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Quantum spin liquids provide paradigmatic examples of highly entangled quantum states of mat-
ter. Frustration is the key mechanism to favor spin liquids over more conventional magnetically
ordered states. Here we propose to engineer frustration by exploiting the coupling of quantum mag-
nets to the quantized light of an optical cavity. The interplay between the quantum fluctuations
of the electro-magnetic field and the strongly correlated electrons results in a tunable long-range
interaction between localized spins. This cavity-induced frustration robustly stabilizes spin liquid
states, which occupy an extensive region in the phase diagram spanned by the range and strength
of the tailored interaction. Remarkably, this occurs even in originally unfrustrated systems, as we
showcase for the Heisenberg model on the square lattice.

I. INTRODUCTION

Quantum spin liquids (QSLs) represent strongly corre-
lated phases of matter, which are characterized by quan-
tum fluctuations so dominant as to suppress magnetic
ordering down to the lowest temperatures. Yet, the spins
may be quantum mechanically entangled over long dis-
tances!™. In Nature, QSLs are expected to occur in
proximity to magnetic phases, but their existence of-
ten remains elusive. The key ingredient behind quan-
tum spin liquid formation is, however, clearly identified:
it is the presence of strong frustration, which disallows
magnetic symmetry breaking, but need not be averse to,
e.g. quantum mechanical singlet ordering. The routes
towards frustration are manifold: one promising avenue
is the focus on materials where magnetic ordering is pe-
nalized by the geometry of the lattice, such as for tri-
angular, Kagomé or pyrochlore lattices*™’. Another one
proceeds via the energetic competition of couplings of dif-
ferent range, like in the antiferromagnetic J; — J, Heisen-
berg model or dipolar-interacting systems® ' where
the simultaneous appearance of nearest- and beyond-
nearest-neighbour couplings counteracts global antiferro-
magnetism.

The challenge is then out to engineer robust QSL states
of quantum condensed matter. Here, we will achieve this
task by coupling an ordinary Heisenberg antiferromagnet
on a square lattice to the electro-magnetic field of an
optical cavity.

The physical mechanism stabilizing the QSL takes the
second route towards strong frustration to the extreme,
by considering long-range antiferromagnetic interactions
described by an algebraically decaying spin-spin inter-
action ~ r~% including the case of all-to-all couplings
a = 0, mediated by the cavity, cf. Fig. [I| (a). For the
limiting case @ = 0 and a cavity induced interaction -y
dominating over the nearest-neighbour Heisenberg cou-
pling J, J/y = 0, this realizes a long-range resonating
valence bond state (LR-RVB), with spin singlets of ar-
bitrary sizett. Away from this limit, and for decay ex-
ponents o < 1, within a Schwinger-boson approach we

~

find that the frustration imprinted by the cavity creates
an extensive regime of QSL states. It is characterized
by the absence of spontaneous symmetry breaking, and
fractional excitations of both of a gapped (SL-I) and of
gapless (SL-II) nature, cf. Fig.[l] (b). As a consequence
of the underlying long-ranged interactions, correlations
decay algebraically in both these phases.

In terms of a physical implementation, we draw moti-
vation from recent developments exploring the interplay
of quantum materials with quantized light. This idea has
been researched in the context of weakly correlated sys-
tems, mainly as a tool to reinforce superconductivity and
other coherent many-body phases!™. First works have
also addressed the strong coupling regime, showing how
existing phases can be manipulated in this way 32021
Here we demonstrate that the coupling to a cavity can
even induce phases that are not present in its absence:
an unfrustrated antiferromagnetic system is turned into
a quantum spin liquid, provided the antiferromagnetic
interaction mediated by the cavity is sufficiently long-
ranged and strong. To achieve these requirements, we
develop a solid-state implementation harnessing localized
electronic orbitals as effective spin degrees of freedom,
coupled to the cavity modes via additional coherent laser
drive, cf. Fig.|l|(a). This gives rise to quantum mechan-
ically fluctuating, effective magnetic fields in all linearly
independent spatial directions, which vanish on average.
They thus counteract dynamically magnetization in any
direction, but do not suppress the spin-singlet ordering,
crucial for QSL states.

