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AUTOMORPHISM GROUPS OF COMPACT COMPLEX SURFACES

YURI PROKHOROV AND CONSTANTIN SHRAMOV

Abstract. We study automorphism groups and birational automorphism groups of
compact complex surfaces. We show that the automorphism group of such a surface X

is always Jordan, and the birational automorphism group is Jordan unless X is birational
to a product of an elliptic and a rational curve.
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1. Introduction

It often happens that some infinite subgroups exhibit a nice and simple behavior on
the level of their finite subgroups. An amazing example of such a situation is given by
the following result due to C. Jordan (see [CR62, Theorem 36.13]).

Theorem 1.1. There is a constant J = J(n) such that for every finite sub-
group G ⊂ GLn(C) there exists a normal abelian subgroup A ⊂ G of index at most J .

This motivates the following definition.

Definition 1.2 (see [Pop11, Definition 2.1]). A group Γ is called Jordan (alternatively,
we say that Γ has Jordan property) if there is a constant J such that for every finite
subgroup G ⊂ Γ there exists a normal abelian subgroup A ⊂ G of index at most J .

In other words, Theorem 1.1 says that the group GLn(C) is Jordan. The same applies
to any linear algebraic group, since it can be realized as a subgroup of a general linear
group.

It was noticed by J.-P. Serre that Jordan property sometimes holds for groups of bira-
tional automorphisms.

Theorem 1.3 ([Ser09, Theorem 5.3], [Ser10, Théorème 3.1]). The group of birational
automorphisms of P2 over the field C (or any other field of characteristic 0) is Jordan.

This work is supported by the Russian Science Foundation under grant №18-11-00121.
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Yu. Zarhin pointed out in [Zar14] that there are projective complex surfaces whose
birational automorphism groups are not Jordan; they are birational to products E × P1,
where E is an elliptic curve. The following result of V.Popov classifies projective surfaces
with non-Jordan birational automorphism groups.

Theorem 1.4 ([Pop11, Theorem 2.32]). Let X be a projective surface over C. Then
the group of birational automorphisms of X is not Jordan if and only if X is birational
to E × P1, where E is an elliptic curve.

Automorphism groups having Jordan property were studied recently in many different
contexts. Yu.Prokhorov and C. Shramov in [PS16, Theorem 1.8] and [PS14, Theorem 1.8]
proved that this property holds for groups of birational selfmaps of rationally connected al-
gebraic varieties, and some other algebraic varieties of arbitrary dimension. Actually, their
results were initially obtained modulo a conjectural boundedness of terminal Fano varieties
(see e. g. [PS16, Conjecture 1.7]), which was recently proved by C.Birkar in [Bir16, Theo-
rem 1.1]. Also Yu.Prokhorov and C. Shramov classified Jordan birational automorphism
groups of algebraic threefolds in [PS18b]. Some results about birational automorphisms of
conic bundles were obtained by T.Bandman and Yu. Zarhin in [BZ17]. For other results
on Jordan birational automorphism groups see [PS17], [PS18c], and [Yas17].

S.Meng and D.-Q. Zhang proved in [MZ18] that the automorphism group of any projec-
tive variety is Jordan, and J.H.Kim generalized this to automorphism groups of compact
Kähler manifolds in [Kim18]. T.Bandman and Yu. Zarhin proved a similar result for auto-
morphism groups of quasi-projective surfaces in [BZ15], and also in some particular cases
in arbitrary dimension in [BZ18]. For a survey of some other relevant results see [Pop14].

É. Ghys asked (following a more particular question posed earlier by W.Feit) whether
the diffeomorphism group of a smooth compact manifold is always Jordan. Recently
B.Csikós, L. Pyber, and E. Szabó in [CPS14] provided a counterexample following the
method of [Zar14]; see also [Mun17b] for a further development of this method, and
[Pop16, Corollary 2] for a non-compact counterexample. However, Jordan property holds
for diffeomorphism groups in many cases; see [Mun16], [Mun14], [MT15], [Mun13], [GZ13],
[Zim12], [Zim14a], [Zim14b], [MZ15], and references therein. Also there are results for
groups of symplectomorphisms, see [Mun17a] and [Mun18].

The goal of this paper is to generalize Theorem 1.4, and to some extent the results
of [MZ18] and [Kim18], to a different setting, namely, to the case of compact complex
surfaces (see §3 below for basic definitions and background). There are some particular
cases that are already known. For instance, automorphism groups of Inoue surfaces (see
[Ino74]) and primary Kodaira surfaces (see [Kod64, §6], [BHPVdV04, §V.5]) were studied
in [PS18a].

Theorem 1.5 ([PS18a, Theorem 1.2]). Let X be either an Inoue surface or a primary
Kodaira surface. Then the automorphism group of X is Jordan.

We prove the following.

Theorem 1.6. Let X be a connected compact complex surface. Then the automorphism
group of X is Jordan.

One can also show (see [Mun13, Theorem 1.3] or Theorem 2.11 below) that the number
of generators of any finite subgroup of the automorphism group of a compact complex
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surface X , and actually of any finite subgroup of the diffeomorphism group of an arbitrary
compact manifold, is bounded by a constant that depends only on X .

The main result of this paper is as follows.

Theorem 1.7. Let X be a connected compact complex surface. Then the group of bira-
tional automorphisms of X is not Jordan if and only if X is birational to E × P1, where E
is an elliptic curve. Moreover, there always exists a constant R = R(X) such that every
finite subgroup of the birational automorphism group of X is generated by at most R
elements.

The plan of the paper is as follows. In §2 we collect some elementary facts about Jordan
property, and other boundedness properties for subgroups. In §3 we recall the basic facts
from the theory of compact complex surfaces, most importantly their Enriques–Kodaira
classification. In §4 we recall some important general facts concerning automorphisms
of complex spaces. In §5 we study automorphism groups of non-projective surfaces with
non-zero topological Euler characteristic; an important subclass of such surfaces is formed
by minimal surfaces of class VII with non-zero second Betti number (which are still not
completely classified). In §6 we study automorphism groups of Hopf surfaces. In §7 we
study automorphism groups of (secondary) Kodaira surfaces. In §8 we study automor-
phism groups of other minimal surfaces of non-negative Kodaira dimension, and prove
Theorems 1.6 and 1.7.

Our general strategy is to consider the compact complex surfaces according to Enriques–
Kodaira classification. Note that some of our theorems follow from more general results
of I.Mundet i Riera, cf. Theorems 5.1 and 5.12 (and also the discussion in the end of §5).
Similarly, some other results are implied by [Kim18]. We also point out that Jordan
property always holds for the connected component of the identity in the automorphism
group of an arbitrary connected compact complex manifold by [Pop18, Theorem 7].

We are grateful to M.Brion, S.Nemirovski, and M.Verbitsky for useful discussions.
Special thanks go to the referee for a careful reading of our paper.

2. Jordan property

In this section we collect some group-theoretic properties related to the Jordan property,
and prove a couple of auxiliary results about them. We start by recalling a useful result
that is very well known (see for instance [Spr77, §4.4]).

