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Fig. 1. Taking advantage of the underlying mathematical properties of neural surrogate models (NSMs), we address challenging problems in neural inverse
design. For example, given a piecewise linear NSM (left) that predicts the spectrum of a 3D printed surface as a function of the input ink ratios, we can find
the best pair of inks for reproducing a certain target. On the right, we show how this toy problem, when cast as a mixed-integer linear programming (MILP), is
solved combinatorially.

In computational design and fabrication, neural networks are becoming
important surrogates for bulky forward simulations. A long-standing, in-
tertwined question is that of inverse design: how to compute a design that
satisfies a desired target performance? Here, we show that the piecewise
linear property, very common in everyday neural networks, allows for an
inverse design formulation based on mixed-integer linear programming.
Our mixed-integer inverse design uncovers globally optimal or near optimal
solutions in a principled manner. Furthermore, our method significantly
facilitates emerging, but challenging, combinatorial inverse design tasks,
such as material selection. For problems where finding the optimal solution
is not desirable or tractable, we develop an efficient yet near-optimal hy-
brid optimization. Eventually, our method is able to find solutions provably
robust to possible fabrication perturbations among multiple designs with
similar performances.

Additional Key Words and Phrases: Computational design, fabrication, in-
verse design, mixed-integer programming, neural networks, surrogate mod-
els

1 INTRODUCTION
Data-driven prediction of the design’s performance is an indispens-
able tool in computational design and fabrication. The amazing
success of deep neural networks in computer vision and natural lan-
guage processing is propelling the development of neural-network
based surrogate models, or neural surrogate models (NSMs), in com-
putational design [Jiang et al. 2020]. NSMs either learn and replace
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computationally expensive physics-based simulations [Kiarashine-
jad et al. 2020] or are fitted to measured data when accurate simula-
tions are not available [Shi et al. 2018]. In addition to accelerating
the computational design pipeline, generality is an implicit but im-
portant advantage of learned surrogate models: the same developed
machinery can be applied to NSMs learned independently for dif-
ferent applications.

Forward predictions are essential for troubleshooting and analy-
sis in computational design. But, oftentimes, their most important
application is in inverse design, i.e., the reverse process of mapping
functional goals into fabricable designs. Although there have been
recent progress in inverting neural networks [Ren et al. 2020a], there
remain many unaddressed challenges. Due to the non-convexity
of NSMs [Bunel et al. 2018], none of the current neural network
inversion methods is capable of reasoning about the optimality of
the obtained solutions. Moreover, for many naturally occurring
combinatorial problems in computational design, such as selecting
an optimal subset of materials, we still have to resort to stochastic
algorithms.

Our main insight in this work is that given a piecewise linear neu-
ral surrogate model (PL-NSM), the inverse design problem can be
formulated as a mixed-integer linear program (MILP). The piecewise
linearity assumption is not particularly restrictive: most common
neural networks are a composition of linear transformations, such
as fully-connected or convolution layers, and piecewise linear acti-
vation functions, such as the rectified linear unit (ReLU). A MILP
formulation of NSM-based inverse design addresses the challenges
mentioned above. The MILP can be solved with measurable opti-
mality as it produces the gap between the objective’s relaxed and
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feasible solutions1. For small and medium sized networks, our in-
verse design objective typically reaches a gap of 0, i.e., finds the
globally optimal design. For larger networks, due to the combina-
torial complexity of solving MILPs, finding global optima becomes
increasingly difficult. Nevertheless, for these networks the solutions
are still near optimal as the relaxed solution can be computed via
integer relaxation of the corresponding MILP, i.e., a convex linear
program. We also show that the objective’s feasible solution can be
computed using alternative inverse methods thereby accelerating
the gap closure via a hybrid of gradient-based and MILP approaches.
Furthermore, the MILP can be straightforwardly augmented to solve
challenging combinatorial inverse design problems. This is a signifi-
cant advantage, as a large portion of inverse design problems are
combinatorial by nature due to different fabrication requirements.
Finally, when the optimization objective for many designs is similar,
our method can be used to sort those solutions based on their ro-
bustness to different perturbations. The main contributions of this
paper are:
• A novel method of inverse design via casting the inversion of
piecewise linear NSMs as mixed-integer linear programming.
• Introducing a hybrid approach capable of providing near
optimlity certificate while inverting large neural networks.
• Proposing a framework to reliably analyze the robustness of
the inverse designs.
• Equipping the MILP inverse design with combinatorial con-
straints and applying it on a range of real-world problems.

We evaluate our proposed approaches through an extensive set
of experiments in spectral printing and photonic design. We will
release the code to ensure the reproducibility of our results.

2 BACKGROUND AND RELATED WORK
Functional Fabrication. One of the most important missions of

computational design and fabrication is to translate functional goals,
or performances, into fabricable designs [Bermano et al. 2017]. In the
computational fabrication literature, there aremany examples trying
to find a design for a prescribed performance. Example performances
include deformation [Schumacher et al. 2015], color [Sumin et al.
2019], gloss [Matusik et al. 2009], shadow [Mitra and Pauly 2009],
relief [Schüller et al. 2014], caustics [Schwartzburg et al. 2014], etc.
In order to solve these challenging inverse problems, often, the
fabrication process is first modeled in a forward fashion where
the performance is predicted from its corresponding design. Then,
to solve the original performance to design problem, the forward
process is inverted using an optimization. Inspired by the similarity
among these problems, Chen et al. [2013] propose a framework,
called spec2fab, that abstracts the functional fabrication process in
a general manner. In this work, we focus on functional fabrication
problems whose forward modeling is expressed via a piecewise
linear neural network.

1Relaxed solutions are obtained by partially dropping the integer constraints of the
original problem. As a result, in case of a minimization (maximization) the relaxed
solution is an estimate guaranteed to be smaller (larger) than the optimal feasible
solution. The MILP solver tries in parallel to find better feasible solutions and to
improve the relaxed solution by progressively dropping fewer integer constraints.
When finally all constraints are considered, the relaxed and feasible solutions are equal,
𝐺𝑎𝑝 = 0, and we have found the optimal solution.