II. MODEL

We consider a long-range SU(2)-symmetric Heisenberg
model on a square lattice

S-S,

H=J Si'Sj—F’YZ po) (1)
> = Irijl

(4,3

with S; = (S7,57,57) spin-1/2 operators on the lattice
site 4, J > 0 the nearest-neighbour antiferromagnetic ex-
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FIG. 1. Implementation of a cavity-induced quantum spin liquid and phase diagram. (a) Setup: a two-dimensional
material, with nearest-neighbour exchange interaction .J, is coupled to a cavity with fundamental frequencies w, ||, whose field
is represented by the light-blue arrows. The system is driven by an external laser with frequency wr. (b) Level scheme: the
electronic orbitals |b1,2), with energies ~ €1,2 are coupled to the auxiliary band |bs), with energy ~ e3 via the laser with Rabi
frequency Qr, and the cavity modes a, . The third band is detuned from the laser by A3, and from the cavity modes by A, .
(c) Phase diagram for the ground state of Hamiltonian , obtained from the bosonic spinon decomposition, as a function of
the exponent « and of the coupling ratio v/J. The inset shows the square lattice and the reciprocal one, with the respective

primitive vectors. Discussion and abbreviations, see text.

change, v > 0 the strength of the long-range interac-
tion modulated by the exponent «, and r;; = r; — rj.
Before analysing the ground-state phase diagram of the
Hamiltonian , let us qualitatively discuss the expected
phases, starting with some known limiting cases. For
v = 0, the ground state of the Hamiltonian displays
Néel-like order??. For o = 0 and v > J, the long-range
Hamiltonian is proportional to the total spin (3, S;)?:
this imposes a constraint on this singlet manifold, ener-
getically penalizing states with a finite value of the total
spin S, including states with finite magnetization. As a
result, the ground state of the total Hamiltonian is given
by the ground state of the short-range Hamiltonian pro-
jected on the singlet manifold. This was numerically im-
plemented in Ref. [11] using a long-range RVB state as
variational wavefunction, eventually finding a state with
long-range correlations but without spontaneous break-
ing of the SU(2) symmetry. We will denote this state as
a long-range RVB state (LR-RVB). Finally, for J = 0,
different scenarios are possible: for a large enough, only
nearest-neighbouring sites experience an appreciable in-
teraction, and therefore Néel-like order is expected. For
smaller values of a, the frustrating nature of the inter-
action is expected to penalize AFM order, thus favoring
disordered phases. This was shown to be the case for
a = 3 on the triangular lattice®, and on the square lat-
tice? (although only away from the SU(2) limit in the
latter case), where a QSL phase was found.

Summarizing, by varying v/J and «, we expect three
kinds of phases: (i) Néel-like AFM, (ii) a disordered QSL
phase, and (iii) a LR-RVB phase. This is substantiated
below using a Schwinger-boson approach, which is ca-
pable of capturing all the phases mentioned above. In
particular, it provides a natural interpolation scheme be-

SL-1 SL-IT LR-RVB AFM
Gap Yes No Yes No
LRO No No Yes Yes

TABLE I. Ground-state phases. Summary of the four
phases identified in this work, according to the criteria dis-
cussed in Sec. [T}

tween the well-understood RVB and Néel physics dis-
cussed above.

III. RESULTS

In order to unveil the nature of the ground state of
the Hamiltonian , we apply the bosonic spinon de-
composition pioneered in Refs. 23H25, where the spin op-
erators are represented in terms of new bosonic degrees
of freedom, ultimately interpreted as emergent fractional
excitations. The main advantage of this method is its
flexibility to interpolate between the different states pre-
viously identified. On the one hand, SU(2)-symmetric
bosonic ground states are naturally identified with spin
RVB states via the Gutzwiller projection®?, yielding ei-
ther a LR-RVB or a RVB spin liquid. On the other hand,
the onset of magnetic order is signalled by the Bose-
Einstein condensation of these bosons.

The spin operators on the lattice site j are decomposed
as (using sum convention for the Greek indices)

1
S; = 5b}’ua,wbj,y, (2)

where b;, is a boson (spinon) with spin p € {1,]},
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FIG. 2. Numerical characterization of the ground state. (a) and (b): dependence of the spinon gap (upper panel)
and square magnetization (lower panel) on the inverse linear system size. The curves refer to values of a and /J denoted in
Fig. 1] (c) by star symbols, according to the corresponding background colors. The maximum linear size considered is L = 110.
Insets: values of the functions Em, 02 (L) as functions of the linear system size L. (c): spinon dispersion for v = 7J and oo = 0.3
(SL-I phase), for given cuts in the first Brillouin zone. Inset: spinon dispersion in the first Brillouin zone. The white lines
denote the cuts of the main plot. (d): extrapolated gap (blue curve) and square magnetization (red curve) as functions of the
exponent «. The background colors reflect the phases illustrated in Fig. [1] (¢). (e): spin-spin correlation functions along the
lattice axis for different values of the exponent o and for v = 7J Inset: spin-spin correlations at short distances.

and o the vector of Pauli matrices. The mapping is
then completed by the constraint b;r-ubj# = 1. In-
sights on the nature of the state are then obtained from
the expectation values of the SU(2)-invariant bilinears
Aij = oY, (biubju)/2, and Bij = (b,b;.)/2, which in-
dicate the tendency of the spins at the sites ¢ and j of
forming a singlet or to align, respectively. For SU(2)-
symmetric states, finite values of A;; and B;; determine
a finite spinon hopping between the lattice sites ¢ and j,
thus signalling the emergence of propagating fractional
excitations.

