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Recently, we introduced Relative Resolution (RelRes) as a hybrid formalism for fluid mixtures
[Chaimovich et al., J. Chem. Phys. 143, 243107 (2015)]. The essence of this approach is that it switches
molecular resolution in terms of relative separation: While nearest neighbors are characterized by a detailed
fine-grained model, other neighbors are characterized by a simplified coarse-grained model. Once the two models
are analytically connected with each other via energy conservation, RelRes can capture the structural and thermal
behavior of various multicomponent and multiphase systems across state space. This current work is a natural
continuation of our original communication. Most importantly, we present the comprehensive mathematics of
RelRes, casting it as a multipole approximation at appropriate distances; the current set of equations technically
applies for any arbitrary system in soft matter (e.g., water). Besides, we continue examining the capability of this
multiscale approach in molecular simulations of various (nonpolar) uniform liquids, specifically examining a 2:1
mapping for dumbbell-like molecules, as well as a 6:1 mapping and a 6:2 mapping for butterflylike molecules.
In turn, we exhaustively show that RelRes can successfully retrieve for these systems their static and dynamic
behavior, given that the fine-grained and coarse-grained potentials are switched at the boundary between the first
and second coordination shells, the location at which orientational correlations vanish. We finally conclude by
discussing how RelRes is the inherent variant of the “cell-multipole” approach for molecular simulations and,

thus, this multiscale framework is especially promising for studying biological systems.

DOI: 10.1103/PhysRevResearch.1.023034

I. INTRODUCTION

Over the past half of a century, invoking molecular sim-
ulations has become one of the most promising routes for
studying soft matter. The conventional protocol is proficient
for describing systems that just comprise small spatial and
short temporal dimensions (i.e., <107®m and <107s, re-
spectively), but it is deficient in describing systems that
also involve large spatial and long temporal dimensions (i.e.,
>1073m and >1073s, respectively); resolving such chal-
lenges is especially important for biological processes, whose
particularities usually span orders of magnitude in scale.
For overcoming this dimensionality issue, much attention
has been given to enhancing the computational efficiency of
molecular simulations, while ensuring that the phenomena of
interest are still correctly retrieved. One route involves the
intelligent manipulation of statistical mechanics, while de-
signing sophisticated algorithms that target a specific aspect of
amolecular system. For example, various successful strategies
have been developed for improving the calculation of free
energies [1-4], reaction coefficients [5-8], etc.
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Our work revolves around another set of algorithms that
has received much attention in recent decades: it is commonly
called the multiscale approach. Rather than focusing on the
calculation of a specific feature of a molecular simulation,
multiscale algorithms aim at improving the computational ef-
ficiency of the entire system, while ideally capturing all of its
static and dynamic behavior. Importantly, the main signature
of all multiscale simulations is that they involve two systems,
one constructed of detailed fine-grained (FG) models with
many degrees of freedom (usually corresponding with atom-
istic coordinates), and one constructed of simplified coarse-
grained (CG) models with few degrees of freedom (usually
corresponding with gravitational centers). While many mul-
tiscale strategies exist that hybridize quantum-classical or
discrete-continuum models, the emphasis of our work is on
algorithms that combine FG and CG molecular models of
Newtonian particles. We continue by discussing the two main
routes for implementing this multiscale approach, which are
the in-serial [9-16] and in-parallel [17-24] formats.

The in-serial multiscale methods generally focus on the FG
and CG systems in successive order: In the usual case, they
begin by postulating a particular set of FG models, and after
performing a sufficient amount of molecular simulations of
this detailed system, they optimize, based on a certain crite-
rion, a respective set of CG models, continuing the remainder
of their investigation only with molecular simulations of this
simplified system. While in practice, there are many variants
of this type of multiscale strategies [25,26], each of these
can be derived via one of two comprehensive frameworks:

Published by the American Physical Society


https://orcid.org/0000-0002-3571-3858
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.1.023034&domain=pdf&date_stamp=2019-09-30
https://doi.org/10.1063/1.4929834
https://doi.org/10.1063/1.4929834
https://doi.org/10.1063/1.4929834
https://doi.org/10.1063/1.4929834
https://doi.org/10.1103/PhysRevResearch.1.023034
https://creativecommons.org/licenses/by/4.0/

CHAIMOVICH, KREMER, AND PETER

PHYSICAL REVIEW RESEARCH 1, 023034 (2019)

one stems in the relative entropy [9], while the other aims
at “force matching” [10,11]. The former multiscale approach
minimizes a functional which measures the logarithmic ratios
between the FG and CG configurational probabilities [9];
it has been shown that the relative entropy underlies the
uniqueness theorem of Henderson [12], which is the basis
for the multiscale strategies that aim at capturing radial dis-
tributions between molecular pairs [13,14,27,28]. The latter
multiscale approach minimizes a functional which measures
the squared differences between the FG and CG instantaneous
forces; it has been notably shown that “force matching” is
equivalent with a generalized version of the Yvon-Born-Green
formalism [15]. Besides, both of these approaches can retrieve
the multibody potential of Kirkwood [16].

While the in-serial multiscale methods have generally
achieved much theoretical success, they still have several
computational challenges. On a fundamental level, it is agreed
upon that no model can optimally transfer across state space
(e.g., across temperature and density), while also concurrently
representing all structural correlations and thermal properties
of a given system [29,30]. This technically means that one
must choose a particular aspect of a molecular system for
optimization (e.g., a configurational probability or an instan-
taneous force), while having no guarantee of replicating any
of its other behavior, and on top of this, this protocol must be
repetitively performed at each state point of interest. Further-
more, on a very practical level, the most significant challenge
with all of these multiscale strategies is the fact that a very
undesirable computational step is always required: This step
involves performing a molecular simulation of a particular FG
model before even using a respective CG model; realize that,
in general, if we can construct a molecular simulation of the
former, we do not really need the latter.

The in-parallel multiscale methods generally contain the
FG and CG information simultaneously in a unified system.
A single molecular simulation contains both FG and CG
models, with vital aspects described by the former, and triv-
ial aspects described by the latter. Diverse strategies have
been developed that follow this hybrid computational path,
and we categorize them here in four main classes. The
most straightforward approach is the “group-based” multi-
scale method: here, essential molecular groups (e.g., solute
molecules) are described via FG interactions, and auxiliary
molecular groups (e.g., solvent molecules) are described via
CG interactions [17,18,31,32]. The next class of strategies
can be thought of as the “time-based” multiscale method: a
given molecular simulation spends some of its time as the FG
system and some of its time as the CG system, with the
results being recorded for the former and discarded for the
latter [19,20]. A powerful variation of this approach actually
exchanges among FG and CG replicas of the molecular sim-
ulation, which in turn enhances the overall efficiency of the
computational procedure [21,22]. In either case, this hybrid
approach is very convenient for overcoming various timescale
barriers in a system of interest.

Perhaps the most successful class of the in-parallel mul-
tiscale methods has been the one which is commonly called
Adaptive Resolution. With much research done on it for
over a decade, this approach is a “one-body distance-based”
multiscale method. In a single molecular simulation, adaptive

molecules switch their resolution in terms of absolute posi-
tion [23,24,33,34]. For example, as molecules move around a
system, they adopt a FG model if near to the origin and a CG
model if far from the origin. In practice, Adaptive Resolution
essentially constructs hybrid molecules that embody both FG
and CG models, and in fact, the main difference between all
variations of Adaptive Resolution has technically been the
mixing rule for the hybrid interaction, which is expressed as
a function of absolute position. In the original publication of
Adaptive Resolution, Praprotnik ef al. introduced the hybrid
interaction as a linear combination of forces, and this has
been the ideal choice for evolving Newtonian trajectories [23];
at the same time, Abrams presented an alternative route that
switches between the two models in a stochastic manner [24].
Conversely, Ensing et al. formulated the hybrid interaction as
a linear combination of energies [33]; in turn, Potestio et al.
showed that such a Hamiltonian version of Adaptive Reso-
lution naturally corresponds with many fundamental aspects
of statistical mechanics [34]. On a practical level, Adaptive
Resolution is especially useful if a given system has a specific
region of special interest (e.g., a protein at the origin, with
everything else being water), and as such, it has been already
applied in several biological scenarios [35,36].

Very recently, we evolved another type of multiscale
method, which we called Relative Resolution (RelRes) [37].
Inspired by Adaptive Resolution, this approach is a “two-body
distance-based” multiscale method: In a single molecular
simulation, hybrid molecules switch their resolution in terms
of relative separation; in particular, molecules that are near
neighbors (i.e., their pairwise distance is small) interact via
FG potentials, and molecules that are far neighbors (i.e., their
pairwise distance is large) interact via CG potentials [37].
Importantly, RelRes is the sole class of multiscale simulations
which describes all molecules, for all times, with both FG
and CG models; the resolution of a given molecule is always
relative to its observer. While other strategies, reminiscent of
RelRes, have been also developed [38,39], our formalism is
unique in that it mathematically finds a natural connection be-
tween the FG and CG potentials. While Ref. [38] numerically
parametrizes between the two models via “force matching,”
Ref. [39] does not make a clear connection between the two
models. Conversely in our case, we developed an analytical
parametrization between the FG and CG models, which is just
based on equating energy functions at an infinite limit [37].
Unlike those other strategies [38,39], we were consequently
able to correctly retrieve across state space, the structural
and thermal behavior of several fluid mixtures [37]. Besides,
we showed that our hybrid approach can be considered as
a generalized extension of established theories for uniform
liquids, which assume a mean field for interactions beyond
a certain distance [40—43].

The current work is the comprehensive continuation of
our original communication [37]. Foremost, we present math-
ematically the generalized framework for RelRes. Specifi-
cally, in the spirit of the familiar multipole expansion for
the Coulombic potential [44,45], we formulate an analogous
Taylor series for an inverse law of an arbitrary power. We
show that the zero-order term, which is sufficient for nonpolar
systems, is identical with the succinct expression we derived
in our initial publication; in consideration of polar systems,
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the current work also presents the first and second terms of the
Taylor series, both of which involve molecular orientation. By
use of this multipole approximation, we introduce RelRes as a
Hamiltonian that switches between the FG and CG models at
an appropriate distance. Building on the computational results
of our original work, we continue examining RelRes with
molecular simulations of nonpolar systems. Importantly, we
exhaustively examine an elementary system of dumbbell-like
molecules, in which we map from two FG sites to one CG
site. We also proceed with a system of butterflylike molecules,
mapping from six to one sites or from six to two sites;
this latter study is particularly relevant for oligomeric and
polymeric scenarios which one may encounter in soft matter.
Through these case studies, we demonstrate that the ideal
switching distance between the FG and CG models is about
the same as the location at which angular correlations between
molecules vanish, and this is roughly equivalent with the
transition between the respective primary and secondary co-
ordination shells. Furthermore, we also show here that RelRes
can correctly capture not just static behavior but also dynamic
behavior. In summary, we reinforce the notion that RelRes
can be a powerful multiscale tool for efficiently studying soft
matter via molecular simulations.

II. THEORETICAL FOUNDATION

Contrary to our original publication [37], we present here
our hybrid formalism in a reversed order. In the previous work,
we started by defining RelRes, and we ended by parametrizing
between the FG and CG potentials. In the current work, we
start by parametrizing between the FG and CG potentials,
and we end by defining RelRes. Note also that the current
framework is the comprehensive one, applying for all molec-
ular systems (the original publication is only applicable for
nonpolar scenarios).

A. Topology and energy of a molecular pair

Most of the ensuing derivation is based on a Taylor series
that solely considers a pair of molecules in vacuum (they are
not necessarily identical). One can think of them in terms of a
time slice in a molecular simulation with no boundaries. These
thorough mathematics then readily define the parametrization
between the FG and CG models, as well as the RelRes poten-
tial. We then conclude the multiscale framework by making
an extension to a collection of molecules, which naturally
represents a realistic liquid that can be studied in a molecular
simulation.

In Fig. 1, we present an arbitrary configuration of a molecu-
lar pair. We label the gravitational centers by the Latin indices
i and j, and we label the atomistic coordinates by the Greek
indices p and v; we assume that the coordinates map on
the centers in the conventional way through their masses,
but, in principle, other linear mappings may be employed
as well. In our notation throughout, we denote n; or n; as
the number of sites on a molecule i or j, respectively. The
relative separation between the centers is 7;;, and the relative
separation between the coordinates is Fuuv;- Furthermore, the
distance from a certain atomistic coordinate to a respective
gravitational center is A, or A, . By Fig. 1, it is clear that

_ A A,
A . — J
" ® Tij TT~e

Gravitational Center 1

Gravitational Center j

Atomistic Coordinates [L; Atomistic Coordinates

FIG. 1. A pair of molecules in vacuum. The gravitational centers
are represented by hollow rings, and the atomistic coordinates are
represented by replete disks. The left side is for molecule i with its p;
sites, and the right side is for molecule j with its v; sites. The various
colors of these mean that they can all be inherently different in terms
of their interaction parameters. The gray shading does not have much
of a physical meaning: it just helps us delineate an effective boundary
of a molecule. The various arrows are distance vectors. 7;; is the
distance between centers i and j, and Fupu; is the distance between
coordinates j; and v;. Within each molecule, A, or AV/. is a vector
from an atomistic coordinate, 1; or v;, to a gravitational center, i or
J, respectively.

these distances are related as

Au,v,v = fij - fu,vvj (1)
and we define in this expression the following variable:
Apw, = Ay, — A, @)

Note that we introduce here all distances in vector form,
and their corresponding scalar magnitudes are realized by
removing their “bars.” We also define dimensionless variables
that will compact all of the ensuing mathematics:

Ay
pt iV
%-p.,vj = /7 (3)
rij
FTR.
cosf,,, = —L 14 )
Wivj A
rl] MiVj

With these definitions, together with some rearrangement, we
derive this useful distance ratio through the dot product of
Eq. (1) with itself:

T,
l;l—f = \/1 — 25#;\),‘ cos 9#—:“)/‘ + Sl%f"f' (5)
ij

The governing energy function here is defined as follows:

uij(fi.i; {Aﬂi}’ {A"j}) = Z“;L,-vj (r/ti"j)‘ ©)

iV

Here, uy,,,; is the intrinsic potential between atomistic coor-
dinates u; and v;, and u;; is the resultant potential between
gravitational centers i and j; the latter is obtained by the
respective summation of the former. Notice that we are allow-
ing for absolute nonuniformity in these systems, considering
the indices on the potentials. Importantly, we assume that the
former is isotropic, being exclusively a function of the scalar
I'uv;- Conversely, we expect that the latter is geometric, being
chiefly a function of the vector 7;;, as well as of the two
sets of intramolecular distances {A ;) and {Avj}. Notice that
Eq. (6) limits our multiscale approach to pairwise interactions
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between unique FG sites located in distinct CG sites; while
an extension for multibody potentials may be possible, we do
not explore such an option in this work. Besides, we ignore
intramolecular energetics during most of the derivation: these
are accounted for once we present the entire Hamiltonian of
RelRes.