Theorem 2.1. Let G ⊂ Aut(P1) ∼= PGL2(C) and G̃ ⊂ GL2(C) be finite subgroups.
Then G is either cyclic, or dihedral, or isomorphic to one of the groups A4, S4, or A5.
In particular, the group G has a cyclic subgroup of index at most 12, and the group G̃ has
an abelian subgroup of index at most 12. Furthermore, if |G| is odd, then G is cyclic, and
if |G̃| is odd, then G̃ is abelian.

Apart from the Jordan property, one can consider other restrictions formulated in terms
of finite subgroups of a given group.

Definition 2.2. We say that a group Γ has bounded finite subgroups if there exists a
constant B = B(Γ) such that for any finite subgroup G ⊂ Γ one has |G| 6 B.

The following result is due to H.Minkowski, see for instance [Ser07, Theorem 1].

Theorem 2.3. For every n the group GLn(Q) has bounded finite subgroups.
3



Definition 2.4. We say that a group Γ is strongly Jordan if it is Jordan, and there exists
a constant R = R(Γ) such that every finite subgroup in Γ is generated by at most R
elements.

Note that Definition 2.4 is equivalent to a similar definition in [BZ15]. An example
of a strongly Jordan group is given by GLn(C). This follows from the fact that every
abelian subgroup of GLn(C) is conjugate to a group that consists of diagonal matrices.
Note however that even the group C∗ contains infinite abelian subgroups of arbitrarily
large rank.

The following elementary result will be useful to study Jordan property.

Lemma 2.5. Let
1 −→ Γ′ −→ Γ −→ Γ′′

be an exact sequence of groups. Then the following assertions hold.

(i) If Γ′ is Jordan (respectively, strongly Jordan) and Γ′′ has bounded finite subgroups,
then Γ is Jordan (respectively, strongly Jordan).

(ii) If Γ′ has bounded finite subgroups and Γ′′ is strongly Jordan, then Γ is strongly
Jordan.

Proof. Assertion (i) is obvious. For assertion (ii) see [PS14, Lemma 2.8]
or [BZ15, Lemma 2.2]. �

It is easy to see that if Γ1 is a subgroup of finite index in Γ2, then Γ2 is Jordan
(respectively, strongly Jordan) if and only so is Γ1. At the same time Jordan property, as
well as strong Jordan property, does not behave well with respect to quotients by infinite
groups. Namely, a quotient of a strongly Jordan group by its subgroup may fail to be
Jordan or to have all of its finite subgroups generated by a bounded number of elements.
In spite of this we will be able to control the properties of some quotients by infinite
groups that will be important for us.

Lemma 2.6. Let A be an abelian group whose torsion subgroup At is isomorphic
to (Q/Z)n, and let Λ ⊂ A be a subgroup isomorphic to Zm. Then the quotient
group Γ = A/Λ is strongly Jordan.

Proof. The group Γ is abelian and thus Jordan. Let V ⊂ Γ be a finite subgroup and
let Ṽ ⊂ A be its preimage. Clearly, Ṽ is finitely generated and can be decomposed into a
direct product Ṽ = Ṽt × Ṽf of its torsion and torsion free parts. In particular, Ṽf is a free
abelian group. Since Ṽf/(Ṽf ∩ Λ) is a finite group, one has

rk Ṽf = rk(Ṽf ∩ Λ) 6 rkΛ = m.

The group Ṽt is contained in At
∼= (Q/Z)n and so it can be generated by n elements.

Thus Ṽ can be generated by n + m elements, and the images of these elements in Γ
generate the subgroup V . �

Lemma 2.7. Let

(2.8) 1 −→ Γ′ −→ Γ −→ Γ′′

be an exact sequence of groups. Suppose that Γ′ is central in Γ (so that in particular Γ′ is
abelian) and there exists a constant R such that every finite subgroup of Γ′ is generated
by at most R elements. Suppose also that there exists a constant J such that for every
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finite subgroup G ⊂ Γ′′ there is a cyclic subgroup C ⊂ G of index at most J (so that in
particular Γ′′ is strongly Jordan). Then the group Γ is strongly Jordan.

Proof. LetG ⊂ Γ be a finite subgroup. The exact sequence (2.8) induces an exact sequence
of groups

1 −→ G′ −→ G −→ G′′,

where G′ is a subgroup of Γ′ (in particular, G′ is abelian), while G′′ is a subgroup of Γ′′.
There is a subgroup Ḡ ⊂ G of index at most J such that Ḡ contains G′, and the quo-
tient Ḡ/G′ is a cyclic group. To prove that the group Γ is Jordan it is enough to check
that Ḡ is an abelian group. The latter follows from the fact that G′ is a central subgroup
of Ḡ.

The assertion about the bounded number of generators is obvious. �

Lemma 2.9. Let Λ be a finitely generated central subgroup of GL2(C). Then the quotient
group Γ = GL2(C)/Λ is strongly Jordan.

Proof. We have an exact sequence of groups

1 −→ C∗/Λ −→ Γ −→ PGL2(C) −→ 1.

The group C∗/Λ is a central subgroup of Γ. Also, the group C∗/Λ is strongly Jordan by
Lemma 2.6.

On the other hand, we know from the classification of finite subgroups of PGL2(C)
that every finite subgroup therein contains a cyclic subgroup of bounded index, see The-
orem 2.1. Therefore, the assertion follows from Lemma 2.7. �

We will need the following simple observation in §6.

Lemma 2.10. Let Γ be a group containing a subgroup Λ ∼= Z of finite index. Then there
is a subgroup Λ0

∼= Z in Λ that is characteristic in Γ.

Proof. The intersection

Λ0 =
⋂

θ∈Aut(Γ)

θ(Λ)

is a characteristic subgroup in Γ. Therefore, it is enough to check that Λ0 is not a trivial
group.

Denote r = [Γ : Λ]. For any θ ∈ Aut(Γ) the group θ(Λ) has index r in Γ. Hence the
index of the intersection Λ ∩ θ(Λ) in Λ is at most r. This means that the intersection
of Λ with all groups θ(Λ), θ ∈ Aut(Γ), contains an intersection of all these subgroups
in Λ. Since a subgroup of given index in Λ is unique, we see that the latter intersection
is non-trivial. �

Most of the groups we will be working with in the remaining part of the paper will be
strongly Jordan. However, we will only need to check Jordan property for them due to
the following result.

Theorem 2.11 ([Mun13, Theorem 1.3]). For any compact manifold X there is a con-
stant R such that every finite group acting effectively by diffeomorphisms of X can be
generated by at most R elements.
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3. Minimal surfaces

In this section we recall the basic properties of compact complex surfaces. Everything
here (as well as in §4 below) is well known to experts, but in some important cases we
provide proofs for the reader’s convenience.

A complex surface is a complex manifold of (complex) dimension 2. Starting from
this point we will always assume that our complex surfaces are connected. Through-
out the paper KX denotes the canonical line bundle of a compact complex surface X .
One has c1(KX) = −c1(X). By a(X) we denote the algebraic dimension of X , i.e. the
transcendence degree of the field of meromorphic functions on X .