After performing a mean-field decoupling of the
spinonic Hamiltonian, as detailed in App. [A] the values
of A;; and B;; are self-consistently determined by mini-
mizing the ground-state energy. This task is enabled in
practice by using an Ansatz for the values of A;; and B;;.
The most natural choice is the manifestly translational-
invariant Ansatz A;; = A;_;, B;; = B;_;, which follows
from a projective-symmetry-group analysis??. The re-
sulting saddle-point equations, reported in Eq. , are
reduced to a system of 2N + 1 coupled non-linear equa-
tions, for finite-size systems with N = L x L lattice sites.
The numerical complexity of the problem still limits the
size N of the systems for which a solution can be found.

For finite-size systems a spontaneous symmetry break-
ing cannot occur, and therefore the AFM order param-
eter always vanishes. Accordingly, other criteria are
needed to assess the onset of an ordered phase. Here
we identify the onset of an AF ordered phase when the
two following conditions are met: (i) the gap E, =
ming Fy in the spinon dispersion closes upon increas-

ing the system size NV and (ii) the squared magnetization
M? = Ej |S;-So|/N approaches a constant value upon
increasing IN. Notice that these two indicators also nat-
urally lend themselves to characterize the other phases
outlined in Sec. a phase with M? = 0 corresponds to
either a gapped (E,; # 0) or a gapless E, = 0 QSL, while
a phase with M? # 0 and E, # 0 can be naturally identi-
fied with a LR-RVB state. These criteria are summarized
in Tab. [l

Let us finally discuss the phase diagram in Fig. [1| (c).
The first, main result, is the emergence of a gapped QSL
phase (denoted as SL-I) for o < 1.25, and v = 5J, char-
acterized by the presence of a gap and by the absence
of long-range correlations. This phase appears for any
a > 0.05, corresponding to the minimum value here con-
sidered, suggesting that the LR-RVB phase is unstable
in this region and only exists for « = 0. Additionally,
our data also show the existence of a gapless QSL phase
(denoted SL-II) for intermediate values of «, clearly man-
ifested in the largest available system sizes, as shown in
Fig. 2| (a) and (b). For v < 5J, the LR-RVB phase
is remarkably stable for o < 1.25. Here, the system is
simultaneously gapped and characterized by long-range
correlations (cf. Tab. , which, however, do not corre-
spond to a spontaneous symmetry breaking. Finally, we
observe that, as expected, for large values of «, as well as
for v = 0, the system is always in the ordinary Néel-AFM
phase.

An example of extrapolated values of M? and E, used
to build the phase diagram in Fig. [I| (¢) is shown in
Fig.[2[(d), as a function of « for vy = 7J. The fitting func-



tion used to extrapolate the L — oo limit of these observ-
ables has the form Op = Oy + bpL™9°, with O, bo,
and we fitting parameters. We neglected further sublead-
ing powers of L~!, which underlies the slightly negative
extrapolated values of M? and E,. This fitting function
was identified by a preliminary evaluation of the quan-

. Op_4—0p,_
tity €o(L) = 1/In (547%:

behaviour in L for algebraic finite-size scaling, while it
saturates for an exponential one??. The algebraic finite-
size scaling occurring also for gapped phases is imprinted
by the algebraic character of the interactions?®. For the
same reason, the spin-spin correlation functions in the
QSL phases also display an algebraically decaying be-
haviour, rather than the usual short-range one, with an
exponent depending continuously on the interaction’s ex-
ponent « (cf. Fig.[2(e)). Algebraic correlations were sim-
ilarly found for gapped, disordered phases in spin chains
with long-range interactions??3l further substantiating
the generality of this mechanism.

), which displays a linear

IVv. IMPLEMENTATION

We propose an implementation of the Hamiltonian
using two electronic orbital degrees of freedom, constitut-
ing a pseudospin of length S = 1/2. In the absence of a
cavity, the pseudospins are assumed to be described by a
short-range antiferromagnetic Heisenberg model, emerg-
ing as a strong Mott limit of a Hubbard model for the
electronic degrees of freedom: this is the case, e.g., of iri-
dates and ruthenates materials*# =%, We assume SU(2)
symmetry for the sake of simplicity.

As substantiated further below, the coupling of the
localized electronic states to the cavity will result in a
coupling between the pseudospins and quantized effec-
tive magnetic fields. The setup we consider is sketched
in Fig. [1| (a). Two aspects of the long-range Hamilto-
nian are essential to unveil QSL phases: (i) an an-
tiferromagnetic character of the induced interaction and
(ii) a high degree of symmetry, ideally SU(2). In order
to control the symmetry of the emerging cavity-mediated
interaction, we propose to use two cavity modes. While
a single mode is sufficient to mediate a U(1)-symmetric
interaction, a second mode allows for an enhancement to
SU(2) symmetry. The required selectivity in the cavity-
spin coupling can be achieved via an auxiliary third band
which is driven far off-resonance by a laser [see Fig.[1] (b)].
The resulting two-photon transitions involve virtual ex-
citations to the third band and back to one of the two
bands implementing the pseudospin degree of freedom.
The sign of the cavity-mediated interaction is then fi-
nally determined by the detuning between the laser and
each cavity mode.