Neural Networks and Computational Design. Neural networks can
map designs to performances by approximating complex physics
simulations [Kiarashinejad et al. 2020]. Moreover, they can operate
as purely data-driven simulations when accurate physics-based
models are unavailable or difficult to develop [Shi et al. 2018]. In
addition to accelerating the computations, neural surrogate models
are highly transferable across different applications due to their
underlying similarities. Perhaps photonic design is the front-runner
field in using neural surrogate models for computational design
[Jiang et al. 2020]. Also, in computational fabrication we are seeing
a surge in the use of NSMs, such as in computational design of
cold-bent glass façades [Gavriil et al. 2020], appearance-preserving
tactile design [Tymms et al. 2020], or fine art reproduction [Shi et al.
2018].

A particularly interesting related work is the recent ink selection
method [Ansari et al. 2020]. In order to benefit from MILP solvers,
for the ink selection problem, this work develops a linear, but ap-
proximate forward model that predicts the spectra of different ink
combinations. (In general, developing such linear spaces requires
deep domain knowledge and specialized measurements.) In a second
stage, for spectral reproduction of a given painting, an accurate data-
driven forward model based on NSMs is deployed. Here we show
that both ink selection and spectral reproduction can be performed
using a single neural-network forward model without requiring
additional, specialized models.

Neural Network Inversion. Recently, there has been a surge in
inverse models for neural networks. The first solution coming to
mind is to train neural networks in the reverse direction using the
training data. This naive approach fails because of the one-to-many
nature of the problem: the same performance could lead to different
designs causing problems during optimization (e.g., via inconsis-
tent gradients). In order to bypass this challenge, tandem networks
[Liu et al. 2018; Shi et al. 2018] map performances into designs us-
ing a first neural network but, in order to compute a consistent
loss, use a pre-trained forward network to map the resulting de-
sign into its corresponding performance. Conditional variational
auto-encoders [Kingma and Welling 2013] have also been used for
the inverse design task [Kiarashinejad et al. 2020]. These networks
condition the design on the target performance and yield a distri-
bution of solutions from which multiple samples could be drawn.
An invertible neural network [Ardizzone et al. 2019], based on real
NVP [Dinh et al. 2017], is another inversion method. In this method,
a specialized architecture based on normalizing flows is trained in
both forward and inverse directions leading to a bijective mapping
between design and performance spaces.

Very recently, Ren et al. [2020a] benchmarked these inverse meth-
ods and found out that a gradient-based method, via backpropa-
gation with respect to the design variables, results in significantly
more accurate solutions. Dubbed as neural adjoint (NA), this method
uses a boundary loss to punish infeasible designs. It also runs the
optimization starting from multiple random initial guesses in search
for the best objective value. In Section 4, we evaluate our method
against NA extensively.

Mixed-Integer Programming and Neural Networks. The mathemat-
ical optimization problems in which all or some of variables are
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integers are known as mixed-integer programming2 (MIP) [Floudas
1995]. A technique for solving MIPs with nonlinear, nonconvex
functions, dating back to Markowitz and Manne [1957], is to esti-
mate those functions with piecewise linear functions [Belotti et al.
2013]. The resulting approximation, usually via auxiliary binary
variables, is a mixed-integer linear programming with more scalable
and efficient solvers. The connection between piecewise linearity of
some class of neural networks and MILP solvers has only recently
been identified [Cheng et al. 2017]. MILP formulation has since been
exploited for formal verification of networks against adversarial
attacks [Fischetti and Jo 2018]. It is important to note that unlike
the classic use of piecewise linear functions for approximating non-
linear functions, MILP representation is simply a reformulation of
the already piecewise linear networks without any approximation.
We borrow the MILP formulation of piecewise-linear networks, ini-
tially appeared in the formal verification literature [Fischetti and Jo
2018; Bunel et al. 2018; Tjeng et al. 2019], and develop a novel neural
inverse design framework. To the best of our knowledge, we are the
first to introduce the MILP-based neural inverse design and extend
it to related tasks, such as combinatorial inverse design problems.

3 NEURAL INVERSE DESIGN VIA MIXED-INTEGER
LINEAR PROGRAMMING

In this section, we take a forward model expressed as a piecewise
linear neural network and invert it using mixed-integer linear pro-
gramming. In addition to solving typical inverse design problems,
we show how extra integer constraints can readily be added to our
pipeline allowing for solving challenging combinatorial inverse de-
sign problems. Additionally, this formulation can be easily adapted
for evaluating the robustness of different designs. Finally, our pro-
posed method can be combined with other inversion methods in
order to find more accurate near-optimal designs efficiently.

3.1 Mixed-Integer Formulation
A feedforward neural network 𝐹𝜃 is built by a number of function
compositions [Montufar et al. 2014]

x𝐿 = 𝐹𝜃 (x0) = 𝑓 𝐿 ◦ 𝑔𝐿−1 ◦ 𝑓 𝐿−1 ◦ . . . ◦ 𝑔1 ◦ 𝑓 1 (x0) (1)

and maps the input x0 ∈ R𝑚 to the output x𝐿 ∈ R𝑛 (note that
the last layer does not undergo an activation). Here, 𝑓 𝑙 is a linear
preactivation function

𝑓 𝑙 (x𝑙−1) = W𝑙x𝑙−1 + b𝑙

∀ 𝑙 ∈ {1, 2, · · · , 𝐿}
(2)

whose weightsW𝑙 and biases b𝑙 at all layers (1 to 𝐿) make up the
network’s parameters 𝜃 which are computed during the training. In
our notation superscripts and subscripts (to appear later) indicate
the layers and nodes, respectively. The function 𝑔𝑙 is a nonlinear
activation function. Throughout all inverse problems in this workwe
assume thewidely used rectified linear unit or ReLU as the activation
function. But using other piecewise linear activation functions, such
2We recommend the following short and gentle introduction to MIP and its solvers to
the less familiar reader: https://www.gurobi.com/resource/mip-basics/

as leaky ReLU or max pooling layers is straightforward. The ReLU
function is defined as

x𝑙 = 𝑔𝑙 (𝑓 𝑙 (x𝑙−1)) = max{0,W𝑙x𝑙−1 + b𝑙 }. (3)

We adopt a vector-matrix notation for compactness and readability.
That is, the max operator in Equation 3 takes a vector input and
outputs the component-by-component maxima.