Definition 3.1. Let X and Y be compact complex surfaces. A proper holomorphic
map f : X → Y is said to be a proper modification if there are closed analytic sub-
sets Z1 ( X and Z2 ( Y such that the restriction fX\Z1

: X\Z1 → Y \Z2 is biholomorphic.
A birational (or bimeromorphic) map X 99K Y is an equivalence class of diagrams

Z
g

��
❅❅

❅❅
❅❅

❅❅
f

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

X //❴❴❴❴❴❴❴ Y

where f and g are proper modifications, modulo natural equivalence relation.

Birational maps from a given compact complex surface X to itself form a group, which
we will denote by Bir(X). As usual, we say that two complex surfaces are birationally
equivalent, or just birational, if there exists a birational map between them.

Remark 3.2. If X and Y are birationally equivalent compact complex surfaces, then the
fields of meromorphic functions on X and Y are isomorphic. The converse is not true if
the algebraic dimension of X (and thus also of Y ) is less than 2.

There are easy ways to find whether a given compact complex surface is projective.

Theorem 3.3 (see [BHPVdV04, Corollary IV.6.5]). A compact complex surface X is
projective if and only if a(X) = 2. In particular, any compact complex surface birational
to a projective one is itself projective.

Lemma 3.4 (see [BHPVdV04, Theorem IV.6.2]). Let X be a compact complex surface.
Suppose that there is a line bundle L on X such that L2 > 0. Then X is projective.

A (−1)-curve on a compact complex surface is a smooth rational curve with self-
intersection equal to −1. A compact complex surface is minimal if it does not contain
(−1)-curves. The following fact is well known, see e.g. Corollary III.2.4, Claim on p. 99,
and the first paragraph of §VI.7 in [BHPVdV04]). For convenience of the reader we
provide its short proof.

Proposition 3.5. Let X be a minimal surface. Suppose that X is neither rational nor
ruled. Then every birational map from an arbitrary compact complex surface X ′ to X
is a proper modification. In particular, X is the unique minimal model in its class of
birational equivalence, and Bir(X) = Aut(X).

Proof. Suppose that

Z f

&&▼
▼▼

▼▼
▼g

xxqq
qq
qq

X ′ //❴❴❴❴❴❴❴ X
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is a birational map that is not a proper modification. We may assume that there are no
(−1)-curves that are simultaneously contracted by f and g. Then there exists a (−1)-
curve C in Z contracted by g but not contracted by f . Thus C meets a one-dimensional
fiber f−1(x) for some point x ∈ X , since otherwise X would contain a (−1)-curve.

First, we consider the case when the surface X is projective. Since X is minimal and not
ruled, the canonical classKX must be numerically effective [BHPVdV04, Theorem VI.2.1].
Write

KZ ∼ f ∗KX +
∑

aiEi,

where Ei are f -exceptional curves and ai are positive integers. Since KZ · C < 0
and f ∗KX · C > 0, we have

∑
aiEi · C < 0. Thus C is a component of the f -exceptional

locus. This contradicts our assumptions.
Now we consider the case when the surface X is not projective. Contracting (−1)-

curves in f−1(x) consecutively, we get a surface S with a proper modification h : Z → S,
and a proper modification t : S → X such that C1 = h(C) is a (−1)-curve and there exists
another (−1)-curve C2 meeting C1 and contracted by t. If C1 ·C2 > 1, then (C1+C2)

2 > 0
and the surface S is projective by Lemma 3.4. Assume that C1 ·C2 = 1. Then for n ≫ 0
we have

c1 (KS ⊗ OS(−nC1 − nC2))
2 = c1(S)

2 + 4n > 0,

so that the surface S is again projective by Lemma 3.4. The obtained contradiction
completes the proof. �

Given a compact complex surface X , we can consider its pluricanonical linear sys-
tems |K ⊗m

X |. If such a linear system is not empty for m ≫ 0, it defines a rational pluri-
canonical map. The dimension of its image is called the Kodaira dimension of X and is
denoted by κ(X). If the linear system |K ⊗m

X | is empty for allm > 0, we put κ(X) = −∞.
By bi(X) we denote the i-th Betti number of X . By hp,q(X) we denote the Hodge num-
bers hp,q = dimHq(X,Ωp

X), where Ωp
X is the sheaf of holomorphic p-forms on X .

The following is the famous Enriques–Kodaira classification of compact complex sur-
faces, see e.g. [BHPVdV04, Chapter VI].

Theorem 3.6. Let X be a minimal compact complex surface. Then X is of one of the
following types.

7



κ(X) type a(X) b1(X) χtop(X)

−∞

rational surfaces 2 0 3, 4

ruled surfaces of genus g > 0 2 2g 4(1− g)

surfaces of class VII 0, 1 1 > 0

0

complex tori 0, 1, 2 4 0

K3 surfaces 0, 1, 2 0 24

Enriques surfaces 2 0 12

bielliptic surfaces 2 2 0

primary Kodaira surfaces 1 3 0

secondary Kodaira surfaces 1 1 0

1 properly elliptic surfaces 1, 2 > 0

2 surfaces of general type 2 ≡ 0 mod 2 > 0

4. Automorphisms

In this section we recall some important general facts about automorphisms of complex
spaces.

Let U be a reduced complex space, see e.g. [Ser56] or [Mal68] for a definition and basic
properties. Recall that a complex space is called irreducible if it cannot be represented
as a union of two proper closed analytic subsets. We denote by TP,U the Zariski tangent
space (see [Mal68, §2]) to U at a point P ∈ U . If a group Γ ⊂ Aut(X) has a fixed
point P ∈ X , then Γ naturally acts on the local ring OP,X and the tangent space TP,X so
that the action on TP,X is linear.

The following fact is well-known (see e.g. [Car57] or [Akh95, §2.2]).

Theorem 4.1. Let X be a Hausdorff (reduced) complex space, and Γ ⊂ Aut(X) be a finite
group. Suppose that Γ has a fixed point P on X. Then there exist Γ-invariant neighbor-
hoods U of P in X and V of 0 in TP,X , and a Γ-equivariant closed embedding U →֒ V .

Corollary 4.2. Let X be an irreducible Hausdorff reduced complex space, and Γ ⊂ Aut(X)
be a finite group. Suppose that Γ has a fixed point P on X. Then the natural representation

Γ −→ GL
(
TP,X

)

is faithful.

Proof. Choose an arbitrary transformation f from the kernel of the action of Γ on TP,X.
By Theorem 4.1, there exists a neighborhood U of P in X such that f restricts to the
identity transformation on U .

The fixed point locus Fix(f) of f is a closed analytic subset in X . Indeed, since X is
Hausdorff, it can be covered by f -invariant charts isomorphic to open subsets of CN for
some positive integer N , and in every such chart the fixed point locus is given by vanishing
of certain equations. Since Fix(f) contains the open subset U and X is irreducible, we
conclude that Fix(f) = X . This means that the kernel of the action of Γ on TP,X is
trivial. �
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Remark 4.3. One cannot drop the assumption that X is irreducible in Corollary 4.2.
Indeed, the assertion fails for the variety given by equation xy = 0 in A2 with coordinates x
and y, the point P with coordinates x = 1 and y = 0, and the group Γ ∼= Z/2Z whose
generator acts by (x, y) 7→ (x,−y). Similarly, the assertion fails for the simplest example
of a non-Hausdorff reduced complex space, namely, for two copies of A1 glued along the
common open subset A1 \ {0}, and the natural involution acting on this space.

