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Deforming cubulations of hyperbolic groups

Elia Fioravanti and Mark Hagen

Abstract

We describe a procedure to deform cubulations of hyperbolic groups by ‘bending hyperplanes’.
Our construction is inspired by related constructions like Thurston’s Mickey Mouse example,
walls in fibred hyperbolic 3-manifolds and free-by-Z groups, and Hsu–Wise turns. As an
application, we show that every cocompactly cubulated Gromov-hyperbolic group admits a
proper, cocompact, essential action on a CAT(0) cube complex with a single orbit of hyperplanes.
This answers (in the negative) a question of Wise, who proved the result in the case of free
groups. We also study those cubulations of a general group G that are not susceptible to trivial
deformations. We name these bald cubulations and observe that every cocompactly cubulated
group admits at least one bald cubulation. We then apply the hyperplane-bending construction
to prove that every cocompactly cubulated hyperbolic group G admits infinitely many bald
cubulations, provided G is not a virtually free group with Out(G) finite. By contrast, we show
that the Burger–Mozes examples each admit a unique bald cubulation.
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1. Introduction

The theory of group actions on CAT(0) cube complexes, and in particular its applications
to 3-manifolds [1, 58], has recently exerted a large influence in group theory and topology.
‘Cubulating’ a group — constructing a proper action on a CAT(0) cube complex, usually via
the method introduced by Sageev in [49] — reveals a great deal about the group’s structure.
This is particularly true when the group G is hyperbolic: in this case, when the codimension-1
subgroups used to cubulate the group are quasiconvex, the action is also cocompact [39, 45,
50]; we say G is cocompactly cubulated if it acts properly and cocompactly on a CAT(0) cube
complex. In this case, work of Agol [1] and Haglund–Wise [36] shows that such a hyperbolic
group G has many useful properties, for example, Z-linearity, separability of quasiconvex
subgroups, etc.

Many of the procedures for cubulating hyperbolic groups G arising in nature make it clear
that cubulations of G are non-canonical and proving their existence is often non-constructive.
Proofs that a given G is cubulated often proceed as follows. First, one describes a general
procedure for finding quasiconvex codimension-1 subgroups in G. Then, one shows that any
two points in the Gromov boundary of G can be separated by the limit set of some coset of a
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codimension-1 subgroup of the given type: one constructs a particular subgroup ‘targeted’ at
the given pair of boundary points. Then one applies a theorem of Bergeron–Wise [3], relying on
a compactness argument, to extract a finite collection of codimension-1 subgroups that suffice
to ensure a proper action on a CAT(0) cube complex.

For example, when G is the fundamental group of a hyperbolic 3-manifold M , the
codimension-1 subgroups can be taken to be fundamental groups of quasi-Fuchsian surfaces
immersed in M . The work of Kahn and Markovic [41] shows that these are enough to separate
any two points in the boundary of G.

While a lot of information about G can be gleaned from the mere fact of it being cubulated,
one usually does not know much about the specific cube complex. It is therefore natural to
want some sort of ‘space of all cocompact cubulations’ of a given hyperbolic group G.

One way to proceed is by analogy to deformation spaces of actions on trees, introduced by
Forester in [23]. There, one considers all minimal actions of G on trees in which the set of
elliptic subgroups is held fixed. In our setting, one might wish to consider all of the proper,
cocompact actions of G on CAT(0) cube complexes. The right notion of a ‘minimal’ action on
a CAT(0) cube complex X should at least include the requirement that there is no G-invariant
convex subcomplex, so one should restrict to actions that are essential in the sense of Caprace–
Sageev [16]; this avoids distractions like attaching a leaf edge to each vertex, or taking the
product of X with a finite cube complex. A result in [16] makes this a safe restriction, since
any cocompact cubulation can be replaced with an essential one without really changing much.

However, one should also impose some additional restrictions that are best illustrated
by considering the simple case where G = Z. The most obvious cubulation, the action by
translations on the tiling of R by 1-cubes, seems intuitively better than the action on the cube
complex obtained by, say, stringing together countably many squares, with each intersecting the
next in a single vertex. Both these cubulations are essential, and in both cases the hyperplane-
stabilisers are trivial, but only in the first case is the action of {1} on each hyperplane the
‘right’ cubulation of the trivial group.

So, we ask that X is hyperplane-essential: every hyperplane-stabiliser acts essentially on
its hyperplane. This, too, turns out to be reasonable, in the sense that, if G admits a
proper, cocompact action on a CAT(0) cube complex, then it admits a proper, cocompact,
hyperplane-essential action [31]. Passing to a hyperplane-essential action is somewhat more
violent than making an action essential, since it seriously changes which subgroups are
hyperplane-stabilisers.

Remark (Hyperplane-essentiality). Essentiality and hyperplane-essentiality are defined
precisely in Section 2. When G is the fundamental group of a hyperbolic 3-manifold,
the cubulations provided using Kahn–Markovic surfaces are automatically essential and
hyperplane-essential (see Remark 2.24).

There are also stronger conditions that one might want to impose on a cubulation G � X.
For example, X has codimension-k hyperplanes, each of which is the intersection of k pairwise-
transverse hyperplanes; one could ask that the stabiliser of each hyperplane of each codimension
acts essentially on it. This condition is strictly stronger than hyperplane-essentiality (which
imposes restrictions only on codimension-1 hyperplanes) and is equivalent to X having no free
faces; equivalently, the CAT(0) metric has the geodesic extension property [10, Proposition
II.5.10]. However, it is not at all clear whether one can pass from an arbitrary cocompact
cubulation to a cubulation with no free faces, so we work with hyperplane-essential actions
instead of the stronger version.

Restricting to proper, cocompact, essential, hyperplane-essential actions seems to be
reasonable for the purpose of considering the ‘space of cubulations’ of G because of the
following theorem of Beyrer and the first author [5]. For hyperbolic groups G acting on cube
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complexes X with the above properties, the action G � X is completely determined, up to
G-equivariant cubical isomorphism, by the length function �X : G → N. This is the function
�X(g) = infx∈X d(x, gx), where d is the �1 metric on X. Throughout this paper, we will say that
cubulations G � X,G � Y are equivalent if there exists a G-equivariant cubical isomorphism
X → Y .

This suggests a natural topology for the space of such cubulations [6]. First, we allow
ourselves to continuously vary the �1 metric on X by replacing the cubes by cuboids — the
side-lengths need not be 1, and we can continuously vary length functions by rescaling edges
(always assigning the same length to parallel edges). From this point of view, passing from X
to a cubical subdivision — equivariantly replacing each hyperplane with several parallel copies
but keeping the metric fixed — has no effect on the length function, which now takes values
in R�0. Regarding each geometric, essential, hyperplane-essential action on a CAT(0) cuboid
complex as a length function gives a map from the set of such cubulations of G to RG − {0},
which we equip with the product topology. One can also projectivise, regarding as equivalent
any two cubulations inducing homothetic length functions.

This suggests that we should not consider cubulations G � X,G � Y essentially different
if they admit a common subdivision. This motivates us to consider only cubulations in which
no two halfspaces are at finite Hausdorff distance (see the notion of ‘bald’ cubulation in
Definition 1.1).

In this paper, we concern ourselves with deformations of a cubulation G � X, that is, with
moving around in the space of cubulations. We leave discussion of the subject from the point
of view of the above topology for later work. Instead, we are concerned with a much more basic
question.

Question. For which (hyperbolic) cocompactly cubulated groups G is the space of essential,
hyperplane-essential cubulations infinite, even up to subdivision?

One way to move in the space of cubulations is using the action of Out(G); this varies the G-
action, but not the underlying cube complex. It is not hard to show that, if Out(G) is infinite,
then the existence of a cocompact cubulation of G ensures that there are infinitely many with
the above properties. However, a common situation is where G is a one-ended hyperbolic group
that does not admit any two-ended splittings, so Out(G) is finite.

In general, one needs to vary the cube complex as well as the action. In this paper, we bend
hyperplanes to transform one cubulation into another and answer the above question.

Bending hyperplanes

Let G be a one-ended hyperbolic group acting properly and cocompactly on an essential,
hyperplane-essential CAT(0) cube complex X. We now describe the bending procedure for
deforming G � X into a new cubulation. Bending is inspired by related constructions like
Thurston’s Mickey Mouse example [53, Example 8.7.3], walls in fibred hyperbolic 3-manifolds
[19] and free-by- groups [33], and Hsu–Wise turns [40, Definition 4.1].

The idea is to produce, given the hyperplanes of X, a new crooked hyperplane C built
from pieces of old hyperplanes. Each piece is obtained from some hyperplane u ⊆ X by
cutting u along a family {wi} of pairwise-disjoint hyperplanes that intersect it. Each wi is
itself cut along a family of hyperplanes containing u, and also contributes a piece to the
crooked hyperplane. Finally, the various pieces are glued along their boundaries, which are
codimension-2 hyperplanes in X. This is depicted in Figure 1.

Since G is hyperbolic, results of Agol [1] and Haglund–Wise [36] imply that hyperplane-
stabilisers are separable. This allows one to choose the pieces so that their bounding
codimension-2 hyperplanes are all far apart, which in turn allows one to produce a crooked
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Figure 1 (colour online). Bending hyperplanes into a crooked hyperplane.

hyperplane that is two-sided and quasiconvex in X. If the pieces are constructed equivariantly
with respect to a finite-index subgroup of G, then the crooked hyperplane is also acted upon
cocompactly by its stabiliser. Hence each crooked hyperplane corresponds to a quasiconvex
codimension-1 subgroup of G, along with a specified wall; applying Sageev’s construction
[49, 50] yields a cocompact, essential G-action on a new cube complex Y with a single orbit
of hyperplanes.

With a bit more care, we can do the bending in such a way that every infinite-order g ∈ G
has its axis cut by some translate of the crooked hyperplane, ensuring, by [3], that the G-action
on Y is proper.

As an application of the bending procedure, we can therefore answer a question asked by
Wise in [60, Problem 5.2]:

Theorem A. Let G be a Gromov-hyperbolic group that admits a proper, cocompact action
on a CAT(0) cube complex. Then there exists a CAT(0) cube complex X on which G acts
properly, cocompactly, and essentially with a single orbit of hyperplanes.

The above theorem was proved by Wise in the case where G is a free group. He used an
ingenious antenna construction to produce a codimension-1 subgroup H of G, and an associated
H-wall, so that the action on the resulting dual cube complex has the claimed properties. In
fact, Wise goes considerably further in the free group case: his construction shows that one
can choose H to be an arbitrary finitely generated infinite-index subgroup.

As described above, our proof proceeds along completely different lines in the one-ended
case, relying on bending hyperplanes. When G is a surface group, the resulting cubulation
essentially originates from a single (necessarily non-simple) filling closed curve on the surface.

In the general case, we split G as a finite graph of groups with finite edge groups and use
a hybrid technique: we apply a version of Wise’s antenna construction to the Bass–Serre tree,
apply the bending construction to the various one-ended vertex groups, and glue up the pieces
to get the required wall.

Remark. In the one-ended case, our proof of Theorem A actually shows more. Let K � G
be a hyperplane-stabiliser in a proper, cocompact action of G on an essential, hyperplane-
essential CAT(0) cube complex. Then, for every open neighbourhood U ⊆ ∂∞G of the limit
set of K, the cubulation in Theorem A can be chosen to have a hyperplane-stabiliser H with
limit set contained in U . The two sides of the H-wall can similarly be picked arbitrarily close
to the two sides of the K-wall.

In other words, an arbitrarily small deformation of one of the original walls always suffices
to obtain a proper action with a single orbit of hyperplanes.

Bald cubulations

Let G be a (not necessarily hyperbolic) group acting properly and cocompactly on a CAT(0)
cube complex X. It is not difficult to produce infinitely many cocompact cubulations of G, no
two of which are equivalent. This is because of various relatively uninteresting procedures:
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• we can cubically subdivide X indefinitely (or just subdivide a G-orbit of hyperplanes);
• given a vertex v ∈ X and a finite CAT(0) cube complex F , we can G-equivariantly attach

a copy of F to each vertex in G · v;
• for every n � 2, we can breed a G-orbit of hyperplanes of X with an n-cube. This procedure

is described in the case n = 2 in [5, Example 5.5], but the extension to a general n is
straightforward.

Such procedures for creating new cubulations from old ones are not very interesting because
they always result in actions G � X with some of the following properties:

• G � X inessentially: there is some hyperplane w of X and some component h of X −w
such that each G-orbit intersects h in a set at bounded distance from w;

• G acts hyperplane-inessentially: there is some hyperplane w such that the action of
StabG(w) on w is inessential;

• X contains two hyperplanes w1,w2 that have associated halfspaces h1, h2 lying at finite
Hausdorff distance from each other.

If G is hyperbolic and acts properly and cocompactly on several essential CAT(0) cube
complexes X1, . . . , Xk, there is an additional ‘cheap’ procedure to create new cubulations. We
can cubulate G using all of the codimension-1 subgroups arising as hyperplane-stabilisers in
the various G � Xi. Again, the resulting action G � X can fail to be hyperplane-essential,
even if all original actions G � Xi had this property.

As discussed above, we wish to restrict to essential actions, in light of [16, Proposition
3.5]. A procedure called panel collapse reduces an arbitrary hyperplane-inessential cocompact
cubulation to a hyperplane-essential one [31], so it makes sense to consider only hyperplane-
essential actions.

This motivates the following definition:

Definition 1.1 (Bald). A bald cubulation of a group G is a proper, cocompact, essential,
hyperplane-essential action by cubical automorphisms on a CAT(0) cube complex X with the
following additional property. Suppose that w1,w2 are hyperplanes of X that bound halfspaces
at finite Hausdorff distance. Then there is a cubical splitting X = R × Y such that w1 and w2

are hyperplanes of the R-factor.

As an example, it follows from the Cubical Flat Torus theorem of Woodhouse–Wise [61]
that, for every bald cubulation of a free abelian group, the underlying CAT(0) cube complex
is isomorphic to the standard tiling of Rn with vertex set the integer lattice (Proposition 4.5).

To make an arbitrary cocompact cubulation bald, we shave it. This is Proposition 2.29, the
core of which lies in [31].

Proposition B. Every cocompactly cubulated group admits a bald cubulation.

