Stephani 
et  al., 2020). This variant of CCA extracts a number of spatially distinct components based on a 
pattern matching between average SEP and single trials. Similar to Stephani et al., 2020, a prom-
inent CCA component was identified in all subjects, which showed a clear peak at around 20 ms 
post-stimulus (Figure 1b) and displayed the pattern of the typical N20 tangential dipole (Figure 1c). 
Furthermore, neuronal sources of this CCA component were primarily located in the anterior wall 
of the post-central gyrus (Brodmann area 3b) in the primary somatosensory cortex (Figure 1d and 
e). Single-trial SEPs from this – as is referred to in the following – tangential CCA component are 
displayed for an exemplary subject in Figure 1a.

Pre-stimulus alpha amplitude is associated with a bias in perceived 
stimulus intensity
To assess whether pre-stimulus neural states modulated the perception of upcoming somatosensory 
stimuli, we related oscillatory activity in the alpha band (8–13 Hz) before stimulus onset to the partici-
pants’ reports of perceived stimulus intensity. Alpha band activity was measured from the same neural 
sources as the SEP, applying the spatial filters of the tangential CCA component. Figure 2a shows the 
envelope of pre-stimulus alpha activity depending on the behavioral responses of the participants. 
Pre-stimulus alpha amplitude was higher when participants rated the stimulus to be weak rather than 
strong (regardless of the actual stimulus intensity). This observation was further quantified with signal 
detection theory (SDT; Green and Swets, 1966) in order to differentiate the ability to discriminate 
stimulus intensities, as measured by sensitivity d’, from a response bias toward either strong or weak 
perceived intensity, as measured by criterion c. In correspondence with a recent study in the visual 
domain (Iemi et al., 2017), these SDT-derived parameters were statistically compared between the 
20 % of trials with the lowest and the 20 % of trials with the highest pre-stimulus alpha amplitudes (as 
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Figure 2. Bivariate relationships between pre-stimulus alpha amplitude, N20 peak amplitude, and perceived stimulus intensity. (a) Time course of the 
amplitude of pre-stimulus alpha band activity (8–13 Hz) displayed by behavioral response categories. Note that for statistical analyses, pre-stimulus 
epochs were cut at –5 ms relative to stimulus onset before filtering the data in the alpha band (8–13 Hz), in order to prevent contamination of the pre-
stimulus window by stimulus-related activity. (b) Change in perception bias (i.e., signal detection theory [SDT] parameter criterion c) from the lowest to 
the highest alpha amplitude quintile (as measured between –200 and –10 ms). (c) Somatosensory evoked potential (SEP) derived from the tangential 
component of the canonical correlation analysis (CCA), sorted with respect to pre-stimulus alpha amplitude quintiles. Alpha quintiles were sorted in 
ascending order (i.e., first quintile = lowest alpha amplitude). (d) SEP (tangential CCA component) sorted according to behavioral response categories. 
(e) Change in perception bias (i.e., SDT parameter criterion c) from the most to the least negative N20 peak amplitude quintile. All panels show the 
grand average across all participants (N = 32). Shaded areas in panels a, c, and d, as well as error bars in panels b and e correspond to the standard 

Figure 2 continued on next page
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averaged in a time window from 200 to 10 ms before the stimulus onset; Figure 2b). A paired-sample 
t-test confirmed a difference regarding criterion c, t(31) = –2.777, p = 0.009, Cohen’s d = –0.491, with 
average criterions of clowest20% = –0.009 and chighest20% = 0.060 (CI95% of difference: [–0.119, –0.018]). No 
difference was found for sensitivity d’, t(31) = –1.425, p = 0.164, Cohen’s d = –0.252, with average 
sensitivities d’lowest20% = 1.058 and d’highest20% = 1.142 (CI95% of difference: [–0.204, 0.036]). Thus, higher 
pre-stimulus alpha amplitude was associated with a higher threshold to rate the stimulus as ‘strong’, 
corresponding to a bias to generally report lower stimulus intensities, whereas the discriminability 
between the stimulus categories appeared unaffected.

Pre-stimulus alpha amplitude is associated with single-trial N20 
amplitudes
Following the hypothesis that both pre-stimulus alpha band activity and the N20 component of the 
SEP reflect changes in instantaneous cortical excitability, a covariation of these two measures should 
be expected (Stephani et al., 2020). Indeed, higher pre-stimulus alpha amplitudes were associated 
with larger (i.e., more negative) N20 peak amplitudes (Figure 2c), as statistically tested with a random-
slope linear-mixed-effects model, βfixed = –0.023, t(32.17) = −2.969, p = 0.006 (CI95% of βfixed: [–0.040, 
–0.007]). Notably, the direction of this effect may appear counter-intuitive at first sight but can be 
explained by the physiological basis of EEG generation, which offers important insights into the func-
tional link between pre-stimulus alpha activity and SEP (see Discussion section Opposing signatures 
of presented stimulus intensity and excitability in the early SEP).

Single-trial N20 amplitudes are associated with a bias in perceived 
stimulus intensity
Given the relationships of pre-stimulus alpha activity with perceived stimulus intensity and N20 peak 
amplitudes, we tested whether the latter also related to the SDT parameters of the behavioral perfor-
mance. In parallel to the analyses of the effect of pre-stimulus alpha activity, sensitivity d’ and criterion 
c were statistically compared between the 20 % of trials with the most negative and the 20 % of trials 
with the least negative N20 peak amplitudes. (Please note that this procedure resulted in a different 
trial selection as compared to the SDT analysis of pre-stimulus alpha activity. Please refer to Figure 
2—source data 1 for further details on the trial overlap.) Again, a significant difference was found for 
criterion c, t(31) = 2.306, p = 0.028, Cohen’s d = 0.408, with average criterions of cmost neg.20% = 0.054 
and cleast neg.20% = −0.001 (CI95% of difference: [0.006, 0.104]), as assessed with a paired-sample t-test. No 
effect emerged for sensitivity d’, t(31) = −1.747, p = 0.091, Cohen’s d = −0.309, with d’leastneg.20% = 1.213 
and d’mostneg.20% = 1.142 (CI95% of difference: [–0.154, 0.012]). Thus, criterion c was lower for smaller than 
for larger N20 peak amplitudes (Figure 2e). This indicates that participants were more likely to rate a 
stimulus as ‘strong’ rather than ‘weak’ when the magnitude of the N20 potential was smaller (i.e., less 
negative), after taking into account the stimulus’ actual intensity, as it also becomes evident from the 
SEPs sorted by the behavioral response categories (Figure 2d). Interestingly, the relationship between 
N20 amplitudes and perceptual outcome appeared to be driven mainly by differences within the 
strong stimulus category (Figure 2d). This may reflect the naturally higher signal-to-noise ratio (SNR) 

errors of the mean based on the within-subject variances (Morey, 2008). Transparent circles in panels b and e reflect data of individual participants while 
black lines reflect the arithmetic mean on group level. Please refer to Figure 2—figure supplement 1 for a schematic of SDT, to Figure 2—source data 
1 for details on the trial overlap between SDT analyses of pre-stimulus alpha activity and N20 amplitudes, to Figure 2—figure supplement 2 for time-
frequency representations of the observed effects, and to Figure 2—figure supplement 3 for further control analyses using simulated SEP data.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Trial overlap between extreme bins of N20 and pre-stimulus alpha amplitudes used for the SDT analyses.

Figure supplement 1. Schematic of the signal detection theory parameters sensitivity d’ and criterion c.

Figure supplement 2. Representation of the relations between amplitude in the time-frequency domain and N20 amplitudes (panel a), as well as 
perceived stimulus intensity (panel b).