Corollary 4.2 easily implies the following result.

Corollary 4.4. Let X be an irreducible Hausdorff reduced complex space,
and ∆ ⊂ Aut(X) be a subgroup. Suppose that ∆ has a fixed point P on X, and let

ς : ∆ −→ GL
(
TP,X

)

be the natural representation. Suppose that there is a subgroup Γ ⊂ ∆ of finite index such
that the restriction ς|Γ is a group monomorphism. Then ς is an embedding as well.

Proof. Let ∆0 ⊂ ∆ be the kernel of ς. Since [∆ : Γ] < ∞, we see that ∆0 is finite.
Thus ∆0 is trivial by Corollary 4.2. �

Another application of Corollary 4.2 is as follows.

Lemma 4.5. Let X be a compact complex surface. Suppose that there is a finite non-
empty Aut(X)-invariant set S of curves on X such that S does not contain smooth elliptic
curves. Then the group Aut(X) is Jordan.

Proof. Let C be one of the curves from S. Then the group AutC(X) of automorphisms
of X that preserve the curve C has finite index in Aut(X). Since C is not a smooth elliptic
curve, there is a constant B = B(C) such that every finite subgroup of AutC(X) contains
a subgroup of index at most B that fixes some point on C. Indeed, if C is singular,
this is obvious; if C is a smooth rational curve, this follows from Theorem 2.1. If C is a
smooth curve of genus g > 2, this follows from the fact that the index of the kernel of
the action on C in the group AutC(X) is at most |Aut(C)|, which does not exceed the
Hurwitz bound 84(g − 1), see for instance [Har77, Exercise IV.2.5]. Now Corollary 4.2
implies that every finite subgroup of AutC(X) contains a subgroup of index at most B
that is embedded into GL2(C). Therefore, the group AutC(X) is Jordan by Theorem 1.1,
and hence the group Aut(X) is Jordan as well. �

Using Theorem 4.1, one can also deduce the following facts.

Corollary 4.6. Let X be a complex manifold, and Γ ⊂ Aut(X) be a finite group. Then
the fixed point locus of Γ is a closed submanifold.

Proof. Let Y be the fixed point locus of Γ. It is obvious that Y is a closed subset of X .
Choose a point P ∈ Y . We know from Theorem 4.1 that there is a Γ-equivariant closed

embedding U →֒ V for some Γ-invariant neighborhoods U of P in X and V of 0 in TP,X.
Under this embedding the neighborhood UY = Y ∩U of P in Y is isomorphically mapped
onto the fixed point locus F of Γ in V . Since the action of Γ on TP,X is linear, we conclude
that F is an intersection of V with some linear subspace of TP,X . In particular, we see
that F is smooth at 0, which implies that Y is smooth at P . �

Note that the fixed point locus discussed in Corollary 4.6 may consist of several con-
nected components of different dimensions.
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Corollary 4.7. Let X be a complex manifold, and Γ ⊂ Aut(X) be a finite group. Suppose
that Γ has a fixed point P on X and let T ⊂ TP,X be the maximal subspace on which the
action of Γ is trivial. Then there exists a Γ-invariant submanifold Y ⊂ X containing P
such that T = TP,Y and the action of Γ on Y is trivial.

Proof. The fixed point locus Y of Γ is a closed submanifold by Corollary 4.6. Clearly, one
has TP,Y ⊂ T . On the other hand, by Theorem 4.1 we have dimTP,Y = dimT . �

5. Non-projective surfaces with χtop(X) 6= 0

In this section we will (mostly) work with non-projective compact complex surfaces X
with χtop(X) 6= 0. In this case, by the Enriques–Kodaira classification (see Theorem 3.6)
one has χtop(X) > 0. The main purpose of this section is to prove the following result.

Theorem 5.1. Let X be a non-projective compact complex surface with χtop(X) 6= 0.
Then the group Aut(X) is Jordan.

Recall that an algebraic reduction of a compact complex surface X with a(X) = 1 is
the morphism π : X → B to a curve B obtained as follows. We start with a meromorphic
map X 99K P1 defined by a non-constant meromorphic function, regularize it by blow
ups, and apply the Stein factorization to the regularization. One can check that the
obtained morphism provides a holomorphic elliptic fibration π on X . We refer the reader
to [BHPVdV04, Proposition VI.5.1] for details.

Lemma 5.2. Let X be a non-projective compact complex surface. If X contains an
irreducible curve C which is not a smooth elliptic curve, then the group Aut(X) is Jordan.

Proof. We claim that the surface X contains at most a finite number of such curves.
Indeed, if a(X) = 0, then X contains at most a finite number of curves at all,
see [BHPVdV04, Theorem IV.8.2]. If a(X) = 1, then all curves on X are contained
in the fibers of the algebraic reduction by Lemma 3.4. The latter fibration is elliptic, so
every non-elliptic curve is contained in one of its degenerate fibers. Now the assertion
follows from Lemma 4.5. �

Lemma 5.3. Let X be a compact complex surface with χtop(X) 6= 0. If a(X) = 1, then
the group Aut(X) is Jordan.

Proof. Let π : X → B the algebraic reduction, so that B is a smooth curve and π is
an elliptic fibration. Since χtop(X) 6= 0, the fibration π has at least one fiber Xb such
that F = (Xb)red is not a smooth elliptic curve. So the group Aut(X) is Jordan by
Lemma 5.2. �

For every compact complex surface X , we denote by Aut(X) the subgroup of Aut(X)
that consists of all elements acting trivially on H∗(X,Q). This is a normal subgroup
of Aut(X), and the quotient group Aut(X)/Aut(X) has bounded finite subgroups by
Theorem 2.3. Thus Lemma 2.5(i) implies that the group Aut(X) is Jordan if and only
if Aut(X) is Jordan.

Lemma 5.4. Let X be a compact complex surface. Suppose that every irreducible curve
contained in X is a smooth elliptic curve. Let g ∈ Aut(X) be a non-trivial element of
finite order, and Ξ0(g) be the set of all isolated fixed points of g. Then

|Ξ0(g)| = χtop(X).
10



Proof. The fixed locus Ξ(g) of g is a disjoint union Ξ0(g) ⊔ Ξ1(g), where Ξ1(g) is of
pure dimension 1. Note that the curve Ξ1(g) is smooth by Corollary 4.6, so that every
irreducible component of Ξ1(g) is its connected component.

We see that every connected component of Ξ1(g) is a smooth elliptic curve, so
that χtop(Ξ1(g)) = 0. On the other hand, one has

χtop(Ξ(g)) = χtop(X)

by the topological Lefschetz fixed point formula, see [Die79, Proposition 5.3.11]. There-
fore, we have

χtop(X) = χtop(Ξ(g)) = χtop(Ξ0(g)) + χtop(Ξ1(g)) = χtop(Ξ0(g)) = |Ξ0(g)|. �

Lemma 5.5. Let X be a compact complex surface with χtop(X) 6= 0. Suppose that every
irreducible curve contained in X is a smooth elliptic curve. Let G ⊂ Aut(X) be a finite
subgroup. If G contains a non-trivial normal cyclic subgroup, then G contains an abelian
subgroup of index at most 12χtop(X).

