
 

Preprint of an article  

published in  

International Journal of Number Theory,  

Volume 17, Issue 10, 2021,  

Pages 2251-2277. 

https://dx.doi.org/10.1142/S1793042121500871 

 

© copyright World Scientific Publishing Company 

https://www.worldscientific.com/worldscinet/ijnt 

 

https://dx.doi.org/10.1142/S1793042121500871
https://www.worldscientific.com/worldscinet/ijnt


ON PILLAI’S PROBLEM WITH X-COORDINATES OF PELL

EQUATIONS AND POWERS OF 2 II

HAROLD S. ERAZO, CARLOS A. GÓMEZ, FLORIAN LUCA

Abstract. In this paper, we show that if (Xn, Yn) is the nth solution of the Pell equation

X2−dY 2 = ±1 for some non–square d, then given any integer c, the equation c = Xn−2m

has at most 2 integer solutions (n,m) with n ≥ 1 and m ≥ 0, except for the only pair
(c, d) = (−1, 2). Moreover, we show that this bound is optimal. Additionally, we propose a

conjecture about the number of solutions of Pillai’s problem in linear recurrent sequences.

1. Introduction

Pillai’s problem states that for each fixed non zero integer c, the Diophantine equation

(1) ax − by = c

has only finitely many positive integer solutions (a, b, x, y) with x, y ≥ 2. This problem is still
unsolved for |c| > 1 while the case |c| = 1 which is known as Catalan’s conjecture was solved
in 2004 by Mihăilescu [16].

The work of Pillai was continued by Herschfeld [13, 14] who showed that if c is an integer
with sufficiently large absolute value, then the equation (1) in the special case (a, b) = (3, 2)
has at most one solution (x, y). For small |c| this is not the case (take for example c = 1 =
3 − 2 = 32 − 23). Pillai [17, 18] extended Herschfeld’s result to a more general exponential
Diophantine equation (1) with fixed coprime integers a, b, c and a > b ≥ 1. Specifically, Pillai
showed that there exists a positive integer c0(a, b) such that for |c| > c0(a, b), equation (1) has
at most one integer solution (x, y). That is to say that there are only finitely many integers
c such that the equation (1) has more than one positive integer solution (x, y). His method
was ineffective. This was made effective by Stroeker and Tijdeman in [20] by using Baker’s
theory on linear forms in logarithms. In particular, they found all such c when (a, b) = (3, 2)
together with their multiple representations of the form c = 3x − 2y.

In this direction, Bennett [1] proved the following theorem.

Theorem 1 (Bennett, 2001). Let a, b ≥ 2 be fixed integers. For any integer c 6= 0, the
Diophantine equation (1) has at most two solutions (x, y) in non negative integers.

The equation (1) was revisited recently by replacing the powers of a and b by members of
sequences {Un}n≥0 and {Vm}m≥0 satisfying certain properties. For instance, a consequence
of the main result of [3] says that if {Un}n≥0 and {Vm}m≥0 are linearly recurrent sequences of
integers with dominant roots α and α1 which are multiplicatively independent, then there are
only finitely many integers c such that the equation c = Un− Vm has more than one solution
in non-negative integers (n,m). Given (U, V ) :=

(
{Un}n≥0, {Vm}m≥0

)
, we write mU,V (c) for

the “multiplicity” of c as an element of the form Un − Vm; that is, as the number of pairs
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(n,m) of positive integers such that c = Un − Vm. With this notation, the above result says
that mU,V (c) ≤ 1 for all but finitely many c.

Since for positive integers a, b ≥ 2 the sequences U = {an}n≥0 and V = {bm}m≥0 are
linearly recurrence sequences of order 1, we can restate Theorem 1 by saying that mU,V (c) ≤ 2
for all non zero c when U and V are non constant geometric progressions of positive integers.

Given sequences of integers U = {Un}n≥0 and V = {Vm}m≥0, we call

C := {c ∈ Z : mU,V (c) ≥ 2}
the exceptional set of Pillai’s equation of (U, V ). Thus, the main result of [3] says that C is
finite and effectively computable if some conditions on the recurrences are met.

Except for some restrictions on the indices, the following table contains all the particular

cases treated so far. In the table, {F (k)
n }n≥0 is sequence of k-generalized Fibonacci numbers

of initial values F
(k)
0 = 0, F

(k)
1 = 1, F

(k)
n = 2n−1 for n = 2, . . . , k − 1 and recurrence

F
(k)
n+k = F

(k)
n+k−1 + · · · + F

(k)
n for all n ≥ 0. When k = 2 and k = 3 this is the sequence

of Fibonacci numbers and Tribonacci numbers, respectively, and we omit the superscripts
k, we just write Fn for the nth Fibonacci number and Tn for the nth Tribonacci number.
The sequence {Pn}n≥0 is the sequence of Pell numbers of initial values P0 = 0, P1 = 1 and
recurrence Pn+2 = 2Pn+1 + Pn for all n ≥ 0. Finally, the sequence {Xn}n≥1 is the sequence
of X-coordinates for the Pell equation

(2) X2 − dY 2 = ±1

corresponding to some non-square positive integer d, where (X1, Y1) is the smallest positive
integer solution.

c = #C mU,V (c) Authors

an − bm 2 Bennett [1]

Fn − 2m 8 3 Ddamulira, Luca and Rakotomalala [7]

Tn − 2m 5 4 Bravo, Luca and Yazán [2]

F
(k)
n − 2m ≤ 2 ≤ k + 2 Ddamulira, Gómez and Luca [5]

F
(k)
n − 3m ≤ 8 2 Ddamulira and Luca [6]

Fn − Tm 17 4 Chim, Pink and Ziegler [4]

Fn − Pm 10 4 Hernández, Luca and Rivera [11]

Pn − 2m 7 3 Hernane, Luca, Rihane and Togbé [12]

Xn − 2m 3 Erazo, Gómez and Luca [9]

Table 1. Pillai’s problem in linear recurrent sequences

We want to point out that the bound for mU,V (c) is optimal for each case. Observing the
third column of the above table, we note that this optimal bound is small. So we propose the
next problem:

Question 1. Given two linear recurrences U = {Un}n≥0 and V = {Vn}n≥0 of integers of
orders k and `, respectively, having dominant roots which are multiplicatively independent,
show that there exist a bound on mU,V (c) that depends only on max{k, `}.
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In the table, the example with U = {F (k)
n }n≥0 and V = {3m}m≥0 shows that #C is

uniformly bounded although k (the order of the recurrence U) tends to infinity. This is an
example where a phenomenon even stronger than the one indicated by our question occurs.
One may ask if there are other parametric families of pairs of recurrences for which one
can prove that C in uniformly bounded. This is the question we address in this paper for
the case U = {Xn}n≥1 and V = {2m}m≥0. This example is uniform in the parameter
d. We recall that the sequence {Xn}n≥0 is a binary recurrent satisfying the recurrence
Xn+2 = (2X1)Xn+1 − εXn for all n ≥ 1, where we put ε = X2

1 − dY 2
1 ∈ {±1}. This question

was already studied by us in [9]. The main result of that paper was that mU,V (c) ≤ 3 and
we provided an example of d for which mU,V (c) = 3 for a particular value of c. In that paper
we asked whether there are other instances (c, d) for which mU,V (c) = 3. Here, we answer
to this question and prove the following result. We make our result slightly more general by
also allowing n = 0 with the convention that X0 := 1.