In a general neural inverse problem we search for an input vector
x0 that minimizes a distance, using L1 norm3, between the network
prediction and a target performance t

argmin
x0



𝐹𝜃 (x0) − t

1 . (4)

This optimization is very challenging as 𝐹𝜃 is a highly non-linear,
non-convex function [Bunel et al. 2018]. Nevertheless, we can exploit
the piecewise linear structure of neural networks and model their
optimization using mixed-integer linear programming. That is, the
optimization only involves linear terms and constraints. In doing so,
we eliminate the network’s non-linearities at the cost of introducing
new binary and continuous variables.

We follow theMILP-based reformulation of ReLU networks [Tjeng
et al. 2019], previously used for formal verification, for solving our
central inversion problem, summarized in Equation 4. Given a pre-
trained network 𝐹𝜃 with a given set of weights W𝑙 and biases b𝑙 ,
we encode the inverse problem shown in Equation 4 as a MILP with
linear and binary constraints4

argmin
z1, · · · ,z𝐿−1, x0, · · · ,x𝐿




x𝐿 − t



1

(5a)

x𝑙 ⪯W𝑙x𝑙−1 + b𝑙 − l𝑙 (1 − z𝑙 ) (5b)

x𝑙 ⪰W𝑙x𝑙−1 + b𝑙 (5c)

x𝑙 ⪯ u𝑙 ⊙ z𝑙 (5d)

x𝑙 ⪰ 0 (5e)

z𝑙 ∈ {0, 1}𝐾
𝑙

(5f)

For the nodes at layer 𝑙 we introduce a set of continuous (x𝑙 ) and
binary (z𝑙 ) variables. Vectors l𝑙 and u𝑙 are the lower and upper
bounds to the nodes’ preactivation values W𝑙x𝑙−1 + b𝑙 and are
precomputed (see Section 3.3).
While optimizing Equation 5, the solver branches on these bi-

nary variables and, at the worst case, checks all possible network’s
configurations. It is simple to verify that the constraints replace
the role of max{0, .} operation: when z𝑙

𝑘
= 1 (corresponding to

neuron 𝑘 in layer 𝑙 ), the constraints 5b and 5c are binding and thus
x𝑙 = W𝑙x𝑙−1 + b𝑙 for the neuron 𝑘 . Otherwise, when z𝑙

𝑘
= 0, the

constraints in equations 5d and 5e are binding and thus x𝑙
𝑘
= 0. Note

that while we are mostly interested in the optimized value of x0,
we should optimize all introduced binary and continuous variables
to enforce the constraints in Equation 5 and thus have a correct
representation of the neural network.

3The L1 norm is more amenable to linearization.
4Note the curled inequalities and ⊙ symbol indicate our continuing use of component-
by-component convention.
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3.2 Combinatorial Inverse Design
The MILP representation of the inverse design problem can take
additional integer constraints in a seamless manner. These integer
constraints appear in many computational design problems. For
example, in a selection problem,we are interested in a limited number
𝐷 of all input design features x0, which results in an optimal target
performance t. We can cast the selection problem as Equations 5a
to 5f in addition to

𝐾0∑︁
𝑖=1

q𝑖 ≤ 𝐷 (6a)

q ∈ {0, 1}𝐾
0

(6b)

0 ≤ x0𝑖 ≤ q𝑖 , ∀ 𝑖 ∈
{
1, 2, · · · , 𝐾0

}
(6c)

where the vector of inputs to the neural network x0 is of size 𝐾0

and normalized between 0 and 1, and q is our introduced selection
variable, a binary vector of same size (different from previously
defined binary variables z𝑙 ). The inequality constraints 6a and 6c
ensure that at most 𝐷 entries of x0 take non-zero values and thus
used for estimating t. Indices of these entries match the indices of
non-zero elements in q and point to the selected elements. Other
combinatorial inverse design problems can be formulated similarly
by adding proper constraints and integer variables. In Sections 4.2
and 4.3 we show how this formulation is applied to real-world
inverse problems.

3.3 Bound Precomputation

l u

Stable 
active

l u

Stable 
inactive

l u

Unstable 

We precompute as tight as possible lower
l𝑙 and upper u𝑙 bounds to the pre-
activation values W𝑙x𝑙−1 + b𝑙 . There
are two main, interrelated advantages in
bound tightening. First, it improves the
solve time of the problem by strengthen-
ing its formulation [Vielma 2015]. Sec-
ond, tighter bounds can lead to more sta-
ble ReLUs. Stable ReLUs are those that
operate on nodes whose bounds lie com-
pletely within either positive or negative
domain (see the inset). When the bounds
lie within the positive domain (stably ac-
tive), the value of such a node is always
a linear combination of preceding nodes and there is no need to
introduce new optimization variables. When the bounds lie within
the negative domain (stably inactive), the value of such a node is
always zero and therefore the corresponding variables are dropped.
Otherwise, we have unstable ReLUs for which we should define
binary and continuous variables.

The procedure for bound precomputation is similar to our origi-
nal inverse problem where we calculate the minimum (maximum)
of each node of the neural network using the same mixed-integer
formulation (Equation 5). Except that instead of minimizing (max-
imizing) the distance to the target t, we minimize (maximize) the
value of each individual node 𝑘 in layer 𝑙 :

argmin
z1, · · · ,z𝑙−1,z𝑙

𝑘
, x0, · · · ,x𝑙−1,x𝑙

𝑘

x𝑙
𝑘

(7)

( argmax
z1, · · · ,z𝑙−1,z𝑙

𝑘
, x0, · · · ,x𝑙−1,x𝑙

𝑘

x𝑙
𝑘
) . (8)

This optimization is still subjected to constraints 5b to 5f for the
considered node and all preceding layers.