Figure supplement 3. Simulation of filter effects on the relation between pre-stimulus alpha amplitude and early somatosensory evoked potential 
(SEP).

Figure 2 continued
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of SEPs in response to stronger stimuli, or it could 
also point out that there was a ‘floor effect’ for 
the modulation of SEPs in response to the weaker 
stimuli.

Structural equation modeling of 
effect paths
Importantly, Figure  2d also suggests that N20 
amplitudes were generally larger (i.e., more nega-
tive) for higher stimulus intensities – thus showing 
an effect of opposite direction on N20 amplitudes 
as compared to instantaneous cortical excitability. 
In order to disentangle these effects of excitability 
and stimulus intensity, we examined their respec-
tive contributions in a two-level structural equa-
tion model, with stimulus intensity, pre-stimulus 
alpha amplitude, and N20 peak amplitude as 
predictors of perceived stimulus intensity on level 
1 (within subjects), and random intercepts as well 
as their variances on level 2 (between subjects), 
including all single trials. Furthermore, we added 
the measures of compound nerve action poten-
tials of the median nerve (CNAP; Figure 3a and 
b) and compound muscle action potentials of the 
M. abductor pollicis brevis (CMAP; Figure 3c and 
d) to the model, in order to control for peripheral 
variability.

On the one hand, both these peripheral 
measures should relate to stimulus intensity. On 
the other, there should be no effect of CNAP 
and CMAP on N20 amplitudes, when statis-
tically controlling for stimulus intensity if the 
hypothesized fluctuations of excitability emerge 
on a cortical level. Yet, stimulus-induced thumb 
twitches may influence the participants’ intensity 
ratings of the stimuli (even though the stimu-
lated hand was covered with a paper box). The 
resulting two-level structural equation model 
(SEM 1; Figure 4) indicated statistical significance 
of all hypothesized effect paths, all pβ ≤ 0.003, 
with model fit indices of Akaike information crite-
rion (AIC) = 278,788.5, Bayesian information 
criterion (BIC) = 278,972.2, and log-likelihood = 
−139,372.2.

To evaluate the model fit, we compared a list 
of alternative models including or excluding rele-
vant effect paths (Table 1). As indicated by chi-
square difference tests, the log-likelihood of SEM 
1 did not differ from those of SEMs 2–4, 9, and 
10. Seeking model parsimony, SEM 1 is preferred 
over SEMs 2–4, 9, and 10 since the alternative 
models included one more parameter each, while 
fitting the data equally well. In comparison to 
SEMs 5–8, SEM 1 showed a significantly higher 
log-likelihood suggesting a better model fit than these more parsimonious models. This is further 
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Figure 3. Measures to control for peripheral nerve 
variability. (a) Single trials of the compound nerve 
action potential (CNAP) in response to the median 
nerve stimuli, measured at the inner side of the 
ipsilateral upper arm (shown for an exemplary subject). 
(b) Grand average across participants (N = 32) of the 
CNAP, displayed by stimulus and response types. (c) 
Single trials of the compound muscle action potential 
(CMAP), measured at the M. abductor pollicis brevis 
(shown for an exemplary subject). (d) Grand average 
across participants (N = 32) of the CMAP, displayed by 
stimulus and response types. Shaded areas in panels b 
and d correspond to the standard errors of the mean 
based on the within-subject variances (Morey, 2008).
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supported by the AIC and BIC values which were altogether lowest for SEM 1. Hence, we conclude 
that SEM 1 fitted our empirical data best.

The estimated path coefficients (Figure 4) correspond well with above reported bivariate relation-
ships: When controlling for stimulus intensity, both higher pre-stimulus alpha amplitudes and larger 
(i.e., more negative) N20 amplitudes were associated with a lower perceived intensity (equivalent 
to a response bias as reflected in criterion c), as well as higher pre-stimulus alpha amplitudes co-oc-
curred with larger (i.e., more negative) N20 amplitudes. In addition, the SEM further dissociated the 
effects of stimulus intensity on early electrophysiological measures and their respective effects on 
perceived stimulus intensity. Higher stimulus intensity was associated with larger N20 amplitudes, 
which constitutes an effect of opposite direction as compared to the N20-related excitability effect 
on perceived intensity. Furthermore, higher stimulus intensity also led to larger amplitudes of CMAP 
and CNAP, due to the physical difference in stimulation strength, as could be expected a priori. Addi-
tionally, larger CMAP amplitudes resulted in a higher perceived intensity, while no such effect was 
observed for CNAP. Importantly, neither CMAP nor CNAP related to N20 amplitudes when controlling 
for stimulus intensity. Thus, fluctuations in cortical processing were not driven by peripheral variability. 
Also, peripheral activity in CMAP and CNAP did not show any association with pre-stimulus alpha 
activity. Finally, a substantial effect on the perceived intensity was found for stimulus intensity. This was 
expected as the overall accuracy in the discrimination task was about 70 %.

Taken together, the SEM confirms the hypothesized influences of instantaneous fluctuations of 
early SEPs as well as pre-stimulus oscillatory activity on the consciously accessible percept of a stim-
ulus. Moreover, this analysis demonstrates that stimulus intensity and cortical excitability, which in turn 
determines the perceived stimulus intensity, show opposing effects on the amplitude of the early SEP.
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Figure 4. Multi-level structural equation model of the interplay between pre-stimulus alpha activity, the initial 
cortical response (N20 component of the somatosensory evoked potential [SEP]), intensity of the presented stimuli, 
the peripheral control measures of the compound muscle action potential (CMAP) of the M. abductor pollicis 
brevis and the compound nerve action potential (CNAP) of the median nerve, as well as the perceived intensity as 
reported by the participants (referred to as SEM 1). Effect paths were estimated between the manifest variables 
on level 1 (within participants). Latent variables on level 2 served to estimate the respective random intercepts 
as well as their between-subject variances according to the latent variable approach for multi-level models as 
implemented in Mplus.
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Reconstruction of the observed effects in source space
In order to investigate whether the observed effects of pre-stimulus alpha activity on N20 ampli-
tudes and the perceived stimulus intensity were specific only to the generator regions of the SEP, 
we repeated the SDT analysis as well as the linear-mixed-effects models for these relations in source 
space (i.e., separately for every source estimated based on individual head models; see Materials and 
methods). As visible from Figure 5, the effects of pre-stimulus alpha amplitude on both N20 amplitude 
and perceived stimulus intensity were indeed most pronounced around the hand region of the right 
primary somatosensory cortex, the same region which we identified as source for the tangential CCA 
component used in the analyses above. The effects in source space using the SDT approach did not 
reach significance after the correction for multiple comparisons. Yet, a region of interest (ROI) analysis 
within the hand region of the right primary somatosensory cortex did confirm the observations from 
our previous analyses: There was an effect of pre-stimulus alpha amplitude on SDT parameter criterion 
c, t(31) = –2.951, p = 0.006, CI95% = [–0.173, –0.032], but no effect on sensitivity d’, t(31) = 0.633, p 
= 0.531, CI95% = [–0.083, 0.157]. (Please refer to Figure 5—figure supplement 1 for the distribution 
of the SDT effects across the whole cortex.) Taken together, the relationships between pre-stimulus 
alpha activity, N20 potential of the SEP, and perceived stimulus intensity appear to be attributable 
to neural activity from the same (or at least very similar) sources in the right primary somatosensory 
cortex.

