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Exploiting the photonic nonlinearity of free-space subwavelength arrays of atoms
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Ordered ensembles of atoms, such as atomic arrays, exhibit distinctive features from their disordered coun-
terpart. In particular, while collective modes in disordered ensembles show a linear optical response, collective
subradiant excitations of subwavelength arrays are endowed with an intrinsic nonlinearity. Such nonlinearity
has both a coherent and a dissipative component: two excitations propagating in the array scatter off each other
leading to formation of correlations and to emission into free-space modes. We show how to take advantage
of such nonlinearity to coherently prepare a single excitation in a subradiant (dark) collective state of a
one-dimensional array as well as to perform an entangling operation on dark states of parallel arrays. We discuss
the main source of errors represented by disorder introduced by atomic center-of-mass fluctuations, and we
propose a practical way to mitigate its effects.
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I. INTRODUCTION

Ordered atomic ensembles (arrays) have recently attracted
significant attention as a new paradigm for controlling light-
matter interaction which shows novel features not shared by
their disordered counterpart [1]. When the interatomic separa-
tion is subwavelength with respect to the characteristic atomic
dipole transition, the optical response of atomic arrays shows
a strong collective behavior characterized by bright (super-
radiant) and dark (subradiant) excitations [2,3]. Superradiant
states allow for efficient coupling of internal atomic states to
light, while subradiant states permit long coherent storage of
atomic excitations thanks to their reduced linewidth. Addi-
tionally, the array’s collective response can be used to realize
perfect reflection of light off the array [4–8] and to prepare
topological edge modes [9,10].

This combination of features contains some of the basic
elements for applications in quantum information technolo-
gies, as one could store quantum information in subradiant
states [11] and read it out using superradiant excitations [12].
However, for the creation and manipulation of quantum in-
formation one also requires a nonlinear optical response, i.e.,
the dependence of light-matter interaction on the system’s
internal state. Specifically, a nonlinear response allows us
to define qubits and to perform universal gate operations on
them. Optical nonlinearities are usually obtained by adding
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a new capability to the system. In the context of an atomic
ensemble, for example, a nonlinear response is obtained pro-
moting atoms to a Rydberg state: strong dipolar interactions
between two Rydberg excitations can be exploited to inhibit
further absorption of photons from the ensemble (Rydberg
blockade) [13]. Rydberg excitations have also recently been
considered for atomc arrays [14,15].

In this article, we propose and analyze an alternative way to
produce and coherently manipulate quantum information with
ordered atomic ensembles, which does not rely on Rydberg
excitations or other technologies. We show how one can har-
ness the intrinsic nonlinear response of subwavelength arrays
of atoms in free space [16–19] to perform different tasks.
Specifically, we discuss (1) a procedure to transfer an excita-
tion from the ground to the single-excitation most-subradiant
collective state of the system and (2) a procedure to prepare
an entangled state shared by two parallel arrays. Together
these two tasks allow us to perform a universal set of quantum
gates on atomic arrays. We discuss the nature of this intrinsic
nonlinear response and show that it has both a coherent and
a dissipative component. The coherent component is rooted
in the large dipole shift between closely spaced atoms; it
dominates at smaller lattice spacing but diminishes for longer
arrays. The dissipative component arises from the difference
in the decay rate of the subradiant mode and the (enhanced)
decay rate of the double excited mode, and allows for coherent
manipulation via the Zeno effect [20]. Notably, for the case
when atoms are pinned to their position, the dissipative non-
linearity has more prominent effects for longer arrays. Finally,
we analyze the impact of atomic center-of-mass fluctuations
on the proposed scheme. We find they represent the main
source of imperfections for they are responsible for a suppres-
sion of the intrinsic dissipative nonlinearity [4,21]. We show
numerically that such detrimental effects are reduced when the
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FIG. 1. System description. (a) Illustration of two parallel arrays with lattice spacing a and separation l . Internal level structure: Raman
transition leads to effective two-level systems dynamics with damping �0 = ε2γ1 and effective dephasing κ0 ≡ ε2γ2, where γ1,2 is the
spontaneous emission rate for the transition |e〉 ↔ |g1,2〉. (b) Scheme for driving a subradiant (dark) mode of a subwavelength array. The
detuning δ f can be chosen to resonantly drive a collective mode of the array. (c) Colored region: values of α and a/λe for which a solution for
β in Eq. (7) exists. Other parameters are ωa ≡ ω f − � f = 2ωe, ωg = 0.1ωe, and K = π/a.

timescale of atomic motion is shorter than the internal decay
rate, and propose a practical way in which this regime can be
obtained.