Optimal
solution

Approximated
solution

Feasible 
solution

Relaxed
solution

Time

Objective

tmax

Optimal
 solution

Feasible
 solution

Relaxed
solution

Time

Objective

tmaxtopt.

Our bound tightening algo-
rithm is based on [Fischetti and
Jo 2018] but extended to include
the design constraints. Since de-
signs (x0 in our notation) usually
come with their own constraints,
we observe that it is highly bene-
ficial to enforce those constraints
when precomputing the nodes’
bounds as they lead to tighter
bounds. The bound precompu-
tation can be very expensive
for larger networks especially
within last layers of the network
as it should be performed on
each node separately. In practice,
we set a time limit (𝑡max) for the solver during this computation.
If we stop the optimization prematurely, the relaxed solution of
the optimization is the node’s bound. As depicted in the inset fig-
ures, relaxed solutions are conservative estimation of the optimal
solutions and guarantee that in case of a minimization (maximiza-
tion) there are no smaller (larger) solutions than this estimation.
The feasible solution, however, is the solution that is found for the
original MILP problem thus far and there could be smaller (larger)
values if the minimization (maximization) continues. It is important
to note that using feasible solution as upper and lower bounds in
an early-stopped optimization, results in overestimating the lower
bound and underestimating the upper bound values. This will lead
to calculating incorrectly tighter bounds and overestimating the
number of stable ReLUs, which results in sub-optimal solutions.
Algorithm 1 presents the extended bound computation step by step.

3.4 Combination of Gradient-Based Optimizations and
MILP

For non-combinatorial inverse design problems, gradient-based opti-
mizations are an attractive choice given that the network’s gradient
information can be efficiently computed via automatic differentia-
tion. The neural adjoint (NA) method [Ren et al. 2020a], for example,
relies on a gradient descent approach based on backpropagation
algorithm [Hecht-Nielsen 1992] for inverting neural networks. The
process is very similar to network training except instead of net-
work’s parameters its input is optimized. Despite its good scalability
with network’s size, this (and any other) neural inverse method is
unable to reason about the optimality of the obtained solutions.
Using our method, once the neural inverse design is formulated

via MILP, we immediately obtain a relaxed solution to the objective.
Typical MILP solvers search recursively for both feasible and relaxed
solutions of the objective and try to close their gap as quickly as
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ALGORITHM 1: Nodes’ Lower and Upper Bound Precomputation.
Input
𝐹𝜃 // Trained neural network

𝑡max // Time limit for optimization

Design constraints // e.g., fabrication constraints
Output
Constraints // The set of all constraints including

the upper and lower bounds

begin
Constraints← Design constraints
for 𝑙 ← 1 to 𝐿 do

// Layers

Optimizer← Constraints // Updating the
optimizer with new constraints after
proceeding to the next layer

for 𝑘 ← 1 to 𝐾 do
// Nodes at layer 𝑙

Start Timer
Optimizer← Obj (Equation 7)
while Optimizer do

if 𝑇𝑖𝑚𝑒𝑟 ≥ 𝑡max or 𝐺𝑎𝑝 == 0 then
l𝑙
𝑘
= 𝑀𝐼𝐿𝑃𝑟𝑒𝑙𝑎𝑥𝑒𝑑 // Relaxed solution

determines the bound

Constraints← l𝑙
𝑘

Break // Reaching the time limit or
finding the optimal solution stops
the optimization

end
end
Start Timer
Optimizer← Obj (Equation 8)
while Optimizer do

if 𝑇𝑖𝑚𝑒𝑟 ≥ 𝑡max or 𝐺𝑎𝑝 == 0 then
u𝑙
𝑘
= 𝑀𝐼𝐿𝑃𝑟𝑒𝑙𝑎𝑥𝑒𝑑

Constraints← u𝑙
𝑘

Break
end

end
end

end
end

possible [Klotz and Newman 2013]. Therefore, any feasible solution
is a near optimal solution because we know how far it is from the
(conservative) relaxed solution at any moment. Given the obtained
solutions via NA are all feasible to the MILP objective, we can
solve for the relaxed solution of the objective via MILP and its
feasible solution via NA. In practice we run NA and the MILP on the
same network simultaneously and track the optimality gap. Note
that reaching 𝐺𝑎𝑝 = 0 might not be necessary for all problems.
Depending on the accuracy of the underlying neural network we
can early-stop the optimization at a larger optimality gap. Moreover,
for large neural networks (larger than 4 layers each 150 neuron
wide in our experience) it is not tractable to insist on a zero gap.
As we show in Section 4.4, NA solutions (in case of minimization)
reduce the objective’s feasible solutions significantly more quickly
resulting in a tighter objective’s bound in a less amount of time.

3.5 Design Robustness
Inverse designs are typically one-to-many problems where for a
given performance there are multiple acceptable designs. It is there-
fore interesting to study other attributes during inverse design. An
important attribute is the robustness of designs to possible perturba-
tions during fabrication [Sigmund 2009]. We define the robustness
of a computed, candidate design x̂0 as the maximum deviation of
its performance from a desired target performance t when the can-
didate design is perturbed by a small positive number 𝜖 at each
dimension. In other words, we look for the worst performance of
a design when it is allowed to roam inside a hypercube around it.
The mixed integer formulation allows us to find the provably worst
performance. We write this problem as

argmax
z1, · · · ,z𝐿−1, x0, · · · ,x𝐿




x𝐿 − t



1

x̂0𝑖 − 𝜖 ⩽ x0𝑖 ⩽ x̂0𝑖 + 𝜖, ∀ 𝑖 ∈
{
1, 2, · · · , 𝐾0

}
.

(9)

Once again this optimization is subjected to constraints 5b to 5f.
Note that the candidate design x̂0 need not necessarily come from
MILP-based inversion. In our case, in Section 4.5, we use the neural
adjoint (NA) method for computing candidate designs. In general,
robustness computation is more efficient than typical MILP-based
inversion as the design is usually perturbed within a small neigh-
borhood. This, on top of bound precomputation, leads to further
reduction of unstable ReLUs.