One of the focal assumptions in our analysis is that the
potential can be cast as an inverse law of the pairwise distance
with the exponent m:

Cupv;
Uy, (1) = =21 )
r

In most scenarios, like with the Coulombic potential (m = 1),
as well as with the Lennard-Jones (LJ) potential (m = 12 and
6), this inverse function is a natural choice. The proportion-
ality coefficient c,,,; corresponds with the unique parameters
involved in the interaction between sites ; and v;, and it is
usually known empirically for use in molecular simulations.
We will later make an important assumption for ¢, (i.e.,
we will express it as a product of two separate parameters).
Besides, our entire derivation in this work can be readily
generalized for the case in which the potential is actually a
linear combination of several basis functions as the one given
in Eq. (7); we briefly discuss such an extension at a much later
stage of our mathematics.

The goal, in the remainder of the derivation, is to refor-
mulate u;; of Eq. (6) in terms of r;;, together with variations
of E,Wj and cos0,,,,, as defined by Eqgs. (3) and (4). Such
a reformulation holds a promise for the efficient calculation
of the energy of the pair in Fig. 1; obviously, computation
of a single distance 7;; is preferable over the computation of
min; distances ry,,;, which the summation of Eq. (6) requires.
Besides, such a reformulation may involve approximations
and, thus, we must make valid assumptions for éle and
cos 0, so that we maintain a fairly correct energy for this
pair.

We now substitute Eq. (7) in Eq. (6), which yields the
following:

£ Cuv
uU(fU;{San},{COSQHNV}) — _%LL. @)

r
WiV iV

For clarity throughout the ensuing analysis, {éﬂ,vj} and
{cos by} are frequently omitted yet implied in the function-
alities involved in Eq. (8); the same also goes for the “bar” on
7ij. Consider now the radial distance which appears here to-
gether with the power of m; we correspondingly exponentiate
Eq. (5), and we present the ensuing reciprocal:

(L) = (1 — 28,0, €08 O, + giivj)—m/Z_ ®

rﬂx”/’

We can use this expression to substitute the computationally
inexpensive r;; for the computationally expensive ry,, in
Eq. (8). We consequently attain the following expression:

1 —m
m Z [Cﬂiv.f(l — 280, €08 O, + Eiw_;) /2]'

i oy

uij(rij) =

(10)

B. Definition of the molecular pair in the infinite limit

Since the current consideration is in vacuum, we usually
expect that r;; > A, (ie., &, < 1); in other words, the
separation between the molecules essentially approaches in-
finity. As such, we now begin a derivation for an energy
function which we will name the molecular pair in the infinite
limit (MPIL). Let us thus invoke the familiar multipole series:

(1 —2&cos@ +&2)™/?2 = Z[g“Pm,N(cose)]. (11)
N

The function P, y is defined by the appropriate derivative in
terms of the Hebrew index N:

Prs(c0s8) = [ (1 = 2% cos + £ (12)
mxn(cosf) = N1| 268 cos g:o.
Clearly, PP, x only depends on cos, with the functionality
of & appearing as a power in Eq. (11). Notice also that the
exponent m of the inverse law is just a parameter in [P, . Be-
sides, if m = 1 (i.e., the Coulombic potential), Eq. (12) simply
becomes the common definition of the Legendre polynomials.
Substituting Eq. (11) in Eq. (10) yields the following power
series for our energy function:

1
uij(rij) = — Z
Tij R
and it is particularly convenient to cast the above as

1
wij(rij) = — D ciin({8un b {cosbu}) (14
N

ij

Z[Cﬂiv.fglfivj]?mv&(cos8/41"/')] . (13)

Hivj

in which we obviously defined the following:

Cij,“({gﬂivj}’ { cos 9#[“/ }) = Z [C/'L"UI'E:ZV_/P'”’N(COS 6#:‘"./)]'

MiVj
(15)

One may think of ¢;;x as an effective coefficient for a given
configuration of Fig. 1; {§,,,,} and {cos6,,,,} are omitted yet
implied in the functionality of ¢;; throughout much of the
derivation. In any case, these expressions can be quite useful
for computational purposes: By summing over all sites u; and
v;, one can separately calculate the energetic coefficient of
any N term by Eq. (15), and by including as many & terms in
Eq. (14) as desired, one can have a valid approximation for
the overall interaction between the molecular pair of Fig. 1.
Of particular importance is the leading (nonvanishing) 8 term:
This is the energy function which we alluded to above, the one
we call MPIL, and it is in fact one of the focal aspects of our
framework.

1. A few terms in the Taylor series

By not even performing any differentiation, the 8 = 0 term
is readily determined by Eq. (12) as the following:

IEDm.O =1 (16)

Conveniently, this term is always unity, regardless of the value
of m. Plugging this in Eq. (15), we attain this expression:

Cij0 = ) Cup- (17)

KiVj
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Notice here that this is not dependent at all on the config-
uration of the molecular pair: this means c;;o is a constant
that can be calculated before any molecular simulation is
performed. If this is nonzero, we can approximate the energy
in Eq. (14) by the following:
u;j(rij) ~ %,
ij

v Cuiv
uj(rij) ~ # (18)
ij
In the latter part of this expression, we obviously invoked
Eq. (17). Notice the similarity between Egs. (8) and (18): we
start with an m inverse law in the former, and we end with
an m inverse law in the latter. In Eq. (8), we sum over the
many distances between the atomistic coordinates, with their
intrinsic interaction coefficients, and in Eq. (18), we take in
the single distance between the gravitational centers, with its
resultant interaction coefficient. This is in effect the monopole
term; once we introduce another assumption, we show that
this is specifically equivalent with the monopole-monopole
interaction.

The above is essentially the sole term that we derived in our
previous work. We simply attained it by vanishing all bond
lengths (i.e., Ay, = 0) in Fig. 1; this is basically equivalent
to setting all §,,,, = 0 in Eq. (10), which in turn eliminates
all cos6,,,, from the energy function. The only discrepancy
of Eq. (18) with the corresponding one in our original work
is that in this one, we have the assumption of the inverse
power for the interaction. We can temporarily remove this
assumption by invoking Eq. (7) for Eq. (18), and we in turn
get the same expression for the MPIL as we had in the original
publication [37]:

i (ri)) =Yty (7). (19)

iV

Realize that this approximation is a special case of the MPIL,;
as mentioned before, the formal definition of the MPIL is the
leading (nonvanishing) X term in Eq. (13).

Importantly in our original work, we showed that if this
expression is implemented with RelRes, it can successfully
describe nonpolar liquids that are based on the LJ poten-
tial. Theoretically, this approximation shall also work with
the Coulombic potential for ionic molecules that have a net
charge. In fact for RelRes, we expect that Eq. (18) shall be
adequate for any m, given that this monopole term does not
vanish. Nevertheless, once the above summation for a certain
molecular pair contains both positive and negative values for
Cupv;» there may be some issues; specifically, if all ¢, in
the summation of Eq. (17) cancel each other, ¢;j is strictly
zero. The most obvious such case is the zwitterionic scenario,
in which the molecules have Coulombic charges, yet they
are overall neutral (e.g., water). Of course, the interaction
between such polar pairs must be finite and, consequently,
one must go beyond the monopole term of Eq. (18) in order
to describe the corresponding energy, at least approximately.
This is in fact the purpose of the ensuing mathematics. Note
that the equations below may be also useful as correction
terms for the interaction between the molecular pair, even if
their monopole term is nonzero.

Obviously, all the terms of the Taylor series can be eval-
uated by successive differentiation as presented in Eq. (12).
Here is the first-order term:

Pon,1(cos 0) = [m(cos 6 — &)(1 — 2& cos 6 + &%) "],
P,,.1(cos@)=mcos 6. (20)
Consequently, the 8 = 1 term of Eq. (15) is the following:

cija ({um, }- { €080, 1) = m Y [epmum, €080, ] 21)

Mivj

Here is the second-order term:
1
P,,2(cosf) = E[m(m +2)(cosh —&)?

x (1 —2£ cos 6 + &%)~/
—m(l —2& cos O + £2)"mHD/2] .

P, 2(cos ) = %[(m +2)cos?0 — 1]. (22)

Consequently, the 8 = 2 term of Eq. (15) is the following:
m

Cijo+ ({Eﬂiv.f }’ {COS Opuiv; }) = D Z [Cﬂivfgii‘)j cos® 9“!’”./‘]’
Hivj
’ 23)

o ({8} {080 }) = 5 D lewnl ]l @4

MHiVj
For compactness, we introduced here this definition:
cijo({&um, }o { €080, }) = (m+ 2)cijor — cija-. (25)

Notice that if m = 1 (e.g., the Coulombic scenario), P, ; and
P,,» become the familiar first and second Legendre polyno-
mials, respectively.

Of course, these c;;n can be readily used for evaluating
the energy function of Eq. (14): they may serve as correction
terms for Eq. (18), and if ¢;; | or ¢;j is actually the leading
term of this multipole expansion, it can even become the
sole approximation for the energy (i.e., the MPIL). Notice
that unlike c;; o, these current expressions are functions of
cos 0y,.;, as well as of &, Thus, while Eq. (18) is isotropic,
involving just the scalar r;; in its functionality, the energy
which corresponds with other ¢;;y is geometric, involving
also the vector A v in its functionality. Therefore, for & ## 0,
the coefficient must be computed at each step of a molec-
ular simulation. As such, going beyond the monopole term
requires significant computational cost, and it is only recom-
mended if it is necessary (i.e., for polar systems in which these
are the leading terms in the Taylor series).

2. An assumption for the proportionality coefficient

Focus now on the proportionality coefficient c,,,,; of the in-
verse law of Eq. (7). Usually, such a parameter is expressed in
terms of some mixing rules between two separate coefficients
¢y, and ¢, of sites u; and vj, respectively. For example with
the Coulombic potential, ¢, is fundamentally the product of
partial charges; an analogous product is also often used for the
LJ potential. For the remainder of our work, we assume that
the following equation holds:

Cpv; = €y, G- (26)
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For completeness, this means that Eq. (8), becomes the
following:

£ €. Cy.
uij (Fij {fu,vj}, {Cos@mv‘f}) = Z :r;l i @7
wivj  Hivj

It turns out that the assumption of Eq. (26) substantially
facilitates the computational algorithm for RelRes, especially
since a variant of ¢;;y, for any R, becomes a constant during
a molecular simulation.

We begin with the zero-order term. Substituting Eq. (26) in
Eq. (17), we attain the following equation:

Cij,0 = €i,0€j0 (28)

in which we have introduced the definition of the monopole
¢i,0 OF ¢; 0, for each molecule i or j, respectively:

ci,O = Z ch,',
Hi

o=t (29)
Vj

If both of these monopoles are nonzero, the MPIL is the
following according to Eq. (14):

u;j(rij) ~ #,
ij
. b G,
uij(rij) ~ (ZM‘ M)IEZ s ) (30)

L)
Analogous with our comparison between Egs. (8) and (18)
above, notice the similarity between Egs. (27) and (30):
performing the approximation, we start with several products
of inverse coefficients Cu:Cv;» and we end with one product of
inverse coefficients ¢; o¢; 0.

Note now that the product assumption of Eq. (26) yields
some convenience for the monopole energy since Eq. (30)
is slightly more computationally efficient than Eq. (18): the
former involves two summations over #; and n; parameters,
while the latter involves one summation over n;n; parameters.
Regardless, all of these summations can be performed before
a molecular simulation and, thus, they have negligible com-
putational cost. The computational superiority introduced via
Eq. (26) becomes very apparent once we move to the first and
second terms of the multipole expansion.

We thus apply now the assumption of Eq. (26) for eval-
uating any c¢;;x [i.e., Eq. (15)], after the appropriate differ-
entiation of Eq. (12). As an important part of the ensuing
mathematics, we introduce the familiar definitions for the
dipoles p; | and p;1 of molecules i and j, respectively:

pin = Z (60 A],

Mi

pj1= Z[CU/AV/]' (€29

vj

Moreover, we introduce components of the familiar def-
initions for the quadrupoles {{;,.q;0} and {q;5.q;0} of

molecules i and j, respectively:

din = Z [cu,Au,-Ani]v

i
TR SO 62
dio = Z [%Ai;]’
i
qj,O = Z [Cvj A%}] (33)

Vi

Casting a linear combination of these, (m + 2)q; , — q,»,of and
(m+2)q;, — q;0Z, we retrieve the conventional definitions
of the quadrupoles for molecules i and j, respectively; this is
most apparent for m = 1 (e.g, the Coulombic scenario). As
in the usual case, we employ here generalized tensor algebra
(e.g., 7 is the identity tensor); the amount of “bars” on these
parameters, together with their last index for extra emphasis,
corresponds with the order of the tensor. Importantly, remem-
ber that the convenience of these parameters is that they can
be calculated by just considering the topology of a single
molecule on its own, rather than the entire configuration of the
molecular pair of Fig. 1. For compactness, we introduce here
a notation for the set of dipoles (i.e., {p;j,1} = {Pi.1, Pj1}), as
well as for the set of quadrupoles (i.e., {d;;»} = {d; 2. d;,} and
{00 = {40, 95.0})-

By invoking these parameters, we specifically show in
Appendix A how the following expressions for c;;x can be
derived. Here is the first-order term:

cij1({pij1}) = ﬂ[Ci,o(fij “Pi) =i Pl (B4)

Tij
Here is the second-order term:
_ - m
cijor({bija}h 02D = —
ri;

[—(?ij SRV GTRRIRY)

1 A = 1 A =
+ Eti,O(Vij 2qj02) + Ecj,o(rij : ql‘,z)},
(35)
cijo-({Pija} {aij01)

m _ _ 1 1
=7 —(Pia - bj1) + 5Ci0dj0 T 5 €090 | (36)
ij

Of course, keep in mind the linear combination of Eq. (25),
which we express as follows here:

cijoUPiji}: ;20 ijo)) = (m 4+ 2)cijor —cijo-. (37)

Note that the “hats” above r denote a distance tensor of a unity
magnitude; their amount is equivalent with the order of the
tensor. Moreover, we omit yet imply here the dependence of
both ¢;; x on the monopoles, as well as on r;;. Besides, notice
that for m = 1, we retrieve the familiar Coulombic case,
considering our definitions of the quadrupoles in Egs. (32)
and (33).