The article is organized as follows. We first consider the
case where atoms are pinned to their lattice positions (Sec. II).
Within this simplified assumption, we present the main ideas
and discuss how to perform single- and two-qubit gates be-
tween the ground and the single-excitation subradiant state
of atomic arrays. In Sec. III we consider the effect of the
atoms’ motion. We propose a way to enter the regime of fast
atomic motion, and analyze the gate fidelities in this case. In
Sec. IV we discuss a possible experimental implementation of
our proposal in the context of neutral atoms in optical lattice
and analyze limitations and additional assumptions behind
our model. We draw our conclusions in Sec. V. Additional
nonessential details are left to the Appendixes.

II. ARRAYS OF PINNED ATOMS

We consider two parallel atomic arrays labeled “A” and “B”
and placed at a distance l from each other. Each array contains
N atoms separated by a lattice spacing a [see Fig. 1(a)]. In
the following, we consider the case in which the arrays have
unit filling and the atoms are pinned to their lattice positions.
The atoms’ internal structure is described by a lambda scheme
with one excited state |e〉 coupled by a dipole-allowed transi-
tion to the ground-state levels |g1〉 and |g2〉 [Fig. 1(a)]. An
external laser drives the atoms on the |e〉 ↔ |g2〉 transition
with a detuning � and at a rate 
. For ε ≡ 
/2� � 1, the
excited state |e〉 is never populated, and the atom behaves as an
effective two-level system with excited state |g2〉 and ground
state |g1〉, characterized by an effective decay rate �0 ≡ ε2γ1

and dephasing rate κ0 ≡ ε2γ2. We further assume |e〉 ↔ |g1〉
to be a much stronger transition than |e〉 ↔ |g2〉, so that
κ0 � �0. In the following, we thus neglect the dephsing aris-
ing when driving the |e〉 → |g2〉 transition and discuss later
under which conditions this approximation can be justified
(see Sec. IV). The additional complication introduced by the
lambda scheme, as opposed to using simple dipole-coupled

levels, is instrumental for mitigating the effects of the motion
as explained in Sec. III [22].

The effective dynamics of the atoms treated as an open
quantum system can be derived from the total Hamiltonian
describing the dynamics of the atom-light interaction in the
dipole approximation. Tracing out the electromagnetic field
within the Born-Markov approximation, the dynamics of the
system is described by the following non-Hermitian Hamilto-
nian [3] (see also Appendix A):

Ĥ0 = ĤA + ĤB + ĤAB. (1)

The non-Hermitian Hamiltonian Ĥν describes the dynamics of
the atoms of array ν = A,B, and reads

Ĥν

h̄
≡

∑
j

σ̂+
ν j σ̂

−
ν j + ε2

∑
i, j

(
Ji j − i

�i j

2

)
σ̂+

ν j σ̂
−
νi , (2)

where ωg is the splitting between |g2〉 and |g1〉, σ̂+
ν j =

(σ̂−
ν j )

† ≡ |g2, j〉ν〈g1, j | and j = 1, . . . , N labels the atom at po-
sition RA j = (0, 0, ja)T (RB j = (0, l, ja)T ) within array A
(B). Here Ji j (�i j/2) is the coherent (dissipative) interaction
between two atoms at sites i and j within the same array, and
for i �= j it is given by [3]

Ji j − i
�i j

2
= −μ0ω

2
e dνi · G0(Rνi − Rν j, ωe) · dν j, (3)

where G0(R, ωe) is the free-space electromagnetic Green’s
tensor of a point dipole, ωe the frequency of the |e〉 ↔ |g1〉
transition, and di is the electric dipole moment of the atom
at site i. For i = j, we defined �ii = γ1 and we implicitly
included the vacuum Lamb shift Jii into the definition of
ωg. Hereafter, we consider all atoms to be polarized parallel
to the array’s direction (z-axis) unless otherwise specified.
A different atomic polarization leads to results qualitatively
similar to the ones presented here, as shown in Appendix G.
The last term in Eq. (1) describes the interaction between the
atoms in the two arrays and reads