4 EVALUATION
In this section, we demonstrate the potential of our proposedmethod.
For our analyses and experiments, we focus on real-life applications
in neural spectral printing [Shi et al. 2018; Ansari et al. 2020] and
photonic design [Peurifoy et al. 2018; Nadell et al. 2019]. We solve
all MILPs using Gurobi, a state-of-the-art solver [Gurobi Optimiza-
tion 2018]. In order to better relate the experiments to the theory
(developed in Section 3), in Table 1, we summarize the setup of each
experiment in connection with Equations 5 and 6. All bound pre-
computation and most of MILPs are solved on a CPU clusters with
256 cores. This does not mean that employing all cores is always
desirable when solving a MILP. In practice, we find that using more
than 30 cores does not help with the speed up. On the other hand,
the nodes’ bound precomputation is trivially parallelizable for the
nodes belonging to the same layer. In all experiments, the reported
objective (or error) is based on the L1 norm. The time limit 𝑡max
for bound precomputation is set to 150 seconds.

4.1 Neural Spectral Separation
We begin by studying a neural inverse problem in spectral printing.
Spectral printing ensures that printed items are visually close to
the originals, independent of the color of the light source under
which they are observed. In this experiment we used two different
neural networks as the input to our method. The 4-ink network is a
trained PL-NSM with 4 hidden layers each having 100 neurons and
ReLU activation functions [Ansari et al. 2020]. The 44-ink network
is a trained PL-NSM with 2 hidden layers each having 50 neurons
and ReLU activation functions. The 4-ink network, a surrogate for
a forward spectral prediction model, has a 4D design space made of
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Table 1. The setup of each experiment in connection with Equations 5 and 6.

Variables of Equation 5 and 6

Experiment name Experiment mode t (Target) x0 (Input) x𝐿 (Output) Design constraints Variable of interest
Neural Spectral 4-ink network Perfect gray Ink ratios Gray spectrum 0 ≤ x0 ≤ 1 x0

Separation spectrum (t ∈ R31) (x0 ∈ R4) (x𝐿 ∈ R31)
44-ink network Perfect gray Ink ratios Gray spectrum 0 ≤ x0 ≤ 1 x0

spectrum (t ∈ R31) (x0 ∈ R44) (x𝐿 ∈ R31)
Material Selection Selection Matrix of 6 Matrix of 6 area Matrix of 6 Equation 6, 𝐷 = 2, q

spectra (t ∈ R6×31) coverage (x0 ∈ R6×44) spectra (x𝐿 ∈ R6×31) q ∈ {0, 1}44
Inversion Painting’s color Ink ratios Color spectrum 0 ≤ x0 ≤ q x0

spectrum (t ∈ R31) (x0 ∈ R44) (x𝐿 ∈ R31)
Nano-Photonics Inversion (rounded) Scattering cross Spherical shell Scattering cross 0 ≤ 10x0 ≤ 70 𝑅𝑜𝑢𝑛𝑑 (x0)

section (t ∈ R200) thickness (x0 ∈ R4) section (x𝐿 ∈ R200)
Integer-constrained Scattering cross Spherical shell Scattering cross 0 ≤ 10x0 ≤ 70 x0

inversion section (t ∈ R200) thickness (x0 ∈ Z4) section (x𝐿 ∈ R200)
Contoning Inversion (rounded) Color spectrum Ink layer thickness Color spectrum 0 ≤ x0 ≤ 30, 𝑅𝑜𝑢𝑛𝑑 (x0)

(t ∈ R31) (x0 ∈ R11) (x𝐿 ∈ R31) ∑11
1 𝑥0

𝑖
= 30

Integer-constrained Color spectrum Ink layer thickness Color spectrum 0 ≤ x0 ≤ 30, x0

inversion (t ∈ R31) (x0 ∈ Z11) (x𝐿 ∈ R31) ∑11
1 𝑥0

𝑖
= 30

MILP-NA - Perfect gray Ink ratios Gray spectrum 0 ≤ x0 ≤ 1 x0,
combination spectrum (t ∈ R31) (x0 ∈ R8) (x𝐿 ∈ R31) Optimality Gap

Robustness Analysis - Metasurface 4×cylinder height Metasurface spectrum 0 ≤ x0 ≤ 1, argmax


x𝐿 − t

1

spectrum (t ∈ R300) and radius (x0 ∈ R8) (x𝐿 ∈ R300) x̂0
𝑖
− 10−3 ⩽ x0

𝑖
⩽ x̂0

𝑖
+ 10−3

MILP, E= 629.7 MILP, E= 361.1

NA (random), E= 2140.2

NA (informed), E= 395.6

Tandem, E= 766.6

NA, E= 630.5

Tandem, E= 732.1

4-Ink network

Ground truth

44-Ink network

Fig. 2. Different neural inverse methods for spectral separation of a perfect
gray ramp. The error (E) is the sum of objective for all 901 gray spectra. We
split the NA’s solution in the middle to show both random, and domain-
knowledge informed initializations.

CMYK (cyan, magenta, yellow and black) ink ratios and outputs a
31D spectrum. Here the inverse design problem, known as spectral
separation, concerns finding the ink ratios for a target spectrum. A
particularly challenging target for spectral separation is the perfect
gray ramp introduced by Ansari et al. [2020]. This gradient is formed

by 901 dark to light ideal gray spectra which have equal reflectively
across all visible wavelengths (Figure 2).