Because of the uninteresting procedures described above, every group G has infinitely many
different cocompact cubulations, as soon as it has one. It is a much less trivial question whether
G admits infinitely many different bald cubulations. The reason is that shaving — in particular,
panel collapse — can radically shrink the hyperplane-stabilisers. We are not aware of any
general technique to ensure that different essential cubulations will not get shaved into the
same bald cubulation.

In fact, there can be no general procedure to produce distinct bald cubulations of a
cocompactly cubulated group. In Proposition 4.8 we show
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Proposition C. Let T1, T2 be locally finite trees with all vertices of degree at least 3. Let
U1, U2 � Aut(T1),Aut(T2) be closed, locally primitive subgroups generated by edge-stabilisers
and satisfying Tits’ independence property. Let Γ � U1 × U2 be a uniform lattice with dense
projections to U1 and U2. Then the standard action of Γ on T1 × T2 is the only bald cubulation
of Γ.

Proposition C implies that the irreducible lattices in products of trees constructed by Burger–
Mozes in [11, 12] have a unique bald cubulation (see in particular [12, Theorem 6.3]).

An interesting question is to what extent the hypotheses of Proposition C can be relaxed.
Specifically, a BMW group (for Burger–Mozes–Wise) is a group Γ admitting a free, vertex-
transitive action Γ → Aut(T1) × Aut(T2), where T1, T2 are finite valence regular trees [14].
Many examples of BMW groups have been studied, beginning with the aforementioned work
of Burger–Mozes and contemporaneous work of Wise [55, 57]. Which irreducible BMW groups
have a unique bald cubulation?

The proof of Proposition C proceeds by studying the de Rham decomposition of X, where
Γ � X is a bald cubulation provided by Proposition B. Combining results from [52, 54] enables
us to apply the superrigidity theorem of Chatterji–Fernós–Iozzi [17], which, in conjunction with
a result of Caprace–de Medts [15], implies that each factor of the de Rham decomposition is
a CAT(0) cube complex with compact hyperplanes. Baldness — in particular, hyperplane-
essentiality — then implies that each factor is a tree. A result in [13] finally shows that X is
equivariantly isomorphic to the product of two trees we started with.

Proposition C stands in sharp contrast to the situation for (most) hyperbolic groups:

Theorem D (Infinitely many bald cubulations). Let G be a non-elementary Gromov-
hyperbolic group acting properly and cocompactly on a CAT(0) cube complex. Suppose that
at least one of the following holds:

• G is not virtually free;
• Out(G) is infinite.

Then G admits infinitely many pairwise-inequivalent bald cubulations.

The case where Out(G) is infinite is straightforward and is dealt with in Lemma 4.3. The
main content of Theorem D is the case where G splits as a (possibly trivial) finite graph of
groups with finite edge groups and at least one vertex group one-ended.

Groups to which the theorem applies include fundamental groups of hyperbolic surfaces,
fundamental groups of hyperbolic 3-manifolds [3, 41], non-virtually free groups with finite
C ′( 1

6 ) presentations [56] (and hence random groups at sufficiently low density in Gromov’s
model [46]), non-virtually free hyperbolic Coxeter groups [45], hyperbolic free-by-cyclic groups
[32], non-virtually free one-relator groups with torsion [58], Bourdon groups [7] and others.

The theorem does not apply in the case where G is virtually free and Out(G) is finite; such
groups were characterised by Pettet [47] and include certain right-angled Coxeter groups (see
[37, Proposition 5.5] and, more generally, [28, Theorem 1.4; 43, Theorem 1.1]). We discuss the
virtually free case more below.

Remark (Strategy of the proof of Theorem D). Lemmas 4.3 and 3.19 reduce the claim to
the case where G is one-ended.

The strategy in the one-ended case is as follows. First, we assume for a contradiction that
G admits only finitely many bald cubulations. From this, in Lemma 4.1, we deduce that some
such cubulation G � X has a hyperplane w whose limit set in ∂∞G is ‘minimal’, in the sense
that it does not properly contain the limit set of any hyperplane of any bald cubulation.
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We choose an infinite-order element g ∈ G whose axis is cut by w. We then apply hyperplane-
bending along w to produce crooked hyperplanes un with three key properties:

(i) the fixed points of g in ∂∞G lie in different components of the complement in ∂∞G of
the limit set of un;

(ii) the limit set of w is not contained in that of un;
(iii) every neighbourhood in ∂∞G of the limit set of w contains the limit set of un for all

sufficiently large n.

For each n, we add to the hyperplanes of X the G-orbit of un and cubulate, to get a new
cubulation G � Xn. Shaving these cubulations, we obtain bald cubulations G � Yn with the
property that there exist hyperplanes vn ⊆ Yn cutting the axis of g, whose limit set is contained
in that of un. This is our only form of control on how shaving affects hyperplane-stabilisers.

By property (iii), the limit sets of the vn must Hausdorff-converge in ∂∞G to a subset of the
limit set of w. From the assumption that there are only finitely many bald cubulations, we see
that there are only 〈g〉-finitely many limit sets vn. From this it is straightforward to conclude
that one of the vn has its limit set contained in that of w and, from property (ii), this is a
proper inclusion. This contradicts the ‘minimality’ of w.

In this argument, it is crucial that vn have non-empty limit set, which is where one-endedness
of G comes in: no cubulation of a one-ended group can have a bounded hyperplane.

Further questions

Our results and techniques raise various questions.
The application of hyperplane-bending used to prove Theorem A in the one-ended case,

and its combination with the ideas from [60] in the general case, does not in general yield a
hyperplane-essential cubulation. This raises the following question.

Question 1. Does there exist a hyperbolic group G such that no hyperplane-essential
cubulation of G has a single orbit of hyperplanes? Does there exist such a G that is one-ended?

When G is a free group, the ‘exotic’ cubulations from [60] are not hyperplane-essential. They
are thus susceptible to the panel collapse procedure from [31] (summarised in Proposition 2.29),
which shrinks the hyperplane-stabilisers. It is unknown whether every cubulation of a free group
with a single orbit of hyperplanes panel collapses to a tree.

In some cases, the proof of Theorem D relies on twisting a fixed cubulation by the action of
Out(G), and in other cases, it does not. This motivates the following question.

Question 2. Let G be a cocompactly cubulated one-ended hyperbolic group. Are there
infinitely many bald cubulations up to the Out(G)-action?

When G has no two-ended splitting, Out(G) is finite [4, Corollary 1.3], and one gets a positive
answer from Theorem D. More generally, by Levitt’s characterisation of hyperbolic groups with
infinite outer automorphism group [42, Theorem 1.4], Out(G) is finite provided G does not
split over a two-ended subgroup with infinite centre. So, for example, there are examples of
hyperbolic right-angled Coxeter groups G that split over D∞ but have Out(G) finite, and so
Theorem D applies to give a positive answer to the question in those cases.

One can ask more refined versions of the question by measuring the complexity of bald
cubulations G � X in some way, and then asking if there are infinitely many bald cubulations,
up to the action of Out(G), with at most a given complexity. Examples of complexity include
the dimension of X, the number of G-orbits of hyperplanes in X, etc.
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When Out(G) is infinite, one can often make fixed elements g ∈ G have arbitrarily large
translation length in bald cubulations of G. This motivates:

Question 3. Given a cocompactly cubulated hyperbolic group that is not virtually free,
can each infinite-order element g ∈ G become arbitrarily long in the bald cubulations of G?

Finally, the groups we have shown to admit unique bald cubulations are not virtually special
(irreducible BMW groups). This motivates:

Question 4. Which (non-hyperbolic) virtually special groups admit infinitely many
bald cubulations?

Among hyperbolic cocompactly cubulated groups, in view of Theorem D, the only remaining
question is about virtually free groups with finite outer automorphism groups.

We observe that if G is a virtually free group and Out(G) is finite, then the existence of
infinitely many bald cubulations of G will require the construction of bald cubulations G � X
where X has some infinite hyperplane-stabilisers. Indeed, if all hyperplane-stabilisers are finite,
then baldness implies that X is a tree. All of the proper, cocompact actions of G on trees
belong to the same deformation space D in the sense of [26], and D is Out(G)-finite (up to
projectivising), by [26, Proposition 8.6]. So it appears some other idea is needed, possibly along
the lines of the proof of Theorem D.

Outline of the paper

In Section 2, we first discuss background on CAT(0) cube complexes and cubulating groups.
We then prove various technical lemmas which will be used later. We also discuss the notion of
an abstract hyperplane. The procedure for ‘shaving’ a CAT(0) cube complex into a bald one
is also discussed in this section, proving Proposition B. In Section 3, we describe hyperplane-
bending, and also generalise Wise’s antenna construction, to prove Theorem A. In Section 4.1,
we prove Theorem D, and in Section 4.2 we prove Proposition C.

2. Preliminaries

For basic notions related to CAT(0) cube complexes, we direct the reader to, for example, [18,
34, 35, 49, 51, 59]. We recall some of these presently.

Throughout this section, X denotes a CAT(0) cube complex.

2.1. CAT(0) cube complexes

2.1.1. Hyperplanes, halfspaces, separation, transversality. We denote by W (X) the set of
hyperplanes of X and by H (X) the set of halfspaces. For each w ∈ W (X), the two components
of X −w are the halfspaces h, h∗ associated to w. Each h ∈ H (X) is associated to (bounded
by) a unique hyperplane w, and h∗ always denotes the other halfspace associated to w.

Given w ∈ W (X) and A,B ⊆ X, we say that w separates A and B if there is a halfspace
h associated to w such that A ⊆ h and B ⊆ h∗. Let W (A|B) denote the set of hyper-
planes w separating A from B. For ease of notation, we will write W (x|y, z), rather than
W (x|{y, z}).

Hyperplanes u,w are transverse if they are distinct and satisfy u ∩w �= ∅. Equivalently,
letting a, b be halfspaces associated to u,w, respectively, each of the four intersections
a ∩ b, a∗ ∩ b, a∗ ∩ b∗, a ∩ b∗ is non-empty. We also say that the halfspaces a and b are
transverse.
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Definition 2.1 (Facing triple, chain). The pairwise disjoint hyperplanes u, v,w of X form
a facing triple in X if no two of u, v,w are separated by the third; equivalently, there exist
disjoint halfspaces a, b, c, respectively, associated to u, v,w.

The distinct hyperplanes w1,w2, . . . form a chain if, for each i, there exists a halfspace hi
associated to wi such that (up to relabelling), we have hi � hi+1 for all i.

For each w ∈ W (X), recall that w is a CAT(0) cube complex whose cubes are midcubes of
cubes c of X with c ∩w �= ∅. Accordingly, we will sometimes abuse language and refer to a
‘vertex of w’ — by this we mean a 0-cube of w when the latter is regarded as a cube complex;
equivalently, vertices of w are midpoints of edges of X dual to w. The hyperplanes of w are
exactly the subspaces w ∩ u, as u varies over the hyperplanes of X transverse to w.

2.1.2. The �1 metric. In this paper, we always work with the �1 metric on X, which we
denote d. We will only ever be interested in distances between vertices of X, or between vertices
of the cubical subdivision of X. Accordingly, we just need the following facts about d:

• if x, y ∈ X(0), then d(x, y) = #W (x|y);
• the metric d restricts on X(0) to the metric induced by the usual graph metric on X(1);
• in particular, combinatorial geodesics in X(1) are exactly combinatorial paths containing

at most one edge intersecting each hyperplane.

2.1.3. The median. Recall from, for example, [18] that a graph Γ is median if there exists
a ternary operator μ : (Γ(0))3 → Γ(0) such that (letting d denote the usual graph metric), we
have d(xi, xj) = d(xi, μ(x1, x2, x3)) + d(xj , μ(x1, x2, x3)) for i �= j and all vertices x1, x2, x3. A
discrete median algebra is the vertex-set of a median graph, equipped with the median operator.
(This is not the standard definition, but it is equivalent by [48, Proposition 2.17].)

By [18, Theorem 6.1], X(1), with the graph-metric d, is a median graph, and conversely
each median graph is the 1-skeleton of a uniquely determined CAT(0) cube complex. Letting
μ denote the median on X(0), we have for all x, y, z ∈ X(0) that W (x|μ(x, y, z)) = W (x|y, z).

Fixing p ∈ X(0), the Gromov product at p therefore satisfies (x · y)p = #W (p|x, y). Indeed

(x · y)p = d(p, μ(p, x, y)) = #W (p|μ(p, x, y)) = #W (p|x, y).

2.1.4. Convexity, gate-projection and bridges. A subset S ⊆ X(0) is convex if μ(x, y, z) ∈ S
for all x, y ∈ S, z ∈ X. A subcomplex Y of X is convex if Y (0) is convex and Y is full, in the
sense that Y contains every cube c of X for which c(0) ⊆ Y (0). Equivalently, Y is the largest
subcomplex contained in the intersection of all halfspaces containing Y . (For subcomplexes,
this notion of convexity agrees with CAT(0) metric convexity [34].)

If Y ⊆ X is a convex subcomplex, then any combinatorial geodesic with endpoints on Y
lies in Y . Moreover, Y is itself a CAT(0) cube complex. We identify W (Y ) with the subset of
W (X) of hyperplanes that intersect Y .

Given A ⊆ X, its cubical convex hull is the intersection of all convex subcomplexes containing
A. It is common to use the term interval to refer to the set I(x, y) of vertices z such that
μ(x, y, z) = z, where x, y ∈ X(0). The interval I(x, y) is just the convex hull of {x, y}.

If Y ⊆ X is a convex subcomplex, there is a gate-projection πY : X(0) → Y (0) characterised
by the property that any hyperplane w separates x ∈ X(0) from πY (x) if and only if w separates
x from Y . If x, y ∈ X(0), then W (πY (x)|πY (y)) = W (x|y) ∩ W (Y ), so πY is 1-Lipschitz.

The vertex πY (x) is the unique closest point of Y to x. In fact, one can extend πY to a
cubical map πY : X → Y ; see [2, Section 2.1].

Let Y, Z be convex subcomplexes of X. Then πY (Z) is a convex subcomplex of X, and the
hyperplanes intersecting πY (Z) are exactly the hyperplanes intersecting both Y and Z. In
particular, if there is no such hyperplane, πY (Z) is a single vertex.
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The convex hull B(Y, Z) of πY (Z) ∪ πZ(Y ) is therefore a CAT(0) cube complex whose set
of hyperplanes has the form (W (Y ) ∩ W (Z)) � W (Y |Z). By, for example, [16, Proposition
2.5], we get B(Y, Z) ∼= πY (Z) ×H ∼= πZ(Y ) ×H, where H is isomorphic to the interval
I(πZ(y), πY (πZ(y))) for any vertex y ∈ Y . In particular, πY (Z) and πZ(Y ) are isomorphic
CAT(0) cube complexes; the maps πY , πZ restrict to cubical isomorphisms on these sets. The
subcomplex B(Y, Z) is the disjoint union of the intervals I(y, z) as (y, z) varies over the pairs
in Y × Z with d(y, z) = d(Y, Z). We refer to B(Y, Z) as the bridge between Y and Z.

