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ABSTRACT: Originally conceived to describe thermal diffusion,
the Langevin equation includes both a frictional drag and a random
force, the latter representing thermal fluctuations first seen as
Brownian motion. The random force is crucial for the diffusion
problem as it explains why friction does not simply bring the
system to a standstill. When using the Langevin equation to
describe ballistic motion, the importance of the random force is
less obvious and it is often omitted, for example, in theoretical
treatments of hot ions and atoms interacting with metals. Here,
friction results from electronic nonadiabaticity (electronic friction),
and the random force arises from thermal electron−hole pairs. We
show the consequences of omitting the random force in the
dynamics of H-atom scattering from metals. We compare
molecular dynamics simulations based on the Langevin equation to experimentally derived energy loss distributions. Despite the
fact that the incidence energy is much larger than the thermal energy and the scattering time is only about 25 fs, the energy loss
distribution fails to reproduce the experiment if the random force is neglected. Neglecting the random force is an even more severe
approximation than freezing the positions of the metal atoms or modelling the lattice vibrations as a generalized Langevin oscillator.
This behavior can be understood by considering analytic solutions to the Ornstein−Uhlenbeck process, where a ballistic particle
experiencing friction decelerates under the influence of thermal fluctuations.

The Langevin equation originally served as an alternative
to Einstein’s1 and Smoluchowski’s2 treatment of

Brownian motion, the jittery back-and-forth hopping first
seen under a microscope for pollen particles suspended in
water that forms the physical basis for thermal diffusion. It
explicitly describes time-dependent fluctuations seen in
experiments with a random force derived using the
fluctuation−dissipation theorem.3 The insights clarified by
the random force helped to establish the molecular view of
matter.4 Today, the Langevin equation is the most common
theoretical ansatz used to model electronically nonadiabatic
effects between atoms (or molecules) and solid metals.5−9

Here, nuclear motion takes the part of the Brownian pollen
particle, and thermally fluctuating electron−hole pairs (ehp) of
the metal play the role of the jiggling water molecules.
These frictional models of electronically nonadiabatic

motion have broad applicability, for example, to describe the
ion stopping power of metals,10−14 nonadiabatic dynam-
ics9,15−23 like the thermalization of hot atoms,20 and even
the mechanism of hydrogen atom adsorption to metal
surfaces.24,25 Furthermore, a variety of approximations to
compute the electronic friction tensor have been pro-
posed.8,14,17,26−36 Experimental tests of these models are
needed to determine which are most reliable.

Inelastic H-atom scattering from metal surfaces24,25,37,38

provides a direct probe of electronically nonadiabatic forces in
a system that can be treated classically in full dimensions,
including surface atom motion.39,40 Experimental and the-
oretical energy-loss distributions can be compared to test
models of electronic friction. However, since the Langevin
equation describes how a system evolves under the influence of
a frictional drag and a random force, the experimental
manifestations of a model of electronic friction cannot be
realized without the influence of the random force. This poses
the question how important is the influence of the random
force?
When the Langevin equation is used to describe diffusion,

the random force is essential, preventing motion from
eventually coming to a standstill due to friction. However, to
describe scattering and reactions of atoms and molecules at
surfaces, its importance is not as obvious. In fact, the random
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force has often been ignored9,15−23 using as justification the
fact that the projectile kinetic energy ϵ0 is much larger than
thermal energy kBT. On the face of it, this assumption appears
reasonable. For example, should we wish to describe ballistic
motion of a H-atom in collisions with a metal, there is no
danger of the system coming to a standstill and the timescale of
a scattering collision can be very short, possibly rendering the
ehp fluctuations unimportant.
In this article, we present molecular dynamics simulations

using the Langevin equation to describe H-atom scattering
from room-temperature metal surfaces, where the incidence
energy is large and where interactions last only ≈25 fs. We
compare these calculations to experimentally derived H-atom
energy loss distributions.24,25 The trajectory simulations are
generally in good agreement with the experiment provided the
random force is included. However, neglecting it produces
energy loss distributions that qualitatively fail to describe the
experimental ones, even for ϵ0/kBT > 100. Only at surface
temperatures below about 100 K does the influence of the
random force diminish. This work shows that the physical
mechanisms of nonadiabatic dissipation can easily be obscured
by the random force.
To investigate the influence of the random force in the

Langevin equation, we performed molecular dynamics (MD)
simulations of H-atom scattering from two metals, Au and W.
We compared outcomes employing two different approaches:
model I,39 where the atom−surface interaction is described by
a full-dimensional potential energy surface (PES) constructed
by means of the Effective Medium Theory,40−42 and the
surface is represented by a slab of metal atoms with periodic
boundary conditions; and model II,43,44 where a three-
dimensional (3D) PES produced by the Corrugation Reducing
Procedure45−47 is used, and the surface is described by a
generalized Langevin oscillator.48−50 In both models, the
nonadiabatic coupling is described by the electronic friction
coefficient depending on the background electron density
(local density friction approximation).14,17 In model I, the
background electron density appears self-consistently as it is
necessary to calculate the energy; it depends on the positions
of both projectile and surface atoms.39 In model II, one has to
do additional ab initio calculations with the frozen surface to
get the electron density as a function of a projectile position.44