Proof. Let N ⊂ G be a non-trivial normal cyclic subgroup. By Lemma 5.4 the group N
has exactly χtop(X) > 0 isolated fixed points on X (and maybe also several curves that
consist of fixed points). Since N is normal in G, the group G permutes these points. Thus
there exists a subgroup of index at most χtop(X) in G acting onX with a fixed point. Now
the assertion follows from Corollary 4.2 and Theorem 2.1 (cf. [PS17, Corollary 2.2.2]). �

Lemma 5.6. Let X be a compact complex surface with a(X) = 0 and χtop(X) 6= 0. If X
contains at least one curve, then Aut(X) is Jordan.

Proof. It is enough to prove that the group Aut(X) is Jordan. The surface X contains
at most a finite number of curves by [BHPVdV04, Theorem IV.8.2]. By Lemma 5.2 we
may assume that all these curves are smooth and elliptic. Let C1, . . . , Cm be all curves
on X , and let Aut♯(X) ⊂ Aut(X) be the stabilizer of C1. Clearly, the subgroup Aut♯(X)
has index at most m in Aut(X), so it is sufficient to prove that Aut♯(X) is Jordan. For
any finite subgroup G ⊂ Aut♯(X) we have an exact sequence

1 −→ Γ −→ G −→ Aut(C1),

where Γ is the kernel of the action of G on C1.
Let P be a point on C1. Then Γ ⊂ GL(TP,X) by Corollary 4.2, and Γ has a trivial one-

dimensional subrepresentation in TP,X corresponding to the tangent space TP,C1
. This

implies that Γ is a cyclic group. If Γ = {1}, then G is contained in Aut(C1). Since C1 is
an elliptic curve, the group G has an abelian subgroup of index at most 6. If Γ 6= {1},
then G has an abelian subgroup of index at most 12χtop(X) by Lemma 5.5. Therefore,
in both cases G also has a normal abelian subgroup of bounded index. �

In the following lemmas we will deal with compact complex surfaces X that contain
no curves. In particular, this implies that a(X) = 0. Furthermore, we conclude that the
action of any finite subgroup G of Aut(X) is free in codimension one, that is, there exists
a finite subset Ξ ⊂ X such that the action of G on X \ Ξ is free.

Lemma 5.7. Let X be a compact complex surface with χtop(X) 6= 0. Suppose that X
contains no curves. Then the group Aut(X) has no elements of even order.
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Proof. Let g ∈ Aut(X) be an element of order 2 (such elements always exist provided
that there are elements of even order).

First assume that κ(X) = −∞. We have b1(X) = 1 and b2(X) = χtop(X) > 0
(see Theorem 3.6). Moreover, we know that h2,0(X) = 0 because κ(X) = −∞. Hodge
relations (see e.g. [BHPVdV04, § IV.2]) give us

h0,1(X) = 1, h1,0(X) = 0, and h2,0(X) = h0,2(X) = 0.

Thus, one has χ(OX) = 0, and the canonical embedding H1(X,OX) →֒ H1(X,C) is an
isomorphism. In particular, the element g acts trivially on H1(X,OX). We also know
that there are no curves consisting of g-fixed points. Therefore, the holomorphic Lefschetz
fixed point formula (see e. g. [GH78, §3.4]) can be written as follows:

∑

P∈Fix(g)

1

det (Id−gP )
=

2∑

q=0

(−1)q tr g∗|Hq(X,OX) = b0(X)− h0,1(X) + h0,2(X) = 0,

where Fix(g) is the fixed point locus of g, and gP : TP,X → TP,X is the differential of g
at a fixed point P . Since the order of g equals 2, one has gp = − Id, because otherwise
there exists an analytic germ of a curve in a neighborhood of P in X that consists of fixed
points of g by Corollary 4.7. Hence

|Fix(g)|

4
=

∑

P∈Fix(g)

1

det (Id− gP )
= 0.

Thus, we conclude that g has no fixed points at all. The latter contradicts Lemma 5.4.
Now assume that κ(X) > 0. Since a(X) = 0, this implies that κ(X) = 0 and X is a K3

surface (see Theorem 3.6). Therefore, one has χtop(X) = 24 and χ(OX) = 2. As above
the holomorphic Lefschetz fixed point formula shows that g has exactly 8 fixed points.
This again contradicts Lemma 5.4. �

Lemma 5.8. Let X be a compact complex surface with χtop(X) 6= 0. Suppose that X
contains no curves. Let G ⊂ Aut(X) be a finite subgroup. Suppose that G has a fixed
point on X. Then G is cyclic.

Proof. Let P ∈ X be a fixed point of G. By Corollary 4.2 we have an embedding

G ⊂ GL(TP,X) ∼= GL2(C).

Since the group G does not contain elements of order 2 by Lemma 5.7, the order of G is
odd. Hence G is abelian by Theorem 2.1. Recall that the action of G is free in codimension
one. By Corollary 4.2, the action of G on TP,X

∼= C2 is faithful.
Suppose that G is not a cyclic group. Since G is abelian, its action on C2 is diago-

nalizable and so there exists a non-trivial element g ∈ G such that g has an eigen-vector
with eigen-value 1 in TP,X . By Corollary 4.7 there exists an analytic germ of a curve in a
neighborhood of P in X that consists of fixed points of g. The latter is impossible since
the action of g is free in codimension one. The obtained contradiction shows that the
group G is cyclic. �

Lemma 5.9. Let X be a compact complex surface with χtop(X) 6= 0. Suppose that X
contains no curves. Let G ⊂ Aut(X) be a finite cyclic subgroup, and g ∈ G be a non-trivial
element. Then g has the same set of fixed points as G.

12



Proof. For an arbitrary element h ∈ G denote by Fix(h) the fixed locus of h. By
Lemma 5.4 one has

|Fix(h)| = χtop(X)

for every non-trivial element h.
Let f be a generator of G. Then for some positive integer n one has fn = g, so that

Fix(f) ⊂ Fix(g).

Therefore, one has Fix(f) = Fix(g), which means that every non-trivial element of G has
one and the same set of fixed points. �

Lemma 5.10. Let X be a compact complex surface with χtop(X) 6= 0. Suppose that X
contains no curves. Then every finite subgroup G ⊂ Aut(X) is a union G =

⋃m

i=1Gi of
cyclic subgroups such that Gi ∩Gj = {1} for i 6= j.

Proof. Choose some representation of G as a union G =
⋃m

i=1Gi, where Gi are cyclic
groups that possibly have non-trivial intersections. Let G1 and G2 be subgroups such
that G1 ∩ G2 6= {1}. Let g ∈ G1 ∩ G2 be a non-trivial element. By Lemma 5.4 it has a
fixed point, say x. By Lemma 5.8 the stabilizer Gx is a cyclic group. By Lemma 5.9 the
groups G1 and G2 fix the point x, so that G1, G2 ⊂ Gx. Replacing G1 and G2 by Gx, we
proceed to construct the required system of subgroups by induction. �

Lemma 5.11. Let X be a compact complex surface with χtop(X) 6= 0. Suppose that X
contains no curves. Then there exists a constant J = J(X) such that any finite subgroup
G ⊂ Aut(X) contains a normal cyclic subgroup of index at most J . In particular, the
group Aut(X) is Jordan.