2.1.5. Walls and median subalgebras. This will only be used in Section 4.2.
A subalgebra of X(0) is a subset A such that μ(a, b, c) ∈ A whenever a, b, c ∈ A. Given a

subalgebra A, a subset B ⊆ A is median-convex in A if μ(a, b, c) ∈ B whenever a, b ∈ B and
c ∈ A. Note that this coincides with our usual notion of convexity when A = X(0).

A wall in A is a partition A = a � a∗, where a, a∗ are non-empty and median-convex in A.
When A = X(0), such partitions always originate from hyperplanes of X, by intersecting X(0)

with the two associated halfspaces. For a general subalgebra, we still refer to the sets a, a∗ as
halfspaces. Let W (A) and H (A) be the set of walls and the set of halfspaces of A.

If S ⊆ X(0) is a convex subset, and A is a subalgebra of X(0), then S ∩A is median-convex in
A. It follows that if w ∈ W (X) is a hyperplane such that A intersects both associated halfspaces
h, h∗, then the partition (h ∩A) � (h∗ ∩A) is a wall in A. By [9, Lemma 6.5], all walls of A
actually arise this way.

2.1.6. Cubical subdivision. Recall that X admits a cubical subdivision X ′ — see [34,
Definition 2.4] — which is the CAT(0) cube complex constructed as follows.

Given a cube c ∼= [− 1
2 ,

1
2 ]n, let c′ be the cube complex obtained by subdividing each factor

[− 1
2 ,

1
2 ] so that it is a graph isomorphic to K1,2 (but with edges of length 1

2 ), and taking the
product cell structure.

The subdivision X ′ is formed from X by replacing each cube c by c′. Then X ′ is a CAT(0)
cube complex.

The obvious identity maps c → c′ induce a map X → X ′; the preimage of the vertex set of
X ′ is the set of barycentres of cubes of X. Letting d′ be the �1 metric on X ′ (regarded as an
abstract CAT(0) cube complex whose cubes have side-length 1), we have d′(x, y) = 2d(x, y).

Each hyperplane of X is a convex subcomplex of X ′, and X ′ → X induces a two-to-one map
W (X ′) → W (X) in an obvious way.

Letting μ′ denote the median on (X ′)(0), we have that μ′(x, y, z) = μ(x, y, z) for x, y, z ∈
X(0) ⊂ (X ′)(0). By working in X ′, we can thus extend the notion of convexity to subspaces of
X that become subcomplexes upon subdivision, and this is in particular true for hyperplanes
and halfspaces. In particular, it makes sense to talk about the gate projection πh : X → h where
h is a hyperplane or halfspace, the bridge between two hyperplanes or two halfspaces, etc.

2.1.7. Facts about group actions. We denote by Aut(X) the group of cubical automor-
phisms of X. The action of Aut(X) is an isometric action on (X, d) and an action by median
isomorphisms on (X,μ). It induces natural actions on the sets W (X) and H (X).

We implicitly assume all group actions G � X to be by cubical automorphisms. We say
that a group G is cubulated if there exists a CAT(0) cube complex X and a proper action
ρ : G → Aut(X). If, in addition, ρ can be chosen to be cocompact, then we say G is cocompactly
cubulated.

We will discuss further properties of actions later; for the moment, we recall some facts from
[34]. Let g ∈ Aut(X) and let w ∈ W (X). We say that g has an inversion along w if gw = w
and gh = h∗, where h is one of the halfspaces associated to w. We say that g acts without
inversions if g does not have an inversion along any hyperplane, and g acts stably without
inversions if gn acts without inversions for all n ∈ Z. We have
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• if g ∈ Aut(X) acts stably without inversions and does not fix a vertex, then g is
combinatorially hyperbolic, that is, there is a combinatorial geodesic γ preserved by g, on
which g acts as a non-trivial translation;

• Aut(X) acts naturally on the cubical subdivision X ′, and every g ∈ Aut(X) acts stably
without inversions on X ′.

If X is finite-dimensional, then any g ∈ Aut(X) has a power acting stably without inversions.
Indeed, the hyperplanes along which the powers of g have inversions are pairwise-transverse.

2.2. Pocsets

A pocset is a triple (P,�, ∗), where the pair (P,�) is a poset and ∗ is an order-reversing
involution. Two distinct elements a, b ∈ P are incomparable if a � b, b � a and a �= b∗. We say
that a and b are transverse if a and a∗ are incomparable with b and b∗. The dimension of P is
the maximal cardinality of a subset of pairwise-transverse elements.

An ultrafilter is a subset σ ⊆ P such that

(1) there do not exist a, b ∈ σ with a � b∗;
(2) for every a ∈ P, we have #(σ ∩ {a, a∗}) = 1.

Equivalently, σ is a maximal subset satisfying (1). We say that σ is a DCC ultrafilter (DCC
stands for descending chain condition) if, in addition, σ does not contain any infinite descending
chains. We denote by minσ ⊆ σ the subset of �-minimal elements. Two ultrafilters are almost
equal if their symmetric difference is finite.

For every CAT(0) cube complex X, the triple (H (X),⊆, ∗) is a pocset, and the notions of
transversality and dimension coincide with the usual ones. For every v ∈ X(0), the set {h ∈
H (X) | v ∈ h} is a DCC ultrafilter, and, if X is finite-dimensional, all DCC ultrafilters arise
this way (in particular, any two of them are almost equal).

Conversely, to each pair (P, σ), where P is a pocset and σ ⊆ P is an ultrafilter, we can
associate a CAT(0) cube complex X = X(P, σ). Vertices of X are exactly ultrafilters on P
that are almost equal to σ. Two vertices are joined by an edge exactly when the symmetric
difference of the corresponding ultrafilters has only two elements (the minimal possible size);
see [27, 48, 49] for details of the construction.

Lemma 2.2. Let P be a finite-dimensional pocset.

(1) For every maximal subset τ ⊆ P of pairwise-transverse elements, there exists a unique
DCC ultrafilter σ ⊆ P with τ ⊆ minσ.

(2) For every DCC ultrafilter σ ⊆ P, there exists a subset τ ⊆ minσ such that τ is a maximal
pairwise-transverse subset of P.

(3) Any two DCC ultrafilters on P are almost equal.

Let a group Δ act on P preserving the pocset structure.

(4) If there are only finitely many Δ-orbits of maximal pairwise-transverse subsets of P,
then the induced action Δ � X(P, σ) is cocompact.

Proof. Parts (1)–(3) follow from [27, Proposition 3.1 and Corollary 3.3]. In particular, Δ
leaves invariant the almost-equality class of any DCC ultrafilter σ, thus inducing an action
Δ � X(P, σ). Finally, part (4) is immediate from parts (1) and (2). �

2.3. Actions, essentiality, hyperplane-essentiality and skewering

Given a group action G � X and a hyperplane w ∈ W (X), we denote by Gw � G the stabiliser
of w. The following is, for example, [51, Exercise 1.6].
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Lemma 2.3. Let a group G act cocompactly on X. For every hyperplane w ∈ W (X), the
action Gw � w is cocompact.

Proof. Let K be a compact subcomplex of X such that G ·K = X. Since K is compact,
there are only finitely many translates g1w, . . . , gkw of w that are dual to edges of K. Let
L =

⋃k
j=1 g

−1
j K. Then L is compact.

Let e be an edge dual to w. Choose g ∈ G such that e ⊆ gK. Then g−1e is dual to giw for
some i � k. Let h = g−1

i g−1. Then e and he are dual to w, and he is also dual to hw. Hence
h ∈ Gw. Now, he is an edge of g−1

i K and is thus an edge of L. So Gw · (w ∩ L) contains every
vertex of w. This shows that Gw acts on w with finitely many orbits of vertices.

Since the above argument can be applied to the first cubical subdivision of X, there are
finitely many Gw-orbits of vertices in w, when the latter is given the cubical structure
coming from the cubical subdivision. In particular, there is a Gw-finite set of vertices
in w (in the subdivision) containing the barycentre of each maximal cube of w (in the
original cubical structure). Hence Gw acts on w with finitely many orbits of cubes, as
required. �

Definition 2.4 (Skewering). Let g ∈ Aut(X) and let w ∈ W (X). We say that g skewers w
if there is a halfspace h associated to w and an integer n �= 0 such that gnh � h. In this case,
we also say gskewers the halfspace h.

Definition 2.5 (Essential stuff). The CAT(0) cube complex X is essential if, for each
hyperplane w, each of the associated halfspaces contains points in X arbitrarily far from w.
If G � X, we say that the action is essential if, for some (hence any) x0 ∈ X(0), and each
hyperplane w, each of the associated halfspaces contains points in G · x0 arbitrarily far from
w. In the latter case, we also say that X is G–essential.

The cube complex X is hyperplane-essential if each hyperplane w, regarded itself as a CAT(0)
cube complex, is essential. The action of G is hyperplane-essential if each hyperplane w has
the property that Gw acts essentially on w.

Remark 2.6. (1) Suppose X is finite-dimensional. By [16, Proposition 3.2], the action G �
X is essential if and only if every hyperplane of X is skewered by an element of G. Similarly,
G � X is hyperplane-essential if and only if, whenever u,w ∈ W (X) are transverse, there exist
g ∈ Gw skewering u and h ∈ Gu skewering w.

(2) If G acts cocompactly, then X is essential if and only if it is G-essential. Similarly, by
Lemma 2.3, X is a hyperplane-essential cube complex if and only G � X is a hyperplane-
essential action.

The following is [6, Proposition 2.11] and a proof is given in [29, Proposition 1].

Proposition 2.7. Let X be cocompact, locally finite, essential, hyperplane-essential and
irreducible. For any two transverse halfspaces h1 and h2, there exists a halfspace k ⊆ h1 ∩ h2.

Remark 2.8 (Boundaries). Given a CAT(0) cube complex X, we denote by ∂∞X its
visual boundary (with the cone topology). Since �1-convex subcomplexes, hyperplanes, and
halfspaces are convex in the CAT(0) metric, we have the following. If A is a convex
subcomplex, hyperplane, or halfspace, the inclusion A ↪→ X extends to a continuous injection
∂∞A ↪→ ∂∞X.

Throughout this paper, we will often be in the situation where X admits a proper, cocompact
action by a hyperbolic group G. In this case, ∂∞X is G-equivariantly homeomorphic to the
Gromov boundary ∂∞G of G.
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We say that X is reducible if there exist non-trivial CAT(0) cube complexes A,B
with X ∼= A×B. In this case, every hyperplane of A,B determines a hyperplane of X,
thus giving rise to a partition W (X) = W (A) � W (B). Every hyperplane in the set W (A)
is transverse to every hyperplane in W (B). If X is not reducible, we say that X is
irreducible.

We will often require the following fact about actions on CAT(0) cube complexes, which is
[16, Proposition 2.6].

Proposition 2.9 (De Rham decomposition). Let X be finite-dimensional. Then there is
a canonical decomposition X =

∏m
i=1 Xi, for irreducible CAT(0) cube complexes X1, . . . , Xm,

which is preserved by Aut(X) (possibly permuting the factors). Hence the canonical embedding
Aut(X1) × · · · × Aut(Xm) ↪→ Aut(X) has finite-index image.

Later, when working with a geometric action G � X, it will often be useful to assume that
G is one-ended, enabling use of the following lemma:

Lemma 2.10 (One-ended cube complexes). Let X be one-ended and essential. Then there
does not exist a partition W (X) = A � B such that A,B are non-empty and no element of A
is transverse to an element of B.

Proof. Suppose for the sake of contradiction that such a partition of W (X) exists. By [44,
Lemma 2], there exists a vertex v ∈ X such that X − {v} is disconnected. Since X is essential,
each connected component of X − {v} is unbounded. This shows that X has at least two
ends. �

Definition 2.11 (Halfspace-stabiliser). Let G be a group acting on X. Let w ∈ W (X) and
let h, h∗ be the associated halfspaces. The halfspace-stabiliser G0

w is the kernel of the natural
action of Gw on {h, h∗} (which has index at most 2 in Gw).

Recall that a subgroup H of a group G is separable if for all g ∈ G−H, there is a finite-index
subgroup G′ � G such that H � G′ and g �∈ G′.

Lemma 2.12 (Large-girth covers). Let a group G act properly, cocompactly and with
separable halfspace-stabilisers on X. Then, for every n � 1, there exists a finite-index subgroup
H �G such that

• H � X has no hyperplane inversions;
• for every w ∈ W (X), any two distinct elements of H ·w are disjoint and at distance � n.

Proof. Let w1, . . . ,wk ∈ W (X) be such that G · {w1, . . . ,wk} = W (X).
Since halfspace-stabilisers are separable, there exist subgroups Hi � G such that any two

elements of Hi ·wi are at distance at least n and no element of Hi swaps the sides of wi.
Up to passing to further finite-index subgroups, we can assume that Hi �G. Set H = H1 ∩

· · · ∩Hk.
Given any w ∈ W (X), there exist 1 � i � k and g ∈ G with w = gwi. If h ∈ H and w �= hw,

we have wi �= g−1hgwi. Since H is normal in G, the element g−1hg lies in H, hence d(w, hw) =
d(wi, g

−1hgwi) � n. A similar argument shows that H � X has no hyperplane inversions. �

Lemma 2.13. Let G be a Gromov-hyperbolic group, with a proper cocompact action
G � X. Given essential hyperplanes w1,w2 and n � 1, there exists w′

2 ∈ G ·w2 such that
d(w1,w

′
2) � n.
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Proof. By [16, Proposition 3.2], the orbits G ·w1 and G ·w2 contain infinite chains of
hyperplanes; moreover, we can assume that G ·w1 �= G ·w2. If every element of G ·w1 were
transverse to an element of G ·w2, this would violate [24, Theorem 3.3]. It follows that some
w′′

2 ∈ G ·w2 is disjoint from w1 and we can achieve the required distance from w1 by considering
a hyperplane w′

2 = gNw′′
2 , where g skewers w′

2 and N is large. �

Given a geodesic γ ⊆ X, we denote by W (γ) the set of hyperplanes crossed by γ.