ĤAB

h̄
= ε2

N∑
i, j=1

(
gi j − i

γi j

2

)(
σ̂+

Aiσ̂
−
B j + σ̂−

Aiσ̂
+
B j

)
, (4)
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where gi j (γi j/2) is the coherent (dissipative) part of the dipole
coupling given by

gi j − i
γi j

2
≡ −μ0ω

2
e dAi · G(RAi − RB j, ωe) · dB j . (5)

Note that as a consequence of the Raman transition used to
define the effective two-level atoms, the dipole-dipole inter-
actions in Eq. (2) and Eq. (4) are proportional to the Green’s
tensor evaluated at ωe. Hence, despite the effective two-level
system having a characteristic wavelength λg ≡ ωg/2πc, the
arrays exhibit strong collective dipolar effects only for a <

λe/2 (subwavelength condition [6,11,12,23]).
To better understand the origin of the nonlinear response of

atomic arrays and how one can use it for preparing the arrays
in a specific quantum state it is useful to consider first the case
of a single array.

A. Single array: Driving subradiant excitations

The dynamics of an isolated array of atoms in free space is
described by Eq. (2). Because we consider only one array, we
drop the label ν = A,B and refer to the single-array Hamilto-
nian as Ĥ1array in this section. The eigenstates of Eq. (2) are
simultaneous eigenstates of N̂e ≡ ∑N

j σ̂+
j σ̂−

j , as both the Her-

mitian and anti-Hermitian part of Eq. (2) commute with N̂e.
Within the single-excitation manifold and when the atomic ar-
ray is sufficiently long (N 	 1), the eigenmodes of Eq. (2) can
be understood as spin waves of a definite quasimomentum k,
where the value k corresponds to the point in reciprocal space
where the eigenmode wave function is peaked [11,12,23,24].
We define the eigenmode with associated quasimomentum k
as |k〉 ≡ �̂+

k |0〉, where |0〉 ≡ |g1〉⊗N is the ground state of
Eq. (2), and �̂±

k ≡ ∑
j ck, j σ̂

±
j with ck, j ≡ 〈e j |k〉. For a <

λe/2, there exist single excitation eigenstates of Eq. (2) with
a quasimomentum q > ωe/c ≡ ke lying outside the light cone
of free-space electromagnetic modes (hereafter q labels val-
ues of the quasimomentum which lie outside the light cone
unless otherwise specified). These collective states, which are
intuitively understood as an excitation propagating along the
array, have been shown to decay at a rate ∼�0/N3 [11,25] and
are referred to as collective subradiant modes or dark modes.
Dark modes also exist in higher n-excitation manifolds, pro-
vided n � N , and are similarly characterized by a scaling
of the decay rate ∼�0/N3. Notably, the n-excitation states
|nq〉 ≡ (�̂+

q )n|0〉 are not eigenstates of Eq. (2). This results
in a nonlinear structure of the dark-mode spectrum which
has both a coherent and dissipative component. The coherent
component is represented by a nonlinear spacing of the energy
levels with the number of excitation, and it is quantified by
the difference �n ≡ ωn − nω1, where ωn (ω1) is the energy of
the most-subradiant n-excitation (single excitation) state. The
dissipative component is represented by the enhanced decay
rate of |nq〉 which scales as ∼�0/N to first order in Eq. (2)
[11]. We will show that �n approaches zero for increasing N ,
while the dissipative nonlinearity grows with the array’s size.

To excite a collective dark mode of a subwavelength array,
it is necessary for the driving to match energy and modulation
of the target state [26]. This condition can be achieved using a
detuned Raman transition via an additional excited state | f 〉.
As illustrated in Fig. 1(b), we consider two driving lasers with

wave vectors ka, kb forming respectively angles α, β with the
array’s direction (z-axis). For a sufficiently large detuning � f

such that | f 〉 is never populated, the effect of the Raman
lasers on the array can be modeled by an effective driving
Hamiltonian

V̂1array ≡ ih̄
0

N∑
j=1

sin(Kzz j )(e
−iωd t σ̂+

j − H.c.). (6)

Here z j ≡ a j, ωd ≡ ωa − ωb, and 
0 is the single-atom ef-
fective Rabi frequency which depends on the detail of the
two-photon transition (see Appendix B). Equation (6) ex-
cites a collective spin wave of the array with an effective
quasimomentum

Kz ≡ ka cos α − kb cos β. (7)

For ω f − � f = 2ωe, we show in Fig. 1(c) under which con-
ditions on the angle α and lattice spacing a it is possible to
match the driving with the most-subradiant single-excitation
state, namely, Kz = qa ≡ π/a. The driving Hamiltonian (6)
produces Rabi oscillations at frequency 
0

√
N between

the atomic ground state and the collective state |ψqa〉 ≡√
2/(N + 1)

∑N
j=1 sin(z jqa)σ̂+

j |0〉. The state |ψqa〉 approxi-
mates the actual dark mode |qa〉 with an overlap-error scaling
as ∼1/N2 [11].