The paramagnetic and diamagnetic coupling terms be-
tween electrons and electromagnetic field are given by:

Hin = 5= [ 01020 Al )+ 24300 ue) . 3

with v the electronic operators, e the electronic charge,
and A(r,t) the vector potential. A(r,t) includes the ex-
ternal laser with frequency wy, and the cavity modes a| |
with frequencies w, . By choosing the proper polar-
ization for the cavity modes and the laser, the scheme
depicted in Fig. [1| (b) can be realized: the laser and
the cavity mode a, induce transitions between the or-
bital 1 and 3, while the cavity mode a) couples only
the orbitals 2 and 3. As we assume the electrons to
be localized by the strong interaction between parti-
cles, due to the strong localization the field operators
can be conveniently expanded onto localized orbitals?2:
Y(r) = D2, p=1 2.3 Win(r)cip, where wip(r) = wy(r — 1;)
with r; the position of the center of the unit cell. Here
the index ¢ runs over the lattice sites and b is the band
index. The interaction Hamiltonian thus reads (see

App.

Hit :Z [c;[gc“ (p?fl + aLpgﬁ) + cjgcigaﬂpgz + h.c.} ,
(4)

where we neglected counter-rotating terms and changed
to the frame rotating with the laser frequency, where
ciz — cize @t q, — age”™rt. Correspondingly, the
third electron band and the fundamental frequencies of
the cavity modes wy are shifted as Az = €3 — wy, and
Ay = wy — wr. The matrix elements pf,,, ¢ € {L, L, ||}
correspond to the transition rates between the bands b
and b'.

The effective cavity-spin coupling is then obtained by
eliminating the third band adiabatically, assuming the
band detuning |As| to be much larger than the matrix
elements pf,, ¢ € {L,L,|} and the cavity detunings
A ). The resulting interaction Hamiltonian describes
spins coupled to global, quantum-mechanically fluctuat-
ing effective magnetic fields:

Hiyp =Y (B"S} + BYSY + B*S;), (5)

%

with B* = —(pfzpzia1 + h.c.)/As, BY = —(P1L3P:‘3‘2a\| +
h.c.)/A3, and BY = —(ipfgpg2au + h.c.)/Asz, and
S, = czbabb/ cip' /2 is the pseudo-spin operator. The val-
ues of the effective fluctuating effective magnetic fields
B®, a = x,y, 2z, reflect the laser-assisted processes illus-
trated in Fig. Il For instance, B* and BY, which couple
the first and second orbital, result from the laser-assisted
excitation of an electron from the first to the third aux-
iliary band, followed by a decay to the second band with
the emission of a cavity photon. The U(l) symmetry
of the Hamiltonian results from neglecting the counter-
rotating terms, and it is evident from the fact that an
excitation from the first to the second band is accompa-
nied only by the creation of a cavity photon, and vicev-
ersa. Equation is one of the main results of this pa-
per: the effective quantum magnetic fields B® couple to
all the spins, generating an effective long-range coupling.
To further consolidate this insight, we integrate out the



cavity field at the level of the Heisenberg equations and

obtain an effective Hamiltonian for the spins only=>:

Ho =Y [%sizs; Fr(sistests| ()
ij

with the long-range exchange 7. = |plspi3]?/(A3A)
and vy, = \plLSpg3|2/(A§AH). The interaction is thus nat-
urally U(1)-symmetric, and full SU(2) symmetry can be
achieved by adjusting the cavity-mode detunings. Im-
portantly, by choosing the latter to be positive (i.e. a
blue-detuned laser), the cavity-mediated interaction is
antiferromagnetic.

We now briefly show how multi-mode cavities can gen-
erate spatially dependent effective spin-spin interactions.
To this end, we consider a cavity with a large number of
modes. For simplicity, we assume them to correspond to
photons propagating as plane-waves along the transverse
direction with a dispersion Ayq = y/wi + (cq)? — wy,
with ¢ the speed of light in the medium. The form of
the Hamiltonian is then preserved, with the fluctu-
ating magnetic fields now possessing a spatial structure
according to

B* = Z g aqe' ™ + h.c, (7)
q

with gg the momentum-dependent version of the cou-
pling reported below Eq. . By integrating out
the cavity photons, one obtains an effective Hamilto-
nian as in Eq. @, where the effective exchange in-
teraction between the spins S and S® is given by
I‘%’ = 24 gggg e~‘arii /A, 4. While the precise form of
F;‘f depends on the details of gg, its spatial structure is
expected to be long-ranged. In fact, the length scale gov-
erning the spatial behaviour is proportional to A¢—1/2:
in THz cavities, the ratio between the lattice size and this
lengthscale is of order 1074, see, e.g., Ref. [14, and there-
fore F?f can be effectively modelled as a slowly decaying

function. For photonic crystal cavities, the form of I‘ff
can be even further engineered by exploiting the band
dispersion of the cavity photons®®. The precise form of
this function is not expected to qualitatively affect the
phase diagram. Accordingly, we choose to parametrize
the interaction as T'¢? ~ |r; — r;[~*, with the value of
compactly encoding the interaction range (see App. .

