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Design strong anomalous Hall effect via spin canting in antiferromagnetic nodal line materials
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The interplay between magnetism and the topological electronic structure provides a large freedom for
designing strong anomalous Hall effect (AHE) materials. A nodal line from band inversion is a typical band
structure for generating strong AHE. On the other band, in most collinear antiferromagnets (AFMs), the integral
of the Berry curvatures on the Brillouin zone is forced to zero by the joint T O symmetry, where T and O
are the time reversal and a space group operation, respectively. Even with inverted band structures, such AFM
cannot have an AHE. Therefore, the AFM nodal line band structures constructed by spin degenerated bands do
not receive much attention in AHE materials. In this work, we illustrate that such a band structure provides a
promising starting point for generating strong local and net Berry curvature and, hence, strong intrinsic AHE. In
specific AFM compounds of AMnBi2 (A = Ca and Yb) with an inverted band structure, we observed a strong
AHE induced by a weak spin canting from temperature or doping. The anomalous Hall conductivity continues to
grow with the canting angle owing to the nodal line in the band structure. Since such spin canting can be adjusted
experimentally via doping, it provides another effective strategy to generate and manipulate a strong AHE.
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I. INTRODUCTION

In recent years, materials with a strong anomalous Hall
effect (AHE) [1] have attracted extensive attention in the
fields of materials science and condensed matter physics,
which are connected to fundamental topological band struc-
tures and potential applications in electronic devices. Since
the intrinsic AHE can be understood as the integral of the
Berry curvature in the momentum space [2–4], band struc-
tures with strong Berry curvature are desired to obtain a
strong AHE. Weyl points and nodal lines are two types of
promising band structures, which can generate strong local
Berry curvatures. Using this guiding principle, strong AHE
materials with both large anomalous Hall conductivity (AHC)
and anomalous angles were observed in the ferromagnetic
Weyl semimetal Co3Sn2S2 [5–7], nodal semimetals of layered
ferromagnetic compound Fe3GeTe2 [8,9], and Heusler com-
pound Co2Mn(Ga/Al) [10–15] et al.

A crucial property of the Berry curvature is that it is odd
under a time reversal operator [4]. Hence AHE can exist in
a broken time-reversal system in the linear response region.
Owing to the broken time reversal symmetry T , the ferro-
magnet can host a nonzero AHE. However, in the collinear
antiferromagnets (AFM), despite the broken time reversal
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operation T , there are two types of combined symmetries
T O between the time reversal operation T and a unitary
space group operation O, where O is a fractional translation
or inversion symmetry. Then, the combined symmetry T O
can also change the sign of the Berry curvature, resulting in
the cancellation of the Berry curvature when integrated over
the full Brillouin zone (BZ). Therefore, AHE can only exist
in a few situations without the combined symmetries T O,
such as noncollinear AFM in FeMn, NiS2, cubic Mn3(Ir/Pt)
and hexagonal Mn3(Ge/Sn) [16–22], and collinear AFM
Ti2MnAl and RuO2 [23,24]. On the other hand, AMF with
combined symmetries T O almost did not attract much at-
tention in AHE materials, even with nodal-line-like special
band structures. In addition, based on the effective model,
high-temperature quantum AHE can be induced by canted
antiferromagnetism [25]. Symmetry and effective model anal-
ysis in a two dimensional insulating system suggested the
existence of the quantum anomalous Hall phase [25]. How-
ever, neither a strong or quantized anomalous Hall effect was
observed in realistic materials. In this work, by using first
principles, as we will show below, by spin canting, the nodal-
line-like special band structures in the AFM materials with
combined symmetries may generate strong AHE. In addition,
the intrinsic contribution is mainly dependent on the electric
structures, while the extrinsic effect depends on the details
of scattering. Therefore, we mainly focus on the intrinsic
contribution.