To study the fidelity of the subradiant state preparation, we
numerically simulate the evolution of the open system under
the condition of no jump occurring. Specifically, we calculate
the state at time t as |ψ (t )〉 = exp[−i(Ĥ1array + V1array)t/h̄]|0〉,
where we chose ωd in resonance with the energy of the target
state |qa〉 (we refer to Appendix H for details on the method
used for the simulation). The error in the target state prepa-
ration is calculated as ε ≡ 1 − maxt [F (t )] where F (t ) ≡
|〈qa|ψ (t )〉|2 [27]. In Fig. 2 we illustrate the dependence of
the dark state preparation’s error on both the lattice spacing
a/λe and the number of atoms N in the array. The data shown
in Figs. 2(a) and 2(b) are obtained optimizing the fidelity with
respect to the Rabi frequency in Eq. (6). Figures 2(a) and 2(b)
show the two different contribution of the array’s nonlinear
response: the error decreases for smaller lattice spacing and
for larger N as a consequence respectively of the dipole shift
�2 and of enhanced decay of the double excited state as
compared to the decay of the target state (Zeno effect). The
fidelity F improves for smaller a/λe at a rate which reduces
with N , as expected from the reduction of �2 for longer arrays
[Fig. 2(a)]. This effect is particularly evident when comparing
the case of N = 2 with the other lines, but it is present also
for larger array sizes as shown by the crossing of the results
for N = 60 and for N = 100 with the results for N = 20 at
a/λe ≈ 0.01. This implies that for a fixed value of a/λe, in-
creasing N might at first lead to an increased error. Ultimately,
however, the error will improve for larger N at fixed a/λe

[see the case of a/λe = 0.05 in Fig. 2(b)]. The improvement
in the error with the array’s size N is a signature of the
Zeno effect. In particular, when N−7/2 � 
0/�0 � N−3/2,
it is possible to efficiently excite |qa〉 while the population
transfer to the doubly excited state |2qa〉, and hence to higher
excited manifolds containing n > 2 excitations, is suppressed
by the enhanced decay. The contribution of the Zeno effect
to the nonlinear response is prominent for larger interatomic
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FIG. 2. Single-array dark mode preparation. (a) Error for dark
state preparation as function of the lattice spacing a/λe (for different
array length N) and (b) as function of the number of atoms N (for
different values of a/λe). (c) Scaling with N for a = λe/4 of different
relevant quantities at the optimal driving frequency 


(opt)
0 : error ε

(infidelity) (blue circles), total population in the ground state (P0) and
two-excitation manifold (P2) at the time which minimizes the error
(red squares), error calculated with the effective three-level model
Hamiltonian Eq. (E3) (pink diamond), and fit function ε ≈ 0.45 ×
N−0.6 (black dashed line). (d) N-dependence of the optimal frequency



opt
0 at which the minimal error occurs for a = λe/4. Scaling N−2.5

as guide for the eye (black-dashed line).

separations. In Fig. 2(c) we extend the results in Fig. 2(b)
for the case of a = λe/4 to much larger array sizes, showing
an improvement of the error for larger N . This improvement
is only due to the Zeno effect as proven in Fig. 2(d), where
the optimal frequency 


opt
0 as function of N shows a scaling

∼1/N2.5 falling within the limit of the Zeno regime. At 

opt
0 ,

the error ε has two major contributions coming from (1)
the undesired transfer of population to levels other than the
target and (2) the finite decay rate �qa of the target state |qa〉.
The latter alone would predict an error scaling ε ∼ N−1 as
�qa/(
opt

0

√
N ) ∼ 1/N . The main limitation to the state prepa-

ration fidelity is thus mainly due to population transferred
to the most-subradiant two-excitation state due to imperfect
Zeno blockade [Fig. 2(c)]. The dynamics of the driven array
within the Zeno regime can thus be captured by a simple
three-level model involving only the ground state |0〉, the
target state |qa〉, and the most-subradiant two-excitation state
|2〉 (see Appendix E), as shown by the pink diamond markers
in Fig. 2(c).