The projectile is propagated by the Langevin equation of
motion

m
E

m tr
r

r F ( )el Lη̈ = − ∂
∂

− ̇ +
(1)

where E is the potential energy of the system, m is the mass of
the projectile, ηel is the electronic friction coefficient dependent
on the system’s geometry, and FL(t) is the random force,
which follows a Gaussian distribution with zero average and
variance determined by the fluctuation−dissipation theorem51

t t k T m t tF F I( ) ( ) 2 ( )L L B el elη δ⟨ ′ ⟩ = − ′ (2)

where Tel is the temperature of the electron bath and I is the
3D unity matrix.
For both models, trajectories were run with an incidence

energy of ϵ0 = 2.76 eV and an incidence angle of ϑi = 45° with
respect to the surface normal. The azimuthal angles φi for the
gold and tungsten calculations were defined with respect to the
[101̅] direction and the [001] direction, respectively.
Trajectories were initiated with the projectiles placed at
random lateral positions 6 Å above the surface. The

calculations were stopped after 1 ps or if the scattered
projectile was found more than 6.05 Å above the surface.
Figure 1 shows the results using model I. The energy loss

distribution constructed from the MD trajectories (•) that

scatter into angles that match the angular acceptance of the
experiment successfully reproduces an experimentally obtained
energy loss distribution (◦). The scattered H-atoms exhibit a
mean energy loss of approximately 1 eV and appear in a
distribution with a remarkably broad width of 2.5 eV due to
energy exchange with ehp and phonons. When Tel is set to 0 K,
the MD simulations (■) fail spectacularly. Note that setting
Tel = 0 K is equivalent to neglecting the random force.
We show the influence of the random force on the energy

loss distribution in Figure 2. Here, MD trajectories are
generated as in Figure 1 using a PES with moving Au atoms
(•), but Tel is varied between 300 and 0 K. As Tel decreases,
peaks appear in the energy loss distribution. Analysis of
trajectories reveals that these peaks correspond to “bounces”,
that is, to interactions involving different numbers of collisions
between H and Au atoms. The energy loss increases
approximately linearly with each additional collision, reflecting
the increased interaction time. Also shown in Figure 2 are two
MD calculations employing a frozen surface (◦) with Tel = 0
and 300 K. For Tel = 0 K, peaks are even sharper than for the
moving surface MD simulations at Tel = 0 K, the difference
reflecting kinetic energy exchange between H and Au atoms. In
contrast, at Tel = 300 K, it is hard to distinguish the energy loss
distribution obtained when using a static surface approxima-
tion from that obtained when Au atoms are allowed to move.
Figure 2 also shows that the mean energy loss does not

depend on the electronic temperature and is equal to 1.1 eV.
The random force does not affect the sticking probability as
well.
We next investigate the sensitivity of the energy loss

distribution to the choice of the dynamical model. Figure 3a,b

Figure 1. H-atom inelastic scattering from Au(111): comparing
theory and the experiment. Using model I with Tel = 300 K (•), good
agreement with the experiment (◦) is found. By setting Tel = 0 K, the
random force is deactivated and theory (■) deviates from the
experiment. For all three curves, ϵ0 = 2.76 eV, the phonon
temperature is 300 K, ϑi = 45°, and ϑs = 45° with respect to the
surface normal, while φi = 0° with respect to the [101̅] direction.
Experimental results are taken from ref 24.
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shows the results of MD simulations for H scattering from
W(110) computed with models I and II. In Figure 3a, where
Tel = 0 K, the two energy loss distributions are clearly

distinguishable from one another. This is, however, not the
case when Tel = 300 K (Figure 3b). Despite the moderate
temperature and high H-atom incidence energy, it is clear that
the broadening effects of the random force on the energy loss
distribution smear out the differences in the scattering
dynamics resulting from the two models.
It is noteworthy that similar effects were observed in

studying adiabatic dynamics of Ar and Xe at metal surfaces,49

where friction and fluctuating (random) force were due to the
thermal bath of phonons. Here, the calculated properties
(sticking coefficients, etc.) were not sensitive to the details of
atom−surface interactions or changes in the phonon spectral
density.
The sensitivity of the energy loss distribution to the identity

of the metal is also interesting. To study this, we compared
MD scattering results from two metals. Figure 3c,d shows
comparisons of H scattering from fcc Au(111) (◦) and bcc
W(110) (•), with both using model I. Remarkably, the energy
distributions associated with these two metals can only be
distinguished at low electronic temperatures.
To better understand the surprisingly strong influence of the