We compare our MILP-based inversion with both the method of
tandem, previously used for the exactly same problem [Shi et al.
2018; Ansari et al. 2020], and the neural adjoint (NA) [Ren et al.
2020a] as it has been shown to significantly outperform other neu-
ral inverse methods in literature. Figure 2 visualizes the accuracy of
different inverse methods for spectral separation. Our method per-
forms 901 separate optimizations (i.e., Equation 5) in order to find
the corresponding ink ratios. For NA, we run the 901 optimizations,
each 50 times with different random initialization. We allow up to
2000 iterations of Adam [Kingma and Ba 2014] and terminate the
optimization if the solution does not improve within a threshold
in 10 consecutive iterations. In the tandem method we query the
learned inverse method once using a batch of 901 gray spectra as
input.
Looking at the spectral separation accuracies in Figure 2, using

the 4-ink PL-NSM, both our method and NA perform very well
surpassing the tandem method significantly. In fact, with a gap of
0 between the feasible and relaxed solution of the objective, our
method finds the global optima for all 901 instances. This indicates
that the method of NA has also performed remarkably well as its
error is only slightly worse than our method. For a better compari-
son, we re-run an identical set of experiments using a new PL-NSM
with 44 inks as input, i.e., a 44D design space. For this network, our
method again finds the global optima for all spectral targets. This
time, however, NA struggles to find acceptable solutions for many
targets and produces an erroneous reproduction. This indicates that
NA’s performance drops for higher dimensional design spaces likely
due to random initialization.
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In a second experiment on NA, instead of random initialization,
we initialize the optimization with an informed guess. That is, in a
crude estimation, we assume that the average spectra of all input
inks, i.e., when each ink’s contribution is 1/44, is a 50% gray spec-
trum. Therefore, for reproducing the pure black, i.e., the darkest gray
(100%), each ink is initialized with 2/44 ratio, and so on. With this
informed initialization drawn from domain knowledge, the accuracy
of NA increases substantially but still trails MILP’s performance.
More importantly, this experiment reveals a significant advantage
of our method where unlike NA, due to global optimality, increas-
ing the design space dimensionality does not affect the accuracy.
Being insensitive to the initialization is another major advantage as
using domain knowledge for informed initial guesses is not always
feasible.

Using the MILP approach, the optimization of a single gray spec-
trum takes on average around 256 and 840 seconds for the 4- and
44-ink PL-NSM, respectively. We spend also around 331𝑠 and 3.5
seconds on a one-time precomputation of upper and lower bounds
of the network nodes. The NA method, on a Titan X GPU, takes on
average 62 and 99 seconds for the 4- and 44-ink PL-NSM, respec-
tively. The fastest method is tandem, spending less than 1 second
for all spectra, as querying neural network is extremely efficient,
though at the cost of significant accuracy loss.

4.2 Material Selection
Although digital fabrication technologies, such as multi-material
3D printers, have a limited number of channels, there is a vast array
of materials that can fill those channels. Consequently, the question
of which subset of materials is optimal for a given task (also known
as material selection) is becoming a recurrent question [Ansari et al.
2020; Piovarči et al. 2020; Nindel et al. 2021].

Here we reproduce the results of the duotone reproduction exper-
iment from Ansari et al. [2020] via our approach. The effect of the
ink selection is highly visible in duotone experiment and the small-
est mistake will stand out prominently. Similar to us, Ansari et al.
[2020] employ a MILP formulation for the ink selection. However,
they need to develop a custom linear forward model that requires
deep domain knowledge and specialized measurements. Interest-
ingly, for the actual spectral separation, they train NSMs for the
selected inks. Here we show that both spectral separation and the
ink selection can be performed via purely data-driven NSMs.

In our duotone reproduction setup, following Ansari et al. [2020],
given a spectral image we look for the best pair of inks leading
to optimal spectral reproduction from within an ink library of 44
inks. The input is the spectral image of a limited palette watercolor
painting from Ansari et al. [2020] shown in Figure 3a. We adopt the
PL-NSM (Section 4.1) that predicts the spectrum of a set of 44 library
inks. As printed data for training a 44-ink network is not provided,
we simulate such data using the Neugebauer model [Yule 1967], an
analytical spectral prediction model. The Neugebauer primaries are
computed using the multiplication of library ink transmittances.
Since we are looking for a pair of inks that performs well on the
whole image, following Ansari et al. [2020], we sample 6 spectra
from the input image. We use the method explained in Section 3.2,
relying on both Equations 5 and 6. As we use 6 sampled spectra

(a) Original painting

(b) Reproduction

Fig. 3. Given a PL-NSM that predicts the spectrum of a set of 44 inks,
our method finds the optimal pair of inks that results in the best spectral
reproduction of the input image.

from the input image, we optimize for the 6 targets t simultaneously
via using a sum in Equation 5a. In fact one can see this problem as
solving 6 copies of the network simultaneously for 6 different target
spectra all of which must satisfy Equation 6. This means that the
variables are almost 6x more than solving for a single target (see
Table 1).

Our MILP-based ink selection finds the ground truth inks with
a gap of 0, i.e., provably the optimal pair of inks for reproduction
of the given input (Figure 3a). Having obtained the two optimal
inks, in order to reproduce the input image, we could calibrate a
new NSM using the reliable, printed data of those two inks. More
interesting is to use the same 44-ink network, this time in a spectral
separation configuration, in order to simulate how the pair of opti-
mal inks reproduce the painting (Figure 3b). As we see in Figure 3,
the reproduction is of high quality. The quality can be still improved
if we calibrate the network with printed rather than simulated data.
But the remarkable fact of this experiment remains the globally
optimal ink selection on a neural network. The time for solving the
ink selection problem is 4998s. The time for the spectral separation
is, on average, 1.8 seconds for each spectra, and manageable as
there are only 5483 unique colors in the scene. Finally, the one-time
precomputation of nodes’ bounds took 3.5 seconds.
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Fig. 4. Comparing ourMILP and a GA approach for an ink selection problem.
We repeat GA 10 times and report the average, maximum and minimum
values.