We define logical qubit states of an array as |0〉L ≡ ⊗N |g1〉
and |1〉L ≡ |qa〉 = ∑

j cqa, j |g2, j〉, where cqa, j ≡ 〈g2, j |qa〉.
Note also that, once the collective dark mode has been pre-
pared, it is possible to turn off the dipole coupling between
the levels |g1〉 and |g2〉 by turning off the laser which couples
|g2〉 to |e〉 [ε = 0 in Eqs. (2) and (4)]. In this way, the dark
state becomes a metastable state which can be stored for long
in the array. Let us now show how, given two parallel arrays
of atoms, one can perform entangling operations between the
logical states of the arrays.

B. Two parallel arrays: Entangling
√

iSWAP gate via
dipole-dipole interactions

The dynamics of two parallel arrays is described by the
Hamiltonian in Eq. (1). As for the case of a single array, the
Hamiltonian can be diagonalized separately for each number
of excitations. For the case of a single excitation and infinite
arrays, it is possible to prove that the dipole interaction be-
tween the two arrays, Eq. (4), couples only state with the same
quasimomentum, and thus we can write the single-excitation
Hamiltonian of two parallel arrays as Ĥ (1)

0 = ∑
k Ĥk , where

k = π/[a(N + 1)] · · · πN/[a(N + 1)] and

Ĥk ≡
(

ωk gk − iγk/2
gk − iγk/2 ωk + δ

)
, (8)

on the basis {|k0〉, |0k〉}. Here |k0〉 (|0k〉) is the state with
one excitation of momentum k in the array A (B), and gk

(γk/2) is the coherent (dissipative) coupling between |k0〉 and
|0k〉. For an infinite array, an exact formula can be derived
for gk − iγk/2 (see Appendix F). In this limit, for the case of
atoms polarized along the array’s axis, the coupling between
subradiant modes (k > ke) of infinite arrays reads

gk = −3�0

kea

(
1 − k2

k2
e

)
K0

(
l
√

k2 − k2
e

)
, (9)

and γk = 0, where K0(x) is the modified Bessel function of
the second kind. Equation (9) holds to a high degree of ac-
curacy also for finite arrays provided N 	 1. In particular, the
coupling is coherent and falls off approximately exponentially
with the array separation l as described by Eq. (9). While
the decoupling between states of different quasimomentum
is strictly true only for infinitely long arrays (and for the
particular case of N = 2), in Fig. 3(a) we show that already for
arrays as small as N = 6 atoms for l = a = λe/4 the coupling
between different k-blocks is negligibly small. Such a strong
suppression of the cross coupling between modes associated
to different quasimomenta k can be traced back to the accu-
racy of approximating the exact system’s eigenmodes with
quasimomentum eigenstates |k〉. Indeed, the cross-coupling is
larger around the light cone separating bright from dark states
where this approximation is less accurate [11].

In Eq. (8) we included a detuning δ between the two arrays.
For arrays separated by l < λe, such a selective detuning
could be obtained via an AC Stark shift. Using a standing
wave and placing the array A in a node of the field, only the
atoms in the array B pick up a shift δ [Fig. 3(b)]. Alternative
ways using electrostatic or magnetostatic field gradient could
also be envisioned. When the arrays are separated by a dis-
tance comparable to λe, they are collectively driven according
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FIG. 3. Parallel arrays of pinned atoms. (a) Left (right): absolute value of the imaginary (real) part of the matrix elements of Ĥ (1)
2 on

the basis {|0k〉, |k0〉}k , namely, Hkk′ ≡ 〈φk |Ĥ (1)
2 |φk′ 〉 where |φk〉 ∈ {|0, k〉, |k, 0〉}. Diagonal 2 × 2 blocks correspond to Ĥk , while of diagonal

elements are cross-coupling between states of different momentum. The light line is marked by red dashed lines dividing subradiant and
superradiant sectors. (b) Scheme for selective AC Stark shift to detune one array with respect to the other. (c) Error for preparing the state |qa0〉
as function of a/λe for two parallel arrays of N = 40 atoms. Other parameters: l/a = 1 and δ/�0 = 100. (d) Error