Theorem 2. Let U := {Xn}n≥0 be the sequence of X-coordinates of the positive integer
solutions (X,Y ) of the Pell equation X2 − dY 2 = ±1, where we set X0 := 1, and let V :=
{2m}m≥0. Then for all integers c we have

(3) mU,V (c) ≤ 2,

except for the pair (c, d) = (−1, 2), for which we have the representations:

c = 1− 21 = 1− 21 = 3− 22 = 7− 23

= X0 − 21 = X1 − 21 = X2 − 22 = X3 − 23,

which has mU,V (c) = 4. Moreover, the bound (3) is optimal for an infinite number of d’s.

Let us show that the result is optimal. Take ε = 1. We then have the identity

X3 −X1 = 2X1X2 − 2X1 = 2X1(2X2
1 − 1)− 2X1 = 4X3

1 − 4X1.

So, if we chose X1 = 2k, we get the identity

X3 − 23k+2 = X1 − 2k+2 = c, c = ck := −3 · 2k.
Writing 22k−1 = dkY

2
k with a square-free integer dk and a positive integer Yk both depending

on k, we get mU,V (c) ≥ 2 for the pair (c, d) = (ck, dk) and for all k ≥ 1. In virtue of (3),
we in fact have mU,V (c) = 2. In [9], it was justified that dk → ∞ as k → ∞, so indeed, the
number of d’s is infinite.

Other examples of parametric families for X1 = 2k are:

ε = 1 c = −1 X2 − 22k+1 = X0 − 21 = c,

ε = −1 c = 1− 22k+1 X2 − 22k+2 = X0 − 22k+1 = c,

ε = 1 c = 1− 22k+3 X4 − 24k+3 = X0 − 22k+3 = c,

ε = 1 c = 1− 2k+2 X2 − 22k+1 = X0 − 2k+2 = c.

Remark 1. It is natural to ask what happens when the powers of 2 are replaced by powers
of some other prime (or more generally, by powers of any other integer) in the Diophantine
equation Xn − 2m = c. The obvious obstruction would be Lemma 3. Work of Sanna [19]
might provide a suitable replacement of our Lemma 3 for odd values of p. We leave this for
future investigation.
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2. Preliminary results

In this section, we present the tools required to develop our work. For more details, one
can consult [9]. In particular, we will use some properties on Pell equations, a result of the
Baker theory and a pair of results in Diophantine approximation.

2.1. Pell equations. Let (X1, Y1) be the minimal solution in positive integers of the Pell
equation (2). It is well–known that all the non–negative integer solutions (X,Y ) of the Pell
equation (2) have the form

X + Y
√
d = Xn + Yn

√
d = (X1 + Y1

√
d)n

for some n ∈ N. For α := X1 +Y1

√
d and β := X1−Y1

√
d, we have the usual Binet’s formulas

(4) Xn =
αn + βn

2
and Yn =

αn − βn

2
√
d

, for all n ≥ 0.

We need the following lemmas. The following result is Lemma 1 in [9].

Lemma 1. Let α > 0 be the fundamental solution of X2 − dY 2 = ±1 for nonsquare d > 1.
Then (

1

1 +
√

2

)
α` ≤ X` ≤ (2−

√
2)α`, for all ` ≥ 1.

The following result is a restatement of Lemma 2 in [9].

Lemma 2. We have:

(i)

ν2(Xn) =

{
0 if n ≡ 0 (mod 2),

ν2(X1) if n ≡ 1 (mod 2).

(ii)

ν2(Yn) =

{
ν2(Y1) + ν2(X1) + ν2(n) if n ≡ 0 (mod 2),

ν2(Y1) if n ≡ 1 (mod 2).

The following result is Lemma 4 in [9].

Lemma 3. Assume that a > b satisfy a ≡ b (mod 2).

(i) The following inequality holds:

2ν2(Xa−Xb) ≤ 2(X2
1 + 1)a2.

(ii) If X1 is odd, then

2ν2(Xa−Xb) ≤ 4(X1 + 1)a2.

Lemma 4. Assume that a > b satisfy a 6≡ b (mod 2). If ε = 1, then

2ν2(Xa−Xb) ≤ X2
1 − 1.

Proof. Let e = ν2(Xa −Xb). Since a and b are incongruent modulo 2, it follows that one is
even and one is odd. If m is even, then Xm = 2X2

m/2 − 1 so Xm is odd, while if m is odd

then Xm ≡ X1 (mod 2). Hence, the only interesting case is when X1 is odd since otherwise
e = 0 and the stated inequality is obviously true. Thus, dY 2

1 ≡ X2
1 − 1 ≡ 0 (mod 4) and

X2
a − dY 2

a = X2
b − dY 2

b ,

therefore
d(Y 2

a − Y 2
b ) = X2

a −X2
b = (Xa −Xb)(Xa +Xb).
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So, 2e | d(Y 2
a − Y 2

b ) and we get

e ≤ ν2(d(Y 2
a − Y 2

b )).

Without loss of generality we assume that a is even. Then, by Lemma 2, we have

ν2(Y 2
a ) = 2(ν2(Y1) + ν2(X1) + ν2(a)) > 2ν2(Y1) = ν2(Y 2

b ),

where we used again that a 6≡ b (mod 2). So, ν2(Y 2
a − Y 2

b ) = 2ν2(Y1), which implies

e ≤ ν2(dY 2
1 ) = ν2(X2

1 − 1).

�

2.2. Linear forms in logarithms. For an algebraic number η of degree d over Q, with
conjugate roots η := η(1), . . . , η(d), it is defined its logarithmic height by

h(η) :=
1

d

(
log a0 +

d∑
i=1

log max{|η(i)|, 1}

)
,

where a0 > 0 is the leading coefficient of the minimal primitive polynomial of η over Z.
In order to find a lower bounds for linear forms in logarithms in two logarithms, we will

use the following theorem due to Laurent [15].

Theorem 3 (Laurent’s Theorem). Let η1 and η2 be multiplicatively independent algebraic
numbers. Set D′ = [Q(η1, η2) : Q]/[R(η1, η2) : R]. Let logA1 and logA2 be real numbers such
that

logAj ≥ max

{
h(ηj),

1

D′
,
|log η1|
D′

}
, j = 1, 2.

Let b1 and b2 be integers, not both zero, and set

logB′ = max

{
log

(
|b1|

D′ logA2
+

|b2|
D′ logA1

)
+ 0.21,

20

D′
, 1

}
.

Then, we have the lower bound

log |b1η1 + b2η2| ≥ −25.2D′
4
(logA1)(logA2)(logB′)2.

2.3. Reduction by continuous fractions. The following lemma will be used for the treat-
ment of small linear forms homogeneous in two integer variables.

Lemma 5. Let τ be an irrational number, M be a positive integer and p0/q0, p1/q1, . . . be
the sequence of convergents of the continued fraction [a0, a1, . . .] of τ . Let N be such that
qN > M . Then putting a(M) := max{at : t = 0, 1, . . . , N}, the inequality

|mτ − n| >
1

(a(M) + 2)m
,

holds for all pairs (n,m) of integers with 0 < m < M .

For the treatment of nonhomogeneous linear forms in two integer variables, we will use
a slight variation of a result due to Dujella and Pethő [8]. For a real number x, we put
‖x‖ := min{|x− n| : n ∈ Z} for the distance from x to the nearest integer.