Variability in thalamus-related activity is not related to behavioral 
responses
To examine further whether the observed neuronal effects on the perceived stimulus intensity were 
of a cortical origin, we analyzed the EEG responses prior to the N20 potential. In a sub-sample of 
13 participants, the CCA decomposition provided a component that showed a clear peak at 15 ms, 
characterized by a spatial pattern that suggested a deep, medial source (Figure 6a). Most likely, this 
CCA component thus corresponds to the P15 potential of the SEP, which is thought to reflect activity 
in the thalamus (Albe-Fessard et al., 1986). The amplitude of this P15 component did not relate to 
the perceived stimulus intensity, as examined with a random-intercept linear-mixed-effects model with 

Table 1. Model comparison of structural equation models (SEMs).
The original SEM (1) was compared to the alternative models (2–10) using Akaike information 
criterion (AIC), Bayesian information criterion (BIC), log-likelihood (LL), and the chi-square difference 
test based on the LL (with corresponding p-value; p-values < 0.05 are indicated by bold print). 
Differences in AIC, BIC, LL, and degrees of freedom (df) were derived by the subtraction alternative 
SEM minus SEM 1. A better model fit is indicated by lower AIC and/or BIC as well as higher LL. The 
χ2 difference tests correspond to the comparisons model with fewer parameters minus model with 
more parameters.

Model fit indices

AIC diff. BIC diff. LL diff. χ2 diff. df diff. p-value

(1) Original SEM (‘SEM 1’)

(2) SEM incl. N20 ~ CNAP 1.813 10.166 0.093 0.146 –1 0.702

(3) SEM incl. N20 ~ CMAP 0.088 8.441 0.956 0.799 –1 0.371

(4) SEM incl. perceived_int ~ CNAP 1.967 10.320 0.016 0.019 –1 0.890

(5) SEM excl. perceived_int ~ prestim 8.002 –0.351 –5.001 11.415 1 <0.001

(6) SEM excl. N20 ~ prestim 15.053 6.701 –8.527 8.087 1 0.005

(7) SEM excl. N20 47.099 22.040 –26.550 31.095 3 <0.001

(8) SEM excl. CMAP 9586.906 9570.200 –4795.453 87.030 2 <0.001

(9) SEM incl. CMAP ~ prestim 1.404 9.757 0.297 0.220 –1 0.639

(10) SEM incl. CNAP ~ prestim –0.115 8.239 1.057 2.342 –1 0.126

https://doi.org/10.7554/eLife.67838
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perceived intensity as dependent variable and P15 amplitude and stimulus intensity as predictors, βP15 
= 0.008, z = 0.394, p = 0.694 (CI95% of βP15: [–0.031, 0.047]). As expected, stimulus intensity however 
showed a significant effect on perceived intensity, βstim_int = 1.851, z = 46.463, p < 0.001 (CI95% of βstim_int: 
[1.773, 1.929]). Additionally, we calculated the statistical power of finding an effect of P15 amplitude 
in the linear-mixed-effects model, using Monte Carlo simulations (Green et al., 2016) and assuming 
an effect size comparable to the observed N20 effect on perceived intensity. The post hoc power anal-
ysis revealed a statistical power of 71.9 %. In addition, the SDT analysis based on binning of the P15 
amplitudes into quintiles neither suggested a relation with criterion c nor sensitivity d’, t(12) = 1.201, p 
= 0.253, and t(12) = –0.201, p = 0.844, respectively. Therefore, we conclude that it is unlikely that the 
effect of N20 amplitudes on perceived stimulus intensity was driven by thalamic variability and that 
the modulation of perceived stimulus intensity emerges rather on the cortical level, reflecting instan-
taneous changes of cortical excitability. However, P15 amplitudes did also not differ between different 
presented stimulus intensities, as tested with a random-intercept linear-mixed-effects model, βstim_int 
= 0.009, t(12721.82) = 0.531, p = 0.596 (CI95% of βstim_int: [–0.025, 0.043]), which may indicate that this 
EEG-based measure of thalamic activity is generally not very sensitive to differences between experi-
mental conditions. For completeness, we also tested for the effect of pre-stimulus alpha amplitude on 

Figure 5. Relations of pre-stimulus alpha amplitude with N20 amplitudes and perceived stimulus intensity as 
analyzed with linear-mixed-effects models in source space. (a) Effects of pre-stimulus alpha amplitudes on N20 
amplitudes (uncorrected t values). (b) Same as (a) but corrected for multiple comparisons (FDR-corrected; p < 
0.01). (c) Effects of pre-stimulus alpha amplitudes on perceived stimulus intensity (uncorrected z values). (d) Same 
as (c) but corrected for multiple comparisons (FDR-corrected; p < 0.01).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Effects of pre-stimulus alpha amplitude on signal detection theory parameters criterion c 
and sensitivity d’ in source space.

https://doi.org/10.7554/eLife.67838
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P15 amplitude, which was also not significant, βprestim = –0.007, t(12210.50) = –0.635, p = 0.526 (CI95% 
of βprestim: [–0.028, 0.014]).

Effects in later SEP components conform with previous studies
In order to relate our novel findings in early SEPs to the existing literature on somatosensory processing 
at later stages, we additionally examined a well-studied later component of the SEP, the N140. For 
this SEP component, a larger amplitude has typically been associated with a stronger percept of the 
presented stimulus (e.g., Al et al., 2020; Schröder et al., 2021; Schubert et al., 2006). Indeed, a 
comparable effect of N140 amplitude on perceived intensity was also present in our data (Figure 6c), 
as statistically tested with a random-slope linear-mixed-effects model, βfixed = –0.058, z = −3.387, 
p < 0.001 (CI95% of βfixed: [–0.093, –0.024]). Also, the presented stimulus intensity was related to the 
perceived intensity, βfixed = 1.876, z = 14.015, p < 0.001 (CI95% of βfixed: [1.605, 2.145]), which was 
expected given the participants’ discrimination performance being above chance level. These find-
ings were in line with a separate SDT analysis: N140 amplitudes were associated with an effect on 
criterion c, t(31) = –3.010, p = 0.005, but no effect on sensitivity d’ emerged, t(31) = 0.246, p = 0.807. 
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Figure 6. Thalamic activity and later somatosensory evoked potential (SEP) components. (a) Grand average (N = 
13) of the thalamic component derived from canonical correlation analysis (CCA), showing a clear P15 potential 
which did not differ across behavioral response categories. (b) Activation pattern of the thalamic CCA component 
(average across subjects). (c) Grand average (N = 32) of later SEP components (extracted with the tangential-CCA 
filter in the frequency range from 0.5 to 45 Hz). The N140 is visible as a negative peak at around 149 ms. Larger 
N140 amplitudes are associated with higher perceived intensities. Shaded areas correspond to the standard errors 
of the mean based on the within-subject variances (Morey, 2008).

https://doi.org/10.7554/eLife.67838
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In addition, a second random-slope linear-mixed-effects model indicated that N140 amplitudes were 
in turn modulated by the presented stimulus intensity, βfixed = 0.030, t(30.92) = 2.275, p = 0.030 (CI95% 
of βfixed: [0.004, 0.056]), as well as by pre-stimulus alpha activity, βfixed = 0.021, t(31.70) = 2.73, p = 0.030 
(CI95% of βfixed: [0.002, 0.040]).

Taken together, our results are thus consistent with previous studies on the relation between pre-
stimulus state and somatosensory processing at later stages, while demonstrating opposing effects 
for the very first cortical response.