Proof. It is enough to prove that any finite subgroup of Aut(X) contains a normal cyclic
subgroup of index at most J . Let G ⊂ Aut(X) be a finite subgroup. Let Ξ ⊂ X be the
set of points with non-trivial stabilizers in G.

By Lemma 5.10 the group G is a union G =
⋃m

i=1Gi of cyclic subgroups such
that Gi ∩Gj = {1} for i 6= j. We claim that the stabilizer of any point x ∈ Ξ is one
of the groups G1, . . . , Gm. Indeed, choose a point x ∈ Ξ, and let Gx be its stabilizer.
Then Gx is a cyclic group by Lemma 5.8. Let gx be a generator of Gx, and let 1 6 r 6 m
be the index such that the group Gr contains gx. Then Gx ⊂ Gr. Now Lemma 5.9 implies
that Gx = Gr.

By Lemma 5.4 every element of G has exactly χtop(X) fixed points. The set Ξ is a
disjoint union of orbits of the group G. Therefore, for some positive integers ki one has

|Ξ| = mχtop(X) =

m∑

i=1

ki[G : Gi].

Hence, for some i we have [G : Gi] 6 χtop(X), i.e. G contains a cyclic subgroup Gi of
index at most χtop(X). This implies that G contains a normal cyclic subgroup of bounded
index. �

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. If a(X) = 1, then the assertion follows from Lemma 5.3.
If a(X) = 0 and X contains at least one curve, then the assertion follows from Lemma 5.6.
Finally, if X contains no curves, then the assertion follows from Lemma 5.11. �
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An alternative way to prove Theorem 5.1 is provided by the following more general
result due to I.Mundet i Riera. Our proof of Theorem 5.1 is a simplified version of the
proof of this result given in [Mun16].

Theorem 5.12 ([Mun16, Theorem 1.1]). Let X be a compact, orientable, connected four-
dimensional smooth manifold with χtop(X) 6= 0. Then the group of diffeomorphisms of X
is Jordan. In particular, if X is a compact complex surface with non-vanishing topological
Euler characteristic, then the group Aut(X) is Jordan.

Note however that our proof of Theorem 5.1 implies that for a compact complex sur-
face X with χtop(X) 6= 0 and containing no curves, there exists a constant J such that
for every finite subgroup G ⊂ Aut(X) there exists a normal cyclic subgroup of index at
most J (see Lemma 5.11), while the results of [Mun16] provide only a normal abelian
subgroup of bounded index generated by at most 2 elements.

6. Hopf surfaces

In this section we study automorphism groups of Hopf surfaces, and make some general
conclusions about automorphisms of surfaces of class VII.

Recall that a Hopf surface X is a compact complex surface whose universal cover is
(analytically) isomorphic to C2 \ {0}. Thus X ∼= (C2 \ {0}) /Γ, where Γ ∼= π1(X) is a
group acting freely on C2 \ {0}. A Hopf surface X is said to be primary if π1(X) ∼= Z.
One can show that a primary Hopf surface is isomorphic to a quotient

X(α, β, λ, n) =
(
C2 \ {0}

)
/Λ,

where Λ ∼= Z is a group generated by the transformation

(6.1) (x, y) 7→ (αx+ λyn, βy).

Here n is a positive integer, and α and β are complex numbers satisfying

0 < |α| 6 |β| < 1;

moreover, one has λ = 0, or α = βn. A secondary Hopf surface is a quotient of a primary
Hopf surface by a free action of a finite group. Every Hopf surface is either primary or
secondary. We refer the reader to [Kod66, §10] for details.

The following result shows the significance of Hopf and Inoue surfaces (see [Ino74]) from
the point of view of Enriques–Kodaira classification.

Theorem 6.2 (see [Bog77] and [Tel94]). Every minimal surface of class VII with van-
ishing second Betti number is either a Hopf surface or an Inoue surface.

Automorphisms of Hopf surfaces were studied in detail in [Kat75], [Kat89], [Nam74],
[Weh81], and [MN00]. Our approach does not use these results.

We will need the following easy observation.

Lemma 6.3. Let

M =

(
α λ

0 β

)
∈ GL2(C)

be an upper triangular matrix, and Z ⊂ GL2(C) be the centralizer of M . The following
assertions hold.

(i) If α = β and λ = 0, then Z = GL2(C).
14



(ii) If α 6= β and λ = 0, then Z ∼= (C∗)2.
(iii) If α = β and λ 6= 0, then Z ∼= C∗ × C+.

Proof. Simple linear algebra. �

Lemma 6.4. Let X be a Hopf surface. Then the group Aut(X) is Jordan.

Proof. The non-compact surface C2 \ {0} is the universal cover of X . Moreover, X is
obtained from C2 \ {0} as a quotient by a free action of some group Γ that contains a
subgroup Λ ∼= Z of finite index such that a generator of Λ acts as in (6.1); if X is a
primary Hopf surface, then Γ = Λ, and otherwise Λ is identified with the fundamental
group of (some) primary Hopf surface covering X . By Lemma 2.10 we can replace Λ by
its subgroup Λ0

∼= Z such that Λ0 is characteristic in Γ. Since the generator of Λ0 is a
power of a generator of Λ, it also acts on C2 \ {0} by a transformation of type (6.1) (but
possibly with different parameters α, β, and λ). Therefore, without loss of generality we
may assume that Λ itself was a characteristic subgroup of Γ.

There is an exact sequence of groups

1 −→ Γ −→ Ãut(X) −→ Aut(X) −→ 1,

where Ãut(X) acts by automorphisms of C2 \ {0}. By Hartogs theorem the action

of Ãut(X) extends to C2 so that Ãut(X) fixes the origin 0 ∈ C2. The image of the
generator of Λ is mapped by the natural homomorphism

ς : Ãut(X) −→ GL
(
T0,C2

)
∼= GL2(C)

to the matrix

M =

(
α λδn1

0 β

)

where δ is the Kronecker symbol.

Let G ⊂ Aut(X) be a finite subgroup, and G̃ be its preimage in Ãut(X). Thus,

one has G ∼= G̃/Γ. By Corollary 4.4 we know that ς|G̃ is an embedding. Let Ω be

the normalizer of ς(Λ) in GL2(C). By construction ς(G̃) is contained in the normalizer
of ς(Γ) in GL2(C), which in turn is contained in Ω because Λ is a characteristic subgroup
of Γ. We see that every finite subgroup of Aut(X) is contained in the group Ω/ς(Γ).
On the other hand, Ω/ς(Γ) is a quotient of Ω/ς(Γ) is a quotient of Ω/ς(Λ) by a finite
subgroup isomorphic to ς(Γ)/ς(Λ). Thus, by Lemma 2.5(ii) it is sufficient to show that
the group Ω/ς(Λ) is strongly Jordan.