In this work, we propose an effective strategy for generat-
ing strong Berry curvature by spin-canting based on collinear
AFM nodal line band structures with combined symmetries
T O. Figures 1(a)–1(c) show the schematic of AHE in the spin
canted AFM order with inverted band structure. At the canting
angle θ = 0, the bands are doubly degenerate owing to time
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FIG. 1. Schematic of AHE in the spin canted AFM order with
(a)–(c) and without (d) band inversion, where σAHC is the total value
of AHC and Ef are the AHC and Fermi level, respectively. (a) Cant-
ing angle θ = 0. (b) Small canting angle θ . (c) Large canting angle
θ . (d) AHE in the spin canted AFM order without band inversion at
a large canting angle θ .

reversal and inversion symmetries, and hence σAHC is zero, as
shown in Fig. 1(a). When the canting angle θ is small, the
two degenerate bands are split because of the broken time
reversal symmetry, suggesting that σAHC should be nonzero,
as shown in Fig. 1(b). Moreover, because the band inversion
already exists in spin-degenerated bands, a canting can change
the shape of the Berry curvature and AHC. When the canting
angle θ becomes large, the two degenerate bands are split
further and σAHC may become larger, as shown in Fig. 1(c).
However, if the canted AFMs cannot host topological band
structures, their AHEs are zero, as shown in Fig. 1(d). Based
on the above schematic, we perform an ab initio analysis
for AHE as the canting angle changes in the spin canting
C-type AFM materials AMnBi2 (A = Ca and Yb) [26–32],
where the band inversion leads to a topological nodal ring
without considering spin-orbital coupling (SOC). We find that
the AHC continues to grow as the canting angle increases.
Further, doping electrons can reduce the AHC while doping
holes strengthen it.

II. METHOD AND SYMMETRY ANALYSIS

A. Method

Our calculations are performed using density functional
theory (DFT) as implemented in the Vienna ab initio
simulation package (VASP) code [33–35]. The Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional and
the projector-augmented-wave (PAW) approach are utilized.
Throughout the work, the cutoff energy is set to be 550 eV to
expand the wave functions into a plane-wave basis. The Bril-
louin zone is sampled in the k space within the Monkhorst-
Pack scheme [36] and the k mesh used is 10 × 10 × 4 on
the basis of the equilibrium structure. In our calculations, a
C-type AFM order along the c axis, a spin canting, and SOC
are included. We use parameter “I-CONSTRAINED-M” to
constrain the direction of the magnetic moments, and the size
can be obtained by self-consistent calculation.

To calculate the AHC, we project the ab initio DFT
Bloch wave function into highly symmetric atomic-orbital-
like Wannier functions [37] with a diagonal position operator,
as implemented in the Vienna ab initio simulation package
(VASP) code [33–35]. To obtain precise Wannier functions, we

FIG. 2. (a) Crystal structure and C-type AFM order of AMnBi2

with spin canting along the (1,1,0) direction. The Wyckoff positions
and corresponding site symmetry groups are provided. (b) Canting
angle dependence of the AHC σAHC in the CaMnBi2. (c),(d) Band
structures in the kz = 0 plane without and with SOC, where the
red line is a nodal line protected by the glide plane symmetry and
SOC can break the nodal line into opened gaps. The momentum is
measured in units of 2π/a.

include the outermost s and d orbitals for Ca, d orbitals for
element Mn, and p orbitals for element Bi, which guarantees
the full band overlap from ab initio and Wannier functions.

B. Symmetry analysis

The crystal structure of AMnBi2 (A = Ca and Yb) with
a nonsymmorphic space group G = P4/nmm (No. 129)
is shown in Fig. 2(a), where the MnBi1 layers possess
an anti-PbO-type atom arrangement and there is a square
lattice sheet of Bi2 atoms. Mn and Bi2 atoms occupy
the Wyckoff positions 2a {(0, 0, 0), (1/2, 1/2, 0)} and 2b
{(0, 0, 1/2), (1/2, 1/2, 1/2)}, respectively, which have the
same corresponding site symmetry group D2d , whereas A
and Bi1 atoms occupy the same Wyckoff positions 2c
{(1/2, 0, z), (0, 1/2,−z)} with the corresponding site sym-
metry group C4v . In the nonsymmorphic space group G =
P4/nmm, the quotient group G/L is specified by 16 sym-
metry operations, where L is the translation group with
respect to the unit cell. The nonsymmorphic symmetry oper-
ations are C̃2,x = {C2,x|1/2, 1/2, 0}, C̃2,y = {C2,y|1/2, 1/2, 0}
and M̃xy = {Mxy|1/2, 1/2, 0} with respect to the original point
at the Mn site.