Importantly in our general formalism, these coefficients
can be employed in Eq. (14) for evaluating the interaction
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between the molecular pair of Fig. 1: these can be used as
correction terms for Eq. (30), and for cases in which the
zero-order term vanishes, ¢;;; or ¢;;» may even serve as the
MPIL. Let us now consider the computational implementa-
tion of Egs. (34) and (37), especially in relation with our
corresponding discussion of Egs. (21) and (25), respectively
[i.e., the discussion before we assumed the product rule of
Eq. (26)]. Above all, Egs. (34) and (37) are dependent on
parameters of gravitational centers i and j (i.e., p;j 1, as well
as q;;, and q;; ), while Egs. (21) and (25) are dependent on
parameters of atomistic coordinates w; and v; (i.e., Ew,j, as
well as cos 0,,,,,). At the most basic level, the former involves
two summations over n; and n; parameters, while the latter
involves one summation over n;n; parameters. Regardless,
the chief computational facilitation generated by Eq. (26)
is the following: p;;, together with g; 2 and q;; o, can be
evaluated analytically irrespective of 7;;, while &, together
with cos Gufw must be calculated in terms of 7;;, at each step
of a molecular simulation. Note though that Eqs. (34) and (37)
still involve vectors, which is unlike the monopole-monopole
term of Eq. (28) that solely depends on scalars. We thus
generally recommend invoking c;; 1 or ¢;;» only if necessary,
and this is usually the case with polar systems (e.g., aqueous
solutions).

C. Definition of Relative Resolution

Up until now, we have been essentially looking only at the
infinite limit associated with Fig. 1. How do we deal with an
arbitrary distance between the molecular pair? RelRes in fact
resolves this issue, yet we must begin by clearly defining the
FG and CG potentials, which mostly amounts to introducing
the appropriate labels on the potentials we have been working
with above.

1. Hybrid potential in terms of its two components

Considering Fig. 1, the FG potential 1’ M e only a function
of r,,,v,, is the fundamental interaction between atomistic coor-
dinates /1; and v;, and the CG potential u{;%, notably a function
of r;;, is the apparent interaction between gravitational centers
i and j; the latter is an approximation of the appropriate
summation of the former:

0 B} 1A,

)~ Y WS (rw)- (38)

iV

Compare this expression with Eq. (6); importantly, the right
sides but not the left sides are identical between the two
expressions (i.e., ulFf’ = Uy, but u ;é u;;), and this is in
fact the reason for the approx1mat10n in Eq. (38). With an
inverse assumption analogous with Eq. (7), we can clearly
resolve the approximation here via the multipole expansion
we have performed above [i.e., between Eqs. (10) and (13)].
The following then ensues:

Cuv;
ulFL(,BVJ (rﬂfw) = r/lr;,vj ’ (39)
i.x¢ (Epuv;» €08 00,
0t 6 . [costy ) = 0 €080m) g

1

Remember of course the relation between the coefficients
which appear here as given by Eq. (15), and the Hebrew index

(a)
FG Model: T
Short-Range . ® f
CG Model: r>rg
Long-Range o
Reference System (b) RelRes System
0 . o 0 ., ® .
* .. - ® QQ
. ~ .
" L . 0
L X ™ . o ey
‘ A Multipole Approximation ’
at Appropriate Distances

FIG. 2. A schematic representation of our multiscale approach
for nonpolar systems. The red and blue colors mean that we can for-
mally have two different molecules. For purposes of generality, the
molecules here are intentionally depicted with an arbitrary number
of sites (i.e., they do not correspond with any of the molecules we
examine in our work). The top panel (a) characterizes the geometric
FG and isotropic CG models on its left, and on its right, it illustrates
that the FG potential applies between atomistic coordinates, if their
relative separation is small, and the CG potential applies between
gravitational centers, if their relative separation is large. The bottom
panel (b) basically shows two molecular simulations, for the refer-
ence system on the left and for the RelRes system on the right. The
arrow represents the MPIL parametrization, which makes the two
systems approximately equal to each other.

R* is the leading (nonvanishing) term in the Taylor series of
Eq. (12); this in fact corresponds with the MPIL. Of course,
if we invoke the product assumption of Eq. (26), we can
cast these potentials in terms of the ensuing multipoles [e.g.,
Eq. (28)].

We now cast the interaction between the molecular pair
of Fig. 1 as a single function by using Eqs. (39) and (40).
For this purpose, we must again remember the MPIL that we
thoroughly discussed above. If the molecules of Fig. 1 are near
to each other, the approximation of MPIL is unreasonable,
and the FG potential of Eq. (39) is the relevant one. If the
molecules of Fig. 1 are far from each other, the approximation
of MPIL is legitimate, and the CG potential of Eq. (40) is the
relevant one. We illustrate these ideas for nonpolar molecules
in the top panel of Fig. 2. This is in fact the main idea of
RelRes, and we define its pair potential as follows:

Z ﬁll-:lﬁ), (rl"l"/) + ule(rlj) (41)

iV

ﬁ(’"u;v/; rij) =
In essence, RelRes is a linear combination of ﬁEGU! and ﬁ[CjG,
which are slight modifications of the FG and CG potentials
of Egs. (39) and (40), respectively; we thoroughly discuss
these functions below. Besides, note that we emphasize in
Eq. (41) that the RelRes potential is a function of various
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pairwise distances (i.., between atomistic coordinates 7y,
and between gravitational centers r;;); in such a way, RelRes
maintains all degrees of freedom.

The modifications of the FG and CG potentials must
ensure that for small relative separations, the derivatives of

7S and uFG are identical between each other, while the
~CG

Livj

derivative of is zero, and for large relative separations, the

derivatives of u G and u G are identical between each other,

while the derlvatlve of i, ﬂ ), 1s zero. Their exact functionalities
are not unique, and spec1ﬁca11y in our current formulation,
we choose the piecewise functions of Ref. [42], casting them

as follows here:

(r) — uf (rj) if r = (0, rs],
~FG — ] v 42
uﬂiV/(r) { 0 if r = [ry, 00), )
uS(ry) ifr=1(0,r],
7i€C = Y 43
i (r) {uich(r) if r = [ry, 00). @

Reminiscent of Ref. [43], the switching distance ry is a
tuning parameter in our framework that represents the
relative separation at which the MPIL switches from being
unreasonable to being legitimate. Note that the vertical
shifts uFG (rs) and u G(r,) merely ensure that the potentials
are contlnuous throughout r; via the linear combination of
RelRes, these vertical shifts approximately cancel each other,
with the extent of the cancellation depending on how many
nonzero terms the summation of Eq. (41) includes.

If one is interested in Newtonian trajectories, the step
functionality of Egs. (42) and (43) must be modified, so
that their respective forces do not have a singularity at r;.
Consider the interval [ry — éry, rg + 8rg], with dry being a
parameter for smoothing the switching between uFG and

ich [23,24,33,34,38,39]. We consequently reformulate the
RelRes potential by these:

u,u,(") X(Vs) if r =10, r, — &r],
~iﬁ”( r) =1 fro (1) if r=[r, — 8r,, 1 + 81,],
0 if r = [ry + dry, 00),
(44)
uGO(ry) if r =10, r, — 8ryl,
~cG(r) ng(r) if r=_[r,—38r,ry+8r], (45)

MSG(V) if r = [ry + 8ry, 00).

FG

HiVj
ensure the continuity of ﬁﬁGv and @S 7, together with their
corresponding derivatives, at the two boundaries r, £ 8r,. This

means for the lower boundary

Here, and fSG can be any functions that respectively

FG FG
S, (rs = 8r) = ,”( — 8ry) — uy, (1),
O f (rs = 8r) = By, (s — 872), (46)
[58(re = 8r) = u P (ry),
[0y = 8r) =0 (47)

and this means for the higher boundary

f:glj(rs'i_ars) =07

o, (s +81) = 0, (48)
fCG(rs +8r) = uCG(rX + 67y),
Or [0 (ry + 8ry) = 0, C (s + 1) (49)

with 9, being the notation for the distance derivative. In this
work, we specifically invoke a four-term polynomial of the
inverse distance:
Fry= Yo Vi Voo Vi
i

Fm2 Fms3 Fma :

(50)

The exponents m must be distinct integers, and the values
of the respective coefficients yy, are determined via the
appropriate set of four linear equations which satisfy the
boundary conditions: For the FG coefficients, these are given
by Egs. (46) and (48), and for the CG coefficients, these are
given by Egs. (47) and (49). Realize that y,, between fF G and

Hivj
CG are strictly different, while m may be actually the same

between the two.

At this point, we remind that a pair potential is usually
defined as a linear combination of several basis functions.
Because of the linearity of our entire approach [the MPIL
equations (34) and (37), the RelRes equations (41) and (50),
etc.], one can still use all of the above expressions in a
straightforward manner. Specifically here, the set of Eqgs. (42)
and (43) or the set of Egs. (44) and (45) can be used separately
on each function of the pair potential.

2. Lennard-Jones potential as an example

As mentioned earlier, the inverse potential is very com-
monly used in molecular simulations, and in this work, we
focus on the LJ function. Considering sites u; and v;, we
define the corresponding FG potential as the following:

12 6
o o
FG _ Hivj T HiYj
Uy, (1) = 46vaf|: 12 :|

(51

76

with oy, and €,,,,; being the length and energy parameters,
respectlvely, of the appropriate mixed interaction; for clarity,
we technically omit here their FG indices (i.e., O, = lef,-Gv,-
and €,,,, = eﬁg/). In the context of Eq. (7), the L] potential
is just a difference between two inverse functions with m =
12 and 6, and for each, the proportionality coefficient is the

following:

Cu, = A€0,00, . (52)

We can plug this expression in Eq. (17), and we attain this
expression:

_ m
Cij,0 = 4 2 :Gﬂvivjo—;t,-vj'

iV

(33)

Because all parameters here have the same sign, no terms
cancel in this summation and, thus, this nonzero coefficient
becomes the basis for the MPIL in the LJ case. Note now
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Eq. (38). Considering sites i and j, we assume the correspond-
ing CG potential as the following:

ol2  of

uich(r) = 4e,~j|:r% - r—(j (54)
with o0;; and €;; being the length and energy parameters,
respectively, of the appropriate mixed interaction; for clarity,
we essentially omit here their CG indices (i.e., 0;; = GSG and
€j = ESG). If we perform some mathematical manipulations,
while keeping Eq. (18) in mind, the following relationships
between the FG and CG parameters hold:

1/6 1/6

— 12 6
0ij = E €1 O, / E v, Oy, , (55)
Hivj MiVj
2
_ 6 12
€j = E €O, / E €Oy, |- (56)
HiVj HiVj

These are very convenient expressions: they mean that the
LJ parameters can be determined by MPIL irrespective of a
molecular simulation.

As mentioned earlier, one often assumes a product rule for
mixing the proportionality coefficients of inverse functions.
For the LJ parameters of a FG potential, if two identical sites
w; have {o,,, €,,}, and two identical sites v; have {o‘,/., evj},
the product rule means the following:

Uuiv/ = Uuiav_; ’ (57)

€6, (58)

6,“,,‘1)/’ =

In the context of Eq. (26), we have the following:

p— m
€y =2 €1,0,

¢, =2 [€v,00". (59)

In turn, we get the following LJ monopoles by Eq. (29):

Cio= ZZ [€n.000,
Mi

co=2)_ Je,ol. (60)
vj

Again, there is no cancellation in the summations here, mean-
ing that these nonzero coefficients can be used for purposes of
MPIL in the LJ case. Consequently, we may assume a product
rule here as well. For the LJ parameters of a CG potential, if
two identical sites i have {07, €;}, and two identical sites j have
{0}, €;}, the product rule means the following:

Uij = A/O’iO'j, (61)

€ij = \J€i€;. (62)

By substituting these in Egs. (55) and (56), while performing
some mathematical manipulations, we get the following rela-
tionships between the FG and CG parameters:

1/3 1/3
(z ) / (Z/) ,
Mi

g; =
i
1/3 1/3
o= (Sver) [(Tvemt) - e
Vj Vj
4 2
o= (Syert) /(2 mn)
Hi i
4 2
€ = Z /evjal?/ / Z /evj(rl}/2 . (64)
Vj Vj

Comparing these two expressions with Egs. (55) and (56),
these are even better for use: not only that the LJ parameters
can be determined by MPIL with no molecular simulation, but
they can be just determined for each molecule separately.

An immense simplification can be further attained if all
sites are identical, with their sole parameters being o and €.
This translates to the following for the FG interaction:

Ouw, =0, (65)
€, = €. (66)

We can then substitute these expressions in Egs. (55) and (56).
This translates to the following for the CG interaction:

Ojj =0, (67)
€jj = nin;e. (68)

Note that while the sites must be identical, the molecules
themselves are not necessarily the same: the number of sites
on each molecule, as well as their internal location, may be
different. Besides, realize that these relations apply even if a
product rule does not hold.

For the scenario in which all LJ interactions are identical,
we present the corresponding hybrid potential in Fig. 3. The
top and bottom panels pertain to the FG and CG potentials,
respectively. Note that the latter is scaled by the product of the
number of sites between the two molecules. The gray curve is
the true LJ potential, and it is the same between both panels.
The various colors represent different switching distances in
RelRes.