We finally provide an estimate for the values of « in
Eq. (1) achievable with this setup (see App. . The
dipole matrix elements can be estimated assuming a lat-
tice spacing of few angstroms. For THz cavities with a
compression factor of ~ 107® or smaller, a drive with
intensity of ~ 10 MW cm™~2 leads to values of 7 of or-
der ~ 100 K. This number is comparable or larger than
typical couplings in antiferromagnets, which range from
~ 5 K for vanadates®” to ~ 600 K for iridates®®. For
a-RuCls, the (ferromagnetic) Heisenberg interaction is
~ 40 K, while the Kitaev one is ~ 80 K, see Ref.[39. Ac-
cordingly, the spin-liquid phases predicted in the phase-
diagram in Fig. [1] (¢) are achievable with current setups.

V. DISCUSSION

Long-range spin-exchange interactions can be robustly
induced by coupling a strongly correlated electron sys-
tem to the quantum fluctuations of a driven cavity. The
electron-cavity coupling gives rise to a variety of tunable
spin interactions, including frustrated ones. The thus
created cavity-mediated frustration can destroy the mag-
netic order, favoring disordered spin-liquid states, absent
in the cavity-less configuration. We have demonstrated
this for an ordinary Heisenberg antiferromagnet, whose
ground state manifests an extensive and robust quan-
tum spin-liquid phase when coupled to a cavity. Our re-
sults open avenues for engineering quantum spin liquids,
sparking the challenge to devise new schemes to control
electronic degrees of freedom with quantum light, and to
uncover phases of matter that are usually inaccessible.
This also represents an exciting perspective for the ex-
perimental detection of strongly correlated phases: pho-
tons emitted from the cavities carry signatures of the
quantum many-body state, which become accessible to
standard optical measurements. Our findings are imme-
diately relevant also for quantum simulations. Artificial
spin systems with tunable long-range interactions can be
currently created using either trapped ions?%4! or ultra-
cold atoms coupled to an optical cavity24>, These plat-
forms represents therefore ideal candidates to simulate
quantum spin liquid phases.

Appendix A: Saddle-point equations for bosonic
spinons

In this Section we outline the derivation of the saddle
point equations for the spinon bilinear expectation values
Aij and BU

The spin exchange terms appearing in Eq. can be
recast as S;S; =: B;LjBij : —AL-AZ-J- for i # j, where
Aij = Z'O':‘il,biubj,j/Z7 and Bij = b;rubju/Q are SU(Q)-
invariant spinonic bilinears. A finite expectation value
of these operators indicates the tendency of the spins
at the sites ¢ and j of forming a singlet (A;;) or to
align (B;;): moreover, it induces a finite bosonic hop-
ping rate between the lattice sites ¢ and j, signalling the
existence of propagating fractional excitations. In order
to solve for the value of these quantities, we build on
the approach of Ref?3. First, the bosonized version of
the Hamiltonian is represented as a path integral,
with the constraint implemented by a space- and time-
dependent Lagrange multiplier \;(¢). After decoupling
the bilinear products by using a Hubbard-Stratonovich
transformation, the expectation values A;; = (4;;) and
Bi; = (B;j) are obtained as saddle point values of the
corresponding action. This approximation imposes the
constraint only on average, and the now position- and
time-independent Lagrange multiplier A has to be deter-
mined self-consistently. This approximation is equivalent



to decoupling the Hamiltonian in bosonic bilinears as:

1 .
H=3Y" (eisblubiu + 18708, binbs ) +hc.+2o, (A1)

iJ
where €ij = J”B:} + (5”')\/27 A:} = —JijA;Fj, and Eo =
> (1Bi? + [Ai?) — 2SN, As discussed in the
main text, we assume a translational-invariant ansatz,
ie, Aj; = Ai—; and B;; = B;_;, able to interpolate
between all the expected phases. The two degenerate
eigenvalues of H are given by EZ = €2 — |Aq|?, with eq
and Aq the Fourier transform of the functions appear-
ing in Eq. . By minimizing the ground-state energy
Eg =3, (Eq—¢€q) + €0 with respect to the variational
parameters eq, Ag, and A, one obtains the saddle-point
equations:

1 €q

1= ﬁ Eq, (A2a)
a
1 €q
Ep:A_FﬁZq:Jp_q (_Eq_1>’ (A2b)
1 Aq
Ap = 7 zq: Jp,q?q, (A2c)

with Jq the Fourier transform of J;;. These equations
provide the full momentum dependence of the functions
€q and Agq. The actual number of unknowns increases
with the range of the interaction. In fact, for short-range
interactions the momentum dependence can be found an-
alytically, and only few parameters are left to be com-
puted self-consistently. For long-range interactions, in-
stead, the full momentum dependence needs to be found
numerically. Egs. amount to a system of 2NV + 1
coupled non-linear equations, with N the total number
of sites.