Lemma 2.14. There exists a constant D = D(δ) such that the following holds. For every
δ-hyperbolic CAT(0) cube complex X and every geodesic γ ⊆ X, there exists a hyperplane
w ∈ W (γ) with diamπw(γ) � D.

Proof. There exists a constant C = C(δ) such that, given any two transverse chains of
halfspaces, one of them must have cardinality < C (see, for example, [24, Theorem 3.3]).

Set d = dimX, Δ = Cd(2d + 1), D = 2Δ and observe that d (hence D) is bounded above
in terms of δ. Since gate-projections are 1-Lipschitz, we can assume that the length of γ is at
least D.

Among any 2Cd + 1 halfspaces entered consecutively by γ, there exists a chain h−C � · · · �
hC . Let x− ∈ h∗0 ∩ γ and x+ ∈ h0 ∩ γ be adjacent vertices of X and let w be the hyperplane
bounding h0. Note that W (x−|hC) and W (x+|h∗−C) each contain at most 2Cd hyperplanes
(not the optimal bound).

Suppose for the sake of contradiction that there exists y ∈ γ ∩ hC with d(πw(x−), πw(y)) >
Δ. Then there exists a chain k1 � · · · � kC(2d+1) of halfspaces with πw(x−) ∈ k∗1 and πw(y) ∈
kC(2d+1). For all i, j � 1, we have y ∈ hi ∩ kj , πw(y) ∈ h∗i ∩ kj and x− ∈ h∗i ∩ k∗j . Thus, either
hi � kj or hi and kj are transverse. If j > 2Cd, the halfspaces hC and kj must be transverse, as
#W (x−|hC) � 2Cd. It follows that hi and kj are transverse for all 1 � i � C and 2Cd + 1 �
j � 2Cd + C, violating our choice of C.

This proves that d(πw(x−), πw(y)) � Δ for every y ∈ γ ∩ hC and a similar argument shows
that d(πw(x+), πw(z)) � Δ for all z ∈ γ ∩ h∗−C . We conclude that the projection πw(γ ∩
(hC � h∗−C)) is contained in the Δ-neighbourhood of πw(x−) = πw(x+). Since πw(γ) is an
(unparametrised) geodesic, it all lies in the Δ-neighbourhood of πw(x+), hence diamπw(γ) �
2Δ = D. �

2.4. Hyperbolic groups and abstract hyperplanes

Let G be a Gromov-hyperbolic group. Every infinite-order element g ∈ G has exactly two fixed
points in the Gromov boundary ∂∞G. We denote by g+ the stable fixed point and by g− the
unstable one. The following is classical:

Lemma 2.15. The set {(g+, g−) | g infinite-order} is dense in ∂∞G× ∂∞G.

If H � G is a quasiconvex subgroup, we denote by ΛH ⊆ ∂∞G its limit set. The following
is [25, Lemma 2.6]:

Lemma 2.16. We have Λ(H ∩K) = ΛH ∩ ΛK for any two quasiconvex subgroups H,K �
G.

If G acts properly and cocompactly on a geodesic metric space X, there exists a unique
G-equivariant homeomorphism φ : ∂∞G → ∂∞X. Given a subset Ω ⊆ X, we denote by ∂∞Ω ⊆
∂∞X its limit set in the visual boundary of X and by ΛΩ = φ−1(∂∞Ω) ⊆ ∂∞G the pull-back
to G.
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Let us now fix a Cayley graph Γ(G) of G with respect to a finite generating set. Given a
subgroup H � G, we denote by Nr(H) its closed r-neighbourhood in Γ(G).

The following is [39, Lemma 7.3], although it originally appeared implicitly in [25, 50]; see
also [38, Theorem 1.1; 45, Lemma 7] for additional details on its proof.

Lemma 2.17. Given D,κ � 0 there exists a constant C such that the following holds for
all κ-quasiconvex subgroups H1, . . . , Hk � G. If

ND(g1Hi1), . . . , ND(gnHin)

pairwise intersect, there exists g ∈ G that is C-close to all g1Hi1 , . . . , gnHin .

We will need the following result in Section 3.3.

Lemma 2.18. Let X be a locally connected, proper, geodesic, δ-hyperbolic space and, for
some R � 0, let U ⊆ X be a closed R-quasiconvex subset. For every subset A ⊆ X − U , let us
set Ã := A � U . Then

(1) if A is a union of connected components of X − U , the set Ã is R-quasiconvex;
(2) if A and B are unions of connected components of X − U such that A ∩B = ∅, then

∂∞Ã ∩ ∂∞B̃ = ∂∞U ;
(3) ∂∞X − ∂∞U is a disjoint union of the open subsets ∂∞C̃ − ∂∞U , where C is a connected

component of X − U .

Proof. In order to prove part (1), consider a geodesic γ ⊆ X joining two points x, y ∈ Ã.
Let x′, y′ ∈ γ be the points furthest from x and y, respectively, such that the subsegments
xx′, yy′ ⊆ γ are entirely contained in the closure A ⊆ X. If x or y do not lie in A, we set x′ = x
or y′ = y. The points x′ and y′ always lie in U , so the subsegment of γ joining them is contained
in the R-neighbourhood of U ⊆ Ã. Since the rest of γ is contained in A, the entire γ lies inside
the R-neighbourhood of Ã, showing part (1).

Given A,B as in part (2) and a point ξ ∈ ∂∞Ã ∩ ∂∞B̃, we consider quasigeodesic rays
rA ⊆ Ã and rB ⊆ B̃ representing ξ. Let xn ∈ rA and yn ∈ rB be diverging sequences with
sup d(xn, yn) < +∞. Observing that any geodesic joining xn to yn must intersect U , we deduce
that rA and rB stay at bounded distance from U . Hence ξ ∈ ∂∞U , which proves part (2).

Now, let C be the set of all connected components C ⊆ X − U . Given a point ξ ∈ ∂∞X −
∂∞U and a ray r ⊆ X representing it, a subray r′ ⊆ r must be disjoint from U . It follows that
r′ is contained in some C ∈ C , hence ξ ∈ ∂∞C̃ − ∂∞U . This shows that ∂∞X is the union of
the sets ∂∞C̃ − ∂∞U with C ∈ C ; by part (2), this is a disjoint union. Finally, observe that,
for each C ∈ C , the boundary ∂∞X is union of the two closed subsets ∂∞C̃ and ∂∞(X − C).
Again by part (2), this shows that ∂∞C̃ − ∂∞U has closed complement in ∂∞X − ∂∞U and is
therefore open. �

The following is the key notion in this subsection. It allows us to cubulate hyperbolic groups
with as few non-canonical choices as possible.

Definition 2.19. An abstract hyperplane for a hyperbolic group G is a pair (H,H), where
H � G is quasiconvex and H is an H-invariant partition ∂∞G− ΛH = H+ � H−, where H±

are non-empty open subsets.

We say that H± are the sides of H and that H is subordinate to H. Two points ξ, η ∈ ∂∞G
are separated by H if they lie on opposite sides.
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Observe that, by H-invariance, the closures H+,H− ⊆ ∂∞G are exactly H+ � ΛH and H− �
ΛH.

Lemma 2.20. Given any abstract hyperplane (H,H), there exist two H-invariant open
subsets H± ⊆ Γ(G) and a constant D > 0 such that

(1) Γ(G) −ND(H) = H+ �H−;
(2) H+ �ND(H), H− �ND(H) and ND(H) are connected;
(3) ΛH+ = H+ and ΛH− = H−.

Proof. Given L > 0, we denote by A+
L ⊆ Γ(G) the closed L-neighbourhood of the weak hull

of H+ = H+ � ΛH. (Recall that the weak hull of H+ is the union of all Γ(G)-geodesics joining
distinct points in H+.)

The set A−
L is defined similarly. Observe that, for every sufficiently large value of L, there

exists D > 0 such that

• ΛA±
L = H± and Γ(G) = A+

L ∪A−
L ;

• A+
L ∩A−

L ⊆ ND(H);
• the sets A+

L ∪ND(H), A−
L ∪ND(H) and ND(H) are connected.

Thus, the sets H+ = A+
L −ND(H) and H− = A−

L −ND(H) are open, H-invariant, and
satisfy (1) and (2). It is clear from the construction that H+ ⊆ ΛH+ ⊆ ΛA+

L = H+ � ΛH.
Since H+ is non-empty and H-invariant, we also have ΛH ⊆ ΛH+, which shows (3). �

Remark 2.21. Lemma 2.20 shows that, if there exists an abstract hyperplane subordinate
to H, then H must be a codimension-1 subgroup of G. Conversely, it is not hard to see
that, for every quasiconvex codimension-1 subgroup H � G, there exist abstract hyperplanes
subordinate to H.

Remark 2.22. Let (H,H), (K,K) be abstract hyperplanes and let H±,K± be the sets
constructed in Lemma 2.20. The constant D can always be enlarged, so, without loss of
generality, it is the same for both. If ND(H) and ND(K) are disjoint, then a side of H is
disjoint from a side of K.

Indeed, since ND(H) is connected, we have either ND(H) ⊆ K+ or ND(H) ⊆ K−; without
loss of generality, let us assume that the former holds. Similarly, we have ND(K) ⊆ H− without
loss of generality. It follows that the connected set H+ �ND(H) is disjoint from ND(K) and
thus contained in a single connected component of its complement. Since ND(H) ⊆ K+, we
have H+ ⊆ K+ and ΛH+ ⊆ ΛK+. Hence H+ ∩ K− = ∅.

The following is little more than a rephrasing in terms of ∂∞G of well-known results from
[3, 50].

Proposition 2.23. Let H be a G-invariant set of abstract hyperplanes.

(1) If H contains only finitely many G-orbits, H gives rise to a cocompact G-action on an
essential CAT(0) cube complex X(H).

(2) In this case, the action G � X(H) is proper if and only if g+, g− ∈ ∂∞G are separated
by an element of H, for every infinite-order g ∈ G.

Proof. The collection P = {Hε | H ∈ H, ε ∈ {±}} has a natural structure of poset coming
from inclusions. We promote this to a structure of pocset by setting (H+)∗ = H−.



DEFORMING CUBULATIONS OF HYPERBOLIC GROUPS 893

Observe that H+ ⊆ K+ if and only if H+ ∩ K− = ∅. Thus, H+ and K+ are transverse if and
only if both H+ and H− intersect both K+ and K−.

Since there are finitely many G-orbits in H, Lemma 2.20 provides a constant D that works
for every element of H. By Remark 2.22, every set of k pairwise-transverse elements of P
corresponds to a collection of k cosets of uniformly quasiconvex subgroups of G whose D-
neighbourhoods pairwise intersect. Lemma 2.17 shows that P is finite-dimensional and contains
only finitely many G-orbits of maximal pairwise-transverse subsets. Lemma 2.2 thus yields a
natural cocompact action on a CAT(0) cube complex X(H).

For every H ∈ H, Lemma 2.15 shows that there exists an infinite-order element g ∈ G with
g+ ∈ H+ and g− ∈ H−. A power of g must then skewer the hyperplane of X(H) determined by
H. We conclude that X(H) is essential. Finally, part (2) follows from [3, Proposition 1.3]. �

Remark 2.24. Let H1, . . . , Hk be quasiconvex subgroups of G with the property that, for
each i � k, the difference ∂∞G− ΛHi has exactly two connected components, and these are
left invariant by the Hi-action. Each Hi determines a unique abstract hyperplane Hi and we
can consider the collection H = G · H1 ∪ · · · ∪G · Hk. In this case, the cube complex X(H)
provided by part (1) of Proposition 2.23 is automatically hyperplane-essential.

In order to see this, consider abstract hyperplanes H,K ∈ H, with stabilisers H,K, respec-
tively. If ΛH ∩ K+ = ∅, the connected set K+ is partitioned into the two open sets K+ ∩ H±. It
follows that one of these two sets is empty and, in particular, H and K are not transverse.

Thus, if H and K are transverse, the four intersections ΛH ∩ K± and ΛK ∩ H± must all
be non-empty and open in the respective limit sets. By Lemma 2.15, there exists an infinite-
order element h ∈ H with h+ ∈ K+ and h− ∈ K−; in particular, a sufficiently large power of h
skewers the hyperplane of X(H) determined by K. Similarly, there exists k ∈ K skewering
the hyperplane determined by H. This shows that the action G � X(H) is hyperplane-
essential.

2.5. Shaving cocompact cubulations

Let X be a CAT(0) cube complex.

Definition 2.25. Two distinct hyperplanes of X are said to be effectively parallel if they
are disjoint and bound halfspaces at finite Hausdorff distance.

As an example, the cubical subdivision X ′ contains a pair of effectively parallel hyperplanes
for every hyperplane of X.

Note that, in general, two disjoint hyperplanes can be at finite Hausdorff distance without
being effectively parallel. For instance, in a tree with all vertices of degree at least 3, any two
distinct hyperplanes are at finite Hausdorff distance, but no two of them are effectively parallel.

We also observe that, if X is hyperplane essential and h1, h2 are distinct halfspaces at finite
Hausdorff distance, then the hyperplanes w1,w2 bounding them are necessarily disjoint. Thus,
w1 and w2 are effectively parallel.

Given a subset A ⊆ H (X), we employ the notation A∗ = {h∗ | h ∈ A}.

Lemma 2.26. Let X be locally finite, cocompact, essential and hyperplane-essential. Let
P ⊆ H (X) be a maximal set of halfspaces pairwise at finite Hausdorff distance. Then

(1) the subset P ⊆ H (X) is totally ordered by inclusion;
(2) P∗ is also a maximal set of halfspaces at finite Hausdorff distance;
(3) if w ∈ W (X) does not bound an element of P, then w is either transverse to all,

contained in all, or disjoint from all elements of P.
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Proof. Since any two elements of P are at finite Hausdorff distance and X is hyperplane-
essential, no two elements of P are transverse. Since X is essential, no two elements of P can
be disjoint or have disjoint complements. This shows part (1), while part (2) is clear. We now
prove part (3).

Let u, v be hyperplanes bounding elements of P. By essentiality of X, no w ∈ W (X) can
form a facing triple with u and v. Since P is maximal, if w does not bound an element
of P, then w cannot separate u and v either. Thus, if w is not transverse to any element
of P, then w must be either contained in all elements of P, or contained in all of their
complements.