Lemma 6. Let τ be an irrational number, M be a positive integer, and p/q be a convergent
of the continued fraction of τ such that q > 6M . Let A,B, µ be some real numbers with A > 0
and B > 1. Put ε := ‖µq‖ −M ‖τq‖. If ε > 0, then there is no solution to the inequality

0 < |mτ − n+ µ| < AB−k,

in positive integers m,n and k with m ≤M and k ≥ log(Aq/ε)/ logB.
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3. Other useful results

Before starting the proof of the Theorem 2, we present four additional lemmas for which it
is assumed that the equation c = Xn − 2m has at least two solutions (ni,mi), (nj ,mj) with
ni > nj . Here we assume that nj ≥ 1 and we will treat the case nj = 0 at the end of Section
5. Observe that since in this range the sequence {Xn}n≥1 is strictly increasing we also get
that mi > mj . We have

(5) Xni
−Xnj

= 2mi − 2mj .

We also have

(6)
αni−1

4
<

αni−1

1 +
√

2
< Xni−1 ≤ Xni −Xnj = 2mi − 2mj < 2mi ,

(7) 2mi−1 ≤ 2mi − 2mj = Xni
−Xnj

< Xni
< αni .

From (6) and (7) we get

(8) mi < 2.2ni logα and ni <
4

5
mi + 2.

Lemma 7. If c 6= 0, then ni(mj + 1) 6= nj(mi + 1).

Proof. From (5) and the Binet formula (4), we get

αni − 2mi+1 = αnj − 2mj+1 + βnj − βni .

Put x := αnj , y := 2mj+1 and ni/nj = (mi + 1)/(mj + 1) =: 1 + ε. Therefore

x1+ε − y1+ε = x− y + βnj − βni .

Thus,

x1+ε − y1+ε

x− y
= 1 +

βnj − βni

x− y
.

By the Mean Value Theorem there exists z ∈ (x, y) such that

(1 + ε)zε = 1 +
βnj − βni

x− y
.

Note that |x− y| = |2c− βnj | ≥ |c| ≥ 1 and that

zε > min{xε, yε} = min{αni−nj , 2mi−mj} ≥ 2.

Hence, given that |β| = α−1, we obtain

2 < 2(1 + ε) < 1 +
|βnj − βni |
|x− y|

< 1 + 2α−nj ,

so

1 +
√

2 ≤ αnj < 2,

a contradiction. �

The next lemma allows us to reduce some computations.

Lemma 8. If ni = 2 and X1 is even, then X1 = 2.
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Proof. If ni = 2, then nj = 1. If X1 is even, then

X2 −X1 = 2X2
1 −X1 ∓ 1 = 2mi − 2mj ,

and since X1 is even we get mj = 0. Thus, either

2X2
1 −X1 − 1 = 2mi − 1 so X1(2X1 − 1) = 2mi ,

or

2X2
1 −X1 + 1 = 2mi − 1 so (4X1 − 1)2 + 15 = 2mi+3.

The first situation gives no solutions since 2X1−1 > 1 is an odd number. Rewrite the second
one as

(9) 2a − u2 = 15.

For a odd, we obtain the equation u2 − 2v2 = −15 which has no solutions (this can be seen
by reducing it modulo 3, for example). Now, if a is even, then rewriting the equation (9) as
v2 − u2 = 15 gives the solutions v ∈ {4, 8}, so mi ∈ {1, 3}. The case mi = 1 gives 2X1 = 1
while the case mi = 3 leads to X1 = 2. �

4. The proof of Theorem 2

Assume that mU,V (c) ≥ 3 and let (n1,m1), (n2,m2), (n3,m3) be such that Xni
− 2mi = c

for i = 1, 2, 3, with n1 > n2 > n3 ≥ 1. In particular, m1 > m2 > m3. Let us recall some
useful statements from [9] with some slightly differences. Let n and n′ both in {n1, n2, n3}.

Claim 1. If either n ≡ n′ (mod 2) and n′ ≤ n/1.5, or there are ni ≡ nj (mod 2) with
ni < nj < n and ni ≤ n/1.5, then n ≤ 60381.

Claim 2. Let n ≡ n′ (mod 2). If n′ > n/1.5 and there is ni such that ni < n′, then n ≤ 16.

Both these claims hold even when n3 = 0. Let us add another claim.

Claim 3. If n1 6≡ n2 (mod 2) and n1 > 15, then either the inequality αn2−n3 < 13n1 or the
inequality αn2−1 < 104n3

1 holds.

Proof. Since n1 6≡ n2 (mod 2), it follows that X1 is odd. Indeed, if X1 is even, then by
Lemma 2 we must have m2 = ν2(Xn1

− Xn2
) = min{0, ν2(X1)} = 0, a contradiction since

m2 > m3. Note that n3 ≡ n1 (mod 2) or n3 ≡ n2 (mod 2), so by Lemma 3 in either case

(10) 2m3 ≤ 4(X1 + 1)n2
1.

Using Binet’s formula (4) in

(11) Xni
−Xn3

= 2mi − 2m3 , i = 1, 2,

we get

(12)
∣∣1− 2mi+1α−ni

∣∣ ≤ αn3 + 2m3+1 + 2

αni
≤ αn3 + 8(X1 + 1)n2

1 + 2

αni
≤ αn3 + 8.01αn2

1

αn2

for i = 1, 2. Define

(13) Γi := (mi + 1) log 2− ni logα, for i = 1, 2.
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Using (11) for i = 1 and (6), we obtain∣∣2−m1−1αn1 − 1
∣∣ ≤ αn3 + 2m3+2

2m1+1
≤ αn3

2m1+1
+

1

2m1−m3−1

≤ αn1−2

2m1+1
+

1

2m1−m3−1

<
(1 +

√
2)2m1

α2m1+1
+

1

2m1−m3−1

≤ 1

2
+

1

2m1−m3−1
.(14)

If m1 −m3 ≤ 5, then we use (6), (10) and (14) to conclude

αn1−1 < 2m1+2 ≤ 2m3+7 ≤ 512(X1 + 1)n2
1 < 512αn2

1,

so αn1−2 < 512n2
1. Since α > 2(X2

1 − 1)1/2 we get

(15)

(
2
√
X2

1 − 1

)n1−2

< 512n2
1.

For X1 ≥ 2, we get (
2
√

3
)n1−2

≤
(

2
√
X2

1 − 1

)n1−2

< 512n2
1,

which implies n1 ≤ 10. If X1 = 1, we have α = 1 +
√

2 and so

(1 +
√

2)n1−2 < 512n2
1,

and this gives n1 ≤ 15.
So assuming n1 > 15, we obtain from (14) that e|Γ1| < 2.1. Therefore

(16) |Γi| < e|Γi|
∣∣eΓi − 1

∣∣ < 18n2
1

αni−n3
, for i = 1, 2.

We perform the linear combination

(17) Γ := n1Γ2 − n2Γ1 = (n1(m2 + 1)− n2(m1 + 1)) log 2.

Thus, we conclude that

|Γ| < 2.1n1

αn2−n3
+

18n3
1

αn2−1
+

2.1n2

αn1−n3
+

18n2
1n2

αn1−1
<

4.2n1

αn2−n3
+

36n3
1

αn2−1
.

Hence, if both terms in the right–hand side are < log 2/2, then |Γ| < log 2. But this last
inequality implies n1(m2 + 1) = n2(m1 + 1), which is contrary to Lemma 7.

�

4.1. Bounding n1. We continue with the proof of Theorem 2. We begin by ruling out the
case c = 0. If Xni = 2mi then by Lemma 2 we have mi ∈ {0, ν2(X1)}, so mU,V (0) ≤ 2.