√
iSWAP gate as function

of a/λe for N = 40 atoms. Different markers correspond to different separation l/a between the arrays as specified by the legend. (e) Error√
iSWAP gate as function of N for a/λe = 0.10. In both panels (d) and (e), black dashed lines with star markers represent the case case in

which the dynamics of the states |10〉L, |01〉L, and |11〉L is assumed to be an exponential decay at rates �qa and 2�qa .

to the Hamiltonian (in a frame rotating at ωd )

V̂0 ≡ ih̄
0

N∑
j=1

sin(Kzz j )
(
σ̂

y
A j + σ̂

y
B j

)
. (10)

Hence, the possibility of detuning one array with respect to
the other is instrumental for selectively addressing one array.
In Fig. 3(c) we show the scaling of the fidelity for preparing
the state |10〉L ≡ |qa0〉 of array A as function of the lattice
spacing a/λe for l = a when array B is detuned by δ = 100�0.
The state preparation error [blue circles in Fig. 3(c)] de-
creases for smaller lattice separation a/λe owing to the larger
dipole shift as for the case of a single array. Accordingly,
the population transfer to the two-excitation manifold also
decreases with a/λe. For a/λe � 0.08 the error increases if
one further reduces the lattice separation because the detuning
δ is now comparable to or smaller than the dipole coupling
between |10〉L and |01〉L leading to substantial population
transfer to |01〉L. This explanation can be confirmed with
an effective four-level model obtained by projecting the full
Hamiltonian Eq. (2) on the subspace spanned by the levels
{|00〉L, |10〉L, |01〉L, |ψ2〉}, where |ψ2〉 is the most-subradiant
two-excitation state of the parallel-array system. The error
and the population transferred to |01〉L as calculated by this
simple model are shown in Fig. 3(c) by the solid blue and
dashed red line, respectively. For larger separation l the cou-

pling between |10〉L, |01〉L decreases leading to better state
preparation fidelities at smaller values of a/λe as compared to
the case of l = a shown in Fig. 3(c). We note that by applying
this procedure sequentially to both arrays, it is possible to
initialize the system into any states of the computational basis
{|00〉L, |01〉L, |10〉L, |11〉L}.

The structure of the two-excitation manifold of two paral-
lel arrays is more complicated. Two-excitation eigenstates of
Eq. (1) can still be classified between bright and dark modes
depending on their decay rate; however, the exact form of such
states shows a strong dependence on the separation l between
the arrays. For large separation l 	 a, the two arrays are
noninteracting, and the most-subradiant two-excitation state
is simply given by |ψ2〉 = |11〉L ≡ |qa, qa〉, which is charac-
terized by a decay rate �11 which tends to 2�qa in the limit of
l/a → ∞. As the arrays are brought closer, the dipole-dipole
interaction ĤAB becomes stronger thus substantially modify-
ing the form of the most-subradiant two-excitation state (see
Appendix F). In particular for l ∼ a, |11〉L strongly couples
to a large number of states in the two-excitation manifolds,
exhibiting a generally complicated dynamics.

Let us now discuss how one can realize an entangling
gate between the computational states |00〉L, |01〉L, |10〉L,
and |11〉L of two parallel arrays. The resonant dipole-dipole
interaction (4) between two parallel arrays naturally im-
plements a

√
iSWAP gate on the timescale Tg ≡ π/4gqa .

The system’s dynamics on the computational subspace
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{|00〉L, |10〉L, |01〉L, |11〉L} realizes the following mapping:

|00〉L → |00〉L,

|10〉L → e−�qa Tg (|10〉L − i|01〉L)/
√

2,

|01〉L → e−�qa Tg (|01〉L − i|10〉L)/
√

2,

|11〉L → ξ |11〉L. (11)

Compared to the truth table of the ideal
√

iSWAP gate (� = 0
and ξ = 1), the realization in Eq. (11) shows two main sources
of imperfection which come from (1) the error ε1 due to finite
decay �qa of the computational states |10〉L and |01〉L and
(2) the error due to loss of population from |11〉L. At small
interatomic separation a/λe � 1, �qa Tg � 1 and the error ε1

can be estimated as

ε1 � �Tg ∼
(

a/λe

N

)3

[K0(π l/a)]−1. (12)