Finally, suppose that w is transverse to an element of P, but not to all of them. In this case,
w and the elements of P all originate from a single de Rham factor of X and Proposition 2.7
provides a hyperplane forming a facing triple with two hyperplanes bounding elements of P.
This is a contradiction and it concludes the proof of part (3). �

Given X as in Lemma 2.26 and h ∈ H (X), we denote by P(h) ⊆ H (X) the subset of all
halfspaces at finite Hausdorff distance from h. We define:

Para(X) = {P(h) | h ∈ H (X)}.

Given distinct elements Q1,Q2 ∈ Para(X), Lemma 2.26 shows that whether h1 ∈ Q1 is
contained in h2 ∈ Q2 is independent of the choice of h1 and h2. When this happens, we
write Q1 � Q2. We obtain a pocset (Para(X),�, ∗) and a surjective pocset homomorphism
P : H (X) → Para(X).

The dimension of the pocset Para(X) coincides with dimX < +∞. Lemma 2.2 thus
guarantees the existence of a unique class of DCC ultrafilters on Para(X), which gives rise
to a CAT(0) cube complex Cmp(X). We refer to Cmp(X) as the compression of X. Observe
that Para(X) and Cmp(X) are naturally equipped with an Aut(X)-action.

The preimage under P of any ultrafilter on Para(X) is an ultrafilter on H (X). Assuming
for a moment that all fibres of P are finite, preimages of DCC ultrafilters are again DCC.
In this case, we obtain an Aut(X)-equivariant injection ι : Cmp(X)(0) ↪→ X(0), which does not
shrink distances.

As the next result shows, the condition on the fibres of P corresponds to X having no
R-factors in its de Rham decomposition.

Lemma 2.27. Let X be locally finite, cocompact, essential and hyperplane-essential. Assume
that X has no factors isomorphic to R in its de Rham decomposition. Then

(1) the fibres of the map P are uniformly finite and ι is bi-Lipschitz;
(2) g ∈ Aut(X) skewers h ∈ H (X) if and only if it skewers the halfspace of Cmp(X)

determined by P(h);
(3) Cmp(X) is locally finite, cocompact, essential, hyperplane-essential and it has no

halfspaces at finite Hausdorff distance.

Proof. Let n be the number of orbits of the action Aut(X) � H (X). If an element
Q ∈ Para(X) contains > n halfspaces, there exist g ∈ Aut(X) and h ∈ Q such that h � gh ∈ Q.
In this case, the halfspaces gnh are pairwise at finite Hausdorff distance, hence {gnh}n∈Z ⊆ Q.
Part (1) of Lemma 2.26 implies that Q is a bi-infinite chain and, by part (3) of Lemma 2.26,
every halfspace in Q � Q∗ is transverse to all the halfspaces in H (X) − (Q � Q∗). This
contradicts the assumption that X has no de Rham factors isomorphic to R. We conclude
that all fibres of Q have cardinality � n, hence ι is n-Lipschitz. This yields part (1). Parts (2)
and (3) follow immediately. �
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We now make Definition 1.1 from the introduction a bit more precise (recalling that, in a
hyperplane-essential cube complex, halfspaces at finite Hausdorff distance are always bounded
by effectively parallel hyperplanes).

Definition 2.28. A CAT(0) cube complex X is bald if it is essential, hyperplane-essential
and, moreover, the following holds. If w1,w2 ∈ W (X) are effectively parallel, there exists a
factor L in the de Rham decomposition of X such that L ∼= R and w1,w2 ∈ W (L).

A bald cubulation is a proper, cocompact action on a bald cube complex.

Recall that, as defined in Section 2.4, if a hyperbolic group G acts properly and cocompactly
on a CAT(0) cube complex X, then every subset Ω ⊆ X determines limits sets ΛΩ ⊆ ∂∞G and
∂∞Ω ⊆ ∂∞X.

Proposition 2.29. Let a group G act properly and cocompactly on a CAT(0) cube complex
X. Then there exists another CAT(0) cube complex X• and a proper cocompact action G � X•
such that

(1) X• is bald;
(2) if G is hyperbolic and g ∈ G skewers w ∈ W (X), there exists a hyperplane u ∈ W (X•)

such that u is skewered by g and Λu ⊆ Λw.

Proof. By replacing X with the cubical subdivision, we can assume that G acts on X without
inversions. Let #(X) = (n0, . . . , ndimX−2), where for each i, ni is the number of G-orbits of
i-cubes.

If X is hyperplane-essential, then, by passing to the G-essential core, we can assume that
the cube complex is essential and hyperplane-essential (cf. [16, Proposition 3.5]).

If not, then, by [31, Theorem A], X contains a G-invariant subspace Y that has the structure
of a CAT(0) cube complex, with Y (0) = X(0). Moreover, the set of hyperplanes of Y is exactly
the set of components of subspaces of the form u ∩ Y , where u is a hyperplane of X. Finally,
the action of G on Y is without inversions, and #(Y ) < #(X) (in lexicographic order).

Iterating finitely many times, we find a hyperplane-essential cocompact action G � Z, where
Z is a CAT(0) cube complex G-equivariantly embedded in X; by replacing Z with its G-
essential core, we have that Z is essential and hyperplane-essential, and Z(0) ⊆ X(0).

Since G acts on X properly and Z ↪→ X is G-equivariant, each 0-cube of X, and hence each
0-cube of Z, has finite stabiliser in G. Since G acts on Z cocompactly, the action of G on Z
is therefore proper. We are left to deal with effectively parallel hyperplanes, in order to ensure
that Z is bald.

Isolating the R-factors in the de Rham decomposition of Z, we obtain a splitting Z = Rm ×
W , where m � 0 and W is a CAT(0) cube complex with no R-factors. Observe that G leaves
invariant this decomposition of Z, and the induced action G � W is cocompact.

We set X• = Rm × Cmp(W ). Observe that the G-action descends to X•. By part (1)
of Lemma 2.27, X• is G-equivariantly quasi-isometric to Z; hence G � X• is proper and
cocompact. By part (3) of Lemma 2.27, X• is bald. This completes the proof of part (1).

We now assume that G is hyperbolic and prove part (2). Hyperbolicity implies that m = 0,
so Z = W and X• = Cmp(Z).

Suppose that g ∈ G skewers a hyperplane w of X. By [31, Theorem A], w ∩ Z =
⊔

i∈I wi,
where each wi is a hyperplane of Z. In particular, Λwi ⊆ Λw for each i ∈ I.

Let γ be an axis for g in Z, so that the endpoints of γ are g± ∈ ∂∞Z. Suppose that no wi is
skewered by γ. Then for each i, we can choose a component w+

i of Z −wi so that γ ⊆
⋂

i w
+
i .

Hence γ is a 〈g〉-invariant embedded path in X which is disjoint from w, so g−, g+ lie on the
same side of Λw in ∂∞Z, contradicting that g skewers w.
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In conclusion, g skewers a hyperplane wi ∈ W (Z) and Λwi ⊆ Λw. Part (2) of the proposition
now follows from part (2) of Lemma 2.27. �

3. Bending hyperplanes

3.1. Controlling families of hyperplanes

Let a group G act properly and cocompactly on a CAT(0) cube complex X. As usual, we
endow X with its �1 metric and set d = dimX.

We are interested in the case when the quotient G\X is a special cube complex, in the sense
of [36, Definition 3.2]. Recall that two distinct hyperplanes a1, a2 in G\X inter-osculate if they
both intersect and osculate: there is a square whose barycentre is in a1 ∩ a2, and there are also
1-cubes dual to a1, a2 that share a vertex but do not lie in a common square. A special cube
complex never has inter-osculating hyperplanes.

Lemma 3.1. Suppose that the quotient G\X is a special cube complex. Given disjoint
hyperplanes w1 and w2, there exists a finite-index subgroup H � G such that any two elements
of H ·w1 ∪H ·w2 are disjoint and at distance � 1

d · d(w1,w2).

Proof. By [36, Corollary 7.9], halfspace-stabilisers are separable in G. Thus, Lemma 2.12
allows us to assume that any two hyperplanes in the same G-orbit are disjoint and at distance
at least 1

d · d(w1,w2). Let n � 0 be maximal such that W (w1|w2) contains n pairwise-disjoint
hyperplanes. By Dilworth’s lemma, we have n � 1

d · (d(w1,w2) − 1).

Claim. Given disjoint u1, u2 ∈ W (X) and m � 0 maximal such that W (u1|u2) contains
m pairwise-disjoint hyperplanes, there exists a finite-index subgroup L � G such that every
element of L · u2 is separated from u1 by at least m pairwise-disjoint hyperplanes (just disjoint
from u1 if m = 0).

Applying the claim to ui = wi clearly concludes the proof. We will prove the claim by
induction on m � 0.

The base step m = 0 is immediate taking L = G, as the quotient G\X has no inter-
osculating hyperplanes.

When m � 1, we can pick u ∈ W (u1|u2) such that W (u|u1) contains m− 1 pairwise-disjoint
hyperplanes. The inductive hypothesis yields a finite-index subgroup K � G such that every
element of K · u is separated from u1 by at least m− 1 pairwise-disjoint hyperplanes and such
that no element of K · u is transverse to u2 or u1.

Since no two elements of K · u are transverse, the corresponding restriction quotient (see
[16, Section 2.3]) of X is a tree T . Recall that the preimage in T of the midpoint of any edge
is a hyperplane in K · u, every hyperplane in K · u is sent to the midpoint of an edge, and all
other hyperplanes are collapsed to vertices.

Since the hyperplanes u1 and u2 are contained in distinct connected components of X −⋃
K · u, they get collapsed to distinct vertices v1, v2 ∈ T .
Let k ∈ K be such that kv2 �= v1. Then kv2 and v1 are separated by an edge of T ; the

preimage of the midpoint of this edge is a hyperplane v ∈ K · u that separates the preimages
of kv2 and v1. In particular, v separates u1 from ku2. Hence, the set

W (ku2|u1) ⊇ {v} � W (v|u1)

contains at least m pairwise-disjoint hyperplanes. The K-stabiliser of v2 is separable in
K by [36, Corollary 7.9]. It follows that there exists a finite-index subgroup L � K
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such that v1 �∈ L · v2. Every element of L · u2 is then separated from u1 by at least m
pairwise-disjoint hyperplanes. �

Proposition 3.2. Suppose that G is one-ended and that X is essential, hyperplane-essential
and δ-hyperbolic. For every n > 0, there exist m � 4, hyperplanes u1, . . . , um and a finite-index
subgroup H � G such that

• G · {u1, . . . , um} = W (X);
• ui is transverse to ui+1 for every 1 � i < m;
• any two elements of H · ui−1 ∪H · ui+1 are at distance � n, for every 1 < i < m;
• H · ui �= H · uj whenever i �= j.

Proof. By [1, Theorem 1.1], we can assume that the quotient G\X is a special cube complex.
By Lemma 2.12, we can further assume that any two hyperplanes in the same G-orbit are
disjoint and at distance � n. By Lemma 2.10, there exists a sequence u1, . . . , um of (not
necessarily distinct) hyperplanes satisfying the first two conditions.

Since hyperplane-stabilisers are separable [36, Theorem 1.3], the fourth condition can always
be ensured by passing to a further finite-index subgroup, as long as the other three conditions
are satisfied and the ui are pairwise distinct. We will progressively modify u1, . . . , um in order
to ensure that we are in this situation.

Consider 1 < j < m and a finite-index subgroup H � G such that u1, . . . , uj are pairwise
distinct and the third condition holds for all i < j. Since the action Guj

� uj is proper and
cocompact by Lemma 2.3, Lemma 2.13 yields g ∈ Guj

such that d(guj+1, uj−1) � dn. We can
moreover ensure that guj+1 �∈ {u1, . . . , uj}. For l � j + 1, we replace each ul with gul. Note that
the new hyperplanes still satisfy the first two conditions and, for i < j, also the third. Since
now d(uj−1, uj+1) � dn, Lemma 3.1 yields a finite-index subgroup K � H such that any two
elements of K · uj−1 ∪K · uj+1 are at distance � n. Replacing H with K, the third condition
is now satisfied for i � j and u1, . . . , uj+1 are pairwise distinct. �

Now let X be δ-hyperbolic and consider hyperplanes v0, . . . , vm such that

• vi is transverse to vi+1 for every 0 � i < m;
• d(vi−1, vi+1) � n for every 0 < i < m.

If x ∈ v0 and y ∈ vm are vertices of the respective hyperplanes, we set x0 = x and, for each
0 � i � m− 1, we define inductively xi+1 as the gate-projection of xi to vi+1. Note that xi+1 ∈
vi ∩ vi+1. Finally, set xm+1 = y. Joining each xi to xi+1 by an �1 geodesic, we obtain a path
η ⊆ v0 ∪ · · · ∪ vm ⊆ X, which we will refer to as a standard path from x to y.

By construction, the segment of η that joins xi to xi+2 is a geodesic for all 0 � i � m− 1.
It follows that η is a k-local geodesic, with

k � min
1�i�m−1

d(xi, xi+1) � min
1�i�m−1

d(vi−1, vi+1) � n.

When X is δ-hyperbolic and n > 8δ, [10, Theorem III.H.1.13] guarantees that η is a (3, 2δ)-
quasigeodesic. By the Morse lemma, there exists a constant K = K(δ) such that every geodesic
in X connecting x and y is at Hausdorff distance at most K from any standard path η.

Lemma 3.3. Let X and v0, . . . , vm be as above, with m � 2 and n > 8δ.

(1) Any geodesic from a point x ∈ v0 to a point y ∈ vm has Hausdorff distance at most K
from any standard path η ⊆ v0 ∪ · · · ∪ vm from x to y. In particular, the union v0 ∪ · · · ∪ vm
is K-quasiconvex in X.

(2) We have d(v0, vm) � ((n(m− 1))/3) − 2δ. Thus, v0 and vm are disjoint.
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Proof. We have already shown part (1) in the above discussion. Regarding part (2), pick
vertices x ∈ v0 and y ∈ vm with d(x, y) = d(v0, vm).