Consider the following situations.

Case 1. n1 ≡ n2 (mod 2).

If n2 > n1/1.5, it follows from Claim 2 that n1 ≤ 16. If on the contrary n2 ≤ n1/1.5, it
follows immediately from Claim 1 that n1 ≤ 60381.

Case 2. n1 6≡ n2 (mod 2).

Subcase n3 ≤ n1/1.5.
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If n1 6≡ n2 ≡ n3 (mod 2), from n3 ≤ n1/1.5 and the second case of Claim 1 we get that
n1 ≤ 60381. If the other possibility happens, namely n1 ≡ n3 6≡ n2 (mod 2), we get from
Claim 1 that n1 ≤ 60381.

Subcase n3 > n1/1.5.

This subcase is more delicate. Recall (from the arguments in Claim 3) that X1 must be
odd. Furthermore,

(18) 2m3 ≤ 4(X1 + 1)n2
1,

and by hypothesis

n2 < n1 < 1.5n3.

We apply Laurent’s Theorem to the linear form in logarithms Γ1 (corresponding to i = 1
in (13)), with (η1, b1) := (2,m1 + 1), (η2, b2) = (α, n1), K := Q(α), D′ := 2, logA1 = log 2,
logA2 = (logα)/2. Using (8), we have

logB′ = max

{
log

(
m1 + 1

logα
+

n1

2 log 2

)
+ 0.21, 10

}
≤ max

{
log

(
n1

log 2
+

2

logα
+

n1

2 log 2

)
+ 0.21, 10

}
≤ max {log(4n1) + 0.21, 10} = logB′′.(19)

By Theorem 3, we get

log |Γ1| ≥ −25.2 · 24 · (log 2) · ((logα)/2) · (logB′′)2

≥ −140(logα)(logB′′)2.(20)

Assume n1 > 15, so that (16) holds. Comparing the inequality (16) with (20), we get

(21) n1 − n3 < 140(logB′′)2 + 2 log(69n2
1).

We highlight that we have not used so far the condition n1/1.5 < n3. Therefore (14) and
(21) hold for all n1 6≡ n2 (mod 2) if n1 > 12.

On the other hand, returning to (5) with j = 3 and i = 1, 2, and using Binet’s formula we
get ∣∣αn3(αni−n3 − 1)− 2mi+1

∣∣ ≤ 2m3+2 ≤ 16αn2
1,

so

(22)
∣∣2mi+1α−n3(αni−n3 − 1)−1 − 1

∣∣ ≤ 16αn2
1

αni − αn3
≤ 16n2

1

αni−2
.

If αni−2 ≤ 32n2
1, since ni > n3 > n1/1.5, we arrive to αn1/1.5−2 < 32n2

1. Using the same
argument in (15) we obtain n1 ≤ 18.

Assuming n1 > 18, we get αni−2 > 32n2
1 for i = 1, 2. Hence,

|Γi+2| < e|Γi+2|
∣∣eΓi+2 − 1

∣∣ < 32n2
1

αni−2
,

where

Γi+2 := (mi + 1) log 2− n3 logα− log(αni−n3 − 1).

We perform the linear combination

Γ̃ := Γ3 − Γ4 = (m1 −m2) log 2− log

(
αn1−n3 − 1

αn2−n3 − 1

)
.
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Thus,

(23) |Γ̃| < 32n2
1

αn1−2
+

32n2
1

αn2−2
<

64n2
1

αn2−2
.

We use Laurent’s Theorem on Γ̃ with η1 = 2 and η2 = (αn1−n3−1)/(αn2−n3−1), b1 = m1−m2

and b2 = 1. First

h(η2) ≤ h(αn1−n3 − 1) + h(αn2−n3 − 1)

≤ (n1 − n3) logα+ (n2 − n3) logα+ 2 log 2

≤ 2(n1 − n3) logα,

so we can take logA2 = 2(n1 − n3) logα. Therefore,

log B̃′ = max

{
log

(
m1 −m2

4(n1 − n3) logα
+

1

2 log 2

)
+ 0.21, 10

}
.

Using (6) and (7), we get

m1 −m2

4(n1 − n3) logα
+

1

2 log 2
<

(n1 − n2 + 1) logα+ log 4

4(n1 − n3) logα
+

1

2 log 2

<
(n1 − n3) logα

4(n1 − n3) logα
+ 1 +

1

2 log 2
< 3,

so, we actually have log B̃′ = 10.

On the other hand, if in (19) it holds that logB′′ = 10, then ni ≤ e9.79/3 < 5970. From
now on suppose n1 > 5970. Then (21) reads

(24) n1 − n3 < 140(log(4n1) + 0.21)2 + 2 log(69n2
1).

Thus, by Theorem 3, we get

log |Γ̃| ≥ −25.2 · 24 · (log 2) · (2(n1 − n3) logα) · 102

≥ −55900(n1 − n3)(logα).

Comparing this last inequality with (23) and using (24), we get

n1/1.5− 2 < n2 − 2 < 55900(n1 − n3) + log(64n2
1)

< 55900
(
140(log(4n1) + 0.21)2 + 2 log(69n2

1)
)

+ log(64n2
1)

< 7.83 · 106((log(4n1) + 0.21)2 + log(69n2
1)),

so n1 < 7.55 · 109.

In summary, we have proved the following result.

Lemma 9. Let {Xn}n≥1 be the sequence of X–coordinates of the positive integer solutions
(X,Y ) of the Pell equation X2 − dY 2 = ±1 and let (ni,mi) be pairs of nonegative integers
with ni ≥ 1 and Xni

− 2mi = c for i = 1, 2, 3. Let us put n1 := max{ni : i = 1, 2, 3}. If
n1 ≡ n2 (mod 2), or n1 6≡ n2 (mod 2) with n1 > 1.5n2, then

n1 ≤ 60381.

Otherwise

n1 < 7.55 · 109.
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4.2. Reducing the bounds. In this reduction step, we work again in the same cases division
as above.

Case 1. n1 ≡ n2 (mod 2).

From (5) and Lemma 3(i)

Xn2 −Xn2−1 ≤ Xn2 −Xn3 = 2m2 − 2m3 < 2m2

≤ 2(X2
1 + 1)n2

1 ≤ 2(X2
1 + 1)(60381)2.

It is useful at this point to recall the Chebyshev polynomials of the first kind which are useful
in order to represent X` in terms of X1:

X` =
1

2

(
α` + β`

)
=

1

2

((
X1 +

√
dY1

)`
+
(
X1 −

√
dY1

)`)
=

1

2

((
X1 +

√
X2

1 ∓ 1

)`
+

(
X1 −

√
X2

1 ∓ 1

)`)
:= P±` (X1).