random force on the width of energy loss distributions,
consider a closely related problem that has an analytical
solution: the one-dimensional motion of an ensemble of
particles of mass m with incidence energy ϵ0 subjected to
friction with characteristic deceleration time τ experiencing a
random force at temperature T. This motion is described by
the one-dimensional version of eq 1, where the conservative
force (the first term in the right hand side) is omitted. The
random force distribution is Gaussian with the second moment
defined by eq 2, and the friction coefficient ηel = τ−1 is
constant. This is known as the Ornstein−Uhlenbeck (OU)
process,52 and we can use it to describe a scattering trajectory
that has not reached equilibrium.
The ensemble’s initial velocity distribution is δ(v − v0);

thereafter, it is normal, with the time-dependent expectation
v̅(t) and standard deviation σv(t) given by53,54

v t v t
k T

m
t( ) e , ( ) ( )t

v0
/ Bσ ξ̅ = =τ−

(3)

where v0 = 2ϵ0/m is the initial speed of a particle and ξ(t) = 1
− e−2t/τ. Since the energy of the particle ϵ = mv2/2 is non-
negative, its probability density function

P
e
m
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e

2

m v m v
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2 2 2 2
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(4)

has the form of a folded normal distribution55 with the mean
energy

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
m

v
v

2
2

e erf
2v

v

v

/2
2

2

v
2 2

σ
π σ

ϵ̅ = + ̅ ̅σ− ̅

(5)

and the energy standard deviation

m mv
2 2

v
2 2

2σ
σ

= + ̅ − ϵ̅ϵ (6)

Substituting the mean velocity v̅(t) and the variance σv
2(t)

for the OU process from eq 3 into eqs 4 and 6 using the
definition of the cosine hyperbolic function, we derive the
time-dependent energy distribution

Figure 2. Electronic temperature determines the shape of the energy
loss distribution. Energy loss distributions are shown for scattered H-
atoms from a moving Au(111) surface with a phonon temperature of
300 K (•) and with a static lattice approximation (◦) at various
electronic temperatures Tel. Incidence conditions are the same as
those in Figure 1; however, here, trajectories at all scattering angles
are used.

Figure 3. Obscuring influence of the random force at modest
temperature: angle-integrated energy loss distributions for scattered
H-atoms from W(110) using models I (•) and II (×) at (a) Tel = 0 K
and (b) Tel = 300 K; in the insets, the energy loss spectra for H
scattering from W(110) (•) and Au(111) (◦) are compared at (c) Tel
= 0 K and (d) Tel = 300 K using model I. The phonon temperature in
all cases is 300 K.
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P t
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2e
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B
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B
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and the corresponding standard deviation

t
k T t

k T
t

t
( )

( )
2

1
4 1 ( )

( )
B 0

B
σ

ξ ξ
ξ

= +
ϵ −

ϵ
(8)

Figure 4a shows energy distributions from eq 7 for the one-
dimensional OU process at ϵ0 = 2.76 eV and T = 300 K. Figure

4b shows the time-dependent width of the energy distribution
eq 6 for four choices of ϵ0 and at T = 300 K. At t = 0, the
energy distribution is a delta function. At an intermediate time,
σϵ(t) overshoots kBT, reaching a maximum given by

t
k T

k T
( )

2
4max

B 0
2

0 B
σ =

ϵ
ϵ −ϵ

(9)

where

t
k T
k T2

ln
4
2max

0 B

0 B

τ=
ϵ −
ϵ − (10)

before eventually falling back to the equilibrium value k T/ 2B
in the limit of infinite time. Under the conditions of Figure 4a,
tmax = 0.35τ, but σϵ(t) is much larger than kBT already at t =
0.1τ and remains quite broad until nearly completely
decelerated.
A naive view of eq 2 might suggest that because the

distribution of random forces scales as k TB , the width of the

energy distribution scales similarly. However, when the
random force introduces a thermally distributed change in
velocity δv, the resulting change in energy scales as (v0 + δv)2

− v0
2 = 2v0δv + δv2. The term 2v0δv contributes to the energy

distribution width in proportion to the hyperthermal velocity
v0. Equation 9 shows this; σϵ(tmax) scales as k T0 Bϵ for ϵ0 ≫
kBT. Furthermore, eq 10 shows that the thermal overshoot in
the width of the energy distribution is absent only when ϵ0 <
kBT/2 (see also Figure 4b). Clearly, for the OU process, one
cannot justify ignoring the influence of the random force with
an argument that ϵ0 is much larger than kBT. It is not then
surprising that this argument is also incorrect when computing
nonadiabatic MD trajectories in many dimensions.
The observations arising from our analysis of the H-atom

energy loss distributions and of the OU process suggest that
neglecting the random force for ballistic motion is generally
unwise when considering the scattering properties more
detailed than the mean energy loss or sticking probability.
The results of this work also serve a warning. The generally
good agreement seen between H-atom scattering experiments
and MD simulations with electronic friction is due largely to
broadening effects introduced by the random force. To
experimentally distinguish different theories of nonadiabatic
dynamics, experiments at low surface temperatures are needed.
This could put new demands on theory as quantum dynamics
may be important at low temperature.
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