Let η be a standard path from x to y. As shown above, η is an n-local geodesic and it
contains points x1, . . . , xm satisfying d(xi, xi+1) � n. It follows that the domain of η has length
� n(m− 1) and we know that η is a (3, 2δ)-quasigeodesic. Thus:

d(v0, vm) = d(x, y) � n(m−1)
3 − 2δ > 0,

as required. �

3.2. Systems of switches

Let G be a one-ended hyperbolic group. We consider a proper cocompact G-action on an
essential, hyperplane-essential, δ-hyperbolic CAT(0) cube complex X. We fix M � 1 such
that, for every w ∈ W (X) and every vertex x ∈ w, the orbit Gw · x is M -dense in w, using
Lemma 2.3.

Let us denote by Trans(X) the collection of subsets {u, v} ⊆ W (X) such that u is transverse
to v. Given a subset S ⊆ Trans(X) and u ∈ W (X), let Su ⊆ W (X) be the collection of all those
v with {u, v} ∈ S.

Definition 3.4. An n–system of switches is a pair S = (S, H), where

• H �G is a finite-index subgroup;
• S ⊆ Trans(X) is an H-invariant subset;
• for every u ∈ W (X), any two elements of Su are at distance � n.

The support of S is the set supp S := {u ∈ W (X) | Su �= ∅}. We say that S is full if G ·
suppS = W (X).

Lemma 3.5. For every n > 0, there exists a full n-system of switches.

Proof. Let u1, . . . , um and H be as provided by Proposition 3.2; passing to a further finite-
index subgroup, we can assume that H is normal in G. Let S be the union of the sets H ·
{ui, ui+1} for 1 � i < m. Then the pair S = (S, H) is a full n-system of switches.

Indeed, we have w ∈ Suj
if and only if there exist h ∈ H and i satisfying

h · {w, uj} = {ui, ui+1}. Since H · ul �= H · ul′ whenever l �= l′, we must have j ∈ {i, i + 1} and
huj = uj . It follows that Suj

= Huj
· uj−1 �Huj

· uj+1, any two elements of which are at
distance � n. �

We write U(S ) ⊆ X for the union of all hyperplanes in suppS , and U�(S ) ⊆ X for the
union of all intersections u ∩ v with {u, v} ∈ S. We have

U(S ) = U�(S ) � (U(S ) − U�(S )),

where every point of U(S ) − U�(S ) lies in a unique hyperplane of suppS , while points of
U� each lie in two distinct elements of suppS .

We will refer to U�(S ) and U(S ) − U�(S ), respectively, as the singular and regular part
of U(S ) (and to their points as singular and regular points). Note that every vertex of each
hyperplane in suppS is a regular point.

We denote by comp S the set of all connected components of the regular part of U(S ).
Each element of comp S is a connected component of a set of the form w−

⋃
v∈Sw

v with
w ∈ suppS . Instead, note that connected components of the singular part U�(S ) are in one-
to-one correspondence with elements of S. For every regular point x ∈ U(S ), we write [x] for
the only element of comp S that contains x.
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To each n-system of switches S = (S, H) we can associate a bipartite graph G(S ) equipped
with a cocompact H-action. The vertex set is the disjoint union S � comp S . We join each
vertex {u, v} ∈ S to the four elements of comp S that contain u ∩ v in their closure; two are
contained in u and two in v. We call vertices of G(S ) regular if they originate from elements
of comp S and singular if they originate from elements of S.

All singular vertices have degree 4 in G(S ), while regular vertices can have infinite degree
in general.

Every hyperplane w ∈ supp S determines a subgraph G(w) ⊆ G(S ) spanned by the elements
of comp S that are contained in w. Note that G(w) is naturally isomorphic to the barycentric
subdivision of the restriction quotient of X corresponding to the set Sw ⊆ W (X). In particular,
since the definition of a system of switches means that Sw consists of pairwise disjoint
hyperplanes, the graph G(w) is a tree.

Example 3.6. It can be helpful to have the following special case in mind in this subsection.
Let G be the fundamental group of a closed, orientable surface Σ. Let X be a two-dimensional
cubulation constructed by applying Sageev’s construction to a suitable finite filling collection
of curves F on Σ.

A choice of a system of switches S corresponds to a choice of a finite cover Σ′ → Σ and a
set of intersections between the lifts of F to Σ′. We will perform surgery on these intersections
and obtain a new family of curves in Σ′ (sometimes, one of the new curves will fill Σ′). Here,
the main difference from the general case is that regular vertices of G(S ) always have degree 2.

Definition 3.7. We say that a connected subgraph A ⊆ G(S ) is

(1) two-sided if every singular vertex that lies in A has degree 2 in A;
(2) star-complete if, whenever a regular vertex lies in A, its star in G(S ) is also contained

in A.

Given a connected subgraph A ⊆ G(S ), let U(A) ⊆ U(S ) be obtained by taking the union
of the closures of the elements of comp S that lie in A.

We say that a subspace Y ⊂ X is locally codimension-1 if for all y ∈ Y , there is a neighbour-
hood N of y in X equipped with a homeomorphism (Y ∩N) × [− 1

2 ,
1
2 ] → N restricting to the

inclusion Y ∩N → N on (Y ∩N) × {0}.

Proposition 3.8. There exists K = K(δ) such that all the following hold for n > 8δ and
any n-system of switches S = (S, H).

(1) The graph G(S ) is a forest.
(2) Consider u, v ∈ suppS such that G(u) and G(v) are contained in the same connected

component of G(S ). Then u and v are transverse if and only if {u, v} ∈ S.
(3) For every connected subgraph A ⊆ G(S ), the subset U(A) ⊆ U(S ) is connected and

K-quasiconvex.
(4) A connected subgraph A ⊆ G(S ) is star-complete and two-sided if and only if the subset

U(A) ⊆ X is locally codimension-1.
(5) The orbit G · U(A) is locally finite in X if and only if no regular vertex of G(S ) lies in

infinitely many pairwise-distinct H-translates of A.

Proof. Consider an immersed path γ ⊆ G(S ) between two regular vertices [x], [y] ∈ comp S .
Let v0, . . . , vk ∈ suppS be the hyperplanes containing the elements of γ ∩ comp S , in the same
order as they appear moving from [x] to [y] along γ. In particular, x ∈ [x] ⊆ v0, y ∈ [y] ⊆ vk,
the hyperplane vi is transverse to vi+1 for each 0 � i � k − 1 and we have d(vi−1, vi+1) � n
for every 0 < i < k.
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It follows that v0, . . . , vk satisfy the hypotheses of Lemma 3.3. Denoting by γ̃ ⊆ U(S ) ⊆ X
any standard path joining x and y, any geodesic joining x and y in X is at Hausdorff distance at
most K from γ̃. This shows part (3), while parts (1) and (2) follow from part (2) of Lemma 3.3.
Part (4) is obvious.

Finally, we prove part (5). Observe that G · U(A) is locally finite if and only if H · U(A) is.
This fails if and only if a point z ∈ U(S ) lies in infinitely many pairwise-distinct H-translates
of U(A), say hiU(A) = U(hiA). Without loss of generality, z is a vertex of a hyperplane of
X. The above then happens if and only if the vertex [z] ∈ G(S ) lies in the pairwise-distinct
subgraphs hiA. �

Definition 3.9. A crooked hyperplane is a connected, two-sided, star-complete subtree Γ ⊆
G(S ) such that no regular vertex of G(S ) lies in infinitely many pairwise-distinct H-translates
of Γ.

Given a crooked hyperplane Γ ⊆ G(S ), we denote by GΓ the G-stabiliser of the subset†

U(Γ) ⊆ X. Part (5) of [30, Proposition 3.8 and Lemma 2.3] shows that the action GΓ � U(Γ)
is proper and cocompact. By part (3), the subgroup GΓ � G is quasiconvex. Moreover, from
part (4) and Mayer–Vietoris, we see that X − U(Γ) has exactly two connected components. We
write G0

Γ � GΓ for the subgroup (of index at most two) that leaves invariant both connected
components of X − U(Γ).

Remark 3.10. For every crooked hyperplane Γ ⊆ G(S ), there is a natural map ι : ∂∞Γ →
∂∞U(Γ) taking the endpoint of a ray γ in the tree Γ to the endpoint at infinity of any standard
path γ̃ ⊆ U(Γ). The map ι is a homeomorphism onto its image, and it satisfies

∂∞U(Γ) = ι(∂∞Γ) �
⋃

c∈Γ∩comp S

∂∞c.

Thus, ∂∞U(Γ) is non-empty even when each element of comp S is bounded.

Proposition 3.11. Let S be an n-system of switches. Every compact, two-sided subtree
A ⊆ G(S ) is contained in a crooked hyperplane.

Proof. Let us write G = G(S ) for simplicity and let G2 ⊆ G be the subset of singular vertices;
recall that the action H � G is cocompact. Since the action H � G has separable vertex- and
edge-stabilisers by [36, Corollary 7.9], there exists a finite-index subgroup L�H such that A
projects injectively to the quotient G = L\G and such that every element of G2 projects to a
degree-4 vertex of G. Let π : G → G denote the quotient projection.

For each v ∈ π(G2), we choose a partition of the four edges incident to v into two pairs.
We do so ensuring that, if v ∈ π(A), one element of the partition consists precisely of the two
edges lying in π(A). We now lift these partitions to G. Let G′ be the graph obtained from G by
replacing every vertex in G2 with two vertices of degree 2, according to the chosen partitions.
The graph G′ naturally comes equipped with an immersion f : G′ → G.

By construction, there exists a connected component Γ ⊆ G′ such that A ⊆ f(Γ). It is clear
that f(Γ) is a connected, two-sided, star-complete subtree of G. Each regular vertex of G lies in
at most one L-translate of f(Γ). It follows that every regular vertex of G lies in finitely many
H-translates of f(Γ). This shows that f(Γ) is a crooked hyperplane, concluding the proof. �

If Γ ⊆ G(S ) is a crooked hyperplane, we denote by TΓ the connected component of G(S )
that contains Γ.

†The G-stabiliser of Γ itself would not make sense, as, although H acts on G(S ), the group G does not.
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Let D be as in Lemma 2.14, let K be as in Proposition 3.8 and let M be the constant chosen
at the beginning of this subsection.

Proposition 3.12. Consider n > 2(M + D + 2K) and a full n-system of switches S =
(S, H). For every non-constant geodesic γ ⊆ X, there exists a regular vertex v ∈ G(S ) with
the following property. For every crooked hyperplane Γ ⊆ G(S ) intersecting the orbit H · v,
there exists g ∈ G such that gγ intersects U(TΓ) in a single point, which lies in U(Γ).

Before proving Proposition 3.12, we need to obtain a couple of lemmas.

Lemma 3.13. Let T be a connected component of G(S ). Consider a regular point p ∈ U(T )
and let w be the hyperplane containing [p] ∈ comp S . Then, for every x ∈ U(T ) − [p], we have
d(p, πw(x)) � d(p,w− [p]) − 2K.

Proof. Let γ̃ be a standard path from p to x and let α be an �1 geodesic joining p and x.
Let y ∈ γ̃ be the first point that does not lie in [p] and let y′ ∈ α be a point that is closest to
y; in particular, we have d(y, y′) � K. It follows that

(x · y)p � (x · y′)p −K = d(p, y′) −K � d(p, y) − 2K � d(p,w− [p]) − 2K.

Since p, y ∈ w, every element of W (p|x, y) is transverse to w; hence we have W (p|x, y) ⊆
W (p|πw(x)). As (x · y)p = #W (p|x, y), this concludes the proof. �

Lemma 3.14. Let a hyperplane w ∈ suppS and a vertex x ∈ w be given. If n > 2M , there
exists g ∈ Gw such that d(gx,w− [gx]) � n

2 −M .

Proof. Since S is Hw-invariant and the action Hw � w is essential, the component [x] ⊆ w
must have at least two boundary components. Given that any two boundary components of [x]
are at distance at least n from each other and [x] is connected, there exists a vertex q ∈ w such
that [q] = [x] and d(q,w− [q]) � n

2 . By the definition of M , there exists an element g ∈ Gw such
that d(gx, q) � M < n

2 . Hence [gx] = [q] and we obtain d(gx,w− [gx]) � d(q,w− [q]) −M �
n
2 −M . �

Proof of Proposition 3.12. By Lemma 2.14 there exists a hyperplane w ∈ W (γ) for which
diamπw(γ) � D. Since S is full, we can replace γ with a G-translate and assume that
w ∈ suppS . Let x be the point of intersection between γ and w. Let T ⊆ G(S ) be the
connected component that contains the vertex [x] ∈ G(S ). Up to replacing γ with a Gw-
translate, Lemma 3.14 allows us to assume that d(x,w− [x]) > 2K + D. Then, Lemma 3.13
gives

d(x, πw(U(T ) − [x])) > D � diamπw(γ).

We conclude that γ and U(T ) − [x] are disjoint.
If Γ ⊆ G(S ) is a crooked hyperplane containing [x], we have TΓ = T and

γ ∩ U(TΓ) = γ ∩ [x] = {x}.
Finally, set v = [x]. Let Γ′ be a crooked hyperplane containing hv for some h ∈ H. Then hγ

intersects U(TΓ′) in the single point hx ∈ U(Γ′). �

We say that g ∈ G skewers a crooked hyperplane Γ if we have gC ⊆ C for one of the two
connected components C ⊆ X − U(Γ), where C denotes the closure. In this case, we have
d(gC,U(Γ)) > 0, by cocompactness of G0

Γ � U(Γ). We remark that, if Γ is skewered by an
element of G, the subgroup G0

Γ � G is codimension-1.
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Corollary 3.15. Consider n > 2(M + D + 2K), a full n-system of switches S = (S, H)
and a crooked hyperplane Γ ⊆ G(S ) projecting surjectively to H\G(S ). Then

(1) every non-constant geodesic γ ⊆ X has a G-translate intersecting U(Γ) is a single point;
(2) for every infinite-order element g ∈ G, a G-conjugate of a power of g skewers U(Γ).

Proof. Part (1) is immediate from Proposition 3.12 and the fact that U(Γ) is contained in
U(TΓ).

Regarding part (2), we can replace g with a power and assume that g admits an axis γ ⊆ X
[34]. Again by Proposition 3.12, we can replace g with a conjugate and assume that γ intersects
U(TΓ) in a single point x ∈ U(Γ). It follows that one connected component C+ ⊆ X − U(Γ)
contains the positive half of γ − {x}, while the other component C− ⊆ X − U(Γ) contains the
negative half.

Let us pick m > 0 such that gm ∈ H. Note that gmU(Γ) and U(Γ) are disjoint. Otherwise,
we would have:

∅ �= gmU(Γ) ∩ U(Γ) = U(gmΓ ∩ Γ).