Discussion
Using a somatosensory discrimination paradigm, we examined the modulation of perceived stim-
ulus intensity by instantaneous fluctuations of cortical excitability at initial cortical processing. Both 
pre-stimulus alpha band activity and initial cortical evoked responses were associated with a bias in 
intensity discrimination, suggesting that a lower cortical excitability reduces the perceived intensity 
of sensory stimuli. Furthermore, we rule out that variability in peripheral nerve activity accounted for 
these effects, in line with the notion of instantaneous excitability changes being intrinsic to cortical 
brain dynamics. Intriguingly, elevated excitability and higher presented stimulus intensity resulted in 
opposing amplitude effects on the initial stimulus-related response in the cortex, the N20 component 
of the SEP. Based on the neurophysiological principles of the EEG generation, this finding may be 
explained by a mechanistic link between pre-stimulus alpha activity and initial cortical EPSPs through 
modulations of resting membrane potentials.

Fluctuations of cortical excitability affect the perceived stimulus 
intensity
In line with previous studies on the modulatory role of alpha oscillations on perceptual processes 
(Craddock et al., 2017; Iemi et al., 2017), we found higher pre-stimulus alpha amplitudes to be 
associated with a lower perceived intensity of somatosensory stimuli. This was indicated both by an 
increased threshold (criterion c) of reporting a higher stimulus intensity according to SDT (Green and 
Swets, 1966) and by the negative relationship between pre-stimulus alpha amplitude and reported 
stimulus intensity in the structural equation model. Moreover, sensory processing appeared to be 
modulated by ongoing oscillatory activity already during initial cortical responses, as suggested by 
the relations between pre-stimulus alpha activity and N20 amplitude, as well as N20 amplitude and 
perceived stimulus intensity. The N20 component of the SEP reflects initial stimulus-related excit-
atory activity (i.e., EPSPs) resulting from the first thalamo-cortical volley to the primary somatosen-
sory cortex (Bruyns-Haylett et al., 2017; Peterson et al., 1995; Wikström et al., 1996) and thus 
represents a direct measure of cortical excitability (when keeping the stimulus intensity constant). 
The modulation of perceived stimulus intensity therefore relates to a sensory bias at earliest possible 
cortical processing, reflecting fluctuations of instantaneous neural excitability.

Furthermore, these findings demonstrate that effects of pre-stimulus oscillatory activity on the 
processing of sensory stimuli are not restricted to near-threshold stimuli where a detection threshold is 
assumed to be shifted by ongoing brain activity (Iemi et al., 2017; Samaha et al., 2020). Instead, our 
findings suggest that cortical excitability can affect the representation of stimulus features in supra-
threshold perception, too. Importantly, our criterion-free discrimination paradigm of two neutral 
response alternatives (‘strong’ or ‘weak’) precluded the potential confounding effect of perceptual 
confidence, which has recently been considered as an alternative explanation for pre-stimulus alpha 
effects on perceptual biases (Benwell et al., 2017; Samaha et al., 2017). In our forced-choice para-
digm, different levels of perceptual confidence could not have influenced the intensity ratings since 
the task was to distinguish two clearly perceptible stimuli, and not to report whether a stimulus was 
perceived or not (as done in near-threshold paradigms). Thus, the current findings unequivocally indi-
cate – to the best of our knowledge for the first time – that pre-stimulus alpha oscillations affect the 
behavioral outcome via a modulation of the internally represented stimulus intensity.

https://doi.org/10.7554/eLife.67838
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Opposing signatures of presented stimulus intensity and excitability in 
the early SEP
Following the hypothesis of higher alpha activity being associated with lower cortical excitability 
(Jensen and Mazaheri, 2010; Klimesch et al., 2007; Samaha et al., 2020), it may seem counter-
intuitive that higher alpha amplitudes were associated with larger (i.e., more negative) N20 ampli-
tudes in our data. However, as we proposed recently (Stephani et al., 2020), this relationship may be 
explained by the neurophysiological mechanisms of EEG generation. The generated voltage on the 
scalp, U, in our case relating to the N20 potential, can be defined in the following way (Ilmoniemi and 
Sarvas, 2019; Kandel et al., 2000; Lopes da Silva, 2004):

	﻿‍ U ∼ I ∗ Nneurons ∗ LF,‍�

where ‍I ‍ denotes the sum of local primary post-synaptic currents due to the activation of a given 
neuron, ‍Nneurons‍ the number of involved neurons, and ‍LF‍ the lead field coefficient projecting source 
activity to the electrodes on the scalp. Since the spatial arrangement of the neural generators and the 
EEG sensors was stable across stimulation events, ‍LF‍ reflects a constant in the measurement of the 
N20 potential. In contrast, ‍Nneurons‍ should increase with stimulus intensity since more nerve fibers are 
excited at stimulation site when applying stimuli of higher currents. This should lead to an increase 
of SEP amplitude with stimulus intensity, as reported in previous studies (Jousmäki and Forss, 1998; 
Klostermann et al., 1998) and as was observed in the current dataset for cortical (Figure 2d) as 
well as peripheral responses (Figure 3b and d). For constant stimulus intensity, however, ‍Nneurons‍ is 
expected to stay approximately constant and amplitudes in the EEG should primarily depend on ‍I ‍, 
reflecting excitatory post-synaptic currents (EPSCs) in case of the N20 component. Crucially, EPSCs 
directly depend on the electro-chemical driving forces produced by the membrane potential. When 
moving the membrane potential toward depolarization – a state of higher excitability – the electro-
chemical driving force for further depolarizing inward trans-membrane currents is decreased (Castro-
Alamancos, 2009), which leads to smaller EPSCs (Deisz et al., 1991), and should in turn result in 
smaller amplitudes of the scalp EEG. Assuming an inverse relationship between the amplitude of alpha 
oscillations and neuronal excitability (as for example indicated by a lower neural firing rate during 
higher alpha activity; Haegens et al., 2011), one should hence rather expect decreased N20 ampli-
tudes following low pre-stimulus alpha activity. This is what was observed in our data when controlling 
for stimulus intensity (Figure 4). Moreover, the notion of smaller (i.e., less negative) N20 amplitudes 
reflecting a state of higher excitability is corroborated by the behavioral data: When controlling for 
stimulus intensity, we found smaller N20 amplitudes to be associated with higher perceived stimulus 
intensity. Notably, the attenuation of early SEPs during high excitability states is in fact in line with 
previous observations from biophysically realistic modeling of oscillatory activity in the somatosensory 
cortex as well as its interplay with stimulus-evoked responses (Jones et al., 2009).

Taken together, our findings thus demonstrate that the intensity of the presented stimulus and the 
degree of instantaneous neural excitability are jointly reflected in the early SEP but with opposing 
signatures: While stronger stimulus intensity increases the N20 potential, decreased N20 amplitudes 
appear to be associated with an increase in excitability (which in turn lead to a higher perceived 
stimulus intensity). This challenges previous assumptions that the amplitude of brain potentials, espe-
cially at early processing stages, reflects the coding of the perceived stimulus intensity. Rather, our 
findings call for a more differentiated view. Although the amplitude of early event-related potentials 
may indeed reflect the size of the input (e.g., a stronger or weaker somatosensory stimulus), the 
neural evaluation of this input (i.e., the perceived intensity), however, further depends on internal 
neural states, such as neural excitability, which may even reverse the amplitude effects of the input 
already at the earliest cortical processing stages. Crucially, our data are at the same time consistent 
with previous studies on somatosensory processing at later stages, where larger EEG potentials are 
typically associated with a stronger percept of a given stimulus (e.g., Al et al., 2020; Schröder et al., 
2021; Schubert et al., 2006), as both our SDT and linear-mixed-effects analyses of the N140 compo-
nent showed. Thus, the present findings of opposing signatures of neural excitability and sensory 
input appear to be a distinct characteristic of early cortical potentials, involving the first bottom-up 
sensory processing. In this context, it should be further emphasized that our proposed physiological 
model may be directly applicable to well-isolated neural signals only (such as the N20 component of 
the SEP). The physiological interpretation of amplitudes of later EEG potentials, such as the N140, 

https://doi.org/10.7554/eLife.67838
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however, is not as straightforward as described above, since several distinct SEP components may 
interact (Auksztulewicz et al., 2012), and excitatory and inhibitory contributions cannot be readily 
distinguished. Furthermore, with the present data, we cannot unambiguously conclude that the 
observed relation between pre-stimulus alpha activity and initial SEP indeed involved the very same 
neuronal populations – which may represent a limitation of the hypothesized mechanism. However, 
all approaches to localize these effects pointed to very similar cortical regions (as discussed in the 
following section). Also, we would like to emphasize that the presented mechanism reflects a hypoth-
esized model, which shall be further supported or falsified with more targeted studies, for example, 
directly quantifying membrane potentials and trans-membrane currents in relation to different excit-
ability states in somatosensation.