4.2.1 Comparison with Genetic Algorithm. When selecting 2 out of
44 inks, it might be tempting to try a brute-force approach where
the objective for each possible pair of inks is computed and then
the pair with the best objective is selected. There are however two
major caveats. First, although the number of two-ink combinations
in a set of 44 inks is reasonable, selecting a larger number of inks
via a brute force approach is infeasible. For example, selecting 10
inks amounts to around 2 × 109 combinations, which means we
need to perform this number of optimizations to find the objective
for each combination. Second, in the absence of a MILP approach,
the objective values may not be optimal.
More appropriate solutions to such combinatorial problems are

based on stochastic methods, such as genetic algorithm (GA) or sim-
ulated annealing. In this section we compare our proposed method
to GA for a selection problem. Genetic algorithm searches the com-
binatorial space stochastically via their well-known heuristics and,
in general, prefer combinations with best objectives. For computing
the GA’s objective, we use the interior point method. In Figure 4
we perform ink selection for a single target spectrum each time
allowing for a different number of inks. At each step we repeat the
experiment 10 times to capture the variance in GA solutions, and
show the average, maximum and minimum values. As shown in
Figure 4, the MILP approach always yields the optimal solutions,
outperforming GA in both time and accuracy. Note that MILP is
considerably faster even though minimum GA computation time on
the plot seems to be smaller at around 8 inks. This is because MILP
computation time should be compared to the GA’s multiple run
times until GA converges to a desired solution (due to stochasticity).
In this experiment these two methods were evaluated on the same
hardware (Intel Xeon CPU E5).

4.3 Integer-Constrained Inverse Design
Apart from material selection, a significant portion of inverse de-
sign problems are combinatorial by nature due to the fabrication
constraints. For example, metamaterials are usually made of juxta-
position of a set of materials (including the void) in 2D or 3D arrays
[Bertoldi et al. 2017]. Current approaches assign continuous mate-
rial properties (such as permittivity) to the elements of these arrays
and quantize these values before fabrication. Unfortunately, the
quantization step can significantly undo the optimized performance
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Fig. 5. (a) Optimizing for integer shell thickness of a photonic nano-sphere,
and (b) integer 3D printed layer thickness in contoning. In both experiments,
one can ignore the integer constraints and solve for continuous solutions to
be rounded to nearest integers. Our method allows for directly optimizing
the desired integer values with significant accuracy gain over the rounded
solution.

[Zhu et al. 2020]. When the forward model is expressed via a PL-
NSM, our combinatorial inverse design formulation can seamlessly
take such integer constraints into account. Here, we demonstrate
two examples of integer-constrained inverse designs.

4.3.1 Nano-Photonics. In this experiment, we consider the light
scattering from a multilayer dielectric spherical nano-particle [Peu-
rifoy et al. 2018]. We obtain a different spectral scattering cross
section by changing the thickness of the material of each shell.
Similar to spectral printing, here we also look for optimal ratios
(thicknesses) of the materials which result in a desired spectrum. In
order to imitate possible fabrication constraints, we slightly twist
the experiment by limiting the materials to take a predefined set
of integer thicknesses (from 0 to 70 nm at 10 nm intervals). We
train a PL-NSM with 3 layers of 100, 50, and 100 neurons following
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Peurifoy et al. [2018] which maps the combination of 4 materials
into the resulting spectrum.

We test our methods on 16 target scattering cross sections shown
in Figure 5a and, for all targets, reach the globally optimal solution
with average objective of 19.47. For comparison, we also perform the
same inverse design (via MILP) on the targets but without enforcing
integer thicknesses. After rounding the obtained optimal but contin-
uous thicknesses to the nearest allowed integers, the error increases
significantly (30.30). For this particular problem, our MILP-based
integer-constrained inversion takes on average 44 seconds. We also
spend 4.8 seconds on the one-time bound precomputation of the
network nodes.

4.3.2 Contoning. In color reproduction for 3D printing via con-
toning [Babaei et al. 2017], inks with different thicknesses can be
superposed. Contoning avoids potential artifacts of the alternative
halftoning techniques that rely on spatial multiplexing of materials
on the surface.While contoningworkswell when ink concentrations
are low, with highly concentrated inks the quantization artifacts
start to appear as the thickness can only be controlled via tuning a
discrete number of layers. In an experiment similar to the previous
one, we show how ourmethod obtains the best discrete arrangement
of different ink layers for reproducing a given spectrum.
Following the setup of Shi et al. [2018], we want to reproduce

a target spectrum by superposing 30 layers of 11 different inks.
We train a PL-NSM with 3 layers of 50 neurons which maps the
layer layouts to the spectrum. Our printer can print 30 layers of 11
different inks (see Table 1 for design constraints).We have performed
this experiment with two different settings, in our first attempt
(similar to [Shi et al. 2018]) we set the x0 ∈ R11. Since the smallest
amount of ink that our fabrication device can deposit is a single
layer, we have to round the elements of x0 to the nearest integer
neighbors. This rounding step introduces error to our designs. In
the second setup, by defining x0 ∈ Z11 in our MILP formulation we
directly solved the integer inverse problem and found the optimal
integer design. In Figure 5b, we plot 16 target and reproduced
spectra. We also show the resulting spectra obtained by rounding
the optimal continuous layer thicknesses to the closest integers.
The average error in this experiment is 1.14 and 1.72 for optimal
integer and rounded solutions, respectively. OurMILP-based integer-
constrained spectral separation takes on average 40 seconds. The
bound precomputation for the considered network takes 8 seconds.

4.4 Combination of MILP and NA
One of the greatest advantages of using MILP for inverse design is
its optimality or near optimality guarantees. Despite this advantage,
the MILP approach does not scale with larger networks. On the
other hand, gradient-based local optimizers, such as NA [Ren et al.
2020a] are very efficient even for large networks. As discussed in
Section 3.4, NA solutions are feasible solutions to MILP’s objective.
Therefore, we can produce feasible solutions via NA and continue
using MILP for improving the relaxed solution. In Figure 6, we
show this approach on 4 randomly target spectra, in a spectral
separation problem. We use a larger PL-NSM consisting of 4 layers
of 150 neurons, mapping an 8D ink ratio input to spectra. In all
the experiments, NA improves the feasible solution significantly
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Fig. 6. A NA-MILP hybrid approach. NA closes the optimality gap signifi-
cantly faster than MILP’s own objective’s feasible solutions.

faster than MILP and by comparing NA solutions with the MILP’s
relaxed solution we can reach smaller optimality gaps (distance
between the yellow and the green lines instead of the distance
between blue and green lines) in a considerably less amount of time.
Although we use NA for computing feasible solutions, any other
methods capable of yielding feasible solutions efficiently, could be
used. Finally, we would like to remind that this technique is only
suitable for non-combinatorial inverse design problems where all
solutions are trivially feasible.