From (25), if n2 ≥ 20 then

(25) P+
20(X1)− P+

19(X1) ≤ X20 −X19 ≤ Xn2 −Xn2−1 ≤ 2(X2
1 + 1) · 603812,

and we obtain that X1 < 2, so n2 ≤ 19 or X1 = 1. If X1 = 1, then d = 2, so we can compute
explicitly the terms Xn to obtain that X28 −X27 > 4 · 603812. Thus, n2 ≤ 27 for all X1. In
case that n2 = 2, if X1 odd then, according to Lemma 3(ii), we can replace 2(X2

1 + 1) by
4(X1 + 1) in (25), so

P+
2 (X1)− P+

1 (X1) ≤ X2 −X1 ≤ 4(X1 + 1) · 603812,

and we obtain X1 < 7.3 · 109. It is easy to see that for n2 ∈ [3, 19] one gets a bound for
X1 which is smaller than the one given above. In case that X1 is even, by Lemma 8, we get
X1 = 2. Note that from Lemma 3(i), we have

2m2 ≤ 2(X2
1 + 1)n2

1 ≤ 2((7.3 · 109)2 + 1) · 603812,

which implies that m2 ≤ 98. Thus, returning to (5), we consider the equations:

(26) P+
n2

(X1)− P+
n3

(X1) = 2m2 − 2m3 ,

(27) P−n2
(X1)− P−n3

(X1) = 2m2 − 2m3 ,

both with n2 ∈ [2, 27], n3 ∈ [1, n2 − 1], m2 ∈ [1, 109], m3 ∈ [0,m2 − 1]. We consider a larger
range in m2 for later purposes. The output from this search is recorded in Table 2.

X1 (n2, n3) (m2,m3) ε X1 (n2, n3) (m2,m3) ε

3 (2, 1) (4, 1) + 1 (3, 2) (3, 2) −
1 (2, 1) (2, 1) − 1 (4, 1) (5, 4) −
2 (2, 1) (3, 0) − 1 (4, 2) (4, 1) +

3 (2, 1) (5, 4) − 7 (5, 1) (18, 6) +

3 (3, 1) (7, 5) + 1 (5, 4) (5, 3) −
5 (3, 1) (9, 5) + 1 (6, 2) (7, 5) −
1 (3, 1) (3, 1) − 2 (10, 2) (18, 6) +

5 (3, 1) (3, 1) − 2k, 0 ≤ k ≤ 41 (3, 1) (23k+2, 2k+2) +

Table 2. The solutions of equations (26) and (27)
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Case 2. n1 6≡ n2 (mod 2).

Subcase ε = 1. According to Lemma 4 we have that

2m2 ≤ X2
1 − 1 ≤ α2.

By comparing the above inequality with (6), we obtain

αn2−1 ≤ (1 +
√

2) · 2m2 < α3,

therefore n2 ≤ 3. Furthermore, from (7), we have

m2 ≤
2 log(104n3

1)

log 2
+ 1 < 110.

Hence, we are led to consider the equation:

(28) P+
n2

(X1)− P+
n2−1(X1) = 2m2 − 2m3

with n2 ∈ [2, 3], m2 ∈ [1, 109], m3 ∈ [0,m2 − 1], which was already solved in equations (26)
and (27).

Subcase ε = −1.

Assume n1 > 15. First, we reduce the bound on n2. According to Claim 3, we have two
possibilities namely αn2−n3 < 13n1, or αn2−1 < 104n3

1. Since the former implies n2 ≤ 83,
suppose the contrary, that is, that we have αn2−n3 < 13n1. Thus, α < (9.82 · 1010)1/(n2−n3).
Using (7), we conclude that m1 < 2.76 · 1011.

Subcase n2 − n3 ≥ 2 or n2 − n3 = 1 with X1 ≤ 107.

This case is treatable with continued fractions. From (22) for i = 2, we get∣∣2m2+1α−n3(αn2−n3 − 1)−1 − 1
∣∣ ≤ 16αn2

1

αn2 − αn3
≤ 16n2

1

αn2−2
.

If αn2−2 < 32n2
1 < 1.83 · 1021, then n2 ≤ 57. Consider

Γ4 := (m2 + 1) log 2− n3 logα− log(αn2−n3 − 1).

Thus,

(29)

∣∣∣∣(m2 + 1)
log 2

logα
− n3 −

log(αn2−n3 − 1)

logα

∣∣∣∣ < 32n2
1

αn2−2 logα
<

1.83 · 1021

αn2−2 logα
.

We use Lemma 6 with

τ := log 2/ logα, µ := log(αn2−n3 − 1)/ logα, A := 1.83 · 1021α2/ logα, B := α,

and with m := m2 + 1 ≤M := 2.76 · 1012 and k = n2. To do the computation, we recover α
by the formula

α = X1 +
√
X2

1 + 1

and loop over positive integers X1 in the range

X1 < min{(9.82 · 1010)1/(n2−n3)/2, 107}.

In the above, we used the fact that α > 2X1. Finally, since αn2−n3 < 9.82 · 1010, we get that
n2−n3 ≤ 28. So, for each 1 ≤ n2−n3 ≤ 28, we ran the program implementing Lemma 6. The
output of this computation was n2 ≤ 101 for n2−n3 = 1 and n2 ≤ 104 for 2 ≤ n2−n3 ≤ 28.
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Actually for the situation n2−n3 = 2 some delicate analysis is needed. Indeed, if X1 = 2k

then

log(α2 − 1)

logα
= 1 +

log(α− α−1)

logα
= 1 +

log(2X1)

logα
= 1 + (k + 1)

log 2

logα
.

Thus, in this particular case, we rewrite (29) as∣∣∣∣(n3 + 1)
logα

log 2
− (m2 − k)

∣∣∣∣ < 32n2
1

αn2−2 log 2
,

and use instead Lemma 5 with τ := logα/ log 2 and 0 < n3 + 1 < 7.56 · 109 := M , for each
0 ≤ k ≤ 16. Hence, Lemma 5 gives the inequality

αn2−2 < 32n3
1(a(M) + 2) < 1.4 · 1031(a(M) + 2).

We concluded that n2 ≤ 117 after obtaining computationally that

max{a(M) + 2 : 0 ≤ k ≤ 16} < 1013.

If n1 > 176 > 1.5 ·117 > 1.5n2, then by Claim 1 necessarily n1 ≤ 60381. So, to summarise, we
have proved that n2 ≤ 117 and n1 ≤ 60381 unconditionally, so we can drop the assumptions
on n2.

We need to improve further our bound on n1 for this situation. We assume

n1 > 176 > 1.5 · 117 > 1.5n2.

According to Claim 3, we have two situations to consider namely when

α ≤ αn2−n3 < 13n1 ≤ 13 · 60381 < 8 · 105,

or when
αn2−1 < 104n3

1 < 104 · 603813 < 2.29 · 1016.

The first situation gives X1 < 4 × 105. Let us look at the second situation. Together with
inequality (7), this implies

(30) m2 ≤
2(n2 − 1) logα

log 2
≤ 2 log(2.29 · 1016)

log 2
+ 1 < 110.

Thus, for n2 ≤ 27, we are led to the same equations (26) and (27), whose all solutions are
listed in Table 2. For n2 ≥ 28, this second situation implies α < 5. So, we can assume
X1 < 4 · 105. We can go back to (16) which we rewrite as

(31)

∣∣∣∣n1
logα

log 2
− (m1 + 1)

∣∣∣∣ < 34n2
1

αn1/3
,

and use Lemma 5 with τ := logα/ log 2 and 176 < n1 < 60381 := M (notice that we used
the condition n3 ≤ n1/1.5). Therefore, Lemma 5 gives the inequality

αn1/3 < 34n3
1(a(M) + 2).

Since qn ≥ Fn for all n ≥ 1 where Fn denotes the nth Fibonacci number, we can use q26 for all
X1. Recall that we can recover α by the formula α = X1 +

√
X2

1 + 1, where X1 < 4 ·105. For
each X1, the above relation allows us to dramatically reduce the bound for n1. The output
of this computation was n1 ≤ 64. Thus, n1 ≤ 176.