Origin of excitability fluctuations
To further narrow down the neuronal sources that eventually led to fluctuations of the perceptual 
outcome, we controlled for peripheral nerve variability, extracted spatially well-defined EEG poten-
tials (i.e., as reflected in the tangential components of the single-trial CCA), re-analyzed the effects of 
interest in source space, and examined subcortical activity.

Variability in afferent peripheral activity, as measured by CNAP at the upper arm, did not influence 
the perceived stimulus intensity when controlling for stimulus intensity. However, a robust effect on 
the perceived stimulus intensity was observed for efferent peripheral activity, as measured by CMAP 
of the M. abductor pollicis brevis. This may be explained by differences in proprioceptive sensations 
associated with the thumb twitches elicited by the stimulation, whose extent may depend on changes 
of the prevailing muscle tonus. Importantly, neither the CNAP nor the CMAP related to cortical excit-
ability as measured by the N20 component. Thus, the excitability effects in the early SEP are distinct 
from variability in peripheral nerve activity.

Furthermore, pre-stimulus alpha band activity and the N20 component of the SEP were retrieved 
from the same neuronal sources, which – as indicated by source reconstruction of the tangential 
CCA components – were localized in the primary sensory cortex, centered around the hand region 
of Brodmann area 3b. An additional, SEP-independent analysis of the effects of pre-stimulus alpha 
amplitude on N20 amplitude and perceived stimulus intensity confirmed these findings in source 
space. Although one should bear in mind the limited spatial resolution of EEG, this further supports 
the notion of excitability fluctuations in primary sensory regions of the cortex, being reflected in both 
ongoing and evoked neural activity.

Another possibility is that already subcortical sources – particularly in the thalamus – may play a 
role in modulating sensory excitability and hence shape the perceptual outcome (Kosciessa et al., 
2021). Yet, neither our SDT analyses nor the linear-mixed-effects models of the thalamus-related P15 
component supported this notion. Although we estimated an acceptable statistical power of these 
analyses, it should be noted that we could also not observe an effect of presented stimulus intensity 
on P15 amplitudes. Therefore, these results should be interpreted with some caution as this measure 
may lack the required SNR to detect rather subtle experimental effects of interest such as of the inten-
sity difference of two very similar stimuli. Nevertheless – and also taking into account our analyses in 
source space – we conclude that the findings of the present study are most consistent with the idea 
that the modulation of perceived intensity had its origins at the cortical level.

However, it remains an open question whether the observed excitability changes reflect local or 
global neural dynamics. Although there is initial evidence that cortical excitability may be organized 
temporally in a scale-free manner (Stephani et al., 2020), which may reflect an embedding into global 
critical-state dynamics (Avramiea et al., 2020; Beggs and Plenz, 2003; Palva et al., 2013), future 
work has to examine the spatial organization of excitability more specifically across different somato-
topic projections in primary sensory areas as well as across diverse brain regions.

In addition, it is unclear at this point how exactly the observed fluctuations of initial cortical 
responses are integrated in later, downstream neural processes. In principle, changes in early sensory 
processing should provide the ground for later neural activity involved in the perceptual decision 
making, and finally shape the behavioral outcome (as observed in the current study). However, with 
our data, we cannot unambiguously tell whether the modulation of alpha oscillations – associated 
with excitability changes at the earliest cortical level – may in turn reflect a top-down regulated signal, 
which could enable the neural system to account for ongoing fluctuations of excitability and even 
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benefit from a certain degree of variability. Although more and more evidence indeed suggest an 
adaptive, functional role of neural ‘noise’ (e.g., Findling and Wyart, 2021), further studies are needed 
to better understand how this concept may pertain also to such fundamental neural properties as the 
initial cortical excitability to external sensory stimuli.

Conclusions
Both ongoing oscillatory alpha activity and amplitude fluctuations of the first cortical response 
shape the perceived intensity of somatosensory stimuli. These effects most likely reflect instanta-
neous changes of cortical excitability in the primary somatosensory regions of the cortex, leading 
to a sensory bias which manifests already during the very first cortical response. Further questioning 
previous assumptions of how the evaluation of stimulus intensity is reflected in brain potentials, 
cortical excitability and the presented stimulus intensity were associated with opposing effects on 
the early SEP. We argue that this disparity may be explained by a mechanistic link between ongoing 
oscillations and stimulus-evoked activity through membrane potential alterations. This sheds new light 
on the neural correlates of the intensity encoding of somatosensory stimuli, which may well apply to 
other sensory domains, too.

Materials and methods
Participants
A total of 32 participants (all male, mean age = 27.0 years, SD = 5.0) were recruited from the database 
of the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. As assessed 
using the Edinburgh Handedness Inventory (Oldfield, 1971), all participants were right-handed (later-
alization score, M = + 93.1, SD = 11.6). No participant reported any neurological or psychiatric disease. 
All participants gave informed consent and were reimbursed monetarily. The study was approved by 
the local ethics committee (Ethical Committee at the Medical Faculty of Leipzig University, Leipzig, 
Germany). The chosen sample size was based on previous, similar studies which yielded an appro-
priate statistical power. (Please also note here that the estimates of the within-subject effects analyzed 
in the current study were based on the analysis of single trials [nearly 1000 per participant], ensuring 
a sufficiently high statistical power.)

Stimuli
Somatosensory stimuli were applied using electrical stimulation of the median nerve. A non-invasive 
bipolar stimulation electrode was positioned on the left wrist (cathode proximal). The electrical stimuli 
were designed as squared pulses of a 20 µs duration and applied using a DS-7 constant-current 
stimulator (Digitimer, Hertfordshire, United Kingdom). Stimuli of two intensities were presented, in 
the following referred to as weak and strong stimulus. The intensity of the weak stimulus was set to 
1.2 times the motor threshold, leading to a clearly visible thumb twitch for every stimulus. The indi-
vidual motor threshold was determined as the lowest intensity for which a thumb twitch was visible 
to the experimenter, as determined by a staircase procedure. The intensity of the strong stimulus was 
adjusted during training blocks prior to the experiment so that it was barely above the just-noticeable 
difference, corresponding to a discrimination sensitivity of about d’ = 1.5 according to Signal Detec-
tion Theory (SDT; Green and Swets, 1966). Thus, the stimulation intensities of the two stimuli were 
only barely distinguishable (despite both being clearly perceivable), with average intensities of 6.60 
mA (SD = 1.62) and 7.93 mA (SD = 2.06), for the weak and strong stimulus, respectively.