Since the AMnBi2 has AFM order at the Mn atoms with
spins along the z axis, we present the following analysis of
magnetic space groups and point groups. Choosing the Mn
site as the origin, the 16 symmetry operations can be specified
equivalently as D2d ⊕ {I|1/2, 1/2, 0}D2d , where I is a space
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inversion and the generators of D2d are C2,z, C2,xy, and Mxz.
First, owing to the spin at the Mn atoms along the z axis, C2,z

cannot alter the direction of spin, while C2,xy and Mxz flip spin,
indicating that C2,xy and Mxz are broken by the AFM order
at the Mn atoms. Combined with time reversal symmetry T ,
we obtain the magnetic point group 4̄2′m′ corresponding to
the point group D2d , whose generators are C2,z, TC2,xy, and
T Mxz. Secondly, since the crystal symmetries in the ĨD2d with
Ĩ = {I|1/2, 1/2, 0} exchange the Mn sublattice and inversion
symmetry I cannot flip spin, C2,xy and Mxz are maintained
while C2,z is broken. This suggests that the magnetic gener-
ators corresponding to ĨD2d are T Ĩ , T ĨC2,z, ĨC2,xy, and ĨMxz.
Finally, based on the above analysis, we find that the magnetic
space group of AMnBi2 with AFM order along the z axis is
P4′/n′m′m with the magnetic point group 4′/m′m′m. Due to
T Ĩ symmetry, the integral of the Berry curvatures on the BZ
is forced to zero.

The existence of spin canting in AMnBi2 leads to an in-
plane ferromagnetic order, and the magnitude of the canting
angle can be experimentally adjusted by doping or tempera-
ture [31,32], where they take into account canting angle 10◦
to explain experimental results. We consider the same canting
direction (1,1,0) as in papers in [31,32], which can break
the T Ĩ symmetry, indicating that AHE can exist. Then, the
corresponding magnetic space group becomes m′m2′, where
the symmetries are TC2,x̄y, M11, T Mxy, and E , which can host
a nonzero AHE.

The AHC tensor can be written as

σαβ = −
∑

n

e2

h̄

∫
BZ

dk
(2π )3

fn(k)�n,αβ (k),

�n,αβ (k) = −2 Im〈∇αun(k)|∇βun(k)〉, (1)

where α, β = x, y, z and n is the band index. fn(k) is the
Fermi-Dirac distribution, |un(k)〉 is the eigenvalue of the
Hamiltonian, and �n,αβ (k) is the Berry curvature. Under
crystal symmetry g, the relationship of the Berry curvature
�n,αβ (k) between k and gk is given by

�n,αβ (gk) = −2 Im

〈
∂un(gk)

∂kα

∣∣∣∣∂un(gk)

∂kβ

〉

= −2
∑
α′β ′

Im

〈
∂ (gk)α′

∂kα

∂un(gk)

∂ (gk)α′

∣∣∣∣∂ (gk)β ′

∂kβ

∂un(gk)

∂ (gk)β ′

〉

=
∑
α′β ′

∂ (gk)α′

∂kα

∂ (gk)β ′

∂kβ

�n,α′β ′ (k),

�n,α′β ′ (k) = −2 Im

〈
∂un(k)

∂kα′

∣∣∣∣∂un(k)

∂kβ ′

〉
. (2)

Here, ∂ (gk)α′
∂kα

∂ (gk)β′
∂kβ

is a constant because gk is a linear

function of k. Hence ∂ (gk)α′
∂kα

∂ (gk)β′
∂kβ

is unchanged when we make
a substitution gk → k. It is clear that the AHC is invariant un-
der the inversion symmetry I , namely �

γ

n,αβ (k) = �
γ

n,αβ (Ik).
Then, we consider the constraint of the magnetic space group
m′m2′ on the AHC, where considering the mirror symme-
try M11 : (kx, ky, kz ) → (−ky,−kx, kz ) is sufficient. Under
the mirror symmetry M11, the transformation of the Berry

curvature �
γ

n,αβ (k) can be given by

	z
xy(k) = −	z

xy(M11k), 	y
xz(k) = −	x

yz(M11k). (3)

Hence, under the constraint of the magnetic space group
m′m2′, the shape of the AHC tensors is⎛

⎝ 0 0 σxz

0 0 −σxz

−σxz σxz 0

⎞
⎠. (4)