4.5 Robustness Analysis
For analyzing the robustness of different designs (Section 3.5), we
use the recent metasurface setup [Ren et al. 2020a; Nadell et al.
2019]. We train a convolutional PL-NSM that maps 8D designs to
300D spectra. The input design, made of four nano-cylinders, is
expressed via the height and radius of each cylinder. The network
is made of 4 fully connected layers each with 500 neurons with
ReLU activation functions and batch normalization, followed by 3
deconvolution and 1 convolutional layer. Targeting two different
spectra, we find a number of corresponding designs via NA which
have the best objectives. In Figure 7, we show the (sorted) objectives
and corresponding robustness for each solution. While, in Figure 7a,
all objectives are comparable, there is one design (solution 19) that
has a significantly higher robustness (indicated by a very small
circle). This solution is the design of choice for this target spectrum.
Moreover, in Figure 7b, sample 1 and 2 give very good accuracy
and robustness at the same time and are clearly the most preferred
designs. In this experiment, we spend on average 64 seconds on
robustness calculation of each design and 3.64 hours on a one-time
bound precomputation. We also set 𝜖 (Equation 9) to 10−3. While we
use a simple perturbation model, more sophisticated perturbations,
such as erosion and dilation of designs [Sigmund 2009] are possible
and left for future work.
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Fig. 7. Robustness analysis of two target spectra of the metasurface de-
sign experiment. The size of the circle shows maximum deviation from the
objective (Equation 9) and has an inverse relationship with robustness.
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Fig. 8. Scalability of our MILP-based neural inverse design with the depth
and width of the network.

4.6 Scalability of MILP-Based Neural Inverse Design
While MILPs are known to be NP-hard problems [Bunel et al. 2020],
it is interesting to study their scalability in our context. We choose
the neural spectral separation experiment (Section 4.1) as a case
study for our scalability analysis. First, in order to see the effect of
network’s depth on the solve time, we train 4 different PL-NSMs
that perform forward spectral prediction for 8 inks. The trained
networks have from 6 to 12 hidden layers, each with 50 neurons.
In Figure 8a, we show the solve time for each of these networks
averaged for 10 target spectra. Similarly, in Figure 8b, we study the
effect of network’s width, by solving the same spectral separation
problem performed on 4 PL-NSMs with a single hidden layer of 100
to 400 neurons. Here also the reported time is the average for 10
different target spectra. Once again, in all experiments, we continue
the optimization to reach a duality gap of 0 and thus global optima.
We observe that increasing the depth and width of the network

increases the solve time, as expected in MILP problems. This is
because each new node (with unstable ReLU) in the network gives
rise to an additional binary and continuous variable, as well as new
linear and integer constraints, in Equation 5.

5 LIMITATIONS AND FUTURE WORK
Due to the NP-hardness of solvingMILPs, this method is not suitable
for large networks when searching for globally optimal designs. We
nevertheless solved some real-life inverse design problems [Ansari
et al. 2020; Shi et al. 2018; Peurifoy et al. 2018] using this tool through-
out this paper. Looking at Figure 8a, we have found the globally

optimal solution through inverting a neural network with 12 hidden
layers each having 50 nodes in less than one minute. Thanks to the
immense expressive power of neural networks [Hornik et al. 1989],
such an architecture is capable of accurately replacing many com-
plex simulations. In fact, in this paper we trained forward models
from the literature [Ansari et al. 2020; Shi et al. 2018] with much
smaller networks. In all these training, we used the same data with
the same dimensionality of design and performance spaces and ob-
tained nearly the same training error. In circumstances where using
larger networks is necessary, the relaxed solution provided by the
MILP solver help making informed decision on early stopping of
the optimization. In such cases, the improvement of the feasible
solution can also be accelerated via alternative solvers. An inter-
esting direction for future work is to develop a solver customized
to the type of inverse problems we deal with. We believe that neu-
ral networks with their recursive compositions are amenable to
tailored heuristics beyond those found in one-size-fits-all solvers
[Gurobi Optimization 2018]. Ironically, machine learning is believed
to be a potentially adept tool for discovering such heuristics [Khalil
et al. 2017].
The standard accuracy metric in neural inversion is the dis-

tance from ground-truth 𝑦 to the re-simulated performance 𝑦 =

𝐹𝜃 (𝐹−1𝜃 (𝑦)) [Ren et al. 2020b] and not the error computed by the
underlying phenomenon. Hence, the accuracy of obtained solutions
are as high as the network’s training accuracy. In this paper, we
have made sure that 𝐹𝜃 has been trained highly accurately so that
the re-simulated errors are close to the real errors. This remark
raises another intriguing point. Given the uncertainty in training
NSMs, different training instances produce different parameteri-
zations for NSM. That is to say the optimal design is influenced
by the training’s uncertainty. If the uncertainty of the network is
quantified (e.g., Bayesian training), we can early-stop the inversion
before reaching the global optimum. However, finding the stopping
criterion is not trivial. The network’s uncertainty is not the same
everywhere because neural networks are more accurately trained in
some regions than others. This is highly interesting and, in future,
we will include these uncertainties in the inverse design process.

6 CONCLUSION
Neural networks are becoming first class citizens when it comes
to data-driven modeling in computational design and fabrication.
The black box reputation of neural networks has hindered applying
them in domains requiring interpretability. While this may to some
extent be true during their training, once trained, neural networks
are rather well-behaved mathematical functions. In this work we
showed that leveraging the underlying mathematical structure of
neural surrogate models leads to a tool with many attractive prop-
erties. We believe our work paves the way for making sense of
data-driven design processes in a more systematic manner.
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