3. Multiscale framework for an arbitrary liquid

The hybrid potential above, Eq. (41), is in fact the pairwise
version of RelRes, which only applies for a molecular pair
in vacuum. Suppose now that we have a system with many
molecules (e.g., a liquid). Let us make the conventional as-
sumption that its governing energy function is defined as a
summation of Eq. (6) over all of its distinct molecular pairs;
as in the usual case, effective interactions, that account for
multibody effects, rather than vacuum interactions, shall be
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iy €
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8% fnin;e

ij

FIG. 3. The LJ potential in the context of RelRes. The top panel
(a) is for the modified FG interaction between sites that are near
to each other, and the bottom panel (b) is for the modified CG
interaction between sites that are far from each other. These functions
are specifically for the case in which all the sites are identical,
with parameters o and €. Notice that the latter is scaled by the
product of the number of sites on each molecule n;n;. The various
colors correspond with a different switching distance in RelRes (i.e.,
turquoise for ry = 1.10, blue for r, = 1.30, violet for r;, = 1.50, red
for ry, = 1.70, magenta for r; = 1.90, etc.); each arrow indicates an
increasing switching distance. In both panels, the gray curve is for
the true LJ potential; in (a), one can think of it as a hybrid potential
with r; — oo, and in (b), one can think of it as a hybrid potential
with ;, — 0. Note the schematic in each panel, with each one of
them representing a pair of molecules separated by r &~ 1.5¢. In the
top panel, the magenta color indicates that the RelRes of the pair has
ry = 1.90, meaning that they interact via the FG interaction, and in
the bottom panel, the turquoise color indicates that the RelRes of the
pair has r; = 1.10, meaning that they interact via the CG interaction.
Note that we use here the smooth version of RelRes [i.e., Eqs. (44)
and (45)].

used in such an expression. Because of the pairwise nature
of the energy function, the hybrid formulation above can be
applied on each molecular pair separately and, in turn, the
definition for the complete version of RelRes ensues:

1 .
EZ”(Vuiv,f?’ij)a

i#j

=]
I

- 1
v 5 Z Z ﬁif}v, (”;L,-v‘,-) + ﬁiCjG(rij) . (69)

i#j | mivj

We omit the functionality of this complete version of RelRes
throughout our work for clarity. Besides, realize that while
a generalized variant of RelRes, that formally incorporates
multibody terms, may be possible, we do not explore such
a possibility in this work.

This Hamiltonian introduces a notable conceptual com-
plexity, as compared with Eq. (41) of the pairwise case. For

a molecular pair in vacuum, the entire system is basically
either a pure FG or CG scenario. If the molecules are near
to each other, they are both described by the FG model,
and if the molecules are far from each other, they are both
described by the CG model (of course, there are subtleties
for moderate relative separations). Nevertheless, in the case
of a molecular simulation of a realistic liquid, the situation
is completely different, with the system being neither purely
FG nor purely CG, but instead having a hybrid nature. Each
molecule simultaneously embodies both models, and a given
molecule interacts with its near neighbors via the FG potential
and with its far neighbors via the CG potential; the resolution
of a given molecule is always relative to its observer. This
is in fact the aspect which makes RelRes computationally
advantageous: the few near neighbors must be evaluated via
the detailed FG potential, but the many far neighbors can be
evaluated via the simplified CG potential.

Let us also discuss RelRes in terms of its r; parameter,
labeling such a dependence as U,. The two limits of 7, are of
particular importance: Uy, is identical with the corresponding
energy function of the pure FG system, and U, is identi-
cal with the corresponding energy function of the pure CG
system. We specifically name the system with r; — oo (i.e.,
the one with just FG and no CG interactions) the reference
system. Adequately describing its (configurational) Hamilto-
nian, as a function of the relevant degrees of freedom, is the
fundamental aim of RelRes

0, ~ Us (70)

and this can be achieved with the appropriate choice of the
switching distance, together with the MPIL. This can in turn
enable RelRes to capture the static and dynamic behavior of
the reference system throughout state space. We depict this
multiscale goal in the bottom panel of Fig. 2.

For completeness, we also now define the entire system
Hamiltonian:

E=K+U, +U. 71)

K is the kinetic energy, while Uy, accounts for all intramolec-
ular energetics. Note that these do not have a tilde above
them. This is because RelRes maintains all degrees of freedom
and, in turn, its K, as well as its Uy, is strictly unaltered
with the corresponding functions of the reference system (e.g.,
Krs = oo)

III. COMPUTATIONAL VALIDATION

We now turn our attention to testing the efficacy of this
multiscale framework in describing reference systems. We do
this via molecular simulations of idealized systems (i.e., liq-
uids composed of dumbbell-like or butterflylike molecules),
complementing in turn the initial examination of our previous
publication [37]. Our original work was a proof of concept
that RelRes is very successful in describing structural corre-
lations and thermal properties of (nonpolar) multicomponent
and multiphase systems across state space (e.g., temperature
and density); by invoking a tuning parameter in the Hamil-
tonian, we importantly showed that MPIL is the ideal choice
for the RelRes potential. Consequently, for simplicity in this
current work, we only examine uniform liquids, taking MPIL
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for granted in all of our systems. Indeed, the main focus here
is in systematically varying the distance at which the FG and
CG potentials are switched between each other. Besides, we
also complement our initial work by showing that RelRes with
MPIL captures well not only static behavior, but also dynamic
behavior.

A. Numerical protocol

Our numerical results here are based on molecular sim-
ulations conducted with the GROMACS package, specifically
its 4.6 version [46]; unless otherwise specified, we use the
default values of the package. The general implementation
here is almost identical with the one we had in our origi-
nal publication [37]. Importantly, we examine two separate
sets of molecular simulations: one is based on dumbbell-like
molecules, and one is based on butterflylike molecules.

The LJ potential, as given by Egs. (51) or (54), is the sole
basis for the interaction between FG or CG sites, respectively.
In most of the case studies here, the molecules embody iden-
tical sites, with o and € as their respective length and energy
parameters; consequently, we most often invoke Egs. (65)
and (66) for the FG parameters and Eqs. (67) and (68) for
the CG parameters. We employ this LJ functionality together
with the continuous versions of the modified FG and CG
potentials, as given by Eqgs. (44) and (45). For the correspond-
ing Eq. (50), we set {m;, mp, m3, my} = {6, 12, 18, 24} (for
convenience with the LJ potential); we solve for the FG y,, via
Egs. (46) and (48), and we solve for the CG y,, via Egs. (47)
and (49). In most cases, we vary r,; between 1.10 and 1.9¢0
at intervals of 0.20, and we set §r, = 0.06250. On a relevant
note, rather than abruptly truncating all potentials at 2.50", we
analogously apply the sigmoid function of Eq. (50) between
2.250 and 2.750. Note that all interactions in our reference
system, denoted by r; — oo, practically vanish beyond this
distance. All of these potentials are implemented via tabulated
functions. The intramolecular energetics are mostly governed
by elastic bonds, which is unlike our previous publication
that made all bonds rigid. The spring constant of each bond
is always 2000€ /02, and except for a few special cases, the
inherent size £ of each bond is set at 0.5¢.

All of our systems in this work contain, in a periodic
box, a total of 2000 (identical) molecules. Their actual FG
coordinates have mass m, and their virtual CG centers have
mass zero; the latter is generally constructed in terms of equal
weights of the former. The molecular simulations propagate
in time via Newtonian equations of motion. We employ
neighbor lists for calculating the respective forces, updating
them every five steps. Each molecular simulation starts with
an equilibration phase of 5000 steps of size 0.0027 and ends
with a production phase of 1000000 steps of size 0.0017;
the decrease in the time step is implemented because of the
importance of energy conservation in the later stage. Note that
T = /mo2/e is our unit of time.

In all cases, the protocol that we use involves a sequence
of molecular simulations that employ the thermostat of Bussi
et al. [47]; we set the temperature at 1.0¢/k, with k being
Boltzmann’s constant. The initial molecular simulation is of
the reference liquid, and it is distinct in that it is also coupled
to a barostat [48], whose pressure is 1.0€ /0 together with

a respective compressibility of 0.203/¢. While the system
size naturally fluctuates in this case, the purpose of this
initial molecular simulation is to fix the box dimension for
the rest of the sequence; we otherwise disregarded all of its
respective results. The rest of the molecular simulations are
subsequently in the canonical ensemble: one of them is of
the reference liquid, while the rest are RelRes systems with
different switching distances.

Above all, we thoroughly examine in our work several
structural correlations, often in terms of the relative separation
r;j (we frequently omit the ij indices). For this purpose, we
record the positions of all molecules every 100 steps of the
molecular simulation. For all of the functions we examine
here, r goes from the origin to the edge of the system box;
we discretize it by 1000 bins.

Foremost, we look at radial distributions g between the
midpoints of various bonds. For comparison between radial
distributions, it is convenient to invoke a functional for the
disparity between a pair of such functions. We particularly
choose the Jensen-Shannon entropy [49], which has been sug-
gested as one of the most fundamental metrics in information
theory [50]:

Syis = S[%(grx + goo)] - %(S[gr.,.] + S[goo]) (72)

with the conventional entropy taking on this definition:
Slgl = — / kgr® In(kgr?)dr. (73)

« is just the normalization constant (i.e., | kgr* = 1), which
is inversely proportional with the system volume. In Eq. (72),
the term on the left [i.e., S[%(gn + g00)]] is one entropy,
altogether for an average of two distributions, and the term
on the right [i.e., %(S[grj] + S[geo])] is an average of two
entropies, each for one distribution. Basically, the Jensen-
Shannon entropy measures the discrepancy between a pair of
radial distributions: Obviously, if g, & goo, Sys & 0, and Sjs
increases as the discrepancy between g,, and g increases.

We also examine the orientational correlations of various
bonds. By letting a bond of molecule i or j be a vector, we
respectively define §; or 5; as its direction. We particularly
focus on computing the moments of the dot product 5; - §; as
a function of the relative separation between the midpoints
of the bonds. Most of our case studies have symmetry in
their molecules, and thus for §; - §;, the average vanishes but
the variance persists. We consequently present only the latter,
((5; - E,) ); note that ((5; - EJ) )y = 1 for decorrelated cases in
which each molecular orientation 1s equally likely. Moreover,
the bond vectors can be cast as a hnear decomposmon in
terms of two components §; = sH +5F and 5; = s + sjl In
terms of the relative separatlon between molecules i and
7, {sl., j} are the components parallel to 7;;, and {si , jL} are
the components perpendicular to 7;;. In turn, we have the
following:

(Gi - 5% = ((s)sH?) + 24s)slsts Ty + (st sP)P). (74)

In most of our case studies, we observe that the cross term is
rather negligible, so

= =2

((5:-5;)7) ~

() + (G557 (75)
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and thus, we only present the two main components, ((sl‘.‘ s‘j‘.) )
2 . . . . .

and ((silsj*) ), of this orientational function; realize that

((sl's'l!)z) =§ and ((silsj*)z) = % if molecules are decorre-
lated.

Aside from these static functions, we also examine dy-
namic functions, which notably complement the examina-
tion of our original communication. Specifically, we look at
the squared displacement ((7, — 7y)?), together with its time
derivative 9, ((7, — 79)?). 7 is the position of an arbitrary
molecule, i or j, at a given time ¢, and the index 0 is of course
for zero time. Besides, we also examine an orientational
correlation (5, - 5p). 5; is analogous with the bond directions
discussed earlier; just as with the squared displacement, we
have here the time index. Importantly in calculating these
transport functions, we employ an algorithm of multiple time
origins, using each recorded step of a molecular simulation.

We furthermore examine thermal properties in our work.
We foremost look at the average (U) and variance (8U7)
of the defining equation for RelRes. For convenience, we
normalize both by the corresponding values of the reference
liquid: (U), = (U),,/(0) and (80%)] = (80%), /(80?):
as we frequently do, we omit the index of r; for these.
Besides, we also look at a transport function of the total energy
(8E;8Ey)/(8E?), computing it again via multiple time origins.
All thermal properties are based on probing the molecular
simulations every 10 steps.

B. Dumbbell systems

Our preliminary systems are based on dumbbell-like
molecules. We analyzed a liquid-liquid mixture of two distinct
dumbbells in our initial communication; here, we continue
with an exhaustive investigation of several variants of such
dumbbells, with all of the current systems being single-
component and single-phase liquids. In general, all dumbbells
have two FG sites which map on one CG site, meaning that
n = 2; by equal weighting, the latter one is exactly in the
middle of the former two. In all systems here, we focus on
the systematic variation of 7, in RelRes.

1. Base scenario for the dumbbells

We begin by examining a system of elementary dumbbells.
One such molecule is depicted in Fig. 4. Such a dumbbell has
two identical FG sites, with o and € for its L] parameters
[note Egs. (65) and (66)]. By the MPIL, this means that
the respective CG site has ¢ and 4e for its L] parameters
since n = 2 [note Egs. (67) and (68)]. The inherent bond of
these elementary dumbbells is set at a distance of 0.50. The
density of this system is 1.00m /o>,

The radial distribution between the dumbbells is given in
the top panel of Fig. 4. This structural correlation for the
reference liquid is given here as the solid dark-gray curve;
the remaining dashed curves are for the RelRes systems, with
each color representing a different switching distance. All of
these switching distances give a sufficient description of the
radial distribution of the reference system, and it is clear that
as r, increases, the capability of RelRes improves, in an appar-
ently asymptotic manner. While for r; = 1.30 (i.e., the blue

3o L ' | ' ' —

2.5+ 3 TS/O': ' —

0 A : —1.3 ]

20— i — 1.5 —

S Q| — 1.7 8
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FIG. 4. Static correlations for the elementary dumbbell scenario.
These molecules have uniform LJ parameters for their two sites o
and €, and the bond length between them is 0.50. Here, all the gray
curves correspond with the reference system. The colored curves
correspond with the RelRes strategy, with each color representing
a different switching distance r,. Note particularly the violet curve,
which is for the ideal switching distance in capturing the behavior
of the reference liquid; the blue or red curve has a shorter or longer
switching distance, respectively. Everything is plotted as a function
of the distance between the midpoints of the dumbbells r. The top
panel (a) plots the corresponding radial distribution g, with the solid
curve being for the reference system, while the dashed curves being
for the RelRes scenarios. The bottom panel (b), for the reference
liquid, plots the orientational correlation ((5; - 5; )?) as the dark-gray

curve, together with its two main components ((sll.| sﬂ )2) and ((sfs]* )2)
as the lower and higher light-gray curves, respectively; the function-
ality of the dotted curves corresponds with the functionality of their
neighboring solid curves; note that all of these curves are almost
identical. In both panels, the vertical line represents the inflection

of g, which is located here at 1.46.

curve), the replication is fairly decent, for r;, = 1.70 (i.e., the
red curve), the replication is essentially perfect; in fact, ry =
1.50 (i.e., the violet curve) already captures the translational
correlation of the reference system as well as one may desire.
The systematic observation here is reminiscent with the one
we had in the original publication [37]: RelRes captured struc-
tural correlations with ry & 1.10 equitably yet with r; = 1.60
superbly. Another aspect of Fig. 4 is that RelRes can create a
suction effect in the middle of the dumbbell. With decreasing
ry, nearest neighbors tend to stick more to each other, as
evidenced by the increasing peak; with a sufficient choice for
the switching distance, the suction effect disappears.