III. Ab initio ANALYSIS OF ANOMALOUS TRANSPORTS

Figures 2(c) and 2(d) show the band structures without and
with SOC in the kz = 0 plane, where half of the BZ (−0.5 <

kx < 0.5 and 0 < ky < 0.5) is shown for the convenience
of locating the nodal line. There is a band inversion from
the intercalated Bi2 px/y orbitals, which leads to quasi-two-
dimensional band crossing. When the SOC is ignored, the
crossing bands can be referred to as K and K + Q bands.
Similar to the symmetry analysis of iron superconductors
[38], the K and K + Q bands are the different eigenvalues
of the glide plane symmetry [30], indicating that the nodal
ring from Bi2 px/y band crossing is robust, as shown in
Fig. 2(c). When the on-site SOC is included, the spin-flip term
〈px, σ |Hsoc|py, σ̄ 〉 with the spin index σ can be nonzero [30].
Hence the crossing bands can hybridize each other and the
nodal line can be gapped, as shown in Fig. 2(d). Next, we will
calculate AHC and consider how the nodal line contributes to
AHC.

We calculated the AHC tensor of CaMnBi2 with the Fermi
level lying at the charge neutral points. Figure 2(b) shows the
canting angle dependence of the AHC σAHC with spin cant-
ing along the (1,1,0) direction, where σAHC =

√
σ 2

xz + σ 2
yz =√

2σxz owing to σyz = −σxz. At a canting angle of 8◦, the
AHC σAHC has a small value of 159.50 	−1cm−1, whereas
it has a large value of 721.90 	−1cm−1 at a canting angle of
20◦. As the canting angle increases from 8◦ to 20◦, the AHC
σAHC continues to grow and is not saturated even if the canting
angle reaches 20◦. In addition, between 12◦ and 14◦, the rate
of increase of the AHC is larger. To explain the variation of the
AHC with the canting angle, we consider three (8◦, 13◦, and
18◦) canting angles as examples to calculate band structures
and local momentum distribution of the Berry curvature in the
BZ with spin canted C-type AFM states, where the magnitude
of the magnetic moments in the xy plane (z direction) are
0.53μB (3.81μB), 0.99μB (3.74μB), and 1.31μB (3.63μB),
respectively.

First, Fig. 3(a) shows band structures at a canting angle of
8◦. Near the Fermi level, the valence and conduction bands
are mainly attributed to the p orbitals of the intercalated Bi2

atoms, similar to band structures without a canting angle [32].
The bands are split into spin up and spin down owing to the
ferromagnetic order in the xy plane. The small hole pockets
around the 
 point are dominated by the intercalated Bi2-pz

(blue) orbital, which is remarkably split because of hybridiz-
ing with the Mn d orbitals. The electronic pockets from the
nodal line originate mainly from the intercalated Bi2-px/y

(green) orbitals, which are less sensitive to the ferromagnetic
order in the xy plane and are hardly split. Figure 3(d) shows
the local momentum distribution of the Berry curvature in
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FIG. 3. (a)–(c) Band structures with spin canted C-type AFM states at canting angles of 8◦, 13◦, and 18◦, respectively. The orbital characters
of the bands are represented by different colors. Panels (d)–(f) show the local momentum distribution of the Berry curvature in the BZ σtotal at
canting angles of 8◦, 13◦, and 18◦, respectively. (g)–(i) Energy-dependent AHC σAHC at canting angles of 8◦, 13◦, and 18◦, respectively.

the BZ at 8◦ canting angle. Around the 
 point, the Berry
curvatures are mainly contributed by hole pockets with a small
volume and positive. The Berry curvatures near the nodal line
dominated by the electronic pockets are negative and large
volumes. Since the value of AHC σAHC is 159.50 	−1cm−1,
the integral of them gives a negative net Berry curvature,
namely, a positive AHC. The nodal line has dispersion in the
BZ, which can result in electronic pockets at the Fermi level.
Hence the nodal line is mainly responsible for nonzero AHC.