Appendix B: Implementation details

Here we provide additional details to the setup de-
scribed in Sec. [[V] The vector potential can be written
as

A(r,t) = Qruper(r)e™rt + Z Nowgagpe(r) + hec.,
o=|,L
(B1)
where Q2 and w; denote the laser intensity and fre-
quency, respectively. Here u and ¢(r) are the polariza-
tion vector and the mode wavefunction. For the cavity
modes, labelled by ¢ = ||, L, the wave function is nor-
malized over the finite volume V. and Ny = \/1/2wieqe,,
where wy is the mode fundamental frequency and €, €,
are the vacuum and relative permittivity of the material,
respectively.
We assume that that the mode wavefunctions ¢(r)
does not vary significantly over the extent of the Wan-
nier functions. By tuning the polarization vectors u to
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FIG. 3. Normalized long-range spin exchange I'(|r|) as a func-
tion of the distance between sites |r|. The cavity fundamental
wavelength is A = 27c/w = 10%a, with a the lattice spacing.
The symbols correspond to different values of the cavity de-
tuning: A = 0.5w (orange), A = 0.lw (red), A = 0.05w
(purple), and A = 0.0lw (green). The dashed curves corre-
spond to the fitted power-laws, with exponents reported in
the legend.

selectively couple the orbitals as in Fig. 1} and by per-
forming the rotating-wave approximation, the resulting
paramagnetic Hamiltonian term is given by Eq. , with

eNy
Phy = P (wip|p|wip ). (B2)

The expression for pfb, can be obtained from the previous
equation by replacing Ay with Q.

The diamagnetic part of the Hamiltonian reads,
after neglecting higher-order electron-photon processes of

the type ches(a + at) and clesala:

Hinain = deajar+»_ d3clycis, (B3)
T i

plus a term linear in the cavity fields, which vanishes as
the laser and cavity wavefunctions are orthogonal. The
shifts

e 2 2
60 = —Ve Ny e,
m

2092 2072
e Q e N
5 L 2 }: i 2
3 m lerl Pt 2m el

(B4a)

(B4b)

renormalize the energies of the cavity modes and of
the third band, respectively. By assuming that the
band detuning |As| is much larger than the coupling
strengths and the cavity detunings 54, the third band
can be adiabatically eliminated, leading to Eq. in the
main text, including an additional term By ), S7, with
By = |p&|2/As. This effective classical magnetic field
breaks explicitly the SU(2) symmetry, but it is much
smaller than the spin exchange and therefore it can be
safely neglected.



Appendix C: Estimate of interaction

We consider a THz laser (w;, = 100 THz) with inten-
sity Q2 = 10 MW cm™2, with a small detuning from
the cavity frequency Ay = A = 10~2 THz. The com-
pression factor of the cavity is assumed to be A = 107°.
The detuning from the third band is Az = 1 THz, thus
satisfying the condition Az > A,. We estimate the
matrix as follows: (w;1|plwis) ~ mwis(w;i|r|w;s), with
w1z = wr +Ar and (wi|r|w;s ) = 104, the same order of
magnitude of a typical lattice spacing. Using the formu-
las derived in the text, one then estimates a long-range
interaction with strength v ~ 100 K. We also provide
an estimate of the values of a. To this end, we eval-
uate the explicit form of I'(r;;) as reported in the text
below Eq. (7). The corresponding integral is computed
numerically, and the results shown in Fig. |3| over a range

of 50 lattice sites, for different values of the cavity de-
tuning. We assumed for simplicity A} = A = A and
w1 = w) = w. The values of « obtained are reported in
the figure.

ACKNOWLEDGMENTS

We warmly acknowledge discussions with C. Hickey,
G. Mazza, A. Rosch, M. Scherer, and especially S. Trebst.
We acknowledge support by the funding from the Euro-
pean Research Council (ERC) under the Horizon 2020
research and innovation program, Grant Agreement No.
647434 (DOQS), and by the DFG Collaborative Research
Center (CRC) 1238 Project No. 277146847 - projects
C02, C03, and C04.