Now we find all possible candidates for X1. If αn2−1 < 104n3
1 < 104 · 1763 < 5.7 · 108

then n2 ≤ 23 and together with (30) yields again equations (26) and (27). Now suppose
αn2−n3 < 13n1 ≤ 2288. This implies that n2 − n3 ≤ 8. We return to (5) which is

(32) Xn2
−Xn3

= 2m2 − 2m3
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with n2 ∈ [2, 117] and n2 − n3 ∈ [1, 8]. Observe that given an integer N , if it can be written
as a number of the form N = 2a− 2b, then this representation is unique. Thus, we only have
to check if Xn2

−Xn3
is of the form 2m2 − 2m3 . Therefore, for each 1 ≤ n2 − n3 ≤ 8, we fix

X1 < α/2 < 22881/(n2−n3)/2 and we generate the sequence {Xn}n≥1 up to n ≤ 117 and we
check if equation (32) has a solution.

Finally, note that all the solutions given in Table 3 are included in Table 2.

X1 n3 n2 ε X1 n2 n3 ε

1 1 2 − 1 1 3 −
1 2 3 − 1 2 4 −
1 4 5 − 5 1 3 −
2 1 2 − 1 1 4 −
3 1 2 − 1 2 6 −

Table 3. Solutions of equation (32) with 1 ≤ n2 − n3 ≤ 8

Subcase n2 − n3 = 1 and X1 > 107.

Then

(33) 2(X2
1 + 1)n2

1 < 2(X1 + 1)2n2
1 < 10−10α6.

The above holds because X1 + 1 < α, so

2(X1 + 1)2n2
1 < 2α2(7.6 · 109)2 < 2 · 1020α2 < 1021α2 < 10−7α6,

where the last inequality holds since α > X1 > 107.
From now on, we assume n3 ≥ 40000 since otherwise n1 ≤ 1.5n3 < 60000. We exploit the

two equations

(34) Xn2
−Xn3

= 2m2 − 2m3 and Xn1
−Xn3

= 2m1 − 2m3 .

From the first one, we have

|αn3(α− 1)− 2m2+1| = | − 2m3+1 − (βn2 − βn3)| < 2m3+1 + 1.

Thus,

|1− α−n3(α− 1)−12m2+1| < 2m3+1 + 1

αn3(α− 1)
.

Since 2m3 < 10−7 · α6 (see (33)), we get that

|1− α−n3(α− 1)−12m2+1| < 2 · 10−7α6 + 1

αn3(α− 1)
<

3 · 10−7α6

αn3+1(3/4)
<

4

107αn3−5
≤ 4

107αn2−6
.

It follows that

(35) |n3 logα+ log(α− 1)− (m2 + 1) log 2| < 8

107α3
.

From the second equation in (34), we have

|αn1 − 2m1+1| = | − 2m3+1 − βn1 | ≤ 2m3+1 + 1,

so

|1− α−n12m1+1| < 2m3+1 + 1

αn1
<

2 · 10−7α6 + 1

αn1
<

3

107αn1−6
,
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therefore

(36) |n1 logα− (m1 + 1) log 2| < 6

107αn1−6
.

In particular,

(37) |n1 logα− (m1 + 1) log 2| < 6

107α3
.

Eliminating logα from (35) and (37), we get

|n1 log(α− 1)− (n1(m2 + 1)− n3(m1 + 1)) log 2| < 8n1 + 6n3

107α3
<

14n1

107α3
.

We now write

log(α− 1) = logα+ log(1− 1/α) = logα− 1/α− 1/(2α2) + ζ,

where

ζ = −
∑
k≥3

1

kαk
.

So,

|ζ| < 1

3α3

(
1 +

1

α
+

1

α2
+ · · ·

)
=

1

3α3(1− α−1)
<

1 + 2 · 10−7

3α3
.

Thus,∣∣∣n1 logα− n1

α
− n1

2α2
− (n1(m2 + 1)− n3(m1 + 1)) log 2

∣∣∣ <
14n1

107α3
+ n1|ζ|

<
14n1

107α3
+

(1 + 2 · 10−7)n1

3α3

<
(1 + 5 · 10−6)n1

3α3
.

We next replace n/α by n/X1 and keep track of the resulting error. We write

α = 2X1 + ζ, 0 < ζ < 1/(2X1).

Thus,

1

α
=

1

2X1(1 + ζ/(2X1))
=

1

2X1

(
1− ζ

2X1
+

(
ζ

2X1

)2

− · · ·

)
:=

1

2X1
(1 + w),

where

w :=
∑
i≥1

(−1)i
(

ζ

2X1

)i
.

Clearly,

|w| = ζ

2X1(1− ζ/(2X1))
<

(1 + 10−10)

4X2
1

.

Thus,
1

α
=

1

2X1
+ ζ ′, |ζ ′| < 1 + 10−10

8X3
1

.

Squaring it we get

1

α2
=

1

4X2
1

+

(
ζ ′

X1
+ ζ ′2

)
:=

1

4X2
1

+ ζ ′′, |ζ ′′| < 1 + 10−10

8X4
1

+
(1 + 10−10)2

64X6
1

<
1

107X3
1

.



16 H. S. ERAZO, C. A. GÓMEZ, F. LUCA

Thus,

|n1 logα− n1

2X1
− n1

8X2
1

− (n1(m2 + 1)− n3(m1 + 1)) log 2|

<
∣∣∣n1 logα− n1

α
− n1

2α2
− (n1(m2 + 1)− n3(m1 + 1)) log 2

∣∣∣
+ n1|1/α− 1/(2X1)|+ (n1/2)|1/α2 − 1/(4X2

1 )|

<
(1 + 5 · 10−6)n1

3α3
+ n1|ζ ′|+ (n1/2)|ζ ′′|

<
(1 + 5 · 10−6)n1

24X3
1

+
(1 + 10−10)n1

8X3
1

+
n1

2 · 107X3
1

<

(
1

6
+ 10−6

)
n1

X3
1

.

Hence,

(38)

∣∣∣∣n1 logα− n1

2X1
− n1

8X2
1

− (n1(m2 + 1)− n3(m1 + 1)) log 2

∣∣∣∣ < (1/6 + 10−6)n1

X3
1

.

Eliminating n1 logα between (37) and (38), we get∣∣∣∣ n1

2X1
+

n1

8X2
1

− ((m1 + 1)(n3 + 1)− n1(m2 + 1)) log 2

∣∣∣∣ <
(1/6 + 10−6)n1

X3
1

+
(3/4 · 10−7)

X3
1

<
(1/6 + 2 · 10−6)n1

X3
1

.

We recognise the coefficient of log 2 as k := (m1 + 1)n2−n1(m1 + 1) 6= 0 by Lemma 7. Thus,

(39)

∣∣∣∣ n1

2X1
+

n1

8X2
1

− k log 2

∣∣∣∣ < (1/6 + 2 · 10−6)n1

X3
1

.

We work on this last estimate. First of all it gives

(40)

∣∣∣∣ n1

2X1
− k log 2

∣∣∣∣ < (1/8 + 1/X1)
n1

X2
1

< (1/8 + 10−7)
n1

X2
1

.

Next after multiplying both sides of (39) by 4X1 is also gives

(41)

∣∣∣∣2n1 − 4X1k log 2 +
n1

2X1

∣∣∣∣ < (2/3 + 10−5)
n1

X2
1

.