Hence gmTΓ = TΓ and

gmx ∈ gmU(TΓ) = U(TΓ),

contradicting the fact that γ ∩ U(TΓ) = {x}.
Now, since gmU(Γ) and U(Γ) are disjoint, we have gmU(Γ) ⊆ C+. Note moreover that

gmC− ∩ C− �= ∅, as both sets contain a subray of γ. We conclude that gmC+ ⊆ C+, that
is, gm skewers Γ. �

Part (2) of Corollary 3.15 and Proposition 2.23 now yield

Corollary 3.16. Consider n > 2(M + D + 2K), a full n-system of switches S = (S, H)
and a crooked hyperplane Γ ⊆ G(S ) projecting surjectively to H\G(S ). There exists an
essential CAT(0) cube complex XΓ and a proper cocompact action G � XΓ with a single
orbit of hyperplanes. All hyperplane-stabilisers of G � XΓ are conjugate to GΓ � G.

The following proves Theorem A in the one-ended case.

Corollary 3.17. Every cocompactly cubulated one-ended hyperbolic group admits an
essential, cocompact cubulation with a single orbit of hyperplanes.

Proof. Let G be a one-ended hyperbolic group with a proper cocompact action on a CAT(0)
cube complex X. By Proposition 2.29, we can assume that X is essential and hyperplane-
essential. Lemma 3.5 provides a full n-system of switches S with n > 2(M + D + 2K),
where D,K,M are as above. Every connected component T ⊆ G(S ) is a tree that projects
surjectively to H\G(S ). Since X is hyperplane-essential, T has no leaves. The stabiliser
HT acts cocompactly on T , hence minimally. It follows that there exists a compact, two-
sided subtree A ⊆ T ⊆ G(S ) that projects surjectively to the finite graph H\G(S ). By
Proposition 3.11, there exists a crooked hyperplane Γ ⊆ G(S ) containing A and we can apply
Corollary 3.16. �

Remark 3.18. The cubulation provided by Corollary 3.16 is in general not hyperplane-
essential. This is due to the following configuration, in which we may find two crooked
hyperplanes C1 = U(Γ) and C2 = gU(Γ). Denoting by C±

i the two connected components of
X − Ci, all four intersections C±

1 ∩ C±
2 might contain points arbitrarily far from C1 ∪ C2, even
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if, say, the intersection C1 ∩ C+
2 is bounded. In this case, the cubulation of G arising from

G · U(Γ) has transverse hyperplanes w1,w2 arising from C1, C2, but it is impossible to skewer
w1 ∩w2 with a hyperbolic element stabilising w1.

3.3. The infinitely-ended case

In this subsection, we complete the proof of Theorem A by addressing the case where G is
not one-ended.

The idea is to construct ‘antennae’ (in the sense of [60]) in the maximal Bass-Serre tree and
to attach crooked hyperplanes constructed for the one-ended vertex groups. We now describe
the construction in detail.

Let G be a cocompactly cubulated hyperbolic group. By [20, 21], G is the fundamental group
of a finite graph of groups G where edge groups are finite and vertex groups are either finite
or one-ended. Let G � T be the action on the corresponding Bass-Serre tree. Let G1, . . . , Gk

be the one-ended vertex groups and let v1, . . . , vk be their fixed vertices in T .

3.3.1. The orbicomplex X. By [8, Proposition 1.2], each Gi is quasiconvex in G and,
by [35, Theorem H], each Gi is cocompactly cubulated. By Proposition 2.29, we can pick a
proper cocompact action of each Gi on an essential, hyperplane-essential CAT(0) cube complex
Xi. Cubically subdividing if necessary, we can assume that each Gi � Xi has no hyperplane
inversions. Each finite subgroup F � Gi has a global fixed point in Xi; hence F preserves a
cube of Xi and, since there are no hyperplane inversions, F must fix a vertex.

We now construct a specific ‘orbicomplex’ X with G = π1X. We start with the disjoint
union of the quotient orbicomplexes Xi := Gi\Xi for 1 � i � k, plus a singleton for every
finite vertex group of G . For each edge of G , we add an edge connecting the corresponding
orbicomplexes Xi or singletons. If F is the associated edge group, we ensure that the attaching
vertex in Xi is the projection of a vertex of Xi that is fixed by the image of the homomorphism
F → Gi.

Let G � X be the action on the universal cover of X. This is a proper cocompact action on
an essential, hyperplane-essential CAT(0) cube complex.

We do not want to identify effectively parallel hyperplanes, as this can alter the action
G � T . However, the construction of X will also be required later on in the proof of Theorem D.
For that purpose, we observe that Proposition 2.29 yields

Lemma 3.19. Let G be a cocompactly cubulated hyperbolic group and let G1, . . . , Gk be the
one-ended factors of the maximal splitting of G over finite subgroups. Given bald cubulations
Gi � Xi, there exists a bald cubulation G � X such that, for each i, the Gi-essential core of
the restriction Gi � X is Gi-equivariantly isomorphic to Xi.

In fact, the case when G has torsion will only be needed in Section 4.1 when we prove
Theorem D.

In the remainder of this section, we can and will assume that X = G\X is a genuine cube
complex by passing to a torsion-free finite-index subgroup of G (whose existence is guaranteed
by specialness [1, 36]) and applying the following trick:

Lemma 3.20. Let G be a hyperbolic group with a finite-index subgroup H � G. Then, if
H admits a cocompact cubulation with a single orbit of hyperplanes, so does G.

Proof. Let H � X be a cocompact cubulation with a single H-orbit of hyperplanes. We pick
a hyperplane w ∈ W (X), with associated halfspaces h+, h− and halfspace-stabiliser H0

w � H.
Consider the two sets H± := Λh± − ΛH0

w, where limit sets are taken in ∂∞H = ∂∞G. Since the
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Figure 2. The subtree A ⊆ T .

action H � X is necessarily essential, the sets H± are non-empty and we obtain an abstract
hyperplane (H0

w,H) for both H and G.
We now apply Proposition 2.23 to the collection H = G · H. We obtain a cocompact action

G � X(H) with a single G-orbit of hyperplanes. If g ∈ G has infinite-order, a power of g lies
in H, where it skewers a hyperplane of X. It follows that the points g± ∈ ∂∞G = ∂∞H are
separated by an abstract hyperplane in H · H ⊆ H. This shows that the action G � X(H) is
proper and, thus, the desired cubulation of G. �

We thus assume, in the rest of the discussion, that G is torsion-free.
The CAT(0) cube complex X constructed right before Lemma 3.19 comes equipped with a

natural G-equivariant projection π : X → T . For every open edge e ⊆ T , the preimage π−1(e) ⊆
X consists of a single separating (open) edge of X. For every vertex v ∈ T , the preimage Xv :=
π−1(v) ⊆ X is a convex subcomplex of X with a proper, cocompact, essential, hyperplane-
essential action Gv � Xv; here Gv � G denotes the stabiliser of the vertex v ∈ T . We identify
Xvi

= π−1(vi) with Xi and the action Gvi
� Xvi

with Gi � Xi.

3.3.2. Antennae. Recall that G � X without inversions. Thus, by [34], every g ∈ G− {1}
admits an axis γ ⊆ X. The projection π(γ) ⊆ T is either a single vertex (if g is elliptic in T ),
or an axis for g in T .

Let GBS ⊆ G be the subset of elements that admit an axis γ ⊆ X that projects injectively to
T . In other words, this is an axis that does not contain any edges lying in one of the non-trivial
fibres of the map π : X → T .

Since X is locally finite and the action G � X is cocompact, we can find a finite collection
P of length-two paths in T with the following property. Every element of GBS has a conjugate
whose axis (in T ) contains an element of P as a subpath.

Possibly replacing each element of P by a G-translate, there exists a geodesic segment α1 ⊆
T that intersects each element of P in its middle vertex. Replacing each vertex vi ∈ T with
a G-translate if necessary, there exists another geodesic segment α2 ⊆ T containing v1, . . . , vk
(recall that the vi are representatives of the G-orbits of vertices of T with infinite G-stabiliser,
as chosen at the beginning of Section 3.3). We can moreover assume that α1 and α2 intersect
at an endpoint and only at that endpoint.

Let A ⊆ T be the union of α1, α2 and all elements of P, shown in Figure 2. This is an
antenna with some missing arms (cf. [60, Section 2.1]). We also choose a finite tree A ⊆ X
with π(A) = A.

3.3.3. The cube complex U . As in the proof of Corollary 3.17, there exist systems
of switches Si in Xi and crooked hyperplanes Γi ⊆ G(Si) that satisfy the hypotheses of
Corollary 3.15. Thus, every g ∈ Gi − {1} has a conjugate of a power skewering U(Γi) ⊆ Xi,
and every geodesic in Xi has a Gi-translate intersecting U(Γi) in a single point.

Remark 3.21. Replacing Γi with a Gi-translate, we can assume that there exists an element
ai ∈ Gi such that aiU(Γi) separates U(Γi) from A ∩Xi. This is a purely technical assumption
to avoid an issue in the proof of Lemma 3.23.
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Figure 3. The cube complex U � G\X.

Figure 4. The subcomplex U ⊆ X.

Let us write Ui = U(Γi) for short and fix a shortest path βi ⊆ Xi from Ui to A ∩Xi (which
is non-empty since vi ∈ A).

Let Li � Gi denote the stabiliser of Ui and let L0
i � Li be the subgroup (of index at most

two) that leaves invariant both connected components of Xi − Ui. Set U i = L0
i \Ui. This is a

compact cube complex with a natural cubical immersion U i � X
′
i (recall that X

′
i is the cubical

subdivision of Xi).
In fact, by construction, Ui is CAT(0), because it is a tree of spaces whose vertex spaces are

CAT(0) cube complexes and whose edge spaces are convex subcomplexes of the incident vertex
spaces. Since L0

i � Ui freely, we can identify L0
i with π1U i, that is, the immersion U i � Xi

induces the inclusion L0
i ↪→ Gi at the level of fundamental groups.

We now assemble a cube complex U as in Figure 3 by taking a copy of the tree A ∪ β1 ∪
· · · ∪ βk ⊆ X and attaching a copy of U i at the end of βi that does not lie on A. This comes
equipped with a π1-injective immersion U � X.

The immersion U � X lifts to an embedding U ↪→ X, where U is the universal cover of U ;
we also use the notation U for the image of this embedding, which is shown in Figure 4. (As
shown in the figure, U contains the tree A ∪ β1 ∪ · · · ∪ βk ⊆ X.) We identify the fundamental
group π1U with a subgroup L � G that stabilises U and acts cocompactly on it.

3.3.4. Quasiconvexity of L. For each vi ∈ T , the intersection U ∩Xi is the union of Ui and
all the L0

i -translates of the path βi ⊆ Xi. In particular, U ∩Xi is at finite Hausdorff distance
from Ui, hence quasiconvex. For an arbitrary vertex v ∈ T , the intersection U ∩ π−1(v) is an
L-translate of either some U ∩Xi, or some subpath of the finite tree A ⊆ X. It follows that
the intersections U ∩ π−1(v) are uniformly quasiconvex

Observe that X decomposes as a tree of spaces with respect to the connected components
of the various sets π−1(v), and U is also a tree of spaces with respect to the components of
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U ∩ π−1(v). It follows from uniform quasiconvexity of the latter sets that U is quasiconvex in
X. Since the action L � U is proper and cocompact, L � G is a quasiconvex subgroup.

3.3.5. Cutting using L. We now proceed to analyse the connected components of X − U .
Note that the projection TU := π(U) ⊆ T is an L-invariant subtree and that the quotient
L\TU is naturally identified with A. We define an L-invariant map p : X → A by composing
the projection π : X → T with the nearest-point projection T → TU and, finally, the quotient
projection TU → L\TU ∼= A.

We also consider the L-invariant convex subset U = π−1(TU ) ⊆ X, which contains U , and
the L-equivariant gate-projection pU : X → U . Observe that p ◦ pU = p. We denote by C+

i

and C−
i the two connected components of Xi − Ui and by C±

i ⊆ U the unions of all their
L-translates.

Lemma 3.22. (1) For every vertex w ∈ A, the set p−1(w) − U is an L-invariant union of
connected components of X − U . Every connected component of X − U is contained in one of
these sets.

(2) If C is a connected component of p−1(vi) − U , the projection pU (C) is contained in
either C+

i or C−
i (and this property is L-invariant).

Proof. Recall that the map p : X → A is continuous and L-invariant. If x ∈ A is a point in
the interior of an edge, we have p−1(x) ⊆ U . Hence X − U is a disjoint union of the finitely
many, closed, L-invariant subsets p−1(w) − U , where w ∈ A is a vertex. This proves part (1).

Recall that the L-stabiliser of Xi ⊆ X is L0
i . Given that L0

i does not swap the two sides of
Ui ⊆ Xi, the sets C+

i and C−
i are disjoint. Since p ◦ pU = p, a point x ∈ X lies in p−1(vi) for

some 1 � i � k if and only if the projection pU (x) lies in an L-translate of the subset Xi ⊆ X. In
particular, pU (p−1(vi) − U) ⊆ C+

i � C−
i . Observing that the C±

i are open in the union C+
i � C−

i ,
we obtain part (2). �

Recall that each element P ∈ P is a length-two subpath P ⊆ A; we denote by z±P ∈ A its
two endpoints. Let H− ⊆ X be the union of all connected components of X − U that are
contained either in p−1(z−P ) for some P ∈ P, or in p−1

U (C−
i ) for some 1 � i � k. We also set

H+ := X − (H− � U). In particular, H+ contains all connected components of X − U that are
either contained in some p−1(z+

P ) or in some p−1
U (C+

i ).
We obtain an L-invariant partition X = H− � U �H+. By part (3) of Lemma 2.18, this gives

rise to an abstract hyperplane (L,H) (cf. Definition 2.19), where H± = Λ(U �H±) − ΛU . Note
that the sets H± are both non-empty as, for each 1 � i � k, the intersection pU (U) ∩Xi is at
finite Hausdorff distance from Ui and ∂∞C±

i − ∂∞Ui �= ∅.
Now, applying Proposition 2.23 to the collection of abstract hyperplanes G · H, we obtain a

cocompact, essential G-action on a CAT(0) cube complex with a single orbit of hyperplanes. In
order to complete the proof of Theorem A, we are only left to show that this action is proper.
By part (2) of Proposition 2.23, this amounts to the following:

Lemma 3.23. Every g ∈ G− {1} has a conjugate h with h+ ∈ H+ and h− ∈ H− (or h− ∈ H+

and h+ ∈ H−).