For the purpose of better clarifying this asymptotic be-
havior, we invoke the Jensen-Shannon entropy, as defined by
Eq. (72). For each of the relevant curves in Fig. 4, we calculate
Sys, and we plot it (i.e., an indigo circle) in terms of the
switching distance in Fig. 5. Clearly, this entropy is monotonic
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FIG. 5. The Jensen-Shannon entropy Sjs for the radial distribu-
tion, plotted as a function of the switching distance 7, in RelRes. Each
set of points, denoted by a specific color, is for a different system.
The indigo is for the molecules which have identical LJ parameters
between their two sites € and o, and the corresponding bond length
is 0.50. The orange and green refer to the systems with bond lengths
of 0.30 and 0.70, respectively, while their L] parameters are also
uniform. The almost hidden brown corresponds with {1.61¢, 0.62¢}
and {0.850, 1.18¢} for its LJ parameters, while its bond is again
0.50. Importantly, note that the entropy is in logarithmic scale.
Besides, the lines here just serve as guides.

throughout most of r,, and considering the logarithmic scale
here, Sjs is roughly an exponential decay of the distance;
this is especially true around ry = 1.50°, which we mentioned
in the context of Fig. 4 as the ideal switching distance for
adequately capturing the radial distribution of the reference
system. Thus, we confirm here our earlier observation: RelRes
improves asymptotically as ry approaches infinity. Impor-
tantly, it appears that the asymptote is practically reached at
ry &~ 1.50: at this distance, the discrepancy between the radial
distributions almost vanishes, and in turn, Sjs becomes almost
negligible.

So, why is 1.5¢ the critical distance for switching between
the FG and CG potentials in RelRes? For this purpose, we
now look at orientational correlations in the bottom panel
of Fig. 4. Let us begin by discussing the dark-gray solid
curve, which is ((5; - §; )?) of the reference liquid. Notice that
while it clearly has a maximum and a minimum early on,
it quickly flattens out after the ensuing inflection at 1.420.
This consequently explains why 1.50 is an excellent choice
for r, in RelRes: at this distance, the dumbbell directions
apparently become decorrelated, and the influence of these
rotational degrees of freedom becomes negligible on the vari-
ous structural correlations of the system (e.g., radial distribu-
tions). Interestingly, the flattening of ((3; - §; )2} in the bottom
panel happens just around the middle between the respective
maximum and minimum in g of the corresponding top panel
(i.e., the relative separation of 1.54c¢); this is also around
the respective inflection of g (i.e., the relative separation of
1.460), and we mark this value by a vertical line in both
panels. This means that as soon as nearest neighbors depart
from each other, their directions quickly become decorrelated.

Let us continue examining the two main components of
((5; - Ej)z), as given in Eq. (75). For the reference system,
these are plotted as light-gray curves in the bottom panel of

Fig. 4, the lower one is for ((slH s‘J‘. )2) and the higher one is for

2 . . . . .
((silsj*) ); realize that their summation essentially retrieves

the dark-gray curve. Surprisingly, the behavior of ((5; - 5; )?)
is very distinct from its two components: While ((5; - § j)2>
becomes mostly decorrelated as the molecules leave the pri-
mary coordination shell, its components are still correlated
even as the molecules enter the secondary coordination shell.

In fact, ((sl”s‘) 2) and ((sl-isjl)z) appear as mirror images of
each other, especially beyond r ~ 1.50, with their extrema
occurring at about the same locations. In turn, once we sum
these two functions, these fluctuations cancel each other,

yielding the overall function which is basically flat beyond

r ~ 1.50. The locations of the initial maximum of ((sl” s‘]‘. 2)

and the initial minimum of ((s;"s;)*) occur at 1.490 and
1.540, respectively, which is again almost identical with the
ideal r; of 1.50.

Finally, there are also dotted curves in the bottom panel
of Fig. 4. Their coloring is equivalent with that of the corre-
sponding top panel, with each color representing a different r;
in RelRes; besides, the function to which each dotted curve
pertains corresponds with the function of its neighboring
solid curve. Importantly, RelRes captures the orientational
correlation with its components perfectly well, regardless
of which switching distance is used. This is of course in
contrast with our observations for the respective translational
correlation. As discussed earlier, the suction effect, in the
middle of the dumbbell, is substantially influenced by the
switching distance; if an inadequate r; is chosen, the suction
can significantly alter the radial distribution. In any case,
rotational functions are expected to be mostly governed by
the shape of molecules, and r; has negligible effect on this;
so, even if the suction effect makes the dumbbells erroneously
stick to each other, the orientational correlations are roughly
the same as those of the reference system.

We now move on to examine thermal properties of these
elementary dumbbells. We specifically look at functionals of
the configurational Hamiltonian of RelRes, presenting, as a
function of ry, its normalized average (U) and variance (8U?)
in the top and bottom panels of Fig. 6, respectively. The
coloring here is analogous with that of Fig. 5. Focus again
on the indigo circles: because of normalization, they fluctuate
about unity (i.e., about the horizontal line). In fact, for all
switching distances, the average and variance are essentially
both within a fraction of 0.05 from their reference values.
Importantly, with increasing r,, we notice a dampening effect
of the fluctuation, with both the average and variance even-
tually reaching unity. Besides, the fluctuating characteristic
of the symbols in this figure is in striking contrast to the
observation we made for the entropic functional of Fig. 5,
which showed a firm monotonic behavior with 7. Bearing also
in mind Fig. 4, this means that if one is fine with a decent yet
rough description of structural correlations in a liquid, one can
still adequately capture thermal properties, using just a modest
switching distance in RelRes that does not entirely account
for all nearest neighbors. Finally, these systematic findings
are analogous with the observations we made in our previ-
ous work for the pressure, together with its corresponding
response function: for both of our switching distances there,
ry ~ 1.10 and ry = 1.60, RelRes was very successful once
we used it together with MPIL [37]. In general, the excellent
replication of thermal properties reiterates the validity of the
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FIG. 6. Energetic functionals plotted as a function of the switch-
ing distance r, in RelRes. Particularly, the average (U) and variance
(802) of the configurational energy is given in the top (a) and bottom
(b) panels, respectively. The asterisk denotes that these functionals
are normalized by the respective values of the reference systems.

Besides, the color coding here is identical with that of Fig. 5.

MPIL approximation, which is essentially based on energy
conservation.

So far, considering our original publication as well, we
have only examined static behavior; we now turn our attention
to dynamic behavior. We consequently plot various transport
functions in terms of time ¢ in Fig. 7. The coloring here is
again analogous with Fig. 4: while all solid curves are for the
reference liquid, the dashed and dotted lines are for the RelRes
systems with varying r,. In the top panel for the reference
liquid, we give ((7; — 70)2) as the dark-gray line, with its
negative derivative —o,((7; — 70)?) as the light-gray one. In
the bottom panel for the reference liquid, the orientational
correlation (5, - So) is given as the dark-gray line. Aside from
these structural functions, we also present here a thermal
function, specifically for the total energy (SE;8Ey)/(SE?) as
the light-gray line. The functionality of a colored line is the
same as that of its neighboring gray curves.

For all transport functions of Fig. 7, RelRes satisfactorily
describes the reference system irrespective of the value of r.
Of course, there are some nuances between the various trans-
port functions in terms of r, and these dynamic characteristics
are reminiscent of our observations for the static features. For
example, r; = 1.70 is required for a flawless replication of
the translational ((7, — 7)?), yet for the orientational (3, - 5),
only r; = 1.30 cannot excellently capture the behavior of the
reference liquid. Besides, for (8E;8Ey)/(8E?), all switching
distances yield a perfect description of this transport function.
In summary, in terms of r;, we notice the same trends for
dynamic behavior as we do for static behavior: Thermal
properties can be superbly captured even with a surprisingly

=0 (T — f0)2>7/02

(6E6E) /(6 E2)

FIG. 7. Dynamic correlations for the elementary dumbbell sce-
nario. Much of the coding here is equivalent with Fig. 4, but all of
the current functions are strictly different. Everything is plotted in
terms of time 7. The top panel (a) plots the squared displacement
((F, — 7y)?) of a given molecule as the dark-gray curve for the
reference system, together with its neighboring dashed lines for the
RelRes systems (i.e., the higher set of curves, which is labeled by
the left ordinate axis); the corresponding negative derivative of this
function —d,((7, — 7y)?) is given as the light-gray curve, together
with its dotted lines (i.e., the lower set of curves, which is labeled
by the right ordinate axis). In an analogous manner, the bottom panel
(b) plots the orientational function (5, - 59) as the dark-gray curve,
together with its neighboring dashed lines (i.e., the higher set of
curves, which is labeled by the left ordinate axis); the light-gray
curve, together with its dotted lines, represents the energetic function
(8E,8Ey)/(BE?) (i.e., the lower set of curves, which is labeled by the
right ordinate axis).

small ry, but structural correlations require a relatively large ry;
regarding the latter, orientational functions are more feasibly
captured than translational functions. Specifically for these
elementary dumbbells, it appears that r; = 1.50 can capture
the entire behavior of the reference liquid very well and,
thus, this is our recommended switching distance for these
molecules. This in turn reiterates one of the main findings of
our original publication: RelRes works best if molecules in-
teract with each via a FG potential between nearest neighbors
and a CG potential between other neighbors.

2. A variation in the bond length of the dumbbells

We continue by examining dumbbells in which we vary the
length of their bonds. In particular, we construct two systems,
one with short dumbbells (i.e., £ = 0.30) and one with long
dumbbells (i.e., £ = 0.70); representative sketches are given
in Figs. 8 and 9, respectively. The modification of the bond
length does not alter the LJ parameters of the FG and CG sites:
they are again o and € for the former, and o and 4€ for the
latter. The system density is 1.34 for the short molecules and
0.78 for the long molecules, in units of m/o>.
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FIG. 8. Static correlations for the short dumbbells with a bond
length of 0.3¢0. Here, the coding, as well as the functions, is essen-
tially equivalent to Fig. 4. However, note the turquoise curve which
is for RelRes with a switching distance of 1.1o. The vertical line
here goes through 1.28. We plot the orientational function only for
ry = 1.50 since all other curves are basically identical with it.

The structural correlations for the short and long dumbbells
are given in Figs. 8 and 9, respectively, which are basically
analogous with those of Fig. 4. All rotational functions of the
reference liquids are perfectly captured by RelRes, regardless
of the switching distance that we use; we consequently give
in the respective bottom panels only the r; = 1.50 curves.
Conversely, the radial distributions are given in the respective
top panels; notice importantly the turquoise curve (i.e., ry =
1.10) for the £ = 0.30 case and the magenta curve (i.e.,
rs = 1.90) for the £ = 0.70 case (i.e., the colors which do
not appear in Fig. 4). In essence for each case, we have
shifted our systematic r; examination by 0.2¢. This is because
we observe that RelRes captures the radial distributions at a
switching distance that differs by roughly 0.20 as compared
with the £ = 0.50 of Fig. 4: the apparently asymptotic r is
1.30 in Fig. 8 and 1.70 in Fig. 9. It is of course natural that
the ideal ry for the short dumbbells is less than the ideal 7
for the long dumbbells since the former are more “spherelike”
than the latter. This further means that RelRes works better
as the molecular size decreases. As a further analysis, we
compute Sys for these radial distributions, plotting them in
Fig. 5 as orange (downward) triangles for £ = 0.30 and as
green (upward) triangles for £ = 0.70. For these two cases,
we again observe an essentially exponential decay. We also
reaffirm that the efficacy of RelRes is more deficient for the
long molecules than for the short molecules, considering that
Sys for £ = 0.30 is less than that for £ = 0.70 by about an
order of magnitude; remember that Sys — O means that we
are approaching perfect replication of the radial distribution.

In the context of Fig. 4 for £ = 0.50, we have thoroughly
discussed that the recommended value for r; is signaled
by structural correlations. We find that this is still the case
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FIG. 9. Static correlations for the long dumbbells with a bond
length of 0.70. Here, the coding, as well as the functions, is essen-
tially equivalent to Fig. 4. However, note the magenta curve which
is for RelRes with a switching distance of 1.90. The vertical line
here goes through 1.64. We plot the orientational function only for
ry = 1.50 since all other curves are basically identical with it.

here once we vary the bond length of the dumbbells. Most
importantly, in the bottom panels of Figs. 8 and 9, we again
notice the flattening of ((5; - §; )2) beyond a certain distance,
which stems in the mirroring behavior of the maxima and
minima of its components ((sll.| sljl. )2) and ((sf‘sf )2) that cancel
each other. We summarize all of the critical distances asso-
ciated with these orientational correlations, as well as with
the translational ones in the respective top panels, in Table I.
Among these different bond lengths, we generally notice the
same trends: the inflection in ((5; - Ej)2> comes just before
the inflection in g, and this is followed consecutively by the
the midpoint between the extrema in g being armlmd there as
well. For a given bond length, the most important aspect of
these distances is that they almost all occur within 0.10 of
each other, and they are roughly the same as our estimate for
the asymptotic r; via the systematic RelRes examination.

As such, it appears that if one is interested in determining
the ideal switching distance, there may be no need for con-
structing many RelRes systems with different 7,: one can just
look at the structural correlations of the reference liquid, with
the radial distribution being arguably the most feasible choice.
As such, we consequently again draw vertical lines in Figs. 8
and 9 that represent their inflections in g. Nevertheless, we
can even go further: For such dumbbells of an arbitrary bond
length, we may not even need to do any molecular simulations
of the reference liquid since it is quite obvious here that the
following linear approximation holds for the ideal value of
the switching distance:

.. . 2 . . 2 .
minimum in ((silsj*) ) and the maximum in ((s”sg) ), with

rx o+ L. (76)
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TABLE I. Signature distances in the structural correlations of
the various dumbbell scenarios. Rows 1 and 2 give us the molecule
type, as well as its respective bond length, with which each column
corresponds. Column 2 goes together with Fig. 4, columns 3 and 4
refer to Figs. 8 and 9, respectively, and column 5 goes with Fig. 10.
Column 1 then tells us which distance value we are dealing with in
each case. Row 3 is the switching distance that we recommend for
use in RelRes, based on our systematic examination of varying r;.
Rows 4 and 5 deal with signatures of the radial distributions, while
rows 6—8 deal with signatures of the orientational functions. Realize
that all numbers here are given in units of o.