Eliminating n1/(2X1) from (40) and (41), it gives

(42) |2n1 − (4X1 − 1)k log 2| < (2/3 + 1/8 + 2 · 10−5)
n1

X2
1

.

Since n1 < 7.6 · 109 and X1 > 107, it follows that

|2n1 − (4X1 − 1)k log 2| < 6.1 · 10−5.

Thus,

(43) 2n1 − 6.1× 10−5 < (4X1 − 1)k log 2 < 2n1 + 6.1× 10−5.

In particular,

k <
2n1 + 6.1 · 10−5

4X1 − 1
< 381,

since n1 ≤ 7.6 · 109 and X1 > 107. Hence, k ≤ 380. Next dividing both sides of (42) by
2n1(log 2), we get ∣∣∣∣ 1

log 2
− (4X1 − 1)k

2n1

∣∣∣∣ < 19/24 + 2 · 10−5

(2 log 2)X2
1

.
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We work on the right–hand side. We have

19/24 + 2 · 10−5

(2 log 2)X2
1

=
8(19/24 + 2 · 10−7)(log 2)k2

(4X1k log 2)2

<
8(19/24 + 2 · 10−5)(log 2)k2

((4X1 − 1)k log 2)2

<
8(19/24 + 2 · 10−5)(log 2)k

(2n1 − 6.1 · 10−5)2

<
8(19/24 + 2 · 10−5)(log 2)k2

(2n1)2(1− 10−9)2

<
8(19/24 + 3 · 10−5)(log 2)k2

(2n1)2

<
4.39k2

(2n1)2
.

In the above, we used in addition to (43) also the fact that n1 > 6 · 104. Thus,∣∣∣∣ 1

log 2
− (4X1 − 1)k

2n1

∣∣∣∣ < 4.39k2

(2n1)2
.

We put w := gcd(2n1, (4X1 − 1)k). Then (4X1 − 1)k/(2n1) = a/b, where 2n1 = wb and
(4X1 − 1)k = wa. Thus, ∣∣∣∣ 1

log 2
− a

b

∣∣∣∣ < 4.39(k2/w2)

b2
.

We need a bound on w. We have b ≤ 2n1 < 1.52 · 1010. If p`/q` denotes the ` convergent of
1/ log 2, then q28 > 1011 > 2n1 and max{a` : 0 ≤ ` ≤ 28} = 13. Hence, we get

1

15b2
<

∣∣∣∣ 1

log 2
− a

b

∣∣∣∣ < 4.39(k2/w2)

b2
,

so w2 < 4.39 × 15k2 < 66k2. In particular, w <
√

66 · 3802, so w ≤ 3100. Fix w. Put
K := 4.39k2/w2. Then

(44)

∣∣∣∣ 1

log 2
− a

b

∣∣∣∣ < K

b2
.

At this stage we use the following theorem of Worley [22] for the irrational 1/ log 2, which
generalises Legendre’s result.

Theorem 4. Assume (44) holds. There exist r, s with r > 0, s ≥ 0, rs < 2K and m ≥ 1
such that

a = rpm ± spm−1 and b = rqm + sqm−1,

or 1 ≤ rs < K, m is such that am+1 = 1 and

a = rpm+1 + spm−1, and b = rpm+1 + spm−1.

In case s = 0, we can take r = 1 and then a/b = pm/qm. This is the only case possible
when K ≤ 1/2 since then 2K ≤ 1 so rs < 1 giving s = 0. This is Legendre’s result.

For us, m ≤ 28. So, we fix w ≤ 3100 and then k ≤ 380 and calculate K := 4.39k2/w2.
Then we take non–negative numbers λ = rs ≤ 2K. For λ = 0, we take r = 1, s = 0. Then
we take any w ≤ 3100, we factor wpm = (4X1 − 1)k with some divisor k ≤ 380 and we find
X1. If this has a solution for the given m, w, then we know X1 and 2n1 = qmw. Next,
λ ≥ 1. The largest value of 2K is at most 634000 (at w = 1 and k = 380). Then we take
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w <
√

634000/λ < 800/
√
λ. We factor λ = rs with positive r, s and look at (rqm + sqm−1)w.

This must be 2n1 > 106. Thus, if rqm + sqm−1 is even and larger than 106, then we take
n1 = (rpm + spm−1)w/2 and look at the possible candidate (4X1 − 1)k = (rpm ± spm−1)w.

Here, k must be a divisor of rpm ± spm−1 in the interval
√
λ/8.78w ≤ k ≤ 380 and the

quotient 4X1 − 1 = (rpm ± spm−1)/k must be congruent to 3 modulo 4. If all these happen,
then we solve for X1.

There is another similar test when am+1 = 1, where here we take (rqm+1 + sqm−1)w as a
candidate for 2n1 and (rpm+1 ± spm−1)w as candidates for (4X1 − 1)k.

At any rate, this procedure creates some candidates (n1, X1). To check whether they are
convenient we go back to (36). At this stage, X1 is known, (therefore so is α), and n1 is also
known and (36) shows that m1 + 1 is the closest integer to n1(logα)/ log 2. We compute it
and then find a lower bound on the left–hand side of (36), and then this lower bound together
with the right–hand side of (36) puts a bound on n1.

We wrote a code which ran the entire calculation for λ = 0 in a few minutes. It also ran the
entire calculation for the branch with rqm + sqm−1 of Worley’s theorem and all λ ≤ 634000
in about 170 hours. Then we ran the calculation for the branch with rqm+1 + sqm−1 when
am+1 = 1 of Worley’s theorem and all λ ≤ 634000 in about 50 hours.

The output of all this computation was empty (the lower bound obtained from the left–
hand side of (36) tends to be very good, usually 10−3), so there is no solution when X1 > 107.
This finishes the proof of the last subclass.

4.2.1. Final verification. In conclusion, if Pillai’s equation c = Xn − 2m has three solutions
(n,m) for a fixed c all with positive n’s, then all possible candidates for (X1, c) are listed in
Table 2. Now we proceed line per line. We recover the value of c from the table through the
formula c = Xn3

− 2m3 . Next, we reduce the bound n1 ≤ 60381 using the same procedure
done in equation (31). This gives us a significantly smaller bound n1 ≤ M(X1). Next, we
check if Xn1 − c is a power of 2.

Doing the search for each line in the table, we could only find the same pairs (n3,m3)
and (n2,m2) that already appeared in the table except when X1 = 1 and c = −1, where
we found the three pairs given in the Theorem 2, namely (1, 1), (2, 2), (3, 3). Since none
of these equations, except for the last one mentioned above, for the given values of c had
3 pairs of solutions, we conclude that indeed mU,V (c) ≤ 2 for all (c, d) except in the case
(c, d) = (−1, 2), where mU,V (c) = 3.

5. Case n = 0

Here, we treat the missing case when n3 = 0. Then c = 1− 2m3 . If m3 = 0 then c = 0 and
consequently Xni

= 2mi , so using that ν2(Xni
) ∈ {0, ν2(X1)} by Lemma 2 and the fact that

{Xn}n≥1 is strictly increasing, we must have ni = 1. Hence, this only gives us mU,V (0) ≤ 2.
Thus, we may assume that m3 > 0, so c < 0. If c = Xni

− 2mi with ni even, then
c = 2X2

ni/2
− εni/2 − 2mi . Thus

2X2
ni/2

= 2mi − 2m3 + 1 + εni/2.

This reduces either to 2X2
ni/2

= 2mi − 2m3 or 2X2
ni/2

= 2mi − 2m3 + 2.