For fixed l/a, Eq. (12) decreases both for longer arrays and
for smaller lattice spacing a/λe due respectively to the scaling
�qa ∼ �0/N3 and to the decrease of Tg. At large separations
l/a, ε1 increases according to [K0(l/a)]−1 ∼ √

l/a exp(l/a)
as expected for an increased gate time. The second source
of errors is due to the loss of population from the state
|11〉L which we model by a parameter |ξ | < 1 in Eq. (11).
The dynamics of |11〉L strongly depends on the separation
l between the arrays. At large separation (l 	 a), |11〉L is
an eigenstate of the parallel arrays, and it decays exponen-
tially with a characteristic rate �11 � 2�qa ∼ 2�0/N3. In this
regime, we can approximate |ξ | � exp(−�11Tg). For small
separation (l ∼ a), |11〉L couples strongly to other states in the
two-excitation manifold leading to large population transfer
outside the computational subspace of the parallel arrays.

To estimate the performance of the proposed implemen-
tation of the

√
iSWAP gate, we calculate the average gate

fidelity according to [28,29]

FG ≡ 1
20 (Tr[MM†] + |Tr[M]|2), (13)

where M ≡ P̂Û †
0 Û P̂. Here P̂ is the projector on the com-

putational subspace of the parallel arrays, Û ≡ exp(−iĤ0Tg),
and Û0 is the ideal gate which acts on the computational
subspace according to the truth table in Eq. (11) with ξ = 1
and � = 0, and as the identity on all the other states. We
numerically evaluate Eq. (13) as a function of the system
parameters N, a/λe, and l/a and show the results for the
gate error εtot = 1 − FG (infidelity) in Figs. 3(d) and 3(e).
In Fig. 3(d) we plot the average gate error as a function of
the lattice separation a/λe for N = 40 and different array
separations l/a. For large separation l/a, the gate error is well
described by the spontaneous decay from the computational
states |10〉L, |01〉L, and |11〉L (black dashed lines in Fig. 3(d))
as expected from the decoupling of |11〉L from other states in
the two-excitation manifold. Accordingly, the error improves
when reducing a/λe as a consequence of the reduced gate
operation time [see Eq. (9)]. In particular, when �Tg � 1 the
total error reads εtot � 3�qa Tg/5 and scales as in Eq. (12). For
the case of arrays of N = 40 atoms as shown in Fig. 3(d),
the decoupling of |11〉L from the two-excitation manifold is
found to be accurate already for l/a � 4. For smaller arrays,

such a decoupling occurs already for smaller values of l/a
as shown in Appendix F. In the opposite regime, i.e., when
arrays are placed close to each other, |11〉L couples strongly to
different states in the two-excitation manifold. This leads to a
large population transfer outside the computational subspace
and hence to an increased error. This effect is dominant in
the case of l/a = 1, 2 in Fig. 3(d). In this case, the strong
coupling leads to an oscillation of population between |11〉L

and |S2〉 = (|2qa, 0〉 + |0, 2qa〉)/
√

2 [30]. The case l = 3a in
Fig. 3(d), represents an intermediate case where the decou-
pling of |11〉L is not perfect and a small fraction of population
is exchanged with |S2〉. For this reason, the curve shows a
slight improvement for smaller a/λe due to a reduction in
the gate operation time, which however saturates to a value
determined by the population transferred from |11〉L to states
outside the computational subspace. In Fig. 3(e) we plot the
average gate error as a function of N for a/λe = 0.10 and
different array separations l/a. As for the case of Fig. 3(d),
for large separations between the arrays, the error is solely
due to the spontaneous decay from the computational states
|10〉L, |01〉L, and |11〉L as shown by the agreement between
the colored markers and the black dashed lines in Fig. 3(e) at
l/a = 4, 5. At short separation the error is instead again dom-
inated by the population transfer from |11〉L to states outside
the computational subspace. We observe a trend, particularly
evident for the case l/a = 3, which shows a first improvement
in the error for short arrays followed by a later increase in the
gate error. As we show in Appendix F, this can be interpreted
as coming from the reduction of the dipole shift between |11〉L

and |S2〉 with growing array length, which leads to a larger
exchange of population between the two states.

The picture presented here for arrays of pinned atoms has
not considered the detrimental effects which come from the
atoms’ center-of-mass motion around their trapping position
in the lattice. As part of the system’s nonlinear response comes
from the destructive interference of the emitted