Since ς(Λ) ∼= Z, the group Ω has a (normal) subgroup Ω′ of index at most 2 that
coincides with the centralizer of the matrix M . It remains to check that the group Ω′/ς(Λ)
is strongly Jordan. If λ = 0 and α = β, then this follows from Lemmas 6.3(i) and 2.9.
If either λ = 0 and α 6= β, or λ 6= 0 and n > 2, then this follows from Lemmas 6.3(ii)
and 2.6. If λ 6= 0 and n = 1, then this follows from Lemmas 6.3(iii) and 2.6. �

Remark 6.5. Suppose that for a primary Hopf surface X ∼= X(α, β, λ, n) one has λ = 0
and αk = βl for some positive integers k and l. Then there is an elliptic fibration

X ∼=
(
C2 \ {0}

)
/Λ → P1 ∼=

(
C2 \ {0}

)
/C∗,

and one has an exact sequence of groups

1 −→ E −→ Aut(X) −→ PGL2(C),
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where E is the group of points of the elliptic curve C∗/Z.

Finally, we put together the information about automorphisms of surfaces of class VII.

Corollary 6.6. Let X be a minimal surface of class VII. Then the group Aut(X) is
Jordan.

Proof. If the second Betti number b2(X) vanishes, thenX is either a Hopf surface or an In-
oue surface by Theorem 6.2. Thus the assertion follows from Lemma 6.4 and Theorem 1.5
in this case. If b2(X) does not vanish, then the assertion follows from Theorem 5.1. �

Remark 6.7. Except for Hopf surfaces, there are some other types of minimal com-
pact complex surfaces of class VII whose automorphism groups have been studied in
detail. For instance, this is the case for so called hyperbolic and parabolic Inoue sur-
faces, see [Pin84] and [Fuj09], respectively. Note that surfaces of both of these types
have positive second Betti numbers (and thus they are not to be confused with Inoue
surfaces introduced in [Ino74]). Also, automorphism groups of Enoki surfaces are known
due to [DK98, Theorem 3.1] and [DK98, Proposition 3.2(2)].

7. Kodaira surfaces

In this section we study automorphism groups of Kodaira surfaces.
Recall (see e.g. [BHPVdV04, §V.5]) that a Kodaira surface is a compact complex

surface of Kodaira dimension 0 with odd first Betti number. There are two types of
Kodaira surfaces: primary and secondary ones. A primary Kodaira surface is a compact
complex surface with the following invariants [Kod64, Theorem 19]:

KX ∼ 0, a(X) = 1, b1(X) = 3, b2(X) = 4, χtop(X) = 0, h0,1(X) = 2, h0,2(X) = 1.

A secondary Kodaira surface is a quotient of a primary Kodaira surface by a free action
of a finite cyclic group. The invariants of a secondary Kodaira surface are [Kod66, §9]:

a(X) = 1, b1(X) = 1, b2(X) = 0, χtop(X) = 0, h0,1(X) = 1, h0,2(X) = 0.

Due to Theorem 1.5, we know that automorphism groups of primary Kodaira surfaces
are Jordan. Thus, we are left with the case of secondary Kodaira surfaces.

Lemma 7.1. Let X be a secondary Kodaira surface. Then the group Aut(X) is Jordan.

Proof. Since a(X) = 1, the algebraic reduction is an Aut(X)-equivariant elliptic fibra-
tion π : X → B. Thus there is an exact sequence of groups

1 −→ Aut(X)π −→ Aut(X) −→ Γ −→ 1,

where the action of Aut(X)π is fiberwise with respect to π, and Γ is a subgroup of Aut(B).
We claim that the group Aut(X)π is Jordan. Indeed, if H is a finite subgroup

of Aut(X)π, then H acts faithfully on a typical fiber of π, which is a smooth elliptic
curve. This implies that H has a normal abelian subgroup of index at most 6.

Since

h1,0(X) = b1(X)− h0,1(X) = 0,

the base curve B is rational. Furthermore, one has

χ(OX) = h0,0(X)− h0,1(X) + h0,2(X) = 1− 1 + 0 = 0.
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By the canonical bundle formula (see e.g. [BHPVdV04, Theorem V.12.1]) we have

KX ∼ π∗ (KB ⊗ L)⊗ OX

(∑
(mi − 1)Fi

)
,

where Fi are all (reduced) multiple fibers of π, the fiber Fi has multiplicity mi, and L is
a line bundle of degree χ(OX) = 0. Since X has Kodaira dimension 0, we see that

∑
(1− 1/mi) = 2.

In particular, the number of multiple fibers equals either 3 or 4. This means that Γ has
a finite non-empty invariant subset in B ∼= P1 that consists of 3 or 4 points. Hence Γ is
finite, so that the assertion follows by Lemma 2.5(i). �

An alternative way to prove the Jordan property for the automorphism group of a
secondary Kodaira surface is to use the fact that its canonical cover is a primary Kodaira
surface together with Lemma 2.5(ii) and Theorem 2.11.

8. Non-negative Kodaira dimension

In this section we study automorphism groups of surfaces of non-negative Kodaira
dimension, and prove Theorems 1.6 and 1.7.

The case of Kodaira dimension 2 is well known.

Theorem 8.1. Let X be a (minimal) surface of general type. Then the group Aut(X) is
finite.

Proof. The surface X is projective, see Theorem 3.6. Thus the group Aut(X) is finite,
see for instance [HMX13] where a much more general result is established for varieties of
general type of arbitrary dimension. �

Now we consider the case of Kodaira dimension 1.

Lemma 8.2 (cf. [PS18b, Lemma 3.3]). Let X be a minimal surface of Kodaira dimen-
sion 1. Then the group Aut(X) is Jordan.

Proof. Let φ : X → B be the pluricanonical fibration, where B is some (smooth) curve.
It is equivariant with respect to the action of Aut(X). Thus there is an exact sequence
of groups

1 −→ Aut(X)φ −→ Aut(X) −→ Γ −→ 1,

where the action of Aut(X)φ is fiberwise with respect to φ, and Γ is a subgroup of Aut(B).
As in the proof of Lemma 7.1, we see that the group Aut(X)φ is Jordan. Hence by
Lemma 2.5(i) it is enough to check that Γ has bounded finite subgroups. In particular,
this holds if the genus of B is at least 2, since the group Aut(B) is finite in this case.
Thus we will assume that the genus of B is at most 1.

Suppose that φ has a fiber F such that Fred is not a smooth elliptic curve. Then
every irreducible component of F is a rational curve, see e.g. [BHPVdV04, §V.7]. Hence
Lemma 4.5 applied to the set of irreducible components of fibers of the morphism φ shows
that the group Aut(X) is Jordan.

Therefore, we will assume that all (set-theoretic) fibers of φ are smooth elliptic curves.
Then the topological Euler characteristic χtop(X) equals 0. By the Noether’s formula one
has

χ(OX) =
1

12

(
c1(X)2 + χtop(X)

)
= 0.
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By the canonical bundle formula we have

KX ∼ φ∗ (KB ⊗ L)⊗ OX

(∑
(mi − 1)Fi

)
,

where Fi are all (reduced) multiple fibers of φ, the fiber Fi has multiplicity mi, and L is
a line bundle of degree χ(OX) = 0. Since X has Kodaira dimension 1, we see that

(8.3) 2g(B)− 2 +
∑

(1− 1/mi) = deg (KB ⊗ L) +
∑

(1− 1/mi) > 0.