Second, when the canting angle is increased to 13◦, the
splits of the band structures become larger as the magnitude
of the ferromagnetic order in the xy plane increases. Then,
the electronic pockets from the nodal line have more splits,
which may strengthen AHC. The Mn d-orbital bands can also
attribute a hole pocket near the 
 point, which can result
in a positive Berry curvature, as shown in Figs. 3(b) and

3(e). Hence the AHC corresponding to the canting angle of
13◦ exceeds that of 8◦, as shown in Fig. 2(b). Finally, when
the canting angle is further increased to 18◦, a large hole
pocket near the 
 point is completely contributed by the Mn-
d orbitals owing to the large band splits induced by strong
ferromagnetism. The large hole pocket can cause a large and
negative Berry curvature, indicating that the AHC at a canting
angle of 18◦ increases, as shown in Figs. 3(c) and 3(f).

Here, we summarize the analysis above. We find that the
ferromagnetism in the xy plane increases with the canting
angle, which can cause greater splits in the band structures.
Then, the hole pocket contributed by the Mn d orbitals will
become larger, and can cause large and negative Berry cur-
vature. Moreover, the electronic pockets from the nodal line
mainly contribute to the AHC, indicating that it is responsi-
ble for nonzero AHC. As the ferromagnetism increases, the
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FIG. 4. Band structures and the corresponding energy-dependent
AHC tensor σAHC when the effective on-site Coulomb U are
(a),(c) 2 eV and (b),(d) 4 eV for the Mn d orbitals at a canting angle
of 18◦ in the GGA+U calculation.

electronic pockets split further, which can strengthen the
AHC. Therefore, in the range of canting angles we consider,
the AHC continues to grow as the canting angle increases.

To further explore the effect of hole and electron doping
on the AHC σAHC, Figs. 3(d)–3(f) show the energy-dependent
AHC σAHC calculated from the Berry curvature at canting
angles of 8◦, 13◦, and 18◦. When the Fermi level is at
the charge neutral points, the AHC σAHC are 110, 230, and
470 	−1cm−1, respectively, indicating continuous growth of
the AHC as the canting angle increases. At canting angles of
13◦ and 18◦, a peak in σAHC appears around the Fermi level, as
shown in Figs. 3(e) and 3(f). In addition, in three cases, near
Fermi level doping electrons can reduce AHC, while doping
holes strengthen it.

In order to consider the effect of the correlation effect on
AHC in the canted C-type AFM order, Fig. 4 shows band
structures and AHC when the effective on-site Coulomb U
are 2 eV and 4 eV for the Mn d orbitals at a canting angle of
18◦ in the GGA+U calculation. The gap between the Mn d

orbitals (red) increases as U increases, while the band struc-
tures attributed by intercalated Bi2 p orbitals (green and blue)
remain unchanged, as shown in Figs. 4(a) and 4(b). Compared
to the band structures without U , the d-orbital bands with U
stay away from the Fermi level, and the bands at the Fermi
level are mainly attributed to the Bi2 p orbitals. Figures 4(c)
and 4(d) show the energy-dependent AHC tensor σAHC when
U are 2 eV and 4 eV for the Mn d orbitals at a canting angle
of 18◦, and the AHC tensors σAHC with U are small compared
to those without U , indicating that the correlation effect can
suppress AHC.

Since spin canting exists in YbMnBi2, we calculate the
AHC tensors and band structures of YbMnBi2 at different
canting angles. Similar to CaMnBi2, the ferromagnetism in
the xy plane increases with the canting angle, and the hole
pocket at the 
 point contributed by the Mn d orbitals be-
comes larger, resulting in large and negative Berry curvature.
Therefore, the AHC σAHC in the YbMnBi2 also increases
as the canting angle increases. The energy-dependent AHC
σAHC is also calculated at different canting angles, and dop-
ing electrons is found to suppress AHC while doping holes
strengthens it.

IV. CONCLUSION

In summary, the AHE in the layered ternary material
AMnBi2 (A = Ca and Yb) with spin canted C-type antifer-
romagnetic order can be studied based on first-principles
calculations and symmetry analysis. Considering the canting
along the (1,1,0) direction, the magnetic space group is m′m2′,
and only σxz/yz in the AHC tensors is nonzero because of mir-
ror symmetry. We find that the AHC σAHC grows continuously
with the canting angle increasing, and doping electrons can re-
duce AHC while doping holes strengthens it. The correlation
effect from the Mn d orbitals is considered, and it can suppress
AHC. This work provides an effective design strategy and
corresponding materials for obtaining a strong AHE.
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