Molecule type Elementary  Short Long  Nonuniform
Bond Length 0.5 0.3 0.7 0.5
Suggested r; 1.5 1.3 1.7 1.5
Inflection in g 1.46 1.28 1.64 1.49
Midpoint between

extrema in g 1.54 1.43 1.66 1.59
Inflection in

(G507 1.42 1.25 1.59 1.51
Maximum of

<(sj.‘s‘,‘.)2) 1.49 136  1.64 1.57
Minimum of

((s,.ls/*)z) 1.54 1.39 1.69 1.65

This further suggests that for an arbitrary system, one may be
able to do a rough estimate for an adequate 7, in RelRes just by
considering the size of the respective molecules. Note though
that the nature of the molecular interactions (e.g., Coulombic
energetics) may substantially influence the value of the ideal
switching distance; thus, for a certain molecular type, while
one may find an approximation reminiscent of Eq. (76), its
parameters may be quite different.

Finally, we also calculate thermal properties for these two
systems. Analogous with the elementary dumbbells, we plot
their average (U) and variance (§U?) in the top and bottom
panels, respectively, of Fig. 6, with the orange (downward)
triangles for £ = 0.30 and the green (upward) triangles for
£ =0.70. We again notice the fluctuating trend in all sets
here. Importantly, notice that the magnitude of these fluctu-
ations decreases with bond length. This reiterates the fact the
RelRes works better for “spherelike” molecules.

3. A nonuniformity across the sites of the dumbbells

We now construct another system, whose molecules again
have a bond length of 0.5¢ . In this case, however, we are deal-
ing with nonuniform dumbbells in terms of their LJ parame-
ters, although they do still have equal mass across their sites;
a sketch of such a molecule is given in Fig. 10. Elaborating on
this nonuniformity, one FG site is small yet strong, and one
FG site is large yet weak. Their respective length parameters
are 6/(1 + +/37) 2 0.85 and (1 + +/37)/6 ~ 1.18, in units of
o, and their respective energy parameters are (1 + +/5)/2 ~
1.61 and 2/(1 + «/3) ~ (.62, in units of €; notice that the
mixed interaction between these two still has the standard
o and € parameters. The relevant MPIL parametrization in
this case study is set by Egs. (63) and (64). In turn, we
obtain that the CG site has LJ parameters that are roughly
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.........................
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FIG. 10. Static correlations for the nonuniform dumbbells,
the ones with different LJ parameters across their two sites
{0.850, 1.180} and {1.61¢, 0.62¢}. Everything here is essentially
equivalent with Fig. 4. The vertical line is at 1.49.

1.080 and 2.76¢. Importantly, realize that even though these
dumbbells are nonuniform, the system itself is still uniform,
being a single-component and single-phase liquid. Besides,
the density of this system is 0.88m/c>.

For this dumbbell system, we again perform a systematic
examination for the switching distance. We present the cor-
responding structural correlations in Fig. 10, whose format is
identical with that of Fig. 4. We again notice the same trends
that we have observed for our elementary dumbbells. For the
orientational functions of the bottom panel, the replication is
perfect irrespective of the value of r,, just as we found in
all of our other scenarios. Most importantly, for the radial
distributions in the top panel, we find that the asymptotic r;
is at 1.50, just as we have for our elementary dumbbells (i.e.,
£ = 0.50). Once we determine all the critical distances in g,
as well asin ((5; - 5; )2) with its components, we again find that
they are all roughly the same as the suggested r; for RelRes;
these are summarized in Table I. Realize now that Eq. (76)
still applies for this case study, even though we established it
while only considering uniform dumbbells. Finally, once we
invoke our functionals for the radial distributions, we show in
Fig. 5 that for all ry, Sys for this nonuniform scenario (i.e., the
almost hidden brown diamonds) is basically identical with its
uniform counterpart (i.e., the indigo circles).

All of these observations for the structural correlations
of the nonuniform dumbbells, particularly the fact that their
relationship with the switching distance of RelRes is identical
with that of our elementary dumbbells (i.e., those with the
same bond length of 0.50, yet which are uniform across their
sites), has significant ramifications. For an arbitrary molecule
which has much nonuniformity within it, we do not need to
perform any molecular simulations for it for determining its
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ideal ry; all one must do is to construct a system of similar
molecules that are strictly uniform across their sites (perhaps
using the overall mean values for ¢ and € of the nonuni-
form molecule). According to our observations, these uniform
molecules, whose structural correlations are fairly feasible for
computation, would roughly have the same r; as the nonuni-
form molecules. This fact becomes especially useful once we
are dealing with a set of molecules that roughly have the same
topology, yet whose sites notably vary in their LJ parameters.
If the molecules do not have the linear estimate for r; as
given in Eq. (76), we suggest that all one does is measure,
via a single molecular simulation, the radial distribution of
the reference liquid of the uniform version of these molecules,
and we recommend using its inflection in g as the switching
distance in RelRes for the entire family of molecules.

We now proceed with the thermal properties of the nonuni-
form scenario in Fig. 6, which is presented as brown dia-
monds. In this case, we actually do not observe the fluctuating
trend which we have for all other dumbbell scenarios, and
instead we have a slight asymptotic behavior; of course, it
is very modest as compared with the entropic functionals of
Fig. 5. Still, this is not necessarily a drawback for RelRes: If
we look at our recommended r, of 1.50, the average of the top
panel is off by a ~0.1 fraction, yet the variance in the bottom
panel is off by a negligible fraction. Of course, the former
is still satisfactory, especially if one is not too interested in
exact values of thermal properties. The discrepancy between
the ability of RelRes in retrieving the average and variance
may stem in the fact that the latter are related with response
functions, and it is well known that these can be perfectly
captured if structural correlations are also perfectly captured.
In fact, the main message here is that while structural correla-
tions of nonuniform molecules can be as feasible of retrieving
as those of uniform molecules, nonuniform energetics involve
much intricacies, and thus a perfect replication for them is
rather difficult to achieve.

Finally, we examine the transport functions of this nonuni-
form scenario; we present them in Fig. 11, which is identical
in format with Fig. 7. We again reaffirm our earlier observa-
tions. Foremost, RelRes perfectly captures the time behavior
of the thermal property of the reference system, regardless of
the switching distance. While the transport functions of the
structural correlations are also adequately retrieved, there are
some subtleties. For perfect replication, ((7; — fo)z) of the top
panel requires a relatively large ry, yet (5, - So) of the bottom
panel requires a relatively small ;. In summary, just as RelRes
is successful in capturing static behavior, it is also successful
in capturing dynamic behavior, and we basically observe the
same capability in describing the nonuniform dumbbells, as
their uniform counterparts.

C. Butterfly systems

The next system which we explore is relatively complex,
being representative of a plausible scenario that one may en-
counter in soft matter. Most of the parameters in these molec-
ular simulations are identical with their dumbbell-like coun-
terparts. However, the fundamental distinction here is that
they are based on a butterflylike molecule, which is somewhat
reminiscent of tetramethylethylene or dimethylbutadiene,

—0y((7¢ — 70)2>T/U2

(0E,0Eo) /(6 E?)

FIG. 11. Dynamic correlations for the nonuniform dumbbells,
the ones with different LJ parameters across their two sites
{0.850, 1.180} and {1.61¢, 0.62¢}. Everything here is essentially
equivalent with Fig. 7.

yet which has rotational movement about its principal axis;
we present two variations of such a molecule in Fig. 12. All of
the butterfly systems are single-component and single-phase
liquids with a density of 1.49m/o3. Note that, in our original
communication, we did not examine this type of molecules,
as well as the rather elaborate mapping which they involve.
Our main focus with the butterflies is in varying the
mapping from their FG coordinates to their CG centers.
Above all, we have two main classes in this case study. The
naive mapping transforms between six FG sites and one CG
site (n = 6 in RelRes), and the intricate mapping transforms

Naive Mapping Intricate Mapping
n==6 n=3
P Pl P P
¢ C
(a) (b)

FIG. 12. Two butterflylike molecules restricted to a single plane.
The gravitational centers are represented by hollow rings, and the
atomistic coordinates are represented by replete disks. The left panel
(a) depicts the naive mapping (i.e., .# = {1.0}), transforming from
six sites to one site, and the right panel (b) depicts the intricate map-
ping transforming from six sites to two sites (i.e., .# = {1.0,0.0}
and . = {0.5,0.5}). Note that the notation in both panels is the
same. The gray shading does not have a physical meaning; it just
delineates the shape of the molecules. The symbols P and C generi-
cally refer to the peripheral and central sections, respectively, of the
molecules (i.e., sites, bonds, etc.).
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between six FG sites and two CG sites (n = 3 in RelRes);
we, respectively, present these two classes in the left and right
panels of Fig. 12. The latter approach in essence partitions a
butterfly into two groups. Importantly, we have here the set
M, which is the main parameter that distinguishes between
the various mappings performed in this work; in Appendix B,
we rigorously define this set in terms of the familiar mapping
matrix, which converts from the positions of all FG sites to
the positions of all CG sites [25,26]. The naive scenario is
denoted by .# = {1.0}, and the intricate scenario is denoted
by .# = {1.0,0.0} or .# = {0.5, 0.5}. We emphasize that the
latter has two variations for .#; we discuss later below the
distinction between them. Besides, notice that the number of
elements in this set corresponds with the number of groups
the molecule contains. We also mention at this point that
we present ry = 1.50 and 2.00 for the naive mapping and
rg = 1.50 for the intricate mapping. .#, together with ry,
uniquely specifies the RelRes system of our butterfly study.

Let us now thoroughly discuss the molecules given in
Fig. 12. Represented by gray shading, we can think of a
butterfly as composed of two congruent (isosceles) triangles,
with each one of them being fairly rigid by itself. While the
schematic depicts a given butterfly on a single plane, its two
triangles can rotate about the axis which connects them. Each
butterfly has a central section, denoted by C, and a peripheral
section, denoted by P. We can think of the molecules, in both
panels, as having two C FG sites and four P FG sites; we can
think of the molecule, in the left panel, as having one C CG
site and of the molecule, in the right panel, as having two P
CG sites.

At the same time, in both panels of Fig. 12, we have
four P bonds (i.e., diagonal lines) and one C bond (i.e., a
straight line); the energetics of these bonds are identical with
their dumbbell counterparts, having ¢ = 0.50 together with
a spring constant of 2000€ /o2. The butterflies also have fic-
titious restraints, which hold each pair of neighboring bonds
in a triangular conformation; in molecular simulations, these
are effectively treated as bonds, with the same spring constant,
yet their inherent distance is set at «/§Z, which ensures that the
corresponding angle is roughly 27” (i.e., a cosine of —%, just
like in tetramethylethylene and dimethylbutadiene). Finally,
the intramolecular potentials between all other FG sites are
identical with their intermolecular counterparts, which are
based on the LJ function. Realize that CG sites, even once
there are several of them in a molecule, do not have any
intramolecular energetics. For the ensuing analysis which we
perform, remember that we consider the midpoint of each
bond, together with its corresponding vector 5.

1. A transformation from six sites to one site for the butterflies

Of course, the most naive mapping for any molecule is
collapsing all FG sites on a lone CG site. Specifically for the
butterflies, this means going from six sites to one site, and
it is exemplified in the left panel of Fig. 12. We specifically
look at the most rudimentary weighing, in which the six FG
coordinates equally contribute to the one CG center; this naive
mapping is denoted by .# = {1.0}. Again, the FG sites have
o and e for their L] parameters. By MPIL, the CG sites have
o and 36¢ for their L] parameters, since n = 6. Just as in the

1.0 2.0 3.0 4.0

FIG. 13. Static correlations for the butterfly scenario in which we
map from six FG sites to one CG site, which is denoted by .#Z =
{1.0}. Realize that here g, as well as 5, corresponds with the central
bond C. Except for the coloring, most of the format here is identical
with that of Fig. 4. Importantly, note here the brown curve for r;, =
2.00; just as in all other cases, the violet one is for r; = 1.50. The
vertical line is at 2.01.

dumbbell systems, we focus here on the effect of the switching
distance on the efficacy of RelRes.

Radial distributions between the central sections C of the
butterflies are given in the top panel of Fig. 13. Just as
with the dumbbell study, this structural correlation for the
reference liquid is given here as the solid dark-gray curve.
The dashed violet curve again represents the RelRes system
with r, = 1.50. While this is the recommended value for
the dumbbells with the equivalent bond (i.e., £ = 0.50), this
ry miserably fails for the butterflies of .# = {1.0}. This is
especially clear once we compute the Jensen-Shannon entropy
for this scenario, which is given in Table II; note that it

TABLE II. Metrics of structural correlations and thermal proper-
ties of the various RelRes systems with the butterfly molecules. Rows
1 and 2 define the RelRes scheme, in terms of .# together with ry,
which we are examining. Columns 2 and 3 are for the mapping from
six FG sites to one CG site, with the only difference between them
being the switching distance that we use. Columns 4 and 5 are for the
mapping from six FG sites to two CG sites, with the only difference
between them being the exact location of the latter sites. Column 1
then gives us the particular metric which we are focusing on. Rows 3
and 4 are for the Jensen-Shannon entropy of the radial distributions
of the central and peripheral midpoints, while rows 5 and 6 are for
the normalized average and variance of the configurational energy.

M {1.0} {1.0} {1.0, 0.0} {0.5,0.5}
ry)o 1.5 2.0 1.5 1.5
10° x S§ 152.9 44.0 5.3 18.9
10° x Sk 3.3 2.1 2.6 3.2
(0" 1.03 1.03 1.03 1.02
(802" 1.19 1.02 1.03 1.04
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is about four orders of magnitude above the corresponding
dumbbell value of Fig. 5. The deficiency here is actually
of no surprise since the butterflies are fairly large while the
dumbbells are fairly small. In any case, once we look at the
corresponding orientational functions in the bottom panel of
Fig. 13, we again observe the excellence of RelRes: the dotted
violet curves of r, = 1.5¢ are almost identical with their solid
gray counterparts in the reference liquid. As such, we reaffirm
with the butterfly systems that RelRes can better capture
orientational correlations than translational correlations.

Remembering our discussion of the dumbbell systems in
the context of Table I (i.e., how critical distances in structural
correlations signal the ideal r;), we try another switching
distance for the butterflies. The inflection in the radial distribu-
tion of the reference system occurs at r & 2.01o (i.e., denoted
by the vertical line in Fig. 13); note that the other critical
distances mentioned in Table I are also located around this
value. As such, we employ r; = 2.00 in RelRes, presenting
in the top panel of Fig. 13 its radial distribution (i.e., the
dashed brown curve). This RelRes system obtains an ade-
quate depiction of this structural correlation, approximately
capturing the locations of its maxima and minima. We also
note this in terms of the Jensen-Shannon entropies of Table II:
increasing ry by 0.50 makes Sjs decrease by almost an order
of magnitude. Once we go beyond this r;, we do notice a
further improvement in the description of the radial distribu-
tion, but in consideration of the number of neighbors beyond
2.00, we do not recommend going over this value for the
switching distance in RelRes. In the bottom panel of Fig. 13,
we also present the corresponding orientational functions of
rg = 2.00 (i.e., the dotted brown curves): We have almost
flawless replication of this structural correlation, that is even
slightly better than the scenario of 1.50. The ability of RelRes,
with ry = 2.00, of sufficiently describing all structural corre-
lations basically reaffirms the argument we made earlier for
the dumbbells: A switching distance, that equals the value of
the relative separation between the maximum and minimum of
the radial distribution of the reference liquid, enables RelRes
in attaining adequate efficacy as a multiscale algorithm.