Procedure
During the experiment, participants were seated comfortably in a chair their hands extended in front 
of them in the supinate position on a pillow. The left hand and wrist, to which the stimulation elec-
trodes were attached, was covered with a cardboard box in order to prevent the participants to judge 
the stimulus intensity visually by the extent of thumb twitches elicited by the stimulation. Weak and 
strong stimuli were presented with an equal probability in a continuous, pseudo-randomized sequence 
with inter-stimulus intervals (ISI) ranging from 1463 to 1563 ms (randomly drawn from a uniform distri-
bution; ISIaverage = 1513 ms). In total, 1000 stimuli were applied, divided into five blocks of 200 stimuli 
each with short breaks in between. Participants were to indicate after each stimulus whether it was the 
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weak or strong stimulus, by button press with their right index and middle fingers as fast as possible. 
The button assignment for weak and strong stimulus was balanced across participants. Furthermore, 
every sequence started with a weak stimulus in order to provide an anchor point for the intensity judg-
ments (participants were informed about this). While performing the discrimination task, participants 
were instructed to fixate their gaze on a cross on a computer screen in front of them.

Prior to the experiment, training blocks of 15 stimuli each were run in order to familiarize the partic-
ipants with the task and to individually adjust the intensity of the strong stimulus so that a discrim-
ination sensitivity of about d’ = 1.5 resulted (the intensity of the weak stimulus was set at 1.2 times 
the motor threshold for all participants). On average across participants, this procedure comprised 
10.5 training blocks (SD = 5.8). During these training blocks, participants were provided with visual 
feedback of their response accuracy. No information on task performance was given during the exper-
imental blocks.

Data acquisition
EEG data were recorded from 60 Ag/AgCl electrodes at a sampling rate of 5000  Hz using an 
80-channel EEG system (NeurOne Tesla, Bittium, Oulu, Finland). A built-in band-pass filter in the 
frequency range from 0.16 to 1250 Hz was used. Electrodes were mounted in an elastic cap (EasyCap, 
Herrsching, Germany) at the international 10–10 system positions FP1, FPz, FP2, AF7, AF3, AFz, AF4, 
AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT9, FT7, FT8, FT10, FC5, FC3, FC1, FC2, FC4, FC6, C5, C3, 
C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, T7, T8, TP7, TP8, P7, P5, P3, P1, Pz, P2, P4, 
P6, P8, PO7, PO3, PO4, PO8, O1, and O2, with FCz as the reference and POz as the ground. For the 
purpose of source reconstruction, the electrode positions were measured in 3D space individually for 
each subject using the Polhemus Patriot motion tracker (Polhemus, Colchester, Vermont). In order to 
record the electrooculogram, four additional electrodes were positioned at the outer canthus and the 
infraorbital ridge of each eye. The impedances of all electrodes were kept below 10 kΩ. For source 
reconstruction, EEG electrode positions were measured in 3D space individually for each subject 
using Polhemus Patriot (Polhemus, Colchester, Vermont). Additionally, the compound nerve action 
potential (CNAP) of the median nerve and the compound muscle action potential (CMAP) of the M. 
abductor pollicis brevis were measured. For the CNAP, two bipolar electrodes were positioned on 
the inner side of the left upper arm along the path of the median nerve, at a distance of about 1 cm 
(reference electrode distal). The CMAP was measured from two bipolar electrodes placed on the stim-
ulated hand, one on the muscle belly of the M. abductor pollicis brevis and the other on the second 
joint of the thumb (reference electrode).

Structural T1-weighted MRI scans (MPRAGE) of all participants, but two were obtained from the 
database of the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, 
acquired within the same year of the experiment or up to 3  years earlier on a 3T Siemens Verio, 
Siemens Skyra, or Siemens Prisma scanner (Siemens, Erlangen, Germany).

EEG pre-processing
Stimulation artifacts were cut out and interpolated between –2 and 4 ms relative to stimulus onset 
using Piecewise Cubic Hermite Interpolating Polynomials (MATLAB function pchip). The EEG data 
were band-pass filtered between 30 and 200 Hz, sliding a fourth-order Butterworth filter forward and 
backward over the data to prevent phase shift (MATLAB function filtfilt). As outlined in a previous 
study (Stephani et al., 2020), this filter allowed to specifically focus on the N20-P35 complex of the 
SEP, which emerges from frequencies above 35 Hz, and to omit contributions of later (slower) SEP 
potentials of no interest. Additionally, this filter effectively served as baseline correction of the SEP 
since it removed slow trends in the data, reaching an attenuation of 30 dB at 14 Hz, thus ensuring 
that fluctuations in the SEP did not arise from fluctuations within slower frequencies (e.g., alpha band 
activity). Subsequently, segments of the data that were distorted by muscle or non-biological artifacts 
were removed by visual inspection. After re-referencing to an average reference, eye artifacts were 
removed using independent component analysis (Infomax ICA) whose weights were calculated on 
the data band-pass filtered between 1 and 45 Hz (fourth-order Butterworth filter applied forward 
and backward). For SEP analysis, the data were segmented into epochs from –100 to 600 ms relative 
to stimulus onset, resulting in about 995 trials on average per participant. EEG pre-processing was 
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performed using EEGLAB (Delorme and Makeig, 2004), and custom-written scripts in MATLAB (The 
MathWorks Inc, Natick, MA).

Single-trial extraction using CCA
Single-trial SEPs were extracted using canonical correlation analysis (CCA), as proposed by Water-
straat et al., 2015, and in the same way applied as described in Stephani et al., 2020, for a similar 
dataset.

CCA finds the spatial filters ‍wx‍ and ‍wy‍ for multi-channel signals ‍X ‍ and ‍Y ‍ by solving the following 
optimization problem for maximizing the correlation:

	﻿‍
max
wx,wy

corr
(

wT
x X, wT

y Y
)

,
‍�

where ‍X ‍ is a multi-channel signal constructed from concatenating all the epochs of a subject’s 
recording, that is, ‍X = [x1, x2, . . . , xN]‍ with ‍xi ∈ Rchannel×time‍ being the multi-channel signal of a 
single trial and ‍N ‍ the total number of trials. Additionally, 

‍
Y = [x̄, ..., x̄]︸ ︷︷ ︸

N times ‍

 with ‍̄x = 1
N
∑N

i=1 xi‍ denoting the 

grand average of all trials. Since averaging cancels the background noise and recovers the shared 
morphology of the SEP of interest among all the trials, the CCA procedure resembles a template 
matching between the single-trial signals and the template time signature of the SEP of interest. 
The spatial filter ‍wx‍ provides us with a vector of weights for mixing the channels of each single trial 
(i.e., ‍xi,CCA = wT

x xi‍) and recovering their underlying SEP. Therefore, ‍wx‍ can be interpreted as the spatial 
signature of the SEP of interest across all single trials. The optimization problem of CCA can be solved 
using eigenvalue decomposition. Therefore, multiple CCA spatial components can be extracted for 
each subject, being the eigenvectors of the corresponding eigenvalue decomposition. Since we are 
mainly interested in the early portion of the SEP, the two signal matrices ‍X ‍ and ‍Y ‍ were constructed 
using shorter segments from 5 to 80 ms post-stimulus. The extracted CCA spatial filter was, however, 
applied to the whole-length epochs from –100 to 600 ms. The signal resulting from mixing the single 
trial’s channels using the CCA spatial filter ‍wx‍ , that is, ‍xi,CCA = wT

x xi‍ , is called a CCA component of that 
trial.