Suppose that B is an elliptic curve, so that g(B) = 1. Then (8.3) implies that φ has at
least one multiple fiber. This means that Γ has a finite non-empty invariant subset in B,
so that Γ is finite.

Now suppose that B is a rational curve, so that g(B) = 0. Then (8.3) implies that φ
has at least three multiple fibers, cf. the proof of Lemma 7.1. This means that Γ has a
finite non-empty invariant subset in B that consists of at least three points. Therefore, Γ
is finite in this case as well. �

Finally, we consider the case of Kodaira dimension 0. The following result is well known.

Theorem 8.4. Let X = Cn/Λ be a complex torus. Then

(8.5) Aut(X) ∼= (Cn/Λ)⋊ Γ,

where Γ is isomorphic to the stabilizer of the lattice Λ in GLn(C).

Proof. The proof is standard, but we include it for the reader’s convenience. Let Γ be
the stabilizer of the point 0 ∈ X . Then the decomposition (8.5) holds, and it remains to
prove that Γ is isomorphic to the stabilizer of the lattice Λ in GLn(C).

Since Cn is the universal cover of X , there is an embedding Γ →֒ Aut(Cn), and there
is a point in Λ that is invariant with respect to Γ. We may assume that this is the origin
in Cn.

Let g be an element of Γ. One has g(Λ) = Λ. We claim that g ∈ GLn(C). Indeed, let λ
be an arbitrary element of the lattice Λ. Consider a holomorphic map

fλ : C
n → Cn, fλ(z) = g(z + λ)− g(z).

One has fλ(z) ∈ Λ for every z ∈ Cn. This means that fλ(z) is constant, so that all partial
derivatives of fλ vanish. Hence the partial derivatives of g(z) are periodic with respect
to the lattice Λ. This in turn means that these partial derivatives are bounded and thus
constant, so that g(z) is a linear function in z. �

Remark 8.6. A complete classification of finite groups that can act by automorphisms of
a two-dimensional complex torus (preserving a point therein) was obtained in [Fuj88].

Theorem 8.4 immediately implies the following result (which is already known in a more
general setup, see [Mun10, Theorem 1.4], [Ye17, Corollary 1.7]).

Corollary 8.7. Let X be a complex torus. Then the group Aut(X) is Jordan.

Proof. By Lemma 2.5(i) it is enough to check that in the notation of Theorem 8.4 the
group Γ has bounded finite subgroups. Since Γ is a subgroup in the automorphism group
of Λ, the latter follows from Theorem 2.3. �

Lemma 8.8. Let X be either a K3 surface, or an Enriques surface. Then the
group Aut(X) has bounded finite subgroups.
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Proof. Suppose that X is a K3 surface. If X is projective, then the assertion follows from
[PS14, Theorem 1.8(i)]. If X is non-projective, then the assertion follows from a stronger
result of [Ogu08, Theorem 1.5].

Now suppose that X is an Enriques surface. Then it is projective (see Theorem 3.6),
so that the assertion again follows from [PS14, Theorem 1.8(i)]. �

Note that in the assumptions of Lemma 8.8, the (weaker) assertion that the
group Aut(X) is Jordan follows directly from Theorem 5.1 or Theorem 5.12.

Lemma 8.9. Let X be a bielliptic surface. Then the group Aut(X) is Jordan.

Proof. The surface X is projective (see Theorem 3.6). Thus the assertion follows from
Theorem 1.4 (or [BZ15], or [MZ18], or [PS14, Theorem 1.8(ii)]). �

For a more precise description of automorphism groups of bielliptic surfaces, we refer
the reader to [BM90].

Corollary 8.10. Let X be a minimal surface of Kodaira dimension 0. Then the
group Aut(X) is Jordan.

Proof. We know from Theorem 3.6 that X is either a complex torus, or a K3 surface, or
an Enriques surface, or a bielliptic surface, or a Kodaira surface.

If X is a complex torus, then the assertion holds by Corollary 8.7. If X is a K3 surface
or an Enriques surface, then the assertion is implied by Lemma 8.8. If X is a bielliptic
surface, then the assertion holds by Lemma 8.9. If X is a Kodaira surface, then the
assertion holds by Theorem 1.5 and Lemma 7.1. �

Proposition 8.11. Let X be a minimal surface. Then the group Aut(X) is Jordan.

Proof. We check the possibilities for the birational type of X listed in Theorem 3.6 case
by case. If X is rational or ruled, then X is projective (see Theorem 3.6), and thus the
group Aut(X) is Jordan by [Zar15, Corollary 1.6] or [MZ18]. If X is a surface of class VII,
then the group Aut(X) is Jordan by Corollary 6.6. If the Kodaira dimension of X is 0,
then the group Aut(X) is Jordan by Corollary 8.10. If the Kodaira dimension of X is 1,
then the group Aut(X) is Jordan by Lemma 8.2. Finally, if the Kodaira dimension of X
is 2, then the group Aut(X) is finite by Theorem 8.1. �

Now we are ready to prove Theorem 1.6.

Proof of Theorem 1.6. If X is rational or ruled, then X is projective (see Theorem 3.6),
and thus the group Aut(X) is Jordan by [BZ15] or [MZ18]. Otherwise Proposition 3.5
implies that there is a unique minimal surface X ′ birational to X , and

Aut(X) ⊂ Bir(X) ∼= Bir(X ′) = Aut(X ′).

Now the assertion follows from Proposition 8.11. �

Finally, we are going to prove Theorem 1.7.

Proof of Theorem 1.7. There always exists a minimal surface birational to a given one, so
we may assume that X is a minimal surface itself.

If X is rational, then the group Bir(X) is Jordan by Theorem 1.3. Also, by [PS16,
Theorem 4.2] and Corollary 4.2 every finite subgroup of Bir(X) contains a subgroup of
bounded index that can be embedded into GL2(C). Hence every finite subgroup of Bir(X)
can be generated by a bounded number of elements.
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If X is ruled and non-rational, let φ : X → B be the P1-fibration over a (smooth) curve.
Since X is projective (see Theorem 3.6), the group Bir(X) is Jordan if and only if B is
not an elliptic curve by Theorem 1.4. Moreover, we always have an exact sequence of
groups

1 → Bir(X)φ → Bir(X) → Aut(B),

where the action of the subgroup Bir(X)φ is fiberwise with respect to φ. In particular,
the group Bir(X)φ acts faithfully on the schematic general fiber of φ, which is a conic over
the field C(B). This implies that finite subgroups of Bir(X)φ are generated by a bounded
number of elements. Also, finite subgroups of Aut(B) are generated by a bounded number
of elements. Therefore, the same holds for finite subgroups of Bir(X) as well.

In the remaining cases we have Bir(X) = Aut(X) by Proposition 3.5, so the assertion
follows from Proposition 8.11 and Theorem 2.11. �
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