We also look at the structural correlations associated with
the peripheral sections P of the butterflies. In the top panel
of Fig. 14, we present their radial distributions. These are
actually captured almost flawlessly, with r; = 2.0c doing just
slightly better than r; = 1.50. The excellent capability of
RelRes for these structural correlations is in striking contrast
to our observation in the top panel of Fig. 13. We also give
the respective Sys in Table II; the C values are over one order
of magnitude above their P counterparts. We suspect that this
discrepancy stems from the positioning between the relevant
FG and CG sites. In the case of the C functions, there is a
significant perturbation here caused by the strong interaction
of their respective site; in the case of the P functions, there
is no such perturbation, and only the weak interactions of
their respective sites are marginally modified. Besides, note
the angular distributions in the bottom panel of Fig. 14, which
are again excellently retrieved.

Finally, we examine thermal properties of .# = {1.0},
presenting them in Table II. Rather surprisingly, despite the
deficiency in describing all structural correlations, the system
with ry = 1.50 adequately retrieves the energetic metrics for

201 rsfo = “ _
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FIG. 14. Static correlations for the butterfly scenario in which
we map from six FG sites to one CG site, which is denoted by
# = {1.0}. Everything here is essentially equivalent with Fig. 13,
except that here g, as well as 5, corresponds with the peripheral
bond P.

the reference liquid: The replication is essentially perfect for
the average (U )" and fairly decent for the variance (80U 2" it
is natural that the latter is off by a rather noticeable fraction
since such response functions are inherently tied to structural
correlations. Regardless, once we employ ry = 2.00 in Rel-
Res, we capture almost flawlessly both of these functionals of
the configurational energy. Just as we already mentioned in
the dumbbell scenarios, the butterflies also exhibit a notable
feasibility in capturing thermal properties, especially in com-
parison with radial distributions.

2. A transformation from six sites to two sites for the butterflies

In the above naive mapping of .# = {1.0}, RelRes is quite
successful in capturing all structural correlations and thermal
properties of the reference butterflies, once 2.00 is employed
for ry. Nevertheless, this value for the switching distance is
not too desirable since, during a molecular simulation, the
interactions of not just the primary coordination must be fully
included, but also the interactions of the secondary coordina-
tion must be partially included. Can we execute RelRes for
butterflies in a way other than .# = {1.0}, while having the
desired ry of 1.50?

We consequently perform an intricate mapping that is
based on transforming from six to two sites, and this is
depicted in the right panel of Fig. 12. In fact, we have
two variants of this mapping: the two solely differ in the
positioning between the two gravitational centers in terms
of the six atomistic coordinates. The first mapping, denoted
by .# = {1.0, 0.0}, considers just each triangle of Fig. 12 in
isolation. A given triangle contains three FG sites, so we
equally weigh them on one CG site. The second mapping,
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FIG. 15. Static correlations for the butterfly scenario in which
we map from six FG sites to two CG sites. Realize that here g, as
well as 5, corresponds with the central bond C. Again, much of the
format here is analogous with that of Fig. 4. However, the coloring
here is distinct, with each color relating to a subtle difference in the
mapping. The orange case, denoted by {1.0, 0.0}, maps from three
sites to one site, with all sites equally contributing their masses,
while the green case, denoted by {0.5, 0.5}, maps from four sites to
one site, with two of the former contributing just half of their mass
for the latter. Note that in all of these RelRes systems, the switching
distance is 1.50. Besides, since the reference system here is identical
with that of Fig. 13, the vertical line is again at 2.01.

denoted by .# = {0.5,0.5}, accounts also for the region
between the two triangles of Fig. 12. In creating one CG site,
we equally weigh the two P FG sites of a given triangle,
together with an equal partitioning of the two C FG sites (these
two effectively count as one site). Again, the FG sites have o
and € for their LJ parameters. By MPIL, the CG sites have o
and 9e for their LJ parameters since n = 3. Besides for both,
we fix the switching distance at 1.50.

In Fig. 15, we present static features which are associated
with the structural correlations of this intricate mapping. As
usual, the gray curves are for the reference liquid; these
functions are identical with their counterparts of Fig. 13.
The orange curves are for .# = {1.0, 0.0}, while the green
curves are for .# = {0.5, 0.5}. In the top panel, both RelRes
systems excellently capture radial distributions, especially in
comparison with the earlier naive mapping of .# = {1.0}. In
the bottom panel, both RelRes systems adequately describe
angular distributions, yet not as flawlessly as with the earlier
naive mapping of .# = {1.0}. Furthermore, note that .# =
{1.0,0.0} does slightly better with radial distributions, but
A ={0.5,0.5} does slightly better with angular distribu-
tions. The various entropic values of Table II reaffirm the ob-
servations we make here for Fig. 15. Table II also shows that
both .# = {1.0, 0.0} and {0.5, 0.5} capture thermal properties
with negligible error.

The various discrepancies between the mappings obvi-
ously stem in the locations of the CG sites in terms of the
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FIG. 16. Dynamic correlations for the butterfly scenario in which
we map from six FG sites to two CG sites. Realize that here,
everything corresponds with the central bond C. While the coloring
of the curves here is the same as in Fig. 15, the format, together
with all of the functions, is basically equivalent with Fig. 7. The key
distinction here is that there are inset panels: these just focus on the
functions at short times, while the main panels probe the functions at
long times. As such, a dark-gray curve is identical between an inset
panel and its main panel; for clarity, the light-gray curves are omitted
in the latter.

FG sites. For the ensuing discussion, think of .Z = {1.0}
also as a mapping from six FG to two CG sites. In the
context of such a generalized mapping, while the FG sites
are fixed, the CG sites slide back and forth on the middle
axis of the butterflies. As the distance between the two P
CG sites decreases, the suction effect in the middle between
the two C FG sites increases. An increase in this suction
squeezes neighbors, erroneously strengthening translational
correlations; conversely, a decrease in this suction loosens
neighbors, erroneously weakening orientational correlations.
Such logic can particularly explain the slight differences of
the .#Z = {1.0, 0.0} and {0.5, 0.5} structural correlations, as
well as the substantial differences of these intricate mappings
with the naive mapping of .# = {1.0}.

Finally, in Fig. 16, we present dynamic features that are
associated with this intricate mapping. The color coding here
is identical with that of Fig. 15, while the format is actually
analogous with Fig. 7. However, Fig. 16 has an inset in each
panel, which zooms on the same functions over a slight por-
tion of the domain. Just as in the dumbbell systems, we again
show that RelRes with .#Z = {1.0,0.0} and {0.5, 0.5} can
excellently describe the dynamic functions of the butterflies.

Of course, as we showed above, the mapping from six sites
to one site must be employed together with r; = 2.00 for a
sufficient performance of RelRes. A much better description
of the reference liquid is obtained with either variation of
the intricate mapping, from six to two sites, with r, = 1.50.
It may thus offer the most computationally feasible route
for RelRes. In a molecular simulation of the latter case, we
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obviously have less FG interactions, in consideration of the
value of the switching distance, but more CG interactions, in
consideration of the dimensions of the mapping matrix.

IV. CONCLUSION

In this current work, we continue our initial effort [37],
presenting in turn a comprehensive picture of RelRes. As
shown in our original communication, our hybrid formalism
can be thought of as an extension of the common approach
in statistical mechanics, which truncates all forces beyond a
certain distance, replacing them with a mean field [40—43].
The main aspect of RelRes is that molecular resolution
switches in terms of relative separation: each molecule em-
bodies both FG and CG models, and a given molecule then
interacts with near neighbors via its FG potential and with
far neighbors via its CG potential. Via energy conservation,
the FG and CG potentials can be connected by an arithmetic
parametrization, and we call this analytical expression MPIL.
In turn, we already showed that RelRes with MPIL describes
very well the structural and thermal behavior of nonpolar
multicomponent and multiphase mixtures, as complex as a
generic tetrachloromethane-thiophene system which contains
a vacuum cavity [37].

In this paper, we specifically define MPIL in terms of
a multipole approximation. Reminiscent of the familiar sce-
nario for the Coulombic interaction, we do this derivation by
assuming that the potential can be cast as a linear combination
of inverse powers of the relative separation, and we then
perform the corresponding Taylor expansion. We define the
leading nonzero term as the MPIL (X* in our notation), and we
show that it naturally fits for use with RelRes. Note that in our
original publication, we naively assumed an infinite limit for
deriving the MPIL [37]; in the current work, we show that it is
identical with the zero-order term of the multipole expansion.
Regardless, the derivation here is in fact the comprehensive
one, and we notably present the first and second terms of the
Taylor series. In general, these latter terms are necessary for
polar molecules, and they may be also used for correction
purposes in nonpolar molecules.

Furthermore, we extend here our earlier results for nonpo-
lar liquids, exhaustively showing via molecular simulations
that RelRes with MPIL is successful in capturing not just
statics but also dynamics. On a fundamental level, we notably
focus on systematically examining the role of the switching
distance in uniform liquids of dumbbell-like molecules. Map-
ping from two FG sites to one CG site, we importantly find
that the appropriate distance for switching between the FG
and CG potentials corresponds with the relative separation
between the dumbbells at which their molecular orientation
decorrelates, and this is about equivalent with the boundary
between their respective primary and secondary coordination
shells. We also examine butterflylike molecules, in which we
vary the type of mapping that we employ: We successfully
map not just from six FG sites to one CG site, but also
from six FG sites to two CG sites. The success of these case
studies suggests that RelRes, with just the zero-order term
in the multipole approximation, can adequately describe the
structural and thermal behavior of other nonpolar systems as
well (carbon dioxide, benzene, etc.).

‘We now thoroughly describe a practical implementation of
RelRes in molecular simulations, focusing on the LJ potential.
In the general case for RelRes with Newtonian evolution in
time, the FG interaction between its actual coordinates is set
by Eq. (44), together with Eq. (51), and the CG interaction
between its virtual centers is set by Eq. (45), together with
Eq. (54). While the parameters of the FG models can be
readily found in various packages, the parameters of the CG
models can be readily retrieved through the MPIL expres-
sions. In the LJ case, it is given by Eqgs. (55) and (56). If
the product rule for the FG coefficients applies [i.e., Eqs. (57)
and (58)], then the product rule for the CG coefficients applies
[i.e., Egs. (61) and (62)]; in turn, one can use instead Egs. (63)
and (64) for parametrizing between the various LJ parame-
ters. Importantly, if all L] interactions among molecules are
identical, we have an immense simplification: the relevant
parameters are Egs. (65) and (66) for the FG interaction and
Egs. (67) and (68) for the CG interaction. Otherwise, if the
RelRes system evolves via the Monte Carlo approach, the
step functions of Eqgs. (42) and (43) can be used instead of
Egs. (44) and (45), respectively.

The main goal of our work was in showing that RelRes
with MPIL can correctly capture the behavior of various
liquids. As such, we did not explore the computational effi-
ciency associated with the hybrid approach. Indeed, our im-
plementation here in GROMACS, which uses a single-neighbor
list for both FG and CG sites, did not formally reduce the
computational time of the molecular simulations. Neverthe-
less, if two independent neighbor lists, with two different
cutoff values, are separately implemented for the FG and CG
models, computational efficiency can be actually realized, and
this is despite the fact that RelRes maintains all degrees of
freedom of the reference system. The main reason behind
this stems in the fact that we generally find that the ideal r
is roughly between the primary and secondary coordination
shells. Such a switching distance means that an arbitrary
FG site must consider just the interactions with its O(10)
nearest neighbors, yet an arbitrary CG site must consider
all the interactions with its O(100) other neighbors. RelRes
is thus significantly dominated by the calculation associated
with gravitational centers rather than atomistic coordinates.
Continuing this logic specifically for molecules of mapping n,
if neighbor lists are implemented separately for the FG and
CG sites, the efficiency of a molecular simulation can roughly
improve by a factor of n (remember that, with neighbor lists,
the computational cost scales linearly with the total number
of sites). The entire argument here does rely on the fact
that r, is roughly equal to 1% (in dimensionless units). This
readily gives satisfactory results for small molecules (e.g., our
dumbbells) yet not for large molecules (e.g., our butterflies).
Thus, once one encounters oligomeric or polymeric systems,
one must partition a molecule into several groups, as we have
done in the later case study (i.e., a mapping of 6:2 instead of
6:1). On a heuristic level for partitioning, we have noticed that
RelRes with MPIL yields sufficient results if the distance be-
tween the FG and CG sites is about % (in dimensionless units).
In summary, regarding the computational cost, although Rel-
Res with MPIL does not reduce the number of molecular
sites, it does reduce the number of molecular interactions,
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implying that our multiscale framework can make molecular
simulations quite efficient.

The crucial course of action for RelRes is implementing
the multiscale protocol for polar systems, specifically for
aqueous solutions. Importantly, all of the necessary mathe-
matical ingredients have been already derived here. Regard-
ing neutral water, whose Coulombic monopole is strictly
zero, Eq. (34) yields ¢;;; =0, and Eq. (37) yields ¢;j» =
%zi[(ﬁi,l . ﬁj,l) — 3(]7,‘1' . ]3,'.1)(?‘,']' . ﬁj,l)]- This MPIL is in line
with various multipolar models of water [51,52], except that in
the context of RelRes, the interaction is actually hybrid, being
a function of pairwise distance. At the same time, RelRes for
hydrated ions is rather straightforward since the correspond-
ing Coulombic monopoles are finite, and Eq. (28) becomes
the applicable one for parametrization. Keep in mind that
with polar molecules, the ideal r, for the Coulombic potential
may not necessarily equal the ideal r; for the LJ potential;
however, for facilitating the implementation of the neighbor
lists, we recommend using a single switching distance that
encompasses both of these values. Realize also that with Rel-
Res, one must still deal with Coulombic interactions beyond
the periodic box, for example, via Ewald summation. Besides,
as we move to aqueous systems that are representative of
biology, complex mappings may be required (e.g., from 200
FG sites to 50 CG sites).