The spatial activity pattern of each CCA component was computed by multiplying the spatial filters 
‍wx‍ by the covariance matrix of ‍X ‍, as ‍cov

(
X
)

wx‍ , in order to take the noise structure of the data into 
account (Haufe et al., 2014). The CCA components whose spatial patterns showed a pattern of a 
tangential dipole over the central sulcus (typical for the N20-P35 complex) were selected for further 
analyses and referred to as tangential CCA components. Such a tangential CCA component was 
present in all subjects among the first two CCA components with the maximum canonical correlation 
coefficients. Since CCA solutions are insensitive to the polarity of the signal, we standardized the 
resulting tangential CCA components by multiplying the spatial filter by a sign factor, in the way that 
the N20 potential always appeared as a negative peak in the SEP.

Furthermore, in a sub-sample of 13 subjects, a CCA component could be identified among the 
first four CCA components, which showed a peak at around 15 ms post-stimulus (presumably the P15 
component of the SEP) and a spatial pattern that was characterized by a central, outspread activation 
(in the following referred to as thalamic CCA component). Also here, the CCA components were stan-
dardized so that the P15 always appeared as a positive peak.

In order to additionally evaluate the later time course of the SEP (i.e., the lower and later frequency 
content), the spatial filter of the tangential CCA component was applied to EEG data temporally 
filtered between 0.5 and 45 Hz (apart from this, pre-processed in the same way as described above).

SEP peak amplitudes and pre-stimulus oscillatory activity
N20 peak amplitudes were defined as the minimum value in single-trial SEPs of the tangential CCA 
components ± 2 ms around the latency of the N20 in the within-subject average SEP. P15 amplitudes 
were measured from the thalamic CCA components as the average amplitude in a time window ±1 ms 
around the latency of the P15 in the within-subject average SEP. N140 amplitudes were measured 
from the low-frequency-filtered EEG (0.5–45 Hz), after application of the tangential CCA filter, as the 
average voltage in a time window between 140 and 160 ms after stimulus onset.

To estimate the average amplitude of pre-stimulus alpha band activity, the data were segmented 
from –500 to –5 ms relative to stimulus onset and band-pass filtered between 8 and 13 Hz, using 
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a fourth-order Butterworth filter (applied forward and backward). In order to avoid filter-related 
edge artifacts, the data segments were mirrored before filtering to both sides (symmetric padding). 
Segmenting the data before filtering prevented any leakage from post-stimulus signals to the pre-
stimulus time window. In order to examine pre-stimulus alpha band activity of the same sources as 
of the SEP, the spatial filter of the tangential CCA component was also applied to the pre-stimulus 
alpha data. Subsequently, the amplitude envelope of the extracted alpha oscillations was computed 
by taking the absolute value of the analytic signal, using Hilbert transform of the real-valued signal. To 
derive one pre-stimulus alpha metric for every trial, amplitudes of the alpha envelope were averaged 
in the pre-stimulus time window of interest between –200 and –10 ms and log-transformed for subse-
quent statistical analyses in order to approximate a normal distribution.

EEG source reconstruction
Sources of the EEG signal were reconstructed using lead field matrices based on individual brain anat-
omies and individually measured electrode positions. Structural T1-weighted MRI images (MPRAGE) 
were segmented using the Freesurfer software (http://​surfer.​nmr.​mgh.​harvard.​edu/), and a three-shell 
boundary element model based on the segmented MRI was used to compute the lead field matrix 
with OpenMEEG (Gramfort et al., 2010; Kybic et al., 2005). A template brain anatomy (ICBM152; 
Fonov et al., 2009) was used for two subjects for whom no individual MRI scans were available. Addi-
tionally, standard electrode positions were used for one subject for whom the 3D digitization of the 
electrode positions was corrupted. The lead field matrices, constrained to sources perpendicular to 
the cortex surface, were inverted using the eLORETA method (Pascual-Marqui, 2007), and sources 
were reconstructed for the spatial patterns of the tangential CCA component of every subject, as well 
as for pre-stimulus alpha activity (on a single-trial level). For group-level analysis, we projected the indi-
vidual source estimates onto the ICBM152 template anatomy using the spherical co-registration with 
the FSAverage template (Fischl et al., 1999) derived from Freesurfer. Subsequently, the source esti-
mates were averaged across subjects. Brainstorm (Tadel et al., 2011) was used for building individual 
head models and visualizing the source space data. The MATLAB implementation of the eLORETA 
algorithm was derived from the MEG/EEG Toolbox of Hamburg (METH; https://www.​uke.​de/​english/​
departments-​institutes/​institutes/​neurophysiology-​and-​pathophysiology/​research/​research-​groups/​
index.​html).

Processing of peripheral electrophysiological data (median nerve CNAP 
and thumb CMAP)
Analogously to the EEG data, stimulation artifacts were cut out and interpolated between –2 and 
4 ms relative to stimulus onset using Piecewise Cubic Hermite Interpolating Polynomials. To achieve 
a sufficient SNR of the short latency CNAP peak of only a few milliseconds duration on single-trial 
level, the data were high-pass filtered at 70 Hz (fourth-order Butterworth filter applied forward and 
backward). For the CMAP, no further filtering was necessary given the naturally high SNR of muscle 
potentials (mV range). Here, only a baseline correction was performed from –20 to –5 ms to account 
for slow potential shifts. For the CNAP, single-trial peak amplitudes were extracted as the maximum 
amplitude ±1 ms around the participant-specific latency of the CNAP peak that was found between 
5 and 9 ms in the within-participant averages. The CMAP was evaluated regarding its peak-to-peak 
amplitude, which was defined as the difference between the minimum and maximum amplitude 
measured ±1 ms around the participant-specific latencies of the negative and positive peaks of the 
biphasic CMAP response (which were found between 5 and 11 ms as well as 10 and 20 ms in the 
within-participant averages, respectively).

Signal Detection Theory
In order to separate the discrimination ability of the two stimulus intensities from a general response 
bias, we applied Signal Detection Theory (SDT; Green and Swets, 1966; Kingdom and Prins, 2016). 
The ability to discriminate the two stimulus intensities was quantified using sensitivity d’, as calculated 
in the following way:

	﻿‍ d′ = ϕ−1 (p
(
“strong”| strong

))
− ϕ−1 (p

(
“strong”| weak

))
,‍�
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where ‍ϕ
−1

‍ corresponds to the inverse of the cumulative normal distribution, ‍p(“strong”| strong)‍ to 
the probability of strong stimuli being rated as strong stimuli, and ‍p(“strong”| weak)‍ to the probability 
of weak stimuli being rated as strong stimuli. Response probabilities were calculated as the number of 
responses divided by the number of stimuli of the respective categories. The response bias, criterion 
c, was calculated as follows:

	﻿‍
c = −0.5 ∗

(
ϕ−1 (p

(
“strong”| strong

))
+ ϕ−1 (p

(
“strong”| weak

)))
.
‍�

According to SDT, sensitivity d’ here represents the distance between the distributions of the 
internal responses of the two stimuli, and thus reflects the discriminability between strong and weak 
stimulus intensity. Criterion c reflects the internal threshold above which a stimulus is rated as strong 
stimulus and below which a stimulus is rated as weak stimulus, thus representing a general response 
bias. With respect to our data, a higher criterion c therefore indicates a general tendency to report 
lower stimulus intensities.

Statistical analyses
To confirm that task accuracy was above chance level, we ran non-parametric permutation tests 
(Crowley, 1992). Within each participant, we derived a null distribution of chance-level perfor-
mance by randomly remapping the behavioral responses with the presented stimuli 100,000 times 
(Combrisson and Jerbi, 2015). The p-value of the empirical task accuracy was calculated as the 
proportion of higher accuracy values in the surrogate data. Bonferroni correction was applied to 
account for the multiple tests across participants.