L. Savary and L. Balents, Reports on Progress in Physics
80, 016502 (2016).
?Y. Zhou, K. Kanoda, and T.-K. Ng, [Rev. Mod. Phys. 89,
025003 (2017).
J. Knolle and R. Moessner, Annual Review of Condensed
Matter Physics 10, 451 (2019).
* L. Balents, Nature 464, 199 (2010).
5 (. Castelnovo, R. Moessner, and S. Sondhi, Annual Re-
view of Condensed Matter Physics 3, 35 (2012).

5 M. J. P. Gingras and P. A. McClarty, Reports on Progress
in Physics 77, 056501 (2014).

” M. R. Norman, [Rev. Mod. Phys. 88, 041002 (2016).

8 N. Y. Yao, M. P. Zaletel, D. M. Stamper-Kurn, and
A. Vishwanath, Nature Physics 14, 405 (2018).

% H. Zou, E. Zhao, and W. V. Liu, Phys. Rev. Lett. 119,

050401 (2017).

A. Keleg and E. Zhao, Phys. Rev. Lett. 120, 187202 (2018).

119 Liang, B. Doucot, and P. W. Anderson, Phys. Rev.
Lett. 61, 365 (1988).

2 M. A. Sentef, M. Ruggenthaler,
advances 4, eaau6969 (2018).

13 G. Mazza and A. Georges, Phys. Rev. Lett. 122, 017401
(2019).

' F. Schlawin, A. Cavalleri, and D. Jaksch, Phys. Rev. Lett.
122, 133602 (2019).

15 J. B. Curtis, Z. M. Raines, A. A. Allocca, M. Hafezi, and
V. M. Galitski, Phys. Rev. Lett. 122, 167002 (2019).

16 A. Thomas, E. Devaux, K. Nagarajan, T. Chervy,
M. Seidel, D. Hagenmiiller, S. Schiitz, J. Schachen-
mayer, C. Genet, G. Pupillo, et al., arXiv preprint
arXiv:1911.01459 (2019).

" H. Gao, F. Schlawin, M. Buzzi, A. Cavalleri, and
D. Jaksch, Phys. Rev. Lett. 125, 053602 (2020).

18 Y. Ashida, A. Imamoglu, J. Faist, D. Jaksch, A. Cavalleri,
and E. Demler, arXiv preprint arXiv:2003.13695 (2020).

9 A.  Chakraborty and F. Piazza, arXiv preprint
arXiv:2008.06513 (2020).

20 M. A. Sentef, J. Li, F. Kiinzel,
Rev. Research 2, 033033 (2020).

2l M. Kiffner, J. R. Coulthard, F. Schlawin, A. Ardavan, and

D. Jaksch, Phys. Rev. B 99, 085116 (2019).

1C

and A. Rubio, Science

and M. Eckstein, [Phys.

22 A. Auerbach, Interacting electrons and quantum mag-
netism (Springer Science & Business Media, 2012).

23 D. P. Arovas and A. Auerbach, Phys. Rev. B 38, 316
(1988).

“% N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).

%5 H. A. Ceccatto, C. J. Gazza, and A. E. Trumper, Phys.
Rev. B 47, 12329 (1993).

“6 X.-G. Wen, Phys. Rev. B 65, 165113 (2002).

27 0. Golinelli, T. Jolicoeur, and R. Lacaze, [Phys. Rev. B
50, 3037 (1994).

“® A. Campa, T. Dauxois, D. Fanelli, and S. Ruffo, Physics
of long-range interacting systems (OUP Oxford, 2014).

29 P, Hauke, F. M. Cucchietti, A. Mller-Hermes, M.-C.

Baifiuls, J. I. Cirac, and M. Lewenstein, New Journal of

Physics 12, 113037 (2010).

T. Koffel, M. Lewenstein, and L. Tagliacozzo, Phys. Rev.

Lett. 109, 267203 (2012).

31 D. Peter, S. Miiller, S. Wessel, and H. P. Biichler, Phys.
Rev. Lett. 109, 025303 (2012).

32 G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205
(2009).

33 A. Georges, L. d. Medici, and J. Mravlje, Annual Review
of Condensed Matter Physics 4, 137 (2013).

3% J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, |Annual Review
of Condensed Matter Physics 7, 195 (2016).

35 F. Mivehvar, H. Ritsch, and F. Piazza, Phys. Rev. Lett.
122, 113603 (2019).

3% J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D.
Meade, (2008).

37 R. Melzi, P. Carretta, A. Lascialfari, M. Mambrini,
M. Troyer, P. Millet, and F. Mila, Phys. Rev. Lett. 85,
1318 (2000).

%] Kim, D. Casa, M. H. Upton, T. Gog, Y.-J. Kim, J. F.
Mitchell, M. van Veenendaal, M. Daghofer, J. van den
Brink, G. Khaliullin, and B. J. Kim, [Phys. Rev. Lett.
108, 177003 (2012).