In the first case, the equation X2
ni/2

= 2mi−1−2m3−1 implies first that m3−1 is even, and

that x := Xni/2/2
(m3−1)/2 satisfies x2 = 2mi−m3 − 1. The only possibility is mi = m3 + 1, so

Xni/2 = 2(m3−1)/2, whose only solution is ni = 2.
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In the second case, we have

(45) X2
ni/2

= 2mi−1 − 2m3−1 + 1.

According to [21], this possibility leads to either the parametric family Xni/2 = 2(m−1)/2 − 1
with m3 = (m + 3)/2 and mi = m, or to the sporadic solutions Xni/2 ∈ {5, 11, 181}. Since
ni ≡ n3 (mod 2), by Lemma 3, we have

(46) αni/2−1 ≤ Xni/2 < 2m3−2 < (X2
1 + 1)n2

i /2,

and by the same method used in (15) we obtain ni ≤ 16. Moreover,

P+
ni/2

(X1) ≤ Xni/2 < 128(X2
1 + 1).

The previous equation gives us X1 ≤ 32 when ni ≥ 6.
If both n2, n1 are even, then taking ni = n1 we have ni ≥ 4. In case that n1 = 4,

then n2 = 2 and so X1 = Xn2/2 = 2(m−1)/2 − 1 is odd. If n′ ∈ {n2, n1} is odd, then since

Xn′ = 1+2m
′−2m3 , we have that Xn′ is odd and by Lemma 2 we have that ν2(X1) = ν2(X ′n),

and so X1 is odd.
Hence, if ni = 4, then X1 is odd, and we can replace the right–hand side of (46) by

(X1 + 1)n2
i . Thus,

P+
ni/2

(X1) ≤ Xni/2 < 16(X1 + 1),

which implies X1 ≤ 8.
Note that if ni = 2, then (45) holds only when ε = 1. Furthermore, ni = 2 implies that n1

must be odd, so by Lemma 4 we have that

2(X1 + 1)2 = 2m2 ≤ X2
1 − 1,

a contradiction. Thus, ni 6= 2.

In conclusion n2 and X1 are bounded if one of n1, n2 is even. If both are odd, then by
Lemma 3 we have

2m2 ≤ 2(X2
1 + 1)n2

1.

As c < 0, from the previous inequality we get Xn2 ≤ 2(X2
1 + 1)n2

1. If n2 ≤ n1/1.5 then
by Claim 1 we get n1 ≤ 60381. Otherwise, we get that αn1/1.5−1 < 2(X2

1 + 1)n2
1 and by the

same method used in (15) we obtain n1 ≤ 12. Thus,

P+
n2

(X1)− 1 ≤ Xn2 − 1 = Xn2 −Xn3 = 2m2 − 2m3 ≤ 2m2 ≤ 2(X2
1 + 1)(60381)2.

Following the argument used at (25), this implies that n2 ≤ 27. Furthermore, it also
implies that X1 < 1.83 · 109 when n2 ≥ 3. So,

2m2 ≤ 2(X2
1 + 1)n2

1 ≤ 2((1.83 · 109)2 + 1)(60381)2,

which leads to m2 ≤ 94.
Following the argument used to deal with (26) and (27), we consider the equations:

P+
n2

(X1) = 2m2 − 2m3 + 1,

P−n2
(X1) = 2m2 − 2m3 + 1,

both with n2 ∈ [2, 27], m2 ∈ [1, 94], m3 ∈ [1,m2 − 1]. Since n2 is odd, these yield the only
solution X1 = 1, n2 = 3, m2 = 3, m3 = 1.

When n2 = 1, we have thatX1 = 2m2−2m3+1 is odd. Ifm3 = 1, we have thatX1 = 2m2−1
and Xn1

= 2m1 − 1 are both Mersenne numbers, which we can think as repunits in base 2.
Since n1 is odd, Lemma 5.2 of [10] implies that 2m2 | n2

1, so m2 = 1 and X1 = 1.
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Suppose m3 > 1. Taking a closer look to the proof of Lemma 3 (which is Lemma 4 in [9]),
we have the inequality

(47) m2 ≤ 1 + ν2(dY 2
1 ) + 2 log2(n1).

Since dY 2
1 = X2

1 −ε = (2m2−2m3)2 +2(2m2−2m3)+1−ε, we have that ν2(dY 2
1 ) ≤ m3 +1.

In particular, this last inequality implies that

m2 −m3 ≤ 2 + 2 log2(60381) < 34.

When ε = −1 we have instead ν2(dY 2
1 ) = 1, so from inequality (47) we deduce that m2 ≤ 32.

Suppose ε = 1. Note that P+
n (1) = 1 for any n. Taking the derivative to Q(z) := P+

n (z+1)
we get

Q′(z) = nP+
n (z + 1) + n

((
z + 1 +

√
z2 + z

)n−1 −
(
z + 1−

√
z2 + z

)n−1

2
√
z2 + z

)
,

so Q′(0) = n2. This implies that there is h(z) ∈ Z[z] such that

P+
n (z + 1) = 1 + n2z + z2h(z).

Write X1 = b · 2m3 + 1 where b is a positive odd integer. Therefore

2m1 = Xn1
− 1 + 2m3 = P+

n1
(X1)− 1 + 2m3 = n2

1b · 2m3 + b222m3h(b · 2m3) + 2m3 .

Hence,

2m1−m3 = n2
1b+ 1 + b22m3h(b · 2m3).

If 2m3 > n2
1b+ 1 then the above expression cannot be a power of 2. This implies that

(48) m3 ≤
log(n2

1b+ 1)

log 2
≤ log((60381)2(233 − 1) + 1)

log 2
< 64.

So, m2 ≤ 96 when ε = 1.

In conclusion, we have boundedly many possibilities for X1 and n2. We perform again a
reduction using continued fractions via Lemma 5 exactly as we did in (31). More specifically,
assuming n1 > 10, from Xn1

− 2m1 = 1− 2m3 we obtain the linear form∣∣∣∣n1
logα

log 2
− (m1 + 1)

∣∣∣∣ < 6n2
1

αn1−2
.

We got the uniform bound n1 ≤ 17, for all cases including the cases where some ni is even.
When n2 = 1 and n1 is odd, putting this again in the previous inequalities (47) and (48),

we get m3 ≤ 17 and m2 ≤ 26. In case n2 or n1 were even, we have

m3 ≤ log2(2(1812 + 1)(17)2) < 25.

Finally, we consider the Diophantine equation

(49) Xn1
− 1 + 2m3 = 2m1

with n1 ∈ [1, 17], m3 ∈ [1, 24] with X1 ∈ [1, 181] or X1 = 2m2 − 2m3 + 1 with m2 ∈ [1, 26],
m3 ∈ [1,m2 − 1], for both choices of sign ε ∈ {±1}.

In the second situation the output was empty, while in the first one we obtained several
triples of (X1,m3, n1). However, each one of these triples differ in (X1,m3) except in the
case (X1,m3) = (1, 1) with ε = −1, which corresponds to the exceptional case of Theorem
2. Hence, equation (49) has at most one solution, because if (n2,m2) exists, it must be a
solution of (49). Actually, from what we have already said, we found several pairs (X1,m3)
with same X1 but different m3, so these pairs belong to different c corresponding to solutions
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(n,m) of the equation c = Xn − 2m. This finishes the proof of Theorem 2 in the remaining
case n3 = 0.
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