The effects of the EEG measures pre-stimulus alpha amplitude, N20 peaik amplitude, P15 mean 
amplitude, and N140 mean amplitude on the SDT measures sensitivity d’ and criterion c were exam-
ined using a binning approach: First, trials were sorted according to the amplitudes of the EEG 
measures. Next, the SDT measures corresponding to the first and fifth quintile of the sorted trials 
were compared using paired-sample t-tests. To quantify effect sizes, Cohen’s d was calculated as the 
mean difference between the dependent samples divided by the standard deviation of differences 
between the dependent samples.

The relationship between pre-stimulus alpha activity and the N20 component was tested using a 
random-slope linear-mixed effects model with pre-stimulus alpha amplitude as predictor of N20 peak 
amplitude, and subject as random factor:

	﻿‍ N20 peak amplitude ∼ 1 + pre-stimulus alpha + (1 + pre-stimulus alpha | subject).‍�

The relationship between thalamus-related activity and intensity perception was tested using a 
random-intercept linear-mixed-effects model with P15 amplitude and presented stimulus intensity as 
predictors of perceived stimulus intensity, as well as subject as random factor:

	﻿‍ Perceived stimulus intensity ∼ 1 + P15 amplitude + presented stimulus intensity + (1 | subject).‍�

Here, a logit link function was used to account for the dichotomous scale of perceived stimulus 
intensity (note that we refrained from estimating a random slope for P15 amplitude here given the 
small sample size of available data for thalamic activity). Furthermore, we tested the association 
between presented stimulus intensity and P15 amplitude as well as pre-stimulus alpha amplitude:

	﻿‍ P15 amplitude ∼ 1 + pre-stimulus alpha + presented stimulus intensity + (1 | subject).‍�

Analogously, we analyzed the effect of N140 amplitude on perceived stimulus intensity, however 
now including random slopes for N140 amplitude and presented stimulus intensity:

	﻿‍

Perceived stimulus intensity ∼ 1 + N140 amplitude + presented stimulus intensity

+ (1 + N140 amplitude + presented stimulus intensity | subject). ‍�

The dependence of the N140 on presented stimulus intensity and pre-stimulus alpha activity was 
examined using the following model:

	﻿‍

N140 amplitude ∼ 1 + pre-stimulus alpha + presented stimulus intensity +

(1 + pre-stimulus alpha + presented stimulus intensity | subject). ‍�

https://doi.org/10.7554/eLife.67838
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Furthermore, we conducted a post hoc power analysis to evaluate the probability of finding an 
effect of P15 amplitude on perceived stimulus intensity if it was existent. For this, we used Monte Carlo 
simulations with 1000 permutations based on the empirical dataset (Green et al., 2016), assuming 
an effect size of β = 0.05, which is in the range of the observed effect of N20 amplitude on perceived 
stimulus intensity.

In addition, the interrelation of pre-stimulus alpha activity, the N20 component of the SEP, periph-
eral nerve activity as measured by CNAP and CMAP, the presented stimulus intensity, as well as 
the perceived stimulus intensity were examined using confirmatory path analysis based on multi-
level structural equation modeling as implemented in the general latent variable framework of Mplus 
(Muthén and Muthén, 2017). Pre-stimulus alpha amplitude and presented stimulus intensity were 
included as exogenous variables, N20 peak amplitude, CNAP amplitude, CMAP amplitude, and 
perceived stimulus intensity as endogenous variables. The relationships contained in the hypothe-
sized model (‘SEM 1’) are summarized in Table 2. Trials with no behavioral response were excluded 
from the analysis. In total, 31,347 single trials were included in the SEM, with 979.6 trials on average 
per participant. Model parameters were estimated using the MLR estimator provided by Mplus, a 
maximum-likelihood estimator robust to violations of the assumption of normally distributed data. A 
logit link function was used to account for the dichotomous scale of perceived stimulus intensity. The 
fit of the hypothesized model was examined comparing it to alternative models constructed by step-
wise including or excluding relevant effect paths (Table 1). Model comparisons were evaluated using 
χ2 difference tests (based on the log-likelihood; Muthén, 2004), the AIC, and the BIC. (Note that no 
other fit indices, such as CFI, RMSEA, or SRMR, are available for our type of model with a multi-level 
structure and a dichotomous outcome variable.)

Moreover, the association between pre-stimulus alpha activity, the N20 potential and perceived 
intensity were examined in source space, independently from the SEP-derived spatial CCA filter. For 
that, the sources of pre-stimulus alpha activity were reconstructed as described under EEG source 
reconstruction, and subjected to the following linear-mixed-effects models (in close correspondence 
to the sub-equations of the SEM approach):

	﻿‍ N20 peak amplitude ∼ 1 + presented stimulus intensity + pre-stimulus alphavertex i + (1 | subject),‍�

and

	﻿‍ Perceived stimulus intensity ∼ 1 + presented stimulus intensity + pre-stimulus alphavertex i + (1 | subject),‍�

where vertex i refers to one of 5003 modelled cortical sources. We used FDR-correction (p < 0.01) 
to account for the multiple comparisons. Analogously, we repeated the SDT analysis for every single 

Table 2. Relationships included in the hypothesized structural equation model (‘SEM 1’).
Level 1 equations reflect the within-participant effects between variables of interest. On level 2, only 
intercepts and variances of each variable were modeled; apart from stimulus intensity which only 
varied within participants by experimental design.

Level 1 (within participants):

  �  N20 amplitude ~ 1 + stimulus intensity + pre-stimulus alpha

  �  CNAP ~ 1 + stimulus intensity

  �  CMAP ~ 1 + stimulus intensity

  �  Perceived intensity ~ 1 + stimulus intensity + N20 amplitude + pre-stimulus alpha + CMAP

Level 2 (between participants):

  �  N20 amplitude ~~ N20 amplitude

  �  CNAP ~~ CNAP

  �  CMAP ~~ CMAP

  �  Perceived intensity ~~ perceived intensity

  �  Pre-stimulus alpha ~~ pre-stimulus alpha

https://doi.org/10.7554/eLife.67838
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source as well as for the averaged activity of a region of interest (ROI) that included 19 sources 
covering the hand region of the right primary somatosensory cortex (Figure 5—figure supplement 
1).

For all analyses (apart from the FDR correction for multiple comparisons), the statistical signifi-
cance level was set to p = 0.05 (two-sided). Correspondingly, two-sided confidence intervals were 
calculated with a confidence level of 0.95 (CI95%). The permutation-based analyses and t-tests were 
performed in MATLAB (version 2019b, The MathWorks Inc, Natick, MA). For both the linear-mixed-
effects model and the structural equation models, all continuous variables (i.e., pre-stimulus alpha, 
N20 amplitude, CNAP, and CMAP) were z-transformed prior to statistics. The linear-mixed-effects 
models were calculated in R (version 3.5.3, R Development Core Team, 2018) with the lmer func-
tion of the lme4 package (version 1.1–23, Bates et al., 2015), estimating the fixed-effect coefficients 
based on maximum likelihood. To derive a p-value for the fixed-effect coefficients, the denominator 
degrees of freedom were adjusted using Satterthwaite’s method (Satterthwaite, 1946) as imple-
mented in the R package lmerTest (version 3.1–2, Kuznetsova et  al., 2017). Structural equation 
modeling was performed in Mplus (version 8.6, Base Program and Combination Add-On; Muthén 
and Muthén, 2017) using the MplusAutomation package in R for scripting (Hallquist and Wiley, 
2018). Post hoc statistical power analyses were performed using the R package simr (Green et al., 
2016).
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