3% A. Banerjee, C. Bridges, J.-Q. Yan, A. Aczel, L. Li,
M. Stone, G. Granroth, M. Lumsden, Y. Yiu, J. Knolle,
et al., Nature materials 15, 733 (2016).

40 P, Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller,
R. Blatt, and C. F. Roos, Nature 511, 202 (2014).

30


http://dx.doi.org/10.1088/0034-4885/80/1/016502
http://dx.doi.org/10.1088/0034-4885/80/1/016502
http://dx.doi.org/10.1103/RevModPhys.89.025003
http://dx.doi.org/10.1103/RevModPhys.89.025003
http://dx.doi.org/10.1146/annurev-conmatphys-031218-013401
http://dx.doi.org/10.1146/annurev-conmatphys-031218-013401
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125058
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125058
http://dx.doi.org/10.1088/0034-4885/77/5/056501
http://dx.doi.org/10.1088/0034-4885/77/5/056501
http://dx.doi.org/10.1103/RevModPhys.88.041002
http://dx.doi.org/10.1103/PhysRevLett.119.050401
http://dx.doi.org/10.1103/PhysRevLett.119.050401
http://dx.doi.org/ 10.1103/PhysRevLett.120.187202
http://dx.doi.org/10.1103/PhysRevLett.61.365
http://dx.doi.org/10.1103/PhysRevLett.61.365
http://dx.doi.org/10.1103/PhysRevLett.122.017401
http://dx.doi.org/10.1103/PhysRevLett.122.017401
http://dx.doi.org/10.1103/PhysRevLett.122.133602
http://dx.doi.org/10.1103/PhysRevLett.122.133602
http://dx.doi.org/ 10.1103/PhysRevLett.122.167002
http://dx.doi.org/ 10.1103/PhysRevLett.125.053602
http://dx.doi.org/ 10.1103/PhysRevResearch.2.033033
http://dx.doi.org/ 10.1103/PhysRevResearch.2.033033
http://dx.doi.org/10.1103/PhysRevB.99.085116
http://dx.doi.org/10.1103/PhysRevB.38.316
http://dx.doi.org/10.1103/PhysRevB.38.316
http://dx.doi.org/10.1103/PhysRevLett.66.1773
http://dx.doi.org/10.1103/PhysRevB.47.12329
http://dx.doi.org/10.1103/PhysRevB.47.12329
http://dx.doi.org/10.1103/PhysRevB.65.165113
http://dx.doi.org/10.1103/PhysRevB.50.3037
http://dx.doi.org/10.1103/PhysRevB.50.3037
http://dx.doi.org/10.1088/1367-2630/12/11/113037
http://dx.doi.org/10.1088/1367-2630/12/11/113037
http://dx.doi.org/10.1103/PhysRevLett.109.267203
http://dx.doi.org/10.1103/PhysRevLett.109.267203
http://dx.doi.org/ 10.1103/PhysRevLett.109.025303
http://dx.doi.org/ 10.1103/PhysRevLett.109.025303
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125045
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125045
http://dx.doi.org/10.1146/annurev-conmatphys-031115-011319
http://dx.doi.org/10.1146/annurev-conmatphys-031115-011319
http://dx.doi.org/10.1103/PhysRevLett.122.113603
http://dx.doi.org/10.1103/PhysRevLett.122.113603
http://dx.doi.org/10.1103/PhysRevLett.85.1318
http://dx.doi.org/10.1103/PhysRevLett.85.1318
http://dx.doi.org/10.1103/PhysRevLett.108.177003
http://dx.doi.org/10.1103/PhysRevLett.108.177003

41 P Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, 43 R. M. Kroeze, Y. Guo, V. D. Vaidya, J. Keeling, and B. L.

M. Foss-Feig, S. Michalakis, A. V. Gorshkov, and C. Mon- Lev, Phys. Rev. Lett. 121, 163601 (2018).

roe, Nature 511, 198 (2014). 44 1. Kresié, G. Labeyrie, G. Robb, G.-L. Oppo, P. Gomes,
42 M. Landini, N. Dogra, K. Kroeger, L. Hruby, T. Donner, P. Griffin, R. Kaiser, and T. Ackemann, Communications

and T. Esslinger, Phys. Rev. Lett. 120, 223602 (2018). Physics 1, 1 (2018).

45 E. J. Davis, G. Bentsen, L. Homeier, T. Li, and M. H.
Schleier-Smith, Phys. Rev. Lett. 122, 010405 (2019).


http://dx.doi.org/ 10.1103/PhysRevLett.120.223602
http://dx.doi.org/ 10.1103/PhysRevLett.121.163601
http://dx.doi.org/ 10.1103/PhysRevLett.122.010405

	Cavity-induced quantum spin liquids
	Abstract
	I Introduction
	II Model
	III Results
	IV Implementation
	V Discussion
	A Saddle-point equations for bosonic spinons
	B Implementation details
	C Estimate of interaction
	 Acknowledgments
	 References