Proof. There are two cases to consider, depending on whether g lies in GBS .
If g ∈ GBS , we can replace g with a conjugate so that a path P ∈ P is contained in its

axis γ ⊆ T . Any axis γ′ ⊆ X will satisfy π(γ′) = γ and π(γ′ ∩ U) = P . It follows that γ′ − U
contains subrays lying in H+ and H−. Without loss of generality, we have g+ ∈ Λ(U �H+)
and g− ∈ Λ(U �H−). Since no power of g stabilises U , Lemma 2.16 guarantees that g± �∈ ΛU .
Thus g+ ∈ H+ and g− ∈ H−, as required.
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Suppose instead that g �∈ GBS . Then, replacing g with a conjugate, we can assume that g
admits an axis γ ⊆ X that intersects one of the spaces Xi ⊆ X in a non-trivial geodesic. By
our choice of the crooked hyperplanes Γi, the geodesic γ ∩Xi intersects Ui in a single point.
Thus, either γ ⊆ Xi and C±

i each contain a subray of γ, or γ ∩Xi is a finite segment with one
endpoint in C+ and one endpoint in C−.

We conclude that the sets H± each contain a subray of γ, unless possibly if γ ∩Xi is a
segment with one of its endpoints in A ∩Xi. This issue can be avoided simply by conjugating
g by the element ai ∈ Gi mentioned in Remark 3.21.

Without loss of generality, we have g+ ∈ Λ(U �H+) and g− ∈ Λ(U �H−) once again.
It is clear that no power of g stabilises U . As before, we conclude that g+ ∈ H+ and
g− ∈ H−. �

We have proved:

Corollary 3.24. Every cocompactly cubulated hyperbolic group admits a cocompact,
essential cubulation with a single orbit of hyperplanes.

4. The number of bald cubulations

4.1. Bald cubulations of hyperbolic groups

Let G be a cocompactly cubulated, non-elementary hyperbolic group. We first assume that G
is one-ended.

Lemma 4.1. Suppose that G admits only finitely many bald cubulations up to equivariant
cubical isomorphism. Then there exists a bald cubulation G � X and a hyperplane w ∈ W (X)
with the following property. Let G � Y be a bald cubulation. Then for each hyperplane u ∈
W (Y ), Λu is not properly contained in Λw.

Proof. If the lemma did not hold, there would exist an infinite sequence of bald cubulations
G � Xn and hyperplanes wn ∈ W (Xn) such that Λwn+1 � Λwn. Since G is virtually special,
it has a finite-index torsion-free subgroup H � G. Given that G has only finitely many bald
cubulations, and each has only finitely many H-orbits of hyperplanes, there exist h ∈ H and
m < n with hΛwm = Λwn � Λwm.

Observing that h has infinite-order, it follows that h+ ∈ Λwm. Hence, by Lemma 2.16, we
have Λ(〈h〉 ∩ StabG(wm)) = {h±} ∩ Λwm �= ∅. It follows that 〈h〉 ∩ StabG(wm) is infinite, that
is, a positive power of h stabilises Λwm. This is a contradiction. �

Suppose G has finitely many bald cubulations. Let G � X and w ∈ W (X) be the cubulation
and hyperplane provided by Lemma 4.1. By essentiality of G � X, there exists an element
g ∈ G skewering w. By [34], we can replace g with a power to ensure that it admits an axis
γ ⊆ X. Let p be the vertex of w that lies on γ. Let K be the constant in Proposition 3.8 and
define M as at the beginning of Section 3.2.

For every n > 2M , let Sn = (Sn, Hn) be a full n-system of switches (its existence is
guaranteed by Lemma 3.5). Replacing Sn with

k · Sn := (kSn, kHnk
−1) = (kSn, Hn)

for some k ∈ G, we can assume that w ∈ suppSn. Let [p]n ∈ comp Sn denote the component
that contains p. Again replacing Sn with k · Sn for some k ∈ Gw, Lemma 3.14 enables us to
assume that d(p,w− [p]n) � n

2 −M .
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Now, Proposition 3.11 guarantees the existence of a crooked hyperplane Γn ⊆ G(Sn) that
contains the vertex [p]n ∈ G(Sn), but not the entire subtree G(w) ⊆ G(Sn). We will need the
following observations.

Lemma 4.2. (1) We have ∂∞w− ∂∞U(Γn) �= ∅.
(2) If n > 2(2K + M + diamπw(γ)), then U(Γn) is skewered by a power of g.
(3) For every open neighbourhood V of Λw in ∂∞G, there exists n such that ΛU(Γn) ⊆ V

for all n � n.

Proof. Since G(w) � Γn, there exists a ray rn contained in the subtree G(w) ⊆ G(Sn)
and disjoint from Γn. As in Remark 3.10, the corresponding standard path r̃n ⊆ w ⊆ X is
a quasigeodesic ray defining a point of ∂∞w− ∂∞U(Γn). This shows part (1).

Regarding part (2), note that d(p,w− [p]n) � n
2 −M > 2K + diam(πw(γ)). By Lemma 3.13,

p is the only point of intersection between γ and U(Γn). As in the proof of Corollary 3.15, we
conclude that a power of g skewers U(Γn).

Finally, Lemma 3.13 yields d(p, πw(U(Γn) −w)) � n
2 −M − 2K, which diverges for n →

+∞. Recall that, by Remark 3.10, points of ∂∞U(Γn) are represented by uniform quasigeodesic
rays contained in U(Γn). It follows that the limit sets ∂∞U(Γn) Hausdorff-converge to ∂∞w
with respect to the visual metric on ∂∞X determined by the point p. This proves part (3). �

We are now ready to prove Theorem D.

Proof of Theorem D. Let us assume for a moment that the theorem has been proved in
the one-ended case. If G is virtually free, then the theorem follows from Lemma 4.3 below. If
G is neither virtually free nor one-ended, G has at least one one-ended factor in its maximal
splitting over finite subgroups and the theorem follows from Lemma 3.19. It remains to handle
the one-ended case.

The one-ended case: Suppose now that G is one-ended. Let the cubulation G � X and the
crooked hyperplanes Γn be those constructed above. We denote by H the collection of abstract
hyperplanes arising from the hyperplanes of X, and by Hn the abstract hyperplane determined
by U(Γn).

Let G � Xn be the essential cubulation arising from the set H ∪G · Hn via Proposition 2.23.
Let G � (Xn)• be the bald cubulation provided by Proposition 2.29. Recall that, by part (2) of
Lemma 4.2, the hyperplane of Xn corresponding to Hn is skewered by a power of g for all large
n. Thus, part (2) of Proposition 2.29 guarantees that a power of g also skewers a hyperplane
un ∈ W ((Xn)•) with Λun ⊆ ΛU(Γn).

In each bald cubulation of G, only finitely many 〈g〉-orbits of hyperplanes are skewered by a
power of g. If G admitted only finitely many bald cubulations, infinitely many limit sets Λun
would lie in the same 〈g〉-orbit. There are two cases to consider. Note that Λun �= ∅ for all n,
as G is one-ended.

Case 1: There exist two diverging sequences (ak) and (bk) with the property that gbkΛua0 =
Λuak

. Since a power of g skewers ua0 , the subsets gbkΛua0 Hausdorff-converge to g+. This
contradicts part (3) of Lemma 4.2, as Λuak

⊆ ΛU(Γak
) and g+ �∈ Λw.

Case 2: There exists a diverging sequence (ak) such that Λuak
is constant. Call Δ this subset

of ∂∞G. Note that Δ ⊆
⋂

k ΛU(Γak
), which is contained in Λw by part (3) of Lemma 4.2. By

minimality of Λw, we have Δ = Λw. This implies that Λw ⊆ ΛU(Γak
), contradicting part (1)

of Lemma 4.2. �

Lemma 4.3. Let G be a group with Out(G) infinite, and suppose that G admits a proper,
cocompact action on a CAT(0) cube complex. Then G admits infinitely many bald cubulations,
no two of which are G-equivariantly isomorphic.
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Proof. By Proposition 2.29, G admits a bald cubulation ρ : G → Aut(X). Each φ ∈ Aut(G)
defines an action ρ ◦ φ : G → Aut(X), which is again a bald cubulation. For simplicity, given
g ∈ G and x ∈ X, we write gx to mean ρ(g)(x).

Let {x1, . . . , xk} contain exactly one vertex of X from each ρ(G)-orbit. Let g1, . . . , gm ∈ G
generate G. Consider the constants s = maxj d(x1, xj) and r = maxi d(x1, gix1).

Let φ ∈ Aut(G) and suppose that ρ ◦ φ and ρ are equivalent. By definition, there is ι ∈
Aut(X) such that ι(hx) = φ(h)ι(x) for all h ∈ G, x ∈ X.

Choose h ∈ G so that ι(x1) = hxj for some j � k. Then, for each i � m, we have φ(gi)hxj =
φ(gi)(ι(x1)) = ι(gix1). So d(φ(gi)hxj , hxj) = d(gix1, x1) � r, from which the triangle inequality
gives d(h−1φ(gi)hx1, x1) � r + 2s for all i � m. Hence we can re-choose φ in its outer class
so that each φ(gi) displaces x1 by at most a distance depending only on ρ and the (fixed)
generating set of G. There are finitely many possible choices for each φ(gi), and hence there
are only finitely many Φ ∈ Out(G) such that Φ has a representative φ ∈ Aut(G) with ρ and
ρ ◦ φ equivalent.

Thus, if there were only finitely many equivalence classes of actions ρ : G → Aut(X), we
would have that Out(G) is finite, a contradiction. �

Remark 4.4. In order to deal with general virtually free groups in the proof of Theorem D,
one might be tempted to behave as in Section 3.3.2: work in a torsion-free finite-index subgroup,
and then use the same idea as Lemma 3.20 to cubulate the original group. Unfortunately, this
does not preserve hyperplane-essentiality.

4.2. Groups with few bald cubulations

In this subsection, we prove Proposition C (cf. Proposition 4.8) and the following result
mentioned in the introduction.

Proposition 4.5. Let X be an essential, hyperplane-essential CAT(0) cube complex
endowed with a proper, cocompact action of Zn. Then X is isomorphic to the standard tiling
of Rn.

Proof. By the Cubical Flat Torus theorem [61, Theorem 3.6], there exists an invariant
convex subcomplex Y ⊆ X that splits as product of quasilines C1, . . . , Cn. Since the Zn-action
is essential, we have Y = X. Since X is essential and hyperplane-essential, so is each Cj . Every
hyperplane of an essential quasiline is bounded. Thus, since each Cj is hyperplane-essential, it
follows that Cj

∼= R. In conclusion, X ∼= Rn. �

Before proving Proposition 4.8, we need to obtain a couple of lemmas.

Lemma 4.6. Let G act cocompactly on a bald cube complex X with no R-factors. If A ⊆
X(0) is a G-invariant, non-empty median subalgebra, then A = X(0).

Proof. Since the action G � X is essential, every halfspace of X intersects A non-trivially.
We obtain a G-equivariant map rA : H (X) → H (A) that takes each halfspace of X to its
intersection with A. By [9, Lemma 6.5], this map is surjective. By Lemma 2.3, every halfspace
of X is at finite Hausdorff distance from its intersection with A. By definition, no two halfspaces
of X are at finite Hausdorff distance, so the fibres of rA are singletons. We conclude that rA is
a bijection, hence A = X(0). �

Lemma 4.7. Let G be a group such that no finite-index subgroup of G admits a non-trivial
additive homomorphism to R. Let G act cocompactly on a proper, unbounded CAT(0) space
X . Then every G-orbit in the visual boundary ∂∞X is infinite.
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Proof. By our assumptions, the visual boundary ∂∞X is non-empty. Suppose for the sake
of contradiction that G has a finite orbit in ∂∞X , so a finite-index subgroup G0 � G fixes a
point ξ ∈ ∂∞X .

Let bξ : X → R be any Busemann function determined by ξ. Given any x ∈ X , the map
φ : G0 → R defined by φ(g) = bξ(gx) − bξ(x) is easily seen to be an additive homomorphism.
By our assumption on G, the map φ must vanish identically. Hence G0 leaves invariant each
horosphere around ξ, contradicting cocompactness of G0 � X . �

Proposition 4.8. For i = 1, 2, let Ti be locally finite trees with all vertices of degree
� 3. Let Ui � Aut(Ti) be closed, locally primitive subgroups generated by edge stabilisers and
satisfying Tits’ independence property. Then, for any uniform lattice Γ � U1 × U2 with dense
projections to U1 and U2, the standard action Γ � T1 × T2 is the only bald cubulation of Γ.

Proof. Let Γ � X be a bald cubulation. Let X1 × · · · ×Xk be the de Rham decomposition†

of X and let Γ0 � Γ be a finite-index subgroup leaving each factor invariant. Each Xj is a
locally finite, bald cube complex endowed with a cocompact Γ0-action.

Observe that U1 and U2 are simple groups by the argument in [54] (see, for example, [15,
Theorem 3.3]). Theorem 0.8 in [52] thus implies that every additive homomorphism Γ0 → R
vanishes identically, and the same holds for any finite-index subgroup of Γ0. Lemma 4.7 then
yields that there are no finite Γ0-orbits in the visual boundaries ∂∞Xj .

Again by simplicity, Ui has no finite-index open subgroups, so the projection of Γ0 to Ui is
dense. By [17, Theorem 1.5], each action Γ0 � Xj extends to a continuous action of some Uij

on a Γ0-invariant median subalgebra‡ Aj ⊆ X
(0)
j . By Lemma 4.6, we actually have Aj = X

(0)
j .

Observe that each Uij � Xj is cocompact and essential, since so is the Γ0-action. Thus,
hyperplane-stabilisers are proper, open subgroups of Uij and they act cocompactly on the
respective hyperplanes by Lemma 2.3. Theorem A in [15] shows that all hyperplane-stabilisers
of Uij � Xj are compact, which means that all hyperplanes of each Xj are compact. Since
Xj is hyperplane-essential, it must be a tree. Finally, by [13, Lemma 1.4.7]¶, Xj must be
Uij -equivariantly isomorphic to Tij . We conclude that k = 2 and that X is Γ-equivariantly
isomorphic to T1 × T2. �
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