Of course, RelRes is only one route for enhancing the effi-
ciency of molecular simulations, and we recommend that one
employs it concurrently with other computational approaches
for optimal results. For biological systems (e.g., the assembly
of proteins in a water medium), we expect that combining
RelRes with Adaptive Resolution may be particularly useful.
While RelRes is ideal for modeling the binding sites of
proteins, Adaptive Resolution is useful for eliminating many
uninteresting degrees of freedom which bulk water possesses.
In fact, various explicit-implicit approaches, reminiscent of
Adaptive Resolution [53], can further facilitate such a task.
These algorithms switch from an explicit solute near to the
origin to an implicit solvent far from the origin [54] and,
thus, they can also substantially reduce the computational time
required for molecular simulations.

Interestingly, RelRes with MPIL bears much resemblance
with the famous “cell-multipole” formalism, the algorithm
which is frequently mentioned as one of the most compu-
tationally powerful methods [55]. For an arbitrary potential
of an inverse power, the “cell-multipole” approach also in-
vokes a multipole approximation at appropriate distances:
Inside a “cell” at small separations, one evaluates interac-
tions between discrete points, and outside a “cell” at large
separations, one evaluates interactions between continuum
patches. A crucial distinction with our multiscale scheme is
that the “cell-multipole” strategy considers interaction sites
that move freely of each other, in turn lumping them to-
gether in arbitrary “cells” in space. In molecular simulations,
interaction sites do not move freely of each other as they
are constrained by bonds; RelRes, just as other multiscale
approaches [9-24,38,39], consequently invokes the natural
mapping embodied by molecules, connecting FG atomistic
coordinates with CG gravitational centers. As such, one can
think of RelRes with MPIL as a natural modification of the

“cell-multipole” approach for molecular systems. This can
be extremely useful since, despite the fact that the “cell-
multipole” method is frequently used in a myriad of systems,
it is rarely employed in molecular fluids. In summary, RelRes
can become a beneficial tool for molecular simulations, and
it has already been acknowledged as such by several review
articles [56,57].
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APPENDIX A: THEORETICAL SECTION

For proceeding beyond the monopole-monopole term of
Eq. (30), we must define dimensionless variables, reminiscent
of Egs. (3) and (4). Here, they are

_ A,
£, = —, (AT)
r
_ . AU
cosfy, = ——2. (A2)
rAy,

For compactness, we mostly use here the index v, together
with the index /: the Latin index corresponds with either i or j,
and the Greek index corresponds with either © or v. Besides,
we also frequently omit yet imply the combination of the
ij indices (e.g., ¥ = F;;). Using these, together with Egs. (3)
and (4), we derive useful expressions for the dimensionless
variables involved in the energy function of Eq. (10):

;€080 = &, cosB, — &, cos0,,, (A3)

gli"f = f;‘i - 2(5”1' ’ éﬂi) + 53,

Note that we also used here the definition of A wv; Of Eq. (2).

Let us now proceed by invoking these variables in c;jx.
For X = 1, we specifically substitute Eq. (A3) in Eq. (21),
attaining

Cij1 ({Sﬂiv.f }’ { €OS v, })
=m Z [C;L,-V,Eu, cos 9,),.] —m Z [CI-LIV/'EM[ cos 6,“]

HiVj iV

(A4)

(A5)

and by invoking the product assumption of Eq. (26), we derive
this:

Cij1 = m(Z C“") Z [cvig"j cos 6";‘]
i v;

—m| ) e, <Z[cm§mcos€#,]>. (A6)

Mi
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For facilitating the ensuing mathematics, we introduce now
Cij2p* and ¢;j 4+, whose summation yields c¢;; +:

Cijox = Cij2p* + Cij2g*- (A7)
For ® = 27", we specifically substitute Eq. (A3) in Eq. (23),
attaining
Cij.2p* ({Eﬂiv.f }’ { €08 Oy, })
=-m Z [Cu,v,-év_,-gu,- cos 0, cos Bﬂi],

MHiVj

Cij.2q* ({Sﬂi‘b‘ }’ { €08 O, })

= % Z [C;L,-vjfff COS2 Qvf] + % Z [Cﬂivfgi,- 0082 0 i]

Kivj Hivj

(A8)

(A9)

and by invoking the product assumption of Eq. (26), we derive
this:

Cijopt = —Mm Z [c6y, cos b ] (Z [y cos 0‘“])’

Vj Hi

(A10)

m
_ 2 2
Cijaqt = > (E c,h.) E [‘v,fub,- cos’ 6, |
i V;

+— ch, (Z cu[éiicoszem]) (Al1)

i

For & = 27, we specifically substitute Eq. (A4) in Eq. (24),
attaining

Cij2p- ({éﬂi"j } ’ { cos 9141"/' })

= —m Z [Cu,v, (é‘}j ' ém)]’

HiVj

(A12)

Cij.2q- ({va/ }’ { COS B0, })
m 2 m 2
=5 Z [cl‘i"/EV,] + 2 Z [Cﬂi‘)/‘ Su;]

WiV Hivj

(A13)

and by invoking the product assumption of Eq. (26), we derive
this:

Cijop- = —M

> [ed] ‘<Z[cui§w]) . (Al4)

Vj i

Cij2q- = (Z CM1> Z Cu/ 3}]
(s )(Zee) ws

i

While the monopoles of Eq. (29) can be readily substituted
in most of the above expressions, further manipulation must
be performed for employing here the dipoles, as well as the
quadrupoles.

As such, let us evaluate some of the summations which
appear above, by invoking the dimensionless variables of
Egs. (Al) and (A2). Here are summations which can be
conveniently cast in terms of the dipoles of Eq. (31):

E 1 Z _
[CU,EUI COS Gv[] = r—2 [CUI (7. . Au,)]
1 _ 1 .
- r_2|:7 (Z [CUIAUI]>i| = ;('A"pl,l),

(A16)
1

_ 1 -
Z [Cvzévz] = Z [CUIAU/] = ;ﬁl,l’

vl v

(A17)

while here are summations which can be conveniently cast in
terms of the quadrupoles of Egs. (32) and (33):

1 _
> lew cos?,] = 3 leu (7 Ay

= rl4|:7? : (Z[CU,AU,AU,]>:|

(A18)

Z cUl svl

vl

2 Z CU’ U/

note that we used here a common tensor identity (7 - AU, )2 =
(FF + Ay Ay).

By employing these, together with Eq. (29), we can eval-
uate the relevant ¢;;x. For 8 = 1, substituting Eq. (A16) in
Eq. (A6), we obtain the following:

2‘110» (A19)

m m . -
Cij1 = 7Ci70(}’ . pj,l) — 7Cj_()(}" . pi,l)' (AZO)
This is compactly presented in the main text as Eq. (34).
For X = 27, substituting Egs. (A16) and (A18) in Egs. (A10)

and (A11), respectively, we obtain the following:

m. o _ A =
Cijopt = ——(V'P,‘J)(V “Pi1), (A21)
Cijogqr = Ct o(F 1 d;2) *t3 C] o(F : ;2)- (A22)
For R =27, substltutmg Egs. (A17) and (A19) in Eqgs. (A14)

and (A15), respectively, we obtain the following:

m _ _
Cij2p- = _r_z(Pj,1 “Pin)s (A23)
Cij2q= = iCiOCI‘ + ic-oq~ . (A24)
J,24q 22" J,0 252 J,04i,0

Invoking Eq. (A7), these are compactly presented in the main
text as Egs. (35) and (36). Besides, in an analogous manner
which we performed here for the first and second terms of
¢ijx» other terms of this coefficient can be evaluated as well.

APPENDIX B: COMPUTATIONAL SECTION

Before defining the mapping matrix, let us introduce
some notation that better elaborates on the topology of the
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butterflies in Fig. 12. In each panel, we denote the left triangle
by £ and the right triangle by R, and for each triangle, we de-
note its upward portion by ¢/ and its downward portion by D;
besides, we use M for the middle axis of the entire molecule.
We can now introduce indices for the various P and C sites.
We call, in both panels, the two central FG sites {C.,,, Cr,,}
and the four peripheral FG sites {Pg,, Pr,. Pry,, Prp}; We
call, in the left panel, the one central CG site {C(} and, in the
right panel, the two peripheral CG sites {P,, Pr}. Realize that
in our notation, a FG site is always labeled by a binary index,
and a CG site is always labeled by a unitary index. As sketched
in Fig. 12, the larger index (e.g., £ or R) is for the horizontal
location in the molecule, and the smaller index (e.g., U or D)
is for the vertical location in the molecule; if the latter index
is omitted, this means that the site is on the middle axis of the
butterfly.

We now define the familiar mapping matrix M for trans-
lating between the positions of the FG and CG sites. The
mapping operator in the naive case, which transforms from
six sites to one site, can be cast as the following:

M = [we, M Wep M WEy M WRyM WRyM WRp M
(B1)

and the mapping operator in the intricate case, which trans-
forms from six sites to two sites, can be cast as the following:

Mo |:w£M,L Wep e WLyl WRyL WRyL wRD.E]
We R Wep R WLy R WRyR  WRLR - WRpR
(B2)

Each w is the mass fraction of a specific FG site, denoted
by the first (binary) index, that weighs in a specific CG
site, denoted by the second (unitary) index. These mapping
matrices are obviously presented here for a single molecule.
Their columns are for the FG sites, and their rows are for the
CG sites; n equals the ratio between the number of columns
and the number of rows. For purposes of abbreviated notation,
we introduce the useful set .# which we mentioned in the
main text. In particular, this set is defined as follows for the

naive scenario

M = {3(weym + wryom) ) (B3)
and as follows for the intricate case
M = {3(weyr +wWryr): 3 (Wewr + wWryo)} (B4

The numerical constants 3 and %, in these linear combinations,
just guarantee, for our current work, that the sum of all
elements in a particular .# equals unity. In any case, the value
of each element here just describes the relationship between
the positions of all sites along the middle axis of the butterfly.

How about the choice for the weights in the above expres-
sions? For the naive mapping, we just look at the case in which
all sites have an equal contribution, so the mapping operator
is the following,

M=[; ¢ ¢ s 5 sl (BS)
which in turn, by Eq. (B3), means:
M = {1.0}). (B6)

In the intricate scenarios, we have two types of weighting,
with the mapping matrices having slightly different values
between their elements. Here are the two variations of our
mapping operator,

L1 1 g 0 0

M = [3 SO N (B7)
0 0 0 5 3 3
L1 1 1 9 9

M= |:3 " S P (B8)
00 § 5 3 3

and by Eq. (B4), we respectively have:

A = {1.0,0.0}, BY)
M =1{0.5,0.5}. (B10)

The meaning of the label . is now clarified: its first element
signifies the fraction a given C FG weighs in a P CG of the
same side, and its second element signifies the fraction a given
C FG weighs in a P CG of the opposite side.

[1] C. Jarzynski, Nonequilibrium Equality for Free Energy Differ-
ences, Phys. Rev. Lett. 78, 2690 (1997).

[2] F. Wang and D. P. Landau, Efficient, Multiple-Range Random
Walk Algorithm to Calculate the Density of States, Phys. Rev.
Lett. 86, 2050 (2001).

[3] A. Laio and M. Parrinello, Escaping free-energy minima,
Proc. Natl. Acad. Sci. USA 99, 12562 (2002).

[4] O. Valsson and M. Parrinello, Variational Approach to En-
hanced Sampling and Free Energy Calculations, Phys. Rev.
Lett. 113, 090601 (2014).

[5] C. Dellago, P. G. Bolhuis, F. S. Csajka, and D. Chandler,
Transition path sampling and the calculation of rate constants,
J. Chem. Phys. 108, 1964 (1998).

[6] R. J. Allen, P. B. Warren, and P. R. ten Wolde, Sampling Rare
Switching Events in Biochemical Networks, Phys. Rev. Lett.
94, 018104 (2005).

[7] T. S. van Erp, Reaction Rate Calculation by Parallel Path
Swapping, Phys. Rev. Lett. 98, 268301 (2007).

[8] Weinan E, W. Ren, and E. Vanden-Eijnden, String method for
the study of rare events, Phys. Rev. B 66, 052301 (2006).

[9] M. Scott Shell, Coarse-graining with the relative entropy,
Adv. Chem. Phys. 161, 395 (2016).

[10] W. G. Noid, J.-W. Chu, G. S. Ayton, V. Krishna, S. Izvekov,
G. A. Voth, A. Das, and H. C. Andersen, The multiscale
coarse-graining method. I. A rigorous bridge between atom-
istic and coarse-grained models, J. Chem. Phys. 128, 244114
(2008).

[11] W. G. Noid, P. Liu, Y. Wang, J.-W. Chu, G. S. Ayton,
S. Izvekov, H. C. Andersen, and G. A. Voth, The multi-
scale coarse-graining method. II. Numerical implementation for
coarse-grained molecular models, J. Chem. Phys. 128, 244115
(2008).

023034-24


https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.86.2050
https://doi.org/10.1103/PhysRevLett.86.2050
https://doi.org/10.1103/PhysRevLett.86.2050
https://doi.org/10.1103/PhysRevLett.86.2050
https://doi.org/10.1073/pnas.202427399
https://doi.org/10.1073/pnas.202427399
https://doi.org/10.1073/pnas.202427399
https://doi.org/10.1073/pnas.202427399
https://doi.org/10.1103/PhysRevLett.113.090601
https://doi.org/10.1103/PhysRevLett.113.090601
https://doi.org/10.1103/PhysRevLett.113.090601
https://doi.org/10.1103/PhysRevLett.113.090601
https://doi.org/10.1063/1.475562
https://doi.org/10.1063/1.475562
https://doi.org/10.1063/1.475562
https://doi.org/10.1063/1.475562
https://doi.org/10.1103/PhysRevLett.94.018104
https://doi.org/10.1103/PhysRevLett.94.018104
https://doi.org/10.1103/PhysRevLett.94.018104
https://doi.org/10.1103/PhysRevLett.94.018104
https://doi.org/10.1103/PhysRevLett.98.268301
https://doi.org/10.1103/PhysRevLett.98.268301
https://doi.org/10.1103/PhysRevLett.98.268301
https://doi.org/10.1103/PhysRevLett.98.268301
https://doi.org/10.1103/PhysRevB.66.052301
https://doi.org/10.1103/PhysRevB.66.052301
https://doi.org/10.1103/PhysRevB.66.052301
https://doi.org/10.1103/PhysRevB.66.052301
https://doi.org/10.1002/9781119290971.c