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3.1 Introduction
In this chapter, we focus on linear time-invariant (LTI) systems

E(μ)dx(t, μ)
dt
= A(μ)x(t, μ) + B(μ)u(t),

y(t, μ) = C(μ)x(t, μ) + D(μ)u(t),
(3.1)

and mildly nonlinear systems

E(μ)dx(t, μ)
dt
= f(x(t, μ), μ) + B(μ)u(t),

y(t, μ) = C(μ)x(t, μ) + D(μ)u(t),

with and without parameters. Here x(t, μ) ∈ ℝn is the state vector, and its entries
are called state variables. n is often referred to as the order of the system. The vector
μ ∈ ℝm includes all of the geometrical and physical parameters. The system matri-
ces E(μ),A(μ) ∈ ℝn×n, and B(μ) ∈ ℝn×nI , C(μ) ∈ ℝnO×n, D(μ) ∈ ℝnO×nI may depend on
the parameters. The vector f(x, μ) ∈ ℝn is a nonlinear function. The system in (3.1) is
called the state-space representation of the system. It may result from the spatial dis-
cretization of partial differential equations (PDEs) describing certain processes like
fluid dynamics, temperature distribution in devices, electric circuits, etc.

For most MORmethods, the termD(μ)u(t) remains unchanged during the process
of MOR. For simplicity, we therefore assume that D(μ) = 0, a zero matrix. There are
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nI input terminals and nO output terminals. When nI = nO = 1, the system is called
a single-input single-output (SISO) system. Otherwise, if nI , nO > 1, it is called a multi-
input multi-output (MIMO) system.

The basic idea of (P)MORmethods is as follows. Find a low-dimensional trial sub-
space S1 which well approximates the manifold where the state vector x(t, μ) resides.
x(t, μ) is approximated by a vector x̂(t, μ) in S1, which causes a residual of the state
equation. The reduced-order model (ROM) is obtained by a (Petrov)–Galerkin projec-
tion of the residual onto a test subspace S2. In particular, one computes an orthonor-
mal matrix V = (v1, v2, . . . , vr) whose columns span S1. The ROM is derived by the fol-
lowing two steps.
1. By replacing x(t, μ) in (3.1) with Vz(t, μ), we obtain

E(μ)dVz(t, μ)
dt
≈ A(μ)Vz(t, μ) + B(μ)u(t),

y(t) ≈ C(μ)Vz(t, μ).
(3.2)

2. Notice that the equations in (3.1) do not hold any longer. Therefore, we can only
use “≈” in (3.2). Denote the residual as e(t, μ) = AVz(t, μ) + B(μ)u(t) − E(μ) dVz(t,μ)dt ,
which in general is nonzero over the wole vector spaceℝn. However, it is possible
to force e = 0 in a properly chosen subspace S2 of ℝn. If we have computed a
matrixW ∈ ℝn×r, whose columns span S2, then e = 0 in S2 means e is orthogonal
to each column inW , i. e.WTe = 0 ⇐⇒ WTE dVz(t,μ)

dt = W
TAVz(t, μ) +WTBu(t).

Finally, we obtain the ROM

Ê(μ)dz(t, μ)
dt
= Â(μ)z(t, μ) + B̂(μ)u(t),

ŷ(t, μ) = Ĉz(t, μ),
(3.3)

where Ê(μ) = WTE(μ)V ∈ ℝr×r, Â(μ) = WTA(μ)V ∈ ℝr×r, B̂(μ) = WTB(μ) ∈ ℝr×nI ,
Ĉ(μ) = C(μ)V ∈ ℝnO×r . z(μ) ∈ ℝr is a vector of length r ≪ n. Then x(t, μ) can be
approximated by x(t, μ) ≈ Vz(t, μ). The system in (3.3) is referred to as the reduced-
order model (ROM), since it is of much smaller order than the original system in (3.1),
i. e. r ≪ n. The ROM can then replace the original system for fast simulation.

MORmethods differ in computing the twomatricesW andV . One common goal of
allmethods is that the input-output behavior of the ROMshould be sufficiently “close”
to that of the originalmodel. The error between the transfer functions (see (3.6)) is also
used to measure the accuracy of the ROM.

Moment-matching relates to a class of methods which construct the ROM by
building the projection matrices W ,V from the system information in the frequency
domain. The early moment-matching methods are only applicable to linear non-
parametric systems. Later on, these methods were extended to linear parametric
systems. Based on nonlinear system theory [52], multi-moment-matching methods
based on variational analysis were proposed and are successful in reducing weakly
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nonlinear systems. In contrast to the snapshot based time-domain methods, e. g.,
proper orthogonal decomposition or the reduced basis method, moment-matching
methods can be considered as frequency-domain methods, and are independent of
the inputs. Therefore, these methods are robust for systems with varying inputs. The
rest of this chapter is organized as follows. In Section 3.2, we introduce moment-
matching methods for linear non-parametric systems, where methods based on ratio-
nal interpolation are particularly discussed. The extension of those methods to linear
parametric systems is introduced in Section 3.3. Methods based onmoment-matching
and multi-moment-matching for nonlinear systems are reviewed in Section 3.4, and
their extension to parametric nonlinear systems is discussed in Section 3.5. Conclu-
sions are drawn in the end.

3.2 Moment-matching for linear non-parametric
systems

This section reviews moment-matching methods for linear non-parametric systems,
so that the vector of parameters μ can be dropped from the system (3.1). Among the
early works of moment-matching MOR, the method of Asymptotic Waveform Evalua-
tion (AWE) in [48] was shown to be able to reduce large-scale interconnected electri-
cal circuit models, which stimulated broad interests in this kind of methods. The AWE
method tries to find a Padé approximation of the transfer functionH(s), which can be
computed much more quickly than computing H(s) itself.

Transfer function
For all the methods introduced in this chapter, the transfer function of the system is
used to either derive the ROM, or to perform the error estimation. The transfer func-
tion of the system in (3.1) is the input/output relation of the system in the frequency
domain. By applying the Laplace transform to both sides of the equations in (3.1), we
obtain

sEX(s) − Ex(0) = AX(s) + BU(s), (3.4)
Y(s) = CX(s). (3.5)

Here, X(s) is the Laplace transform of x(t), and x(0) is the initial state of the system.
Assuming that x(0) = 0, we obtain the expression for the transfer function

H(s) = Y(s)/U(s) = C(sE − A)−1B, (3.6)

where the right division “/” has to be understood in a formal way for MIMO systems.
For a SISO system, the transfer function H(s) is a scalar function. The Padé approxi-
mation of a scalar function can be defined as follows.
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Padé approximation
The Padé approximation of a function H(s) is a rational function Hp,q(s)whose Taylor
series at s = 0 agrees with that of H(s) in at least the first p + q + 1 terms [21].

For a MIMO system, the transfer functionH(s) is a matrix function and each entry
of it canbe approximatedby the abovePadé approximation. For clarity of explanation,
we use a SISO system as an example to briefly describe the method.

From the definition of the Padé approximation, we know that, if H(s) = Hp,q(s0 +
σ) = Pp(σ)/Qq(σ) is a Padé approximation of the transfer function H(s0 + σ), then we
have

Hp,q(s0 + σ) = H(s0 + σ) + O(σ
p+q+1). (3.7)

The derivatives of H(s0 + σ) at σ = 0 are actually the derivatives of H(s) at s = s0, they
are also the moments mi(s0), i = 0, 1, . . ., (see the definition in Section 3.2.1.1) of the
transfer function. By definition, the Padé approximationHp,q(s0 + σ)matches the first
p + q + 1 moments of the transfer function.

If the coefficients of the two polynomials Pp(σ) and Qq(σ) in Hp,q(s0 + σ) are com-
puted, then Hp,q(s0 + σ) is obtained. The coefficients can be obtained by solving two
groups of equations which are derived from equating the coefficients of the Taylor se-
ries expansion (at σ = 0) on both sides of (3.7).

Since the moments are the coefficients of the Taylor series expansion of H(s0 + σ)
at σ = 0, they are involved in solving the equations to obtain the coefficients of Pp(σ)
andQq(σ). However, in the AWEmethod, themoments are computed explicitly, which
can cause serious numerical instability.

In order to overcome the numerical instability of AWE, a more robust method
“Padé via Lanczos” (PVL) [21] (see also [32]) was proposed. PVL also computes the
Padé approximation of H(s) = H(s0 + σ), however, the moments of H(s) do not have
to be computed explicitly. Instead, an orthonormal basis of the subspace spanned by
the moment vectors is computed, which constitutes the projection matrix V , and the
projection matrixW is also computed simultaneously. Both of them are computed by
the nonsymmetric Lanczos process. It is proved in [21] that the transfer function of the
ROM produced by W and V is the Padé approximation of the original transfer func-
tionH(s). The PVLmethod avoids explicit computation of themoments, and therefore
avoids the possible numerical instability.

Unfortunately, PVL does not necessarily preserve passivity of the original system,
which is a problem in some engineering applications, especially in Integrated Cir-
cuit (IC) design. For this target, the method “Passive and Reduced-order Interconnect
Macromodeling Algorithm” (PRIMA) [45] was proposed. The resulting ROM preserves
the passivity of the original system, under certain assumptions on the system matri-
ces. The trade-off is that only half the number of moments can be matched by PRIMA
as compared to PVL, if the matrix V in both methods expands the same subspace.
Such an approximation of the transfer function is called a Padé-type approximation.
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The rational interpolation method proposed in [35] extended the Padé-approxi-
mation method and the Padé-type-approximation method based on a single expan-
sion point to the case of multiple expansion points. All these methods can be called
moment-matching methods, because all the ROMsmatch the moments of the original
system to different extents. For survey papers on moment-matching model reduction;
see [4, 31] and [3, 35].

Moment-matching MOR methods try to derive a ROM whose transfer function
matches themoments of the transfer function of the original system. Generally speak-
ing, themoremoments matched, themore accurate the ROMwill be. In the following,
we first introduce the definition of the moments and moment vectors, then we show
how to compute the matricesW and V based on moment-matching.

3.2.1 Basic idea
3.2.1.1 Moments and moment vectors

If we expand the transfer functionH(s) into its Taylor series about an expansion point
s0 so that s0E − A is a nonsingular matrix,

H(s) = CT[(s − s0 + s0)E − A]
−1B

= CT[(s − s0)E + (s0E − A)]
−1B

= CT[I + (s0E − A)
−1E(s − s0)]

−1(s0E − A)
−1B

=
∞
∑
i=0

CT[−(s0E − A)
−1E]i(s0E − A)

−1B⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=:mi(s0)

(s − s0)
i, (3.8)

and if the system is a SISO system, thenmi(s0), i = 0, 1, 2, . . ., are called themoments of
the transfer function H(s). If the system is a MIMO system, then mi(s0), i = 0, 1, 2, . . .,
are matrices and they are called block moments [45]. In the field of circuit design,
the entry in the jth row, kth column of mi(s0) is called the ith moment of the current
that flows into port jwhen the voltage source at port k is the only nonzero source [45].
Analogies exist for other application areas, suchasmechanics. In this chapter,weonly
consider mi(s0) as a whole, and do not consider its entries individually. This means,
when we talk about moments of the transfer function, we mean mi(s0), i = 0, 1, . . .,
which refers either to the moments of a SISO system or to the block moments of a
MIMO system.

From (3.4) and (3.8), it is straightforward to obtain the corresponding Taylor series
expansion of X(s),

X(s) =
∞
∑
i=0
[−(s0E − A)

−1E]i(s0E − A)
−1BU(s)(s − s0)

i. (3.9)

Here,we call the vectors [−(s0E−A)−1E]i(s0E−A)−1B, i = 0, 1, . . .,moment vectorswhich
are to be used to compute the projection matricesW , V . Notice that when the system
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in (3.1) has multiple inputs, i. e. nI > 1, then [−(s0E − A)−1E]i(s0E − A)−1B, i = 0, 1, . . .,
are matrices rather than vectors. For simplicity, we still call them moment vectors.

3.2.1.2 Computation of the projection matricesW and V

Computation of V
Approximating X(s) by the truncated series in (3.9) means that X(s) ≈ VZ(s). The
columns of V ∈ ℝn×r constitute an orthonormal basis of S1, which is a subspace
spanned by the moment vectors in the truncated series. After inverse Laplace trans-
form,we obtain the corresponding approximation of x(t) in S1, i. e. x(t) ≈ Vz(t), where
z(t) is the inverse Laplace transform of Z(s). This means that x(t) in the time domain
can be approximated by Vz(t). Usually, the more moment vectors included in S1, the
more accurate the approximation Vz(t) will be. However, in order to keep the ROM
small, we usually choose a small number of moment vectors starting from i = 0, i. e.
the columns of the orthonormal matrix V span the subspace

range{V} = span{B̃(s0), Ã(s0)B̃(s0), . . . , Ã
q−1(s0)B̃(s0)}, (3.10)

where Ã(s0) = (s0E − A)−1E, B̃(s0) = (s0E − A)−1B and q ≪ n.

Computation ofW
To obtain the ROM, we also need to compute the (Petrov-)Galerkin projection ma-
trixW . The columns of the matrixW span the subspace below, i. e.

range{W} = span{C̃(s0), Ãc(s0)C̃(s0), . . . , Ã
q−1
c (s0)C̃(s0)}, (3.11)

where Ãc(s0) = (s0E − A)−TET , C̃(s0) = (s0E − A)−TCT . Note that the two sub-
spaces in (3.10) and (3.11) are actually two Krylov subspaces Kq(Ã(s0), B̃(s0)) and
Kq(Ãc(s0), C̃(s0)), respectively. Moment-matching methods based on computingW ,V
from Krylov subspaces are often called Krylov-based methods. If the above two ma-
trices W and V are used to obtain the ROM (3.3), the transfer function of the ROM
matches the first 2q moments of the transfer function of the original model [35]. We
summarize this in the following theorem.

Theorem 3.1. If V and W span the subspaces in (3.10) and (3.11), respectively, then the
transfer function Ĥ(s) = Ĉ(sÊ + Â)−1B̂ of the ROM (3.3)matches the first 2q moments of
the transfer function of the original system, i. e.

mi(s0) = m̂i(s0), i = 0, 1, . . . , 2q − 1,

where m̂i(s0) = Ĉ[−(s0Ê − Â)Ê]−i(s0Ê − Â)−1B̂, i = 0, 1, . . . , 2q − 1, are the ith-order
moments of Ĥ.

Note that in order to ensure the projector property of VWT , one also needs to enforce
the bi-orthogonality conditionWTV = I (assuming here that the subspace basis ma-
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trices V ,W are formed over ℝ). The moment-matching MOR method PRIMA [45] uses
W = V . In this case, only qmoments of the transfer function are matched.

The orthonormal matrices W and V in (3.10), (3.11) can be computed by ratio-
nal Krylov subspace algorithms (rational Lanczos algorithm, rational Arnoldi algo-
rithm) [35]. Only (sparse) matrix factorizations, (sparse) forward/backward solves,
and matrix-vector multiplications are used in these algorithms, such that the com-
plexity of the moment-matching MOR is in O(nq2) for sparse matrices E,A.

3.2.2 Stability
In general, the moment-matching methods do not preserve stability of the original
system. Only for systemswith special structures, there exist several approaches based
on Galerkin projection where the ROM are guaranteed to be stable and passive; see,
e. g., [45]. For details on passivity of LTI systems, we refer to Chapter 5 of this volume.
The passivity preservation of the moment-matching method for RLC circuits can be
mathematically described as follows [45].

Theorem 3.2. If the systemmatrices E and A satisfy ET + E ≥ 0 and AT +A ≤ 0, respec-
tively, and if C = B, then the ROM obtained by Galerkin projection, i. e., W = V preserves
the passivity of the original system in (3.1).

Stability is naturally guaranteed by passivity, therefore the ROM obtained by
moment-matching with Galerkin projection preserves stability as well. Benefiting
from the preservation of passivity and low computational complexity, the moment-
matchingmethod is verypopular in circuit simulationand inmicro-electro-mechanical
systems (MEMS) simulation as well.

3.2.3 Multiple expansion points
The accuracy of the moment-matching methods depends not only on the number
of moments matched, but also on the expansion points. Since the Taylor expansion
in (3.8) is only accurate within a certain radius around the expansion point s0, the
ROM becomes inaccurate beyond this radius.

To increase the accuracy of a single-point expansion, one may use more than one
expansion point. Moment-matching by multi-point expansion is also known as ra-
tional interpolation [35]. For example, if using a set of q distinct expansion points
{s1, . . . , sq}, the ROM obtained by, e. g.,

range{V} = span{B̃(s1), . . . , B̃(sl)},
range{W} = span{C̃(s1), . . . , C̃(sl)},

matches the first two moments m0(si),m1(si) at each si, i = 1, . . . , l [35]. Here, B̃(si) =
(siE − A)−1B, C̃(si) = (siE − A)−TCT , i = 1, . . . , l.
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More generally, if we use

range{V} = span{B̃(s1), . . . , Ã
q1−1(s1)B̃(s1), . . . , B̃(sl), . . . , Ã

ql−1(sl)B̃(sl)}, (3.12)

range{W} = span{C̃(s1), . . . , Ã
q1−1
c (s1)C̃(s1), . . . , C̃(sl), . . . , Ã

ql−1
c (sl)C̃(sl)}, (3.13)

where Ã(sk) = (skE − A)−1E, Ãc(sk) = (skE − A)−TET , k = 1, . . . , l, then we have the
following moment-matching property.

Theorem 3.3 ([35]). If

range{V} ⊇ span{B̃(s1), . . . , Ã
q1−1(s1)B̃(s1), . . . , B̃(sl), . . . , Ã

ql−1(sl)B̃(sl)},

and

range{W} ⊇ span{C̃(s1), . . . , Ã
q1−1
c (s1)C̃(s1), . . . , C̃(sl), . . . , Ã

ql−1
c (sl)C̃(sl)},

then the transfer function Ĥ(s) = Ĉ(sÊ + Â)−1B̂ of the ROM (3.3) matches the first 2qk
moments of the transfer function of the original system at each expansion point sk , i. e.

mi(sk) = m̂i(sk), i = 0, 1, . . . , 2qk − 1, , k = 1, . . . , l,

where m̂i(sk) = Ĉ[−(skÊ − Â)Ê]−i(skÊ − Â)−1B̂, i = 0, 1, . . . , 2qk − 1, are the ith-order
moments of Ĥ at sk .

Given expansion points s1, . . . , sl, Algorithm 3.1 presents a procedure for comput-
ing the projection matrix V in (3.12).

The matrixW can also be computed using Algorithm 3.1, only by replacing B̃(sk)
with C̃(sk), and Ã(sk) with Ãc(sk). Algorithm 3.1 is also applicable to SISO systems, as
we can see fromStep 7. However, for SISO systems, the algorithmcanbe further simpli-
fied, and the two matricesW , V can be easily computed in parallel. Algorithm 3.2 is a
version for SISO systems. In fact, the computed V ,W ∈ ℝn×r from either Algorithm 3.1,
orAlgorithm3.2, arenot bi-orthogonal,which is not requiredby themoment-matching
Theorem 3.3. However, for systems with E = I, the identity matrix, it is preferred that
the reduced matrix Ê = Ir, the identity matrix of dimension of r. Then we can use the
transform W ← W(VTW)−1 to obtain a new W , so that Ê = WTEV = WTV = Ir . In
the final steps of both algorithms, we need to orthogonalize the columns of the inter-
mediate matrices using the modified Gram–Schmidt process, which is an algorithm
for orthogonalizing any given group of vectors. The details of the algorithm are given
in Algorithm 3.3. The finally obtained orthogonal vectors are actually orthonormal,
i. e., their norms are all 1. The number of orthogonal vectors are ̃l ≤ l, because once
deflation (‖ak‖2 ≤ ε) in Step 7 occurs, ̃l will not be increased.

Remark 3.1. Let size(M, 2) be the MATLAB notation for the number of columns in a
matrix M. Then it could happen that size(V , 2) ̸= size(W , 2). In this situation, more
computations should be done as follows. Denote rW = size(V , 2), rW = size(W , 2), if
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Algorithm 3.1: Compute V in (3.12) for a non-parametric MIMO system (3.1).
Input: System matrices E,A,B,C, expansion points s1, . . . , sl.
Output: Projection matrix V .
1: Initialize a1 = 0, a2 = 0, sum = 0, col = 0.
2: for k = 1, . . . , l do
3: if (multiple input) then
4: Orthogonalize the columns in B̃(sk) using the modified Gram–Schmidt pro-

cess: [v1, v2, . . . , vmk
] = orth{B̃(sk)},

5: sum=mk . (mk is the number of remaining columns after deflation.)
6: else
7: Compute the first column in V: v1 = B̃(sk)/||B̃(sk)||2,
8: sum = 1.
9: end if
10: Orthogonalize the columns in Ã(sk)B̃(sk), . . . , Ã(sk)qk−1B̃(sk) iteratively as fol-

lows:
11: for i = 1, 2, . . . , qk − 1 do
12: a2 = sum.
13: if a1 = a2 then
14: break; go to Step 2
15: else
16: for j = a1 + 1, . . . a2 do
17: w = Ã(sk)vj, col = sum + 1.
18: for d = 1, 2, . . . , col − 1 do
19: h = vTdw, w = w − hvd.
20: end for
21: if ‖w‖2 > ε (ε > 0 is a small value indicating deflation,

e. g., ε = 10−7) then
22: vcol =

w
‖w‖2

, sum = col.
23: end if
24: end for (j)
25: end if
26: a1 = a2.
27: end for (i)
28: Vk = [v1, . . . , vsum],
29: end for (k)
30: Orthogonalize the columns in [V1, . . . ,Vl] by the modified Gram–Schmidt process

to obtain V , i. e. V := orth{V1, . . . ,Vl}.

rV < rW , then add rW − rV random orthogonal columns to V , and vice versa. This way,
the moment-matching property of the ROM remains unchanged due to the definitions
of V ,W in Theorem 3.3.
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Algorithm 3.2: Compute V in (3.12) andW in (3.13) for a non-parametric SISO system
(3.1).
Input: System matrices E,A,B,C, expansion points s1, . . . , sl.
Output: Projection matrices V ,W .
1: Initialize col = 0, colv = 0, colw = 0.
2: for k = 1, . . . , l do
3: Compute the first column of Vk: v1 = B̃(sk)/||B̃(sk)||2.
4: Compute the first column ofWk: w1 = C̃(sk)/||C̃(sk)||2.
5: col = col + 1.
6: Orthogonalize the vectors Ã(sk)B̃(sk), . . . , Ã(sk)qk−1B̃(sk) against v1 it-

eratively, orthogonalize the vectors Ãc(sk)C̃(sk), . . . , Ãc(sk)qk−1C̃(sk)
against w1 iteratively, as follows:

7: for i = 1, 2, . . . , qk − 1 do
8: v = Ã(sk)vi,
9: w = Ãc(sk)wi
10: for j = 1, 2, . . . , col do
11: h = vTj v, v = v − hvj.
12: h = wT

j w, w = w − hwj.
13: end for
14: col = col + 1.
15: if ‖v‖2 > ε (ε > 0 is a small value indicating deflation, e. g., ε = 10−7) then
16: vcol =

v
‖v‖2

,
17: else
18: colv = col − 1, stop updating Vk .
19: end if
20: if ‖w‖2 > ε then
21: wcol =

w
‖w‖2

,
22: else
23: colw = col − 1, stop updatingWk .
24: end if
25: end for
26: Vk = [v1, . . . , vcolv ],Wk = [w1, . . . ,wcolw ].
27: end for
28: Orthogonalize the columns in [V1, . . . ,Vl] by the modified Gram–Schmidt process

to obtain V , i. e. V := orth{V1, . . . ,Vl}.
29: Orthogonalize the columns in [W1, . . . ,Wl] by themodifiedGram–Schmidt process

to obtainW , i. e.W := orth{W1, . . . ,Wl}.

The issue is then how to (adaptively) choose the multiple expansion points. Many
adaptive techniques have been proposed during the last years [8, 14, 25, 40, 39, 38, 30,
28, 56],where somearemore or less heuristic [8, 14, 25, 40]. Basedon system theory, an
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Algorithm 3.3:Modified Gram–Schmidt process.
Input: A group of nonzero vectors a1, . . . , al, a deflation tolerance ε > 0.
Output: A group of orthogonalized vectors v1, . . . , v ̃l, ̃l ≤ l.
1: v1 = a1/||a1||2, ̃l = 1.
2: for k = 2, . . . , l do
3: for i = 1, . . . , ̃l do
4: h = vTi ak,
5: ak = ak − hvi.
6: end for
7: if ‖ak‖2 > ε then
8: ̃l = ̃l + 1,
9: v ̃l =

ak
‖ak‖2

,
10: end if
11: end for

error bound is derived in [56], but it faces high computational complexity. The resid-
ual of the state vector is simply used in [39] as the error estimator of the ROM. In the
next subsection, we introduce several typical techniques of adaptivity [38, 25, 30, 28].

3.2.4 Selection of expansion points

3.2.4.1 ℋ2-optimal iterative rational Krylov algorithm

The iterative rational Krylov algorithm (IRKA) is proposed in [38]. Given a group of
initial expansion points, IRKA adaptively updates the expansion points, and upon
convergence, IRKA produces a ROM satisfyingℋ2-optimal necessary conditions. (See
Equation (5) in Chapter 1 of this volume for the definition of theℋ2-norm.) The expan-
sion points are selected as the mirror images of the poles of the updated ROM at each
iteration. The algorithm is presented as Algorithm 3.4.

Moment-matching property
For single-input single-output (SISO) systems, IRKA leads to the following interpola-
tion property upon convergence:

Ĥ(−λ̂i) = H(−λ̂i),

𝜕Ĥ(−λ̂i)
𝜕s
=
𝜕H(−λ̂i)
𝜕s
.

(3.14)

Here λ̂i, i = 1, . . . , r, are the eigenvalues of theROMdefined inStep 3(b) ofAlgorithm3.4.
They are also the poles of the reduced transfer function Ĥ(s).
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Algorithm 3.4: Iterative Rational Krylov Algorithm (IRKA).
1: Make an initial selection of the expansion points closed under conjugation, i. e.
s1, . . . , si, ̄si, . . . , sr, if si is a complex variable. Fix a tolerance ϵ for the accuracy of
the ROM. Choose initial directions b̃1, . . . , b̃r, c̃1, . . . , c̃r .

2: Choose Vr,Wr so that

range(Vr) = span{B̃(s1)b̃1, . . . , B̃(si)b̃i, B̃( ̄si)b̃i+1, . . . , B̃(sr)b̃r},
range(Wr) = span{C̃(s1)c̃1, . . . , C̃(si)c̃i, C̃( ̄si)c̃i+1, . . . , C̃(sr)c̃r},

andWr = Wr(VT
r Wr)
−1. Here B̃(si) = (siE −A)−1B, C̃(si) = (siE −A)−TCT , i = 1, . . . , r.

3: While (maxj=1,...,r{
sj−soldj
sj
} > ϵ)

(a) Ê = WT
r EVr, Â = W

T
r AVr, B̂ = W

T
r B, Ĉ = CVr .

(b) Compute eigenvalues, -vectors of λE −A so that (λiÊ − Â)yi = λiyi, i = 1, . . . , r.
(c) Assign si ← −λi for i = 1, . . . , r, Y = (y1, . . . , yr).
(d) B̃ = B̂TY−T , C̃ = ĈY , (b̃1, . . . , b̃r) ← B̃, (c̃1, . . . , c̃r) ← C̃.
(e) Update Vr andWr:

range(Vr) = span{B̃(s1)b̃1, . . . , B̃(sr)b̃r},

range(Wr) = span{C̃(s1)c̃1, . . . , C̃(sr)c̃r},

andWr = Wr(VT
r Wr)
−1.

4: Ê = WT
r EVr , Â = W

T
r AVr , B̂ = W

T
r B, Ĉ = CVr .

It is easy to see that the images of the poles of the ROM are selected as the expansion
points, and are updated every time the ROM is updated. In IRKA, ̄si is the conjugate
of si. From the definition of the moments of the transfer function, we know that the
first-order derivative of the transfer function at si is the first-order momentm1(si). The
value of the transfer function at si is the zeroth-order momentm0(si). Therefore, IRKA
generates ROMs matching the first two moments of the transfer function at each ex-
pansion point si, i = 1, . . . , r.

Optimality property [38]
TheROMcomputed by IRKA satisfies the following necessary conditions of optimality.

Theorem 3.4. Let H(s) be the transfer function of a stable SISO system, and Ĥ be a local
minimizer of dimension r for the optimalℋ2-model reduction problem

‖H − Ĥ‖ℋ2
= min

dim(H̃)=r,H̃ :stable
‖H − H̃‖ℋ2

,
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and suppose that Ĥ(s) has simple poles at λ̂i, i = 1, . . . , r, then Ĥ(s) interpolates H(s) and
its first derivative at λ̂i, i = 1, . . . , r:

Ĥ(−λ̂i) = H(−λ̂i),
𝜕Ĥ(−λ̂i)
𝜕s
=
𝜕H(−λ̂i)
𝜕s
.

Comparing Theorem 3.4 with themoment-matching property in (3.14), we see that
IRKA constructs a ROM that satisfies the necessary condition of the local optimal prop-
erty in Theorem 3.4.

3.2.4.2 A heuristic technique

In [25], an adaptive scheme for both choosing expansion points anddeciding the num-
ber of moments is delineated. Generally speaking, the expansion points are chosen
basedonabinaryprinciple. Thenumber ofmomentsmatchedat eachexpansionpoint
is determined by a tested point which is known to cause the largest error in the inter-
val of each pair of neighboring expansion points. Using this technique, the projection
matrixV in (3.12) is adaptively computed, and the ROM is obtained by Galerkin projec-
tion usingW = V . The only inputs of the algorithm are an acceptable dimension of the
ROM, say rmax, as well as the acceptable accuracy of the ROM, tol. rmax will be adjusted
to a proper number during the adaptive scheme if it was selected too small. The details
of the algorithm can be found in [25]. From the numerical examples in [25], themethod
shows its success in automatically obtaining ROMs for several circuit examples. It is
nevertheless clarified in [25] that the proposed method has difficulty in dealing with
multi-input and multi-output (MIMO) models with many resonances in the output re-
sponses. The proposed method may obtain good results for a single-input and single-
output (SISO) system with many resonances in the output, but it will fail when the
system is MIMO and possesses multiple resonances in all the output responses of all
the I-O ports. For such systems, an efficient error estimation may help to construct
more robust and reliable ROMs. In the next subsection, we introduce a greedy-type
algorithmwhich adaptively selects the expansion points using a recently developed a
posteriori error bound.

3.2.4.3 Scheme based on a posteriori error estimation

In [28], an a posteriori error bound Δ(μ̃) for the transfer function of the ROM is pro-
posed. This will be discussed in Section 3.3.4, where the error bound is defined for
linear parametric systems, and can straightforwardly treat linear non-parametric sys-
tems as a special case. For linear non-parametric systems, the error bound Δ(μ̃) actu-
ally depends only on s, i. e. μ̃ = s. Δ(s) can be computed following (3.25) and (3.26),
except that μ̃ is replaced by s.



70 | P. Benner and L. Feng

Similar to the reduced basis method (see Chapter 4 of Volume 2), the next expan-
sion point si is iteratively selected as the point at which the error bound is maximized.
Using the error bound, the ROM can be automatically generated by Algorithm 3.5. The
projection matricesW and V for constructing the ROM are extended iteratively by the
matricesW ̂s and V ̂s generated at the selected expansion point ̂s, until the error bound
is below the error tolerance ϵtol. The so-called training set Ξtrain is a set of samples of
s, which is given by the user, and which should cover the interesting range of the fre-
quency axis. The expansion points are selected from Ξtrain. The matricesWdu and Vdu

are used to compute the error bound; see (3.25).

Algorithm 3.5: Automatic generation of a reduced model by adaptively selecting ex-
pansion points ̂s for non-parametrized LTI systems.
Input: Systemmatrices E,A,B,C, ϵtol > 0, Ξtrain: a large set of samples of s, taken over

the interesting range of the frequency.
Output: The projection matricesW ,V .
1: W = [],V = [], set ϵ = ϵtol + 1.
2: Initial expansion point: ̂s ∈ Ξtrain.
3: while ϵ > ϵtol do
4: range(V ̂s) = span{B̃( ̂s), Ã( ̂s)B̃( ̂s), . . . , Ãq−1( ̂s)B̃( ̂s)},
5: range(W ̂s) = span{C̃( ̂s), Ãc( ̂s)C̃( ̂s), . . . , Ãq−1c ( ̂s)C̃( ̂s)}.
6: V = orth{V ,V ̂s},Wdu = V .
7: W = orth{W ,W ̂s}, Vdu = W .
8: ̂s = argmaxs∈Ξtrain Δ(s).
9: ϵ = Δ( ̂s).
10: end while

Either V ̂s in Step 6 orW ̂s in Step 7 in Algorithm 3.5 can be computed by Step 1, Steps
3–29 plus Step 31 in Algorithm 3.1. Step 6 or Step 7 of Algorithm 3.5 implements the
modified Gram–Schmidt process, Algorithm 3.3.

3.2.4.4 Complex expansion points

Note that the projection matrices V ,W computed by the moment-matching method,
as well as the multi-moment-matching method in the next section, could be complex,
if the expansion point for the variable s is taken as a complex number. The ROM then
has complex system matrices, even if the original system matrices are real.

In order to obtain real reduced system matrices, each complex matrix should be
separated into its real part and its imaginary part, which should then be combined
to obtain a real projection matrix for MOR, i. e. we need to do the following extra
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step:

V ← orth{Re(V), Im(V)}.
W ← orth{Re(W), Im(W)}.

Here and below, Re(⋅) and Im(⋅) is the real and imaginary part of a complex variable,
respectively. Since, in ℂn,

range{V} = colspan{Re(V), Im(V)}, range{W} = colspan{Re(W), Im(W)},

over ℂ, the moment-matching property in Theorem 3.3 remains unchanged.
The algorithm IRKA in Section 3.2.4.1 can also introduce complex interpolation

points si and ̄si, where ̄si is the conjugate of si. If si is complex, then in Step 2 of IRKA,
(siE −A)BB̃i and ( ̄siE −A)BB̃i+1 are both complex vectors, whichmay produce complex
matricesVr ,Wr . It is nevertheless not difficult to verify that the conjugate of (siE−A)BB̃i
is ( ̄siE − A)BB̃i+1, so that they have the same real and imaginary (up to the sign) parts.
Therefore, in Step 2, we can replace (siE−A)BB̃i and ( ̄siE−A)BB̃i+1 with Re[(siE−A)BB̃i]
and Im[(siE − A)BB̃i] for any complex si, without changing the subspace.

3.3 Multi-moment-matching for linear parametric
systems

Some parametric model order reduction (PMOR) methods are basically extensions of
MOR methods for non-parametric systems. PMOR methods can be used to compute
the ROM of the parametric system in (3.1), where the vector of parameters μ should be
symbolically preserved in the ROM as follows:

Ê(μ)dz(t, μ)
dt
= Â(μ)z(t, μ) + B̂(μ)u(t),

ŷ(t, μ) = Ĉ(μ)z.

Here Ê(μ) = WTE(μ)V , Â(μ) = WTA(μ)V , B̂(μ) = WTB(μ) and Ĉ(μ) = C(μ)V . A survey
of PMOR methods can be found in [13].

3.3.1 A robust algorithm

Multi-momentmatching PMORmethods are reported in [17, 24], which are generaliza-
tions of themoment-matchingmethod [35]. In this section, the robust PMORalgorithm
proposed in [24] is reviewed. For ease of notation,we call thismethodPMOR-MM.Both
methods in [17, 24] are based on Galerkin projection, i. e.W = V . Note that themethod
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in [24] is already extended to Petrov–Galerkin in [2]. For clarity and simplicity, we use
Galerkin projection to explain the idea and the algorithm. Assume that E(μ), A(μ) are
either in the affine form defined as

E(μ) = E0 + E1μ1 + ⋅ ⋅ ⋅ + Emμm,
A(μ) = A0 + A1μ1 + ⋅ ⋅ ⋅ + Amμm,

or can be approximated in the affine form above.
To compute thematrixV , a series expansionof the statex in the frequencydomain

is used. After Laplace transform (with zero initial condition), the original parametric
system in (3.1) can be written as

G(μ̃)X(μ̃) = B(μ̃)U(μ̃),
Y(μ̃) = C(μ̃)X(μ̃),

(3.15)

where the entries in μ̃ = (μ̃1, . . . , μ̃p) are sufficiently smooth functions of the parameters
μ1, . . . , μm and the Laplace variable s. U(μ̃) is the Laplace transform of u(t). Due to the
affine form of E(μ) and A(μ), G(μ̃) can also be written in affine form as

G(μ̃) = G0 + G1μ̃1 + ⋅ ⋅ ⋅ ,Gpμ̃p.

As a result, the state vector in the frequency domain can be written as

X(μ̃) = [G(μ̃)]−1B(μ̃)U(μ̃)

= [G0 + G1μ̃1 + ⋅ ⋅ ⋅ + Gpμ̃p]
−1B(μ̃)U(μ̃). (3.16)

Given an expansion point μ̃0 = [μ̃01 , . . . , μ̃
0
p], X(μ̃) in (3.16) can be expanded as

X(μ̃) = [I − (σ1M1 + ⋅ ⋅ ⋅ + σpMp)]
−1B̃MU(μ̃)

=
∞
∑
i=0
(σ1M1 + ⋅ ⋅ ⋅ + σpMp)

iB̃MU(μ̃), (3.17)

where B̃M = [G(μ̃0)]−1B(μ̃), Mi = −[G(μ̃0)]−1Gi, i = 1, 2, . . . , p, and σi = μ̃i − μ̃0i , i =
1, 2, . . . , p. We call the coefficients in the above series expansion the moment vectors
(matrices)of theparametrized system. The correspondingmulti-moments of the trans-
fer function are those moment vectors multiplied by C from the left.

To obtain the projection matrix V , instead of directly computing the moment vec-
tors [17], a numerically robust method is proposed in [29], and a detailed algorithm is
presented in [24]. Themethod combines the recursions in (3.18), with a repeatedmod-
ified Gram–Schmidt process so that the moment vectors are computed implicitly. We
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have

R0 = BM ,

R1 = [M1R0, . . . ,MpR0],

R2 = [M1R1, . . . ,MpR1],

...

Rq = [M1Rq−1, . . . ,MpRq−1],

...

(3.18)

Here, BM = B̃M , if B(μ̃) does not depend on μ, i. e. B(μ̃) = B. Otherwise, BM =
[B̃M1
, . . . , B̃Mp

], B̃Mi
= [G(μ̃0)]−1Bi, i = 1, . . . , p, if B(μ̃) can be approximated in affine

form, e. g., B(μ̃) ≈ B1μ̃1 + ⋅ ⋅ ⋅ + Bpμ̃p.
Then V := Vμ̃0 is computed as

range(Vμ̃0 ) = span{R0,R1, . . . ,Rq}μ̃0 , (3.19)

with the sub-index denoting the dependance on the expansion point μ̃0. It is proved
in [24] that the leadingmulti-moments of the original systemmatch those of the ROM.
The accuracy of the ROM can be improved by increasing the number of terms in (3.19),
whereby more multi-moments can be matched. To be self-contained, we present the
method in Algorithm 3.6.

It is noticed that the dimensions of Rj, j = 1, . . . , q, increase exponentially. If the
number p of the parameters is larger than 2, it is advantageous to use multiple point
expansion, such that only the low order moment matrices, e. g., Rj, j ≤ 1, have to be
computed for each expansion point. As a result, the order of the ROM can be kept
small. Given a group of expansion points μ̃i, i = 0, . . . , ℓ, a matrix Vμ̃i can be computed
from (3.19) for each μ̃i as

range(Vμi ) = span{R0,R1, . . . ,Rq}μ̃i , (3.20)

where Rj, j = 1, . . . , q, are defined as in (3.18), with R0 = BM ,BM = [G(μ̃i)]−1B, or BM =
[B̃M1
, . . . , B̃Mp

], B̃Mj
= [G(μ̃i)]−1Bj,Mj = −[G(μ̃i)]−1Gj, j = 1, 2, . . . , p. The final projection

matrix V is a combination (orthogonalization) of all the matrices Vμ̃i ,

V = orth{Vμ0 , . . . ,Vμ̃ℓ }. (3.21)

The multi-moment-matching PMORmethod is very efficient for linear parametric sys-
tems, especially for systems with affine matrices E(μ), A(μ) [22]. The method also per-
forms well if the matrices are not affine, but it can be well approximated in affine
form [13, 30].
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Algorithm 3.6: Compute V = [v1, v2, . . . , vq] for a parametric system (3.1), where B(μ)
is generally considered as a matrix.

Input: Expansion point μ̃0, moment vectors in R1,R2, . . . ,Rq.
Output: Projection matrix V .
1: Initialize a1 = 0, a2 = 0, sum = 0.
2: if (multiple input) then
3: Orthogonalize the columns in R0 using the modified Gram–Schmidt

process: [v1, v2, . . . , vq1 ] = orth{R0},
4: sum = q1. (q1 is the number of remaining columns after orthogonalization.)
5: else
6: Compute the first column in V: v1 = R0/||R0||2, sum = 1.
7: end if
8: Orthogonalize the columns in R1,R2, . . . ,Rq iteratively as follows:
9: for i = 1, 2, . . . , q do
10: a2 = sum;
11: for d = 1, 2, . . . , p do
12: if a1 = a2 then
13: stop
14: else
15: for j = a1 + 1, . . . a2 do
16: w = G̃−1(μ̃0)Gdvj, col = sum + 1.
17: for k = 1, 2, . . . , col − 1 do
18: h = vTkw, w = w − hvk .
19: end for
20: if ‖w‖2 > ε (a small value indicating deflation, e. g., ε = 10−7) then
21: vcol =

w
‖w‖2

, sum = col.
22: end if
23: end for (j)
24: end if
25: end for (d)
26: a1 = a2;
27: end for (i)
28: Orthogonalize the columns in V by the modified Gram–Schmidt process.

3.3.2 Applicability to steady systems

The above PMOR method computes ROMs of the dynamical systems in (3.1). It is easy
to see that the method can be naturally applied to steady systems:

(E0 + E1μ1 + ⋅ ⋅ ⋅ + Emμm)x(μ) = B(μ)u(μ),
y(μ) = C(μ)x(μ).

(3.22)
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Comparing (3.22) with the Laplace transformed system (3.15), we see that they have
an identical form. Consequently, the series expansion of x in (3.22) can be obtained
similarly to (3.17). The corresponding moment vectors can also be defined according
to (3.18). Algorithm 3.6 can then be used to compute a projection matrix V . Then the
ROM of (3.22) is constructed by a Galerkin projection,

(VTE0V + V
TE1Vμ1 + ⋅ ⋅ ⋅ + V

TEmVμq)x(μ) = V
TB(μ)u(μ),

ŷ(μ) = C(μ)Vx(μ).

3.3.3 Structure-preserving (P)MOR for second-order systems
For the second-order systems

M(μ)d
2x(t, μ)
dt2
+ D(μ)dx(t, μ)

dt
+ K(μ)x(t, μ) = B(μ)u(t),

y(t, μ) = C(μ)x(t, μ),
(3.23)

often arising from, e. g., mechanical engineering, it is desired that the ROM preserves
the second-order structure, i. e.,

WTM(μ)V d2z(t, μ)
dt2
+WTD(μ)V dz(t, μ)

dt
+WTK(μ)Vz(t, μ) = WTB(μ)u(t),

y(t, μ) = C(μ)Vz(t, μ).
(3.24)

Note that PMOR-MM computes the projection matrix using the series expansion of
the state vector x in the frequency domain. After a Laplace transformation (assume
x(t = 0, μ) = 0), the first equation in (3.23) becomes

s2M(μ)X(s, μ) + sD(μ)X(s, μ) + K(μ)X(s, μ) = B(μ)U(s),
Y(s, μ) = C(μ)X(s, μ).

Thus

[s2M(μ) + sD(μ) + K(μ)]X(s, μ) = B(μ)U(s),

where U(s) is the Laplace transform of the input signal u(t). Defining G(μ̃) := s2M(μ) +
sD(μ) + K(μ), μ̃ = (μ̃1, μ̃2, μ̃3) := (s2, s, μ), a projection matrix V can be computed
following (3.15)–(3.21) in Section 3.3.1. Applying a Petrov-Galerkin projection to the
second-order system, we can obtain a second-order ROM as in (3.24). Note that with a
Galerkin projection, also the symmetry and definiteness properties of the coefficient
matrices can be preserved in the ROM.

3.3.4 Selecting expansion points based on a posteriori error
estimation

Note that the projection matrix V in (3.21) depends on the multiple expansion points
μ̃i, i = 1, . . . , ℓ.
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In this section, we introduce an a posteriori error bound proposed in [28], which is
an error bound for the transfer function Ĥ(μ̃) of the ROM. Given the error bound Δ(μ̃)
for the ROM, the expansion points μ̃i can be adaptively selected, and the projection
matrix V can be automatically computed as shown in Algorithm 3.7.

Algorithm 3.7: Adaptively selecting expansion points μ̃i, and automatically comput-
ing V .
Input: εtol, set ε = εtol+1, Ξtrain: a set of samples of μ̃ covering the interesting domain.
Output: V .
1: V = [],Vdu = [].
2: Choose an initial expansion point: μ̃0 ∈ Ξ, i = 0.
3: while ε > εtol do
4: range(Vμ̃i ) = span{R0,R1, . . . ,Rq}μ̃i . (By applying Algorithm 3.6 at expansion

point μ̃i.)
5: range(Vdu

μ̃i ) = span{R
du
0 ,R

du
1 , . . . ,R

du
q }μ̃i . (By applying Algorithm 3.6 at expansion

point μ̃i, and replacing R0,R1, . . . ,Rq with Rdu0 ,R
du
1 , . . . ,R

du
q in (3.27).)

6: V = orth{V ,Vμ̃i },W = V .
7: Vdu = orth{Vdu,Vdu

μ̃i },W
du = Vdu.

8: i = i + 1.
9: μ̃i = argmaxμ̃∈Ξtrain Δ(μ̃).
10: ε = Δ(μ̃i).
11: end while.

For a MIMO system, the error bound Δ(μ̃) is defined as

Δ(μ̃) = max
ij

Δij(μ̃).

Here Δij(μ̃) is the error bound for the (i, j)th entry of the transfer function (it is a matrix
for MIMO systems) of the ROM, i. e.,

|Hij(μ̃) − Ĥij(μ̃)| ≤ Δij(μ̃).

For a SISO system, there is no need to take the maximum. Δij(μ̃) can be computed as

Δij(μ̃) =
||rdui (μ̃)||2||r

pr
j (μ̃)||2

β(μ̃)
+ |(x̂du)∗rprj (μ̃)|. (3.25)

Here and below, (⋅)∗ is the conjugate transpose of a vector or a matrix. Let ci be the ith
row of C(μ̃) and bj be the jth column of B(μ̃) in (3.15),

rprj (μ̃) = bj − G(μ̃)x̂
pr
j ,

x̂prj = V[W
TG(μ̃)V]−1WTbj, (3.26)



3 Model order reduction based on moment-matching | 77

rdui (μ̃) = −c
T
i − G
∗(μ̃)x̂dui ,

x̂dui = −V
du[(Wdu)TG∗(μ̃)Vdu]−1(Wdu)TcTi ,

where x̂prj is the approximate solution to the primal system

G(μ̃)xprj = bj,

and can be computed from the ROM of the primal system obtained with the projection
matricesW ,V . x̂dui is the approximate solution to the dual system

G∗(μ̃)xdui = −c
T
i ,

and can be computed from the ROM of the dual system obtained with the projection
matricesWdu,Vdu. The variable β(μ̃) is the smallest singular value of the matrix G(μ̃).
The matrix Vdu can be computed, for example, using (3.20) and (3.21), by replacing
R0, . . . ,Rqr withRdu0 ,R

du
1 , . . . ,R

du
qr , where thematricesG(μ̃i) inR0, . . . ,Rqr are substituted

by G∗(μ̃i), and B is replaced with −CT . More specifically,

Rdu0 = C
du
M ,

Rdu1 = [M
du
1 Rdu0 , . . . ,M

du
p Rdu0 ],

Rdu2 = [M
du
1 Rdu1 , . . . ,M

du
p Rdu1 ],

...,

Rduq = [M
du
1 Rduq−1, . . . ,M

du
p Rduq−1],

...,

(3.27)

Rdu0 = C
du
M = −[G

∗(μ̃i)]−1CT , Mj = [G∗(μ̃i)]−1GT
j , j = 1, 2, . . . , p. We can takeWdu = Vdu.

The derivation of Δ(μ̃) is detailed in [28].
It is worth pointing out that, although the error bound is dependent on the pa-

rameter μ̃, many μ̃-independent terms constituting the error bound need to be pre-
computed only once, and they are repeatedly used in Algorithm 3.7 for the many sam-
ples of μ̃ in Ξtrain. For example, when computing x̂prj in rprj , W

TGkV , k = 1, . . . ,m, are
μ-independent, and need to be computed only once,WTG(μ̃)V is then derived by as-
semblingWTGkV for any value of μ̃.

Algorithm 3.7 is similar to Algorithm 3.5, except that the projection matrix V is
constructed for system (3.1) in the parametric case using Algorithm 3.6. At the ith iter-
ation step, the expansion point μ̃i is selected as the one maximizing the error bound
Δ(μ̃). The projection matrix V is enriched by the matrix Vμ̃i corresponding to μ̃

i. The
matrix Vdu aids in computing the error bound. Themost costly part of the error bound
is β(μ̃), since we need to compute the smallest singular value of the matrix G(μ̃) of
full dimension. The smallest singular value of the projectedmatrixWTG(μ̃)V could be
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heuristically used to approximate β(μ̃). In [44], a method of interpolation is proposed
to compute anapproximationof β(μ̃),whichhas been shown tobe accurate and cheap.

At the end of this section, we mention a method from [9], which deals with lin-
ear parametric systems with time-varying parameters. There, it is shown that these
parametric systems can be equivalently considered as bilinear systems. Then suitable
MOR methods for bilinear systems can be applied. MOR for bilinear systems will be
discussed in the next section, where MOR based on multi-moment matching or bilin-
ear IRKA (BIRKA) [9, 10, 12] are introduced.

3.4 Moment-matching MOR for nonlinear systems

In this section we consider mildly nonlinear systems without parameter variations,

Edx(t)
dt
= f(x(t)) + Bu(t),

y(t) = Cx(t),
(3.28)

where x(t) ∈ ℝn and f (⋅) ∈ ℝn is a nonlinear, vector-valued function depending on
x(t). These nonlinear systems usually come from spatial discretizations of nonlinear
PDEs. The ROM via Petrov–Galerkin projection is obtained as follows:

WTEV dz(t)
dt
= WT f(Vz(t)) +WTBu(t),

whereW ∈ ℝn×r and V ∈ ℝn×r withWTV = I.
In the literature, someMORmethods for nonlinear systems are based onmoment-

matching. The quadratic method [16] is the simplest one. The bilinearization method
[5, 46] is more accurate than the quadratic method. Methods based on variational
analysis [11, 27, 37, 47, 52], in general, yield smaller errors than the previous two. A
method based on a piece-wise linear approximation of the nonlinear function f (⋅) [50]
could be usedwhen dealingwith strong nonlinearities. Thesemethods are extensions
of the moment-matching methods for linear systems.

3.4.1 Quadratic method

We first analyze the quadratic MOR method proposed in [16]. This method approxi-
mates the nonlinear function f(⋅) by its power series expansion at, e. g., x(0) = 0,
which can be rewritten into a Kronecker product formulation of x(t) [52],

f(x(t)) = f(0) + A1x(t) + A2(x(t) ⊗ x(t))
+ A3(x(t) ⊗ x(t) ⊗ x(t)) + ⋅ ⋅ ⋅ ,

(3.29)
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whereA1 ∈ ℝn×n is the Jacobian of f and, in general,Aj ∈ ℝn×n
j
denotes amatrix whose

entries correspond to the jth-order partial derivatives of fi w. r. t. x1, . . . , xn, 1 ≤ i ≤ n.
Here fi, xk are the ith and kth entry of f and x(t), respectively. A quadratic system can
be obtained by a truncation of (3.29),

Edx(t)
dt
= A1x(t) + A2(x(t) ⊗ x(t)) + Bu(t) + f(0),

y(t) = Cx(t).
(3.30)

If f(0) = 0, the projection matrix V is computed as an orthonormal basis of the Krylov
subspace Kq(A−11 ,A

−1
1 B) as follows:

range(V) = span{A−11 B,A−21 B, . . . ,A−q1 B}.

Note thatV is constructed only byuse of the linear part of the quadratic system.AROM
is derived as

VTEV dz(t)
dt
= VTA1Vz(t) + V

TA2(Vz(t) ⊗ Vz(t)) + V
TBu(t),

y(t) = CVz(t).

It can be seen that the idea of the quadraticmethod comes from themoment-matching
method for linear systems. The projection matrix V is computed in the same way as in
the previous moment-matching methods, but is applied to the quadratic system.

If f(0) ̸= 0, then the system in (3.30) can be reformulated into

Edx(t)
dt
= A1x(t) + A2(x(t) ⊗ x(t)) + [B, f(0)][u(t), 1]

T ,

y(t) = Cx(t).

The input matrix B in (3.30) is replaced by the matrix [B, f(0)], which means f(0) can
always be treated as a part of the input matrix of the system, therefore, for simplicity,
we assume below that f(0) = 0.

3.4.2 Bilinearization method

For a nonlinear system with E = I, and with single input, i. e. B is a vector b, a bi-
linear system can be obtained by applying the Carleman linearization process to the
nonlinear system (3.28) [52]. In [5, 46], the bilinear system is derived by approximating
f(x(t))with a degree-2 polynomial in the Carleman linearization process. More specif-
ically, by use of the first three terms in (3.29), we obtain the following approximation
of f(x(t)):

f(x(t)) ≈ A1x(t) + A2(x(t) ⊗ x(t)).
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With the definitions

x⊗ = (
x(t)

x(t) ⊗ x(t)
) , B⊗ = (

b
0
) , C⊗ = (C,0),

A⊗ = (
A1 A2
0 A1 ⊗ I + I ⊗ A1

) ,

N⊗ = (
0 0

b ⊗ I + I ⊗ b 0
) ,

the nonlinear system (3.28) (E = I) can be approximated by the following bilinear
system:

dx⊗
dt
= A⊗x⊗ + N⊗x⊗u(t) + B⊗u(t),

y(t) = C⊗x⊗.
(3.31)

The derivation can be easily extended to multi-input systems with B ∈ ℝn×nI being
a matrix. After a few more calculations, the following bilinear system with multiple
inputs can be obtained:

dx⊗
dt
= A⊗x⊗ +

nI
∑
i=1

N (i)⊗ x⊗ui(t) + B⊗u(t),

y(t) = C⊗x⊗,

(3.32)

where u(t) := (u1(t), . . . , unI (t))
T , B := (b1, . . . ,bnI ) and

B⊗ = (
B
0
) , N (i)⊗ = (

0 0
bi ⊗ I + I ⊗ bi 0

) .

Given a bilinear system with E singular, several modified MOR schemes are pro-
posed in [1, 12, 33, 34], but will not be discussed in this chapter due to space limita-
tions. We can see that the above bilinear system is of much larger state-space dimen-
sion than the original nonlinear system (3.28). In the following we will introduce the
process of constructing the projection matrix V for MOR.

Once the nonlinear system is approximated by the bilinear system (3.31) or (3.32),
there are several choices for applying MOR. Multi-moment-matching methods extend
the moment-matching methods for linear systems to bilinear systems by studying the
transfer function of the bilinear system. Gramian-based bilinear MOR methods con-
struct thematricesW andV by exploring theGramianmatrices of the bilinear systems.
We focus on multi-moment-matching methods in this chapter.
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3.4.2.1 ConstructingW and V

Multivariate transfer functions and multi-moment-matching
The bilinearization MORmethods in [5, 46, 23] construct the matricesW ,V ,W = V by
approximating the transfer function of the bilinear system. Note that only SISO sys-
tems are considered in [5, 46]. For MIMO systems, the expression of the transfer func-
tion will be different; see [43]. In [43], a method similar to that in [46] was extended to
MIMO systems. In the following description, we consider only SISO bilinear systems.

Under the assumption E = I, the identity matrix, the output response of the bilin-
ear system (3.31) can be expressed by a Volterra series [52],

y(t) =
∞
∑
k=1

yk(t),

where yk(t) is described in (3.33) and (3.34). In (3.34),h
(reg)
k is called the regular kernel of

degree k. Themultivariate Laplace transformof this kernel defines the kthmultivariate
transfer function H(reg)k in (3.35). We have

yk(t) =
t

∫
0

t1

∫
0

. . .
tk

∫
0

h(reg)k (t1, . . . , tk)u(t − t1 − ⋅ ⋅ ⋅ − tk) ⋅ ⋅ ⋅ u(t − tk) dtk . . . dt1,

(3.33)

h(reg)k (t1, . . . , tk) = C⊗e
A⊗tkN⊗eA⊗tk−1 ⋅ ⋅ ⋅N⊗eA⊗t1B⊗, (3.34)

H(reg)k (s1, . . . , sk) = C⊗(skI − A⊗)
−1N⊗(sk−1I − A⊗)

−1 . . .N⊗(s1I − A⊗)
−1B⊗. (3.35)

By using the Neumann expansion,

(I − sA−1⊗ )
−1 = I + sA−1⊗ + s

2A−2⊗ + s
3A−3⊗ + ⋅ ⋅ ⋅ ,

H(reg)k (s1, s2, . . . , sk) can be expanded into a multivariable Maclaurin series in (3.36),
with the so-called kth-order multi-moments m(l1, . . . , lk) being defined in (3.37). We
have

H(reg)k (s1, . . . , sk) =
∞
∑
lk=1
. . .
∞
∑
l1=1

m(l1, . . . , lk)s
l1−1
1 sl2−12 ⋅ ⋅ ⋅ s

lk−1
k , (3.36)

m(l1, . . . , lk) = (−1)
kC⊗A
−lk
⊗ N⊗ ⋅ ⋅ ⋅A

−l2
⊗ N⊗A

−l1
⊗ B⊗, l1, . . . , lk = 1, 2, . . . . (3.37)

DerivingW and V
In [23, 7], the BICOMB method constructs the projection matrix V from a series of
Krylov subspaces in the following steps:

range(V (1)) = Kq1(A
−1
⊗ ,A
−1
⊗ B⊗), (3.38)

and for j > 1

range(V (j)) = Kqj(A
−1
⊗ ,A
−1
⊗ N⊗V

(j−1)). (3.39)
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The final projection matrix V is

range(V) = orth{V (1), . . . ,V (J)}. (3.40)

Here,

Kqj(A
−1,R) := {R,A−1R, . . . ,A−qj+1R}

is a block Krylov subspace generated by R = A−1⊗ B⊗, j = 1, or R = A
−1
⊗ N⊗V

(j−1), j >
1. Note that each V (k) actually tries to match the multi-moments of the kth transfer
function H(reg)k ; the multi-moment-matching property of the ROM can be found in,
e. g., [23]. Applying x⊗ ≈ Vz⊗ to (3.31), the ROM of the nonlinear system (3.28) is given
by

dz⊗
dt
= Â⊗z⊗ + N̂⊗z⊗u(t) + B̂⊗u(t),

ŷ(t) = Ĉ⊗z⊗,
(3.41)

where Â⊗ = VTA⊗V , N̂⊗ = VTN⊗V , B̂⊗ = VTB⊗, Ĉ⊗ = C⊗V . For simulation results of the
BICOMBmethod, we refer to [7]. Algorithm 3.1 can bemildly modified to Algorithm 3.8
to compute V (j) in (3.38)–(3.40). Algorithm 3.8 computes a matrix V from the block
Krylov subspaces defined as follows:

range(V (j)) = Kqj(M
−1,Rj), j = 1, . . . , J. (3.42)

The final projection matrix V is computed as in (3.40). Let M = A⊗, R1 = A−1⊗ B⊗ and
Rj = A−1⊗ N⊗V

(j−1) for j > 1, Algorithm 3.8 can be used to compute the matrix V in (3.40)
for the ROM (3.41) of the bilinear system.

3.4.3 Variational analysis method

The third set of nonlinear MOR methods [11, 27, 37, 42, 47] originates from variational
analysis of nonlinear system theory [52].

3.4.3.1 Methods using polynomial approximation

In [27, 42, 47], the original nonlinear system is first approximated by a polynomial sys-
tem, then variational analysis is applied to the polynomial system to obtain a reduced
polynomial system. In the following, we describe the method developed in [27]. Its
main difference from the method in [47] is the construction of the projection matrices
V2 and V3, and will be explained later.
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Algorithm 3.8: Compute V in (3.40).
Input: Matrices of the block Krylov subspace in (3.42):M,Rj, j = 1, 2, . . . , J.
Output: Matrix V in (3.40) with orthonormal columns.
1: Initialize a1 = 0, a2 = 0, sum = 0.
2: for j = 1, . . . , J do
3: if Rj is a matrix then
4: Orthogonalize the columns in Rj using a modified Gram–Schmidt

process: [v1, v2, . . . , vmj
] = orth{Rj}.

5: sum = mj. (mj is the number of remaining columns after deflation.)
6: else
7: Compute the first column in Vj: v1 = Rj‖Rj|‖2. (Rj is a vector.)
8: sum = 1.
9: end if
10: for i = 1, 2, . . . , qj − 1 do
11: a2 = sum.
12: if a1 = a2 then
13: break, go to 2.
14: else
15: for d = a1 + 1, . . . , a2 do
16: w = Mvd, col = sum + 1.
17: for k = 1, 2, . . . , col − 1 do
18: h = vTkw, w = w − hvk .
19: end for
20: if ‖w‖2 > ε (a small value indicating deflation, e. g., ε = 10−7) then
21: vcol =

w
‖w‖2

, sum = col.
22: end if
23: end for (d)
24: end if
25: a1 = a2.
26: end for (i)
27: Vj = [v1, . . . , vsum],
28: end for (j)
29: Orthogonalize the columns in [V1, . . . ,VJ] by the modified Gram–Schmidt process

to obtain V , i. e. V := orth{V1, . . . ,VJ}.

With the power series expansion of f(x(t)) in (3.29), the original nonlinear system
(3.28) is first approximated by a degree-2 polynomial system

dx(t)
dt
= A1x(t) + A2(x(t) ⊗ x(t)) + Bu(t),

y(t) = Cx(t),
(3.43)
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or by a degree-3 polynomial system

dx(t)
dt
= A1x(t) + A2(x(t) ⊗ x(t))

+ A3(x(t) ⊗ x(t) ⊗ x(t)) + Bu(t),
y(t) = Cx(t).

(3.44)

Consider the response of (3.28) to a variation of the input αu(t),

dx(t)
dt
= f (x(t)) + B(αu(t)),

y(t) = Cx(t),
(3.45)

where α is an arbitrarily small-valued variable. Assuming that the response to u(t) = 0
is x(t) = 0 (in [52], it is called a forced response), then x(t), as a function of α, can be
expanded into a power series of α around α0 = 0,

x(t) = αx1(t) + α
2x2(t) + α

3x3(t) + ⋅ ⋅ ⋅ , (3.46)

where the first term of the series is x0(t) = x(t, α0 = 0) = 0, since when α0 = 0,
α0u(t) = 0. The corresponding response x(t, α0 = 0) = 0 is then removed from the
above expansion. Substituting both (3.46) and (3.29) into the right hand side and (3.46)
into the left hand side of (3.45), we get

αdx1(t)
dt
+ α2 dx2(t)

dt
+ α3

dx3(t)
dt
+ ⋅ ⋅ ⋅ = αA1x1(t)

+ α2[A1x2(t) + A2(x1(t) ⊗ x1(t))] + ⋅ ⋅ ⋅ + B(αu(t)).

Since this equation holds for all α, coefficients of powers of α can be equated. This
gives the variational equations:

dx1(t)
dt
= A1x1(t) + Bu(t), (3.47)

dx2(t)
dt
= A1x2(t) + A2(x1(t) ⊗ x1(t)), (3.48)

dx3(t)
dt
= A1x3(t) + A2(x1(t) ⊗ x2(t) + x2(t) ⊗ x1(t))

+ A3(x1(t) ⊗ x1(t) ⊗ x1(t)), (3.49)
...

It is worth pointing out that the assumptions on the forced response can be relaxed,
and similar variational equations of xδ = x(t) − x̂(t) can be derived. Here, x̂(t) is the
response to a certain input û(t) for a fixed initial state x(t = 0) = x∗0. For a detailed
discussion; see Section 3.4 in [52].
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DerivingW and V
We notice that all of these variational equations are linear systems of order n for the
vectors of the unknownsx1(t),x2(t), . . ., respectively. Sincex(t) is a linear combination
of x1(t), x2(t), . . . (see (3.46)), it is in the subspace spanned by x1(t), x2(t), . . .. The
projection matrix V can be computed from the subspace containing x1(t), x2(t), . . ..

Building upon this observation, the method in [27] constructs V based on the lin-
ear variational equations (3.47)–(3.49) rather than from the nonlinear system. From
the moment-matching MOR for linear systems, a projection matrix V1 for x1(t) of the
first linear system (3.47) is constructed as

range(V1) = span{A
−1
1 B,A−21 B, . . . ,A−q11 B}. (3.50)

Then x1(t) can be approximated by x1(t) ≈ V1z1(t). A projection matrix V2 for x2(t) of
the second linear system (3.48) is similarly constructed by

range(V2) = span{A
−1
1 A2,A

−2
1 A2, . . . ,A

−q2
1 A2}, (3.51)

such that x2(t) ≈ V2z2(t). A projection matrix V3 for x3(t) in (3.49) can be derived in a
similar way. From (3.46), we have

x(t) ≈ αV1z1(t) + α
2V2z2(t),

or

x(t) ≈ αV1z1(t) + α
2V2z2(t) + α

3V3z3(t),

which indicates that the solutionx(t) to (3.43) or (3.44) canbe approximatedby a linear
combinationof the columnsofV1,V2 orV1,V2,V3. Therefore thefinal projectionmatrix
V can be computed as

range(V) = orth{V1, . . . ,VJ}, J = 2 or 3. (3.52)

The ROM is thus derived from the polynomial system (3.43) or (3.44) as follows:

dz(t)
dt
= VTA1Vz(t) + V

TA2(Vz(t) ⊗ Vz(t)) + V
TBu(t),

y(t) = CVz(t),
(3.53)

or

dz(t)
dt
= VTA1Vz(t) + V

TA2(Vz(t) ⊗ Vz(t))

+ VTA3(Vz(t) ⊗ Vz(t) ⊗ Vz(t)) + V
TBu(t),

y(t) = CVz(t).

(3.54)
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The advantage of this method is that it has the flexibility of using a more accurate
polynomial system (3.44) to approximate the original nonlinear system. It is possible
that for the quadratic method, the system (3.30) can also be replaced by a more accu-
rate polynomial system. However, the projection matrix V computed by the quadratic
methodmight be less accurate than thematrixV in (3.52), because it is computedusing
only the linear part of the nonlinear system. For an approximation of the original non-
linear system (3.28), the bilinear system is less accurate than the polynomial system
(3.44). Moreover, since the bilinear system is derived by approximating the nonlinear
function f(x) by its power series expansion up to second order, the projection matrix
V also only uses the information of the series expansion of f(x) at most to the second
order, which is less accurate than the matrix V computed by the variational analysis
method.

Again, letM = A1, R1 = A−11 B, R2 = A−11 A2 in (3.50), (3.51), then Algorithm 3.8 can
be used to compute V in (3.52). Since there are many columns in A2, it is not possible
to use all the columns. Instead, onemay take only the first several columns, e. g., R2 =
A−11 A2(:, 1 : q), q ≪ n, where MATLAB notation is used.

In [47], the second projection matrix Ṽ2 is constructed from the approximate sys-
tem by replacing x1 with V1z1 in (3.48) to get

dx2(t)
dt
= A1x2(t) + A2(V1z1(t) ⊗ V1z1(t)).

Then

range(Ṽ2) = span{A
−1
1 A2(V1 ⊗ V1),A

−2
1 A2(V1 ⊗ V1), . . . ,A

−q2
1 A2(V1 ⊗ V1)}. (3.55)

The advantage of this approach is that there are much fewer columns in A2(V1 ⊗ V1)
than in A2 in (3.51). Thus, Ṽ2 matches more moments than V2 in (3.51) if the matrices
have the same number of columns. However, Ṽ2 only matches approximate moments
because the input matrix A2 in (3.48) is approximated by A2(V1 ⊗ V1) in (3.55). There-
fore, although Ṽ2matchesmoremoments, its accuracy is impaired by the approximate
moments. The accuracy of the two methods is compared in [7].

At the end of this subsection, we would like to mention another method [42]
which is based on both the Volterra series expansion of the output response and
variational analysis. In [42], the original system (3.28) is approximated by the polyno-
mial system in (3.44). Then the Volterra series representation of the output response
of the polynomial system is employed to introduce the nonlinear transfer functions
of (3.44). The kth-order nonlinear transfer function is similar to the kth transfer func-
tionH(reg)k (s1, s2, . . . , sk) for the bilinear system. The projection matrix V is constructed
based on the moments of the nonlinear transfer functions. Instead of performing the
Laplace transform of the Volterra kernels as in (3.35), the nonlinear transfer func-
tions are computed from the variational linear systems (3.47)–(3.49), whose transfer
functions are equivalent with the first-order, second-order and third-order nonlinear
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transfer functions, respectively. The basic idea of [42] is quite similar to the methods
in [5] and [46]. The main difference is that [5] and [46] are based on a bilinear approx-
imation of the original nonlinear system, whereas [42] is based on the more accurate
approximation (3.44).

3.4.3.2 Methods based on quadratic–bilinearization

All those previous nonlinear model reduction methods first approximate the nonlin-
ear function f(x(t)) by a polynomial, then reduce the approximate polynomial system
to a small dimension.When the function f(x(t)) is weakly nonlinear, it is usually suffi-
cient to approximate it by a degree-2 polynomial or degree-3 polynomial. Meanwhile,
when f(x(t)) is strongly nonlinear, the low-degree polynomial approximation is not
accurate. It is possible to employ higher order polynomials to improve the accuracy,
but with much more complexity. Furthermore, the storage requirement for higher or-
der polynomials is prohibitive if the matrix dimension is very large. Therefore, these
methods are more suitable for weakly nonlinear systems.

The methods based on quadratic–bilinearization provide a solution to the above
issues of polynomial approximation. Instead of approximating the nonlinear part f(x)
by apolynomial function, equivalent transformations are applied to thenonlinear sys-
tem in (3.28). The nonlinear system is first “lifted” to a polynomial system by adding
polynomial algebraic equations or by taking Lie derivatives and addingmore differen-
tial equations. The polynomial system is then transformed into a quadratic–bilinear
system by either adding quadratic algebraic equations or taking Lie derivatives again.
No accuracy is lost during the transformations. The detailed explanation can be found
in [36, 37].

The equivalent quadratic–bilinear system is

G0x̃ = G1x̃ + G2(x̃ ⊗ x̃) + D1x̃u + D2(x̃ ⊗ x̃)u + B̃u(t), (3.56)

where x̃ is the lifted state vector after more state variables are added to the state vec-
tor x. Notice that in [36, 37], the system (3.56) is called quadratic-linear differential
algebraic equation (QLDAE). However, the system above obviously includes the bi-
linear term D1x̃u and the quadratic–bilinear term D2(x̃ ⊗ x̃)u. Therefore, the notion
quadratic–bilinear differential algebraic equations (QBDAEs) introduced in [11] is
used in this paper.

Once the QBDAEs are derived after several steps of transformations, the varia-
tional analysis (3.45)–(3.49) in the previous subsection can be applied to the QBDAEs.
The projection matrix V can also be computed likewise. Then a Galerkin projection
can be applied to (3.56) to get the reduced QBDAEs, which is considered as the ROM
for the original nonlinear system in (3.28).

Recall that, from the second variational equation (3.48), the input matrix has
many vectors, which makes the computation of the projection matrix V2 tricky.
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In [36, 37], a different way of computing the projection matrix V is proposed based on
the transfer functions of the QBDAEs (3.56). The expression of the transfer functions
of the QBDAEs can be originally found in [52]. For example, assuming for simplicity
G0 = I, the first two transfer functions are

H1(s) = L
T (sI − G1)

−1B,

H2(s1, s2) =
1
2!
LT[(s1 + s2)I − G1]

−1

× {G2[H1(s1) ⊗ H1(s2) + H1(s2) ⊗ H1(s1)] + D1[H1(s1) + H2(s2)]}.

(3.57)

Using Taylor series expansions of the transfer functions, the matrix V can be recur-
sively computed from the coefficients of the series expansions. The series expansions
of H1 and H2 about zero (adaptation to nonzero expansion points is straightforward)
are given as

H1(s) = L
T
∞
∑
k=0

AkB̃sk ,

H2(s1, s2) =
1
2!
LT

k
∑
i=0

Ak+1(s1 + s2)
k{G2[(

∞
∑
k=0

AkB̃sk1) ⊗ (
∞
∑
k=0

AkB̃sk2)

+ (
∞
∑
k=0

AkB̃sk2) ⊗ (
∞
∑
k=0

AkB̃sk1)]

+ D1[
∞
∑
k=0

AkB̃sk1 +
∞
∑
k=0

AkBsk2]},

where A = G−11 , B̃ = −G−11 B. In [36, 37], the projection matrix V is constructed as

range(V1) = span{A
iB̃, i ≤ q},

range(V2) = span{A
i+1D1A

jB̃, i + j ≤ q},

range(V3) = span{A
i+1G2(A

jB̃) ⊗ (AkB̃), i + j + k ≤ q, k ≤ j},
range(V) = span{V1,V2,V3}. (3.58)

It can be seen that, if the system matrix B is a vector, the Kronecker product (AjB̃) ⊗
(AkB̃) is also a vector so that the construction of V3 is easy. In general, if B has m
columns, (AjB̃) ⊗ (AkB̃) has m2 columns. The number of columns in (AjB̃) ⊗ (AkB̃) is
still moderate ifm is small. This is an advantage over the way of computing V through
variational analysis.

Algorithm3.8 canalsobeused to computeV in (3.58),whereweneed to letM = G1,
R1 = B̃, R2 = D1V1, R3 = G2AjV2 ⊗ V2. Note that in order to compute V2, we use V1
instead ofAjB̃ inR2, sinceV1 is already the basis of the subspace spanned byAjB̃, j ≤ q.
Similarly, we useV2⊗V2 rather thanAjB̃⊗AkB̃. This way, we avoid the issues of how to
choose proper values of j, k. When AjB̃ is replaced by V1 in R2, V1 is a matrix instead of
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a vector. However, usually there are a few columns in V1, which still keeps the column
dimensions of R2,R3 moderate.

In [11], themethod is extended to two-sided projection based on the transfer func-
tions (3.57) of the QBDAEs. It is proved that by using two-sided projection, the re-
duced transfer function matches almost twice as manymoments of the original trans-
fer functions as with the one-sided projection used in [36, 37]. Simulation results also
show better accuracy than the one-sided projection. However, the two-sided projec-
tion sometimes causes numerical instability, which may produce unstable reduced
models [11].

Note that the subspace dimension in (3.58) will grow exponentially if the coeffi-
cients of the series expansion of the higher order transfer functions, e. g. H3(s1, s2, s3),
are also included to compute the projection matrix V . This easily leads to a ROMwith
no reduced number of equations. In [58], the higher order multivariate transfer func-
tions H2(s1, s2), H3(s1, s2, s3), . . ., are transformed to single-s transfer functions H2(s),
H3(s), . . . by association of variables without losing accuracy. The series expansion of
H2(s) orH3(s) only depends on the single variable s, such that the exponential growth
of the subspace dimension can be avoided. Compared with the method in [37], a more
compact ROM with the same accuracy can be obtained. The theory on association of
variables can be found in [52].

Recall that, if the original nonlinear system is a system of ODEs, the QBDAEs usu-
ally constitute a systemof differential-algebraic equations after quadratic–bilineariza-
tion, i. e.,G0 could be singular. In general, it is still unclear how to determine the index
of the QBDAEs which may cause problems when the ROM is solved.

3.4.3.3 Other variants

Algorithm IRKA has been extended to the bilinear iterative rational Krylov algorithm
(BIRKA) in [10] to compute the ROMs of bilinear systems, which iteratively updates
a set of interpolation points such that the ROM satisfies the necessary conditions of
ℋ2-optimality. Upon convergence, the BIRKAmethod produces a ROMwhose Volterra
series interpolates that of the original bilinear system at themirror images of the poles
of the ROM. However, the computational cost of BIRKA for large-scale systems is high
and it is also not possible tomatch higher-order derivatives. Regarding computational
cost of BIRKA, efforts have been done in [12] to reduce the computational cost for some
special systems.

3.4.4 Trajectory piece-wise linear method

The trajectory piece-wise linear method in [49, 50] is proposed to deal with strongly
nonlinear systems. An error bound for this method is proposed in [51], where the
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stability and passivity of the ROM are also discussed. The trajectory piece-wise linear
method first linearizes the nonlinear function f(x(t)) at a number of linearization
points xi, i = 0, 1, 2, . . . , k, then approximates f(x(t)) by the weighted sum of these
linearizations, f(xi)+Ai(x−xi). Finally, the original nonlinear system is approximated
by the following weighted sum of linear systems:

dx(t)
dt
=

s−1
∑
i=0

w̃i(x)f(xi) +
s−1
∑
i=0

w̃i(x)Ai(x − xi) + Bu(t),

y(t) = Cx(t).

Once a projection matrix V is obtained, the ROM can be obtained using a Galerkin
projection. In [49, 50], V is obtained by applying the moment-matching method to
each linearized system.

The linearization points are chosen by selecting a training input and simulating
the original nonlinear system. The procedure is simply as follows: (1) A linearized
model around state xi (initially i = 0) is generated. (2) The original nonlinear system
is simulated while min0≤j≤i ‖x − xi‖ < δ, i. e. while the current state x is close enough
to any of the previous linearization points. (3) A new linearization point xi+1 is taken
as the first state violating ‖x − xi‖ < δ, then return to step (1). Note that in order to
get the linearization points, the original full system has to be simulated. Instead of
simulating the full system, a fast algorithm for computing an approximate trajectory
is also proposed in the paper.

The weak point of this method is that training inputs have to be chosen. In gene-
real, it is unclear how to choose the optimal training inputs so that the trajectory rep-
resents the behavior of the state vector x(t). If the training inputs are chosen far away
from theactual inputs, then the computed trajectory of theunknownvectorwill depart
from the real behavior of the state vector x(t) and the ROMwill lose accuracy. Compu-
tation of the weight functions w̃i in the above linear system is alsomore or less heuris-
tic. Some related papers based on piece-wise linear ideas are [15, 18, 19, 20, 53, 54, 55].

3.5 Extension to parametric nonlinear systems

Some of the above nonlinearMORmethods could be extended to deal with parametric
nonlinear systems, though little relevant work has been done. Often the nonlinear
system also involves parameter variations, i. e.,

E(μ)dx(t, μ)
dt
= f(x(t, μ), μ) + B(μ)u(t),

y(t, μ) = C(μ)x(t, μ),
(3.59)
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where μ ∈ ℝp is the vector of geometrical or physical parameters. When f(x(t, μ), μ)
is mildly nonlinear, many of the above introduced methods can be extended to solv-
ing (3.59).

The nonlinear system in (3.59) can be transformed to a parametric bilinear system
using the same technique as introduced in Section 3.4.2, so the resulting system could
be considered as a linear parametric system, where the input u(t) could be taken as
an extra parameter. The PMOR-MM method can then be applied to obtain the ROM.
Extension of both the quadratic method and the variational analysis approach intro-
duced in Section 3.4.1 and Section 3.4.3 is straightforward. In the following, we discuss
these extensions in more detail.

3.5.1 Quadratic PMOR

The quadratic method in Section 3.4.1 depends on the power series expansion of the
nonlinear function f(x(t)). For parameter dependent f(x(t, μ), μ), the corresponding
power series expansion may be written as

f(x(t, μ), μ) = f(0) + A1(μ)x(t, μ) + A2(μ)(x(t, μ) ⊗ x(t, μ))
+ A3(μ)(x(t, μ) ⊗ x(t, μ) ⊗ x(t, μ)) + ⋅ ⋅ ⋅ (3.60)

The approximated quadratic system is

E(μ)dx(t, μ)
dt
= A1(μ)x(t, μ) + A2(μ)(x(t, μ) ⊗ x(t, μ)) + B̃(μ)ũ(t),

y(t, μ) = C(μ)x(t, μ),
(3.61)

where B̃(μ) = [B(μ), f(0)], ũ(t) = (u(t)T , 1)T . We seek a projection matrix V , which is
used to reduce the linear parametric system

E(μ)dx(t, μ)
dt
= A1(μ)x(t, μ) + B̃(μ)ũ(t),

y(t, μ) = C(μ)x(t, μ).
(3.62)

Once V is computed from the linear system in (3.62), the ROM is then obtained by
applying a Galerkin projection with V to the quadratic system in (3.63), i. e. the ROM
of (3.59) is

VTE(μ)V dz(t, μ)
dt
= VTA1(μ)Vz(t, μ) + V

TA2(μ)V(z(t, μ) ⊗ z(t, μ))

+ VT B̃(μ)ũ(t),
y(t, μ) = C(μ)Vz(t, μ).

(3.63)

Since V is computed from (3.62), the PMOR-MM method can be directly used to
compute V . PMOR-MM is shown to be accurate for MOR of quadratic parametric sys-
tems [6, 26, 57], when the magnitude of the input signal is relatively small. The exten-
sion to two-sided (Petrov-Galerkin) projection is straightforward.
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3.5.2 PMOR after bilinearization

Following the bilinearizationmethod introduced in Section 3.4.2, the parametric non-
linear system in (3.59) can be approximated by a parametric bilinear system as

dx⊗
dt
= A⊗(μ)x⊗ + N⊗(μ)x⊗u(t) + B⊗(μ)u(t),

y(t, μ) = C⊗(μ)x⊗.

By considering u(t) associated with the bilinear term N⊗(μ)x⊗u(t) to be an extra pa-
rameter, say u(t) = μm+1(t), the above system can be viewed as a linear parametric
system,

E⊗(μ)
dx⊗
dt
= A⊗(μ)x⊗ + N⊗(μ)x⊗μm+1(t) + B⊗(μ)u(t),

y(t, μ) = C⊗(μ)x⊗.
(3.64)

Note that the parameter μm+1(t) is time-varying. Strictly speaking, the PMOR-MM
method in Section 3.3 cannot be directly used, since the Laplace transform of (3.64)
cannot be applied as in (3.15). However, it is found that directly applying PMOR-MM to
some systems with time-varying parameters [24, 41] or to the bilinear system [2] may
also produce accurate results.

3.5.3 PMOR based on variational analysis

The variational analysis method in Section 3.4.3 can easily be extended to deal with
parametric nonlinear systems. It can be seen that from the power series expansion of
f(x(t,μ), μ) in (3.60), one can obtain the parametric variational equations

dx1(t, μ)
dt
= A1(μ)x1(t, μ) + B(μ)u(t), (3.65)

dx2(t, μ)
dt
= A1(μ)x2(t, μ) + A2(μ)(x1(t, μ) ⊗ x1(t, μ)), (3.66)

dx3(t, μ)
dt
= A1(μ)x3(t, μ) + A2(μ)(x1(t, μ) ⊗ x2(t, μ) + x2(t, μ) ⊗ x1(t, μ))

+ A3(μ)(x1(t, μ) ⊗ x1(t, μ) ⊗ x1(t, μ)), (3.67)
...

For each linear parametric system in (3.65)–(3.67), the PMOR-MMmethod can be used
to compute the projection matrices V1,V2,V3 corresponding to (3.65)–(3.67), respec-
tively. The final projection matrix V for the parametric nonlinear system is then the
combination of V1,V2,V3, and can be computed following (3.52). The ROM is of a form
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similar to (3.54):

dz(t, μ)
dt
= VTA1(μ)Vz(t, μ) + V

TA2(μ)(Vz(t, μ) ⊗ Vz(t, μ))

+ VTA3(μ)(Vz(t, μ) ⊗ Vz(t, μ) ⊗ Vz(t, μ)) + V
TB(μ)u(t),

y(t, μ) = C(μ)Vz(t, μ).

3.6 Conclusions
This chapter reviews moment-matching methods for MOR of a wide range of sys-
tems, including standard linear time-invariant (LTI) systems, parametric LTI systems,
nonlinear non-parametric and nonlinear parametric systems. Sufficient algorithms
are provided to enable most of the methods to be realizable and the results in the
literature to be reproducible. Some algorithms, e. g., Algorithms 3.1–3.2 and Algo-
rithm 3.8 have not appeared elsewhere. The discussions in some sections, e. g. Sec-
tions 3.3.2, 3.3.3, and 3.5 are also new. It has been demonstrated in numerous publica-
tions that moment-matching methods are powerful MOR tools for many systems and
are useful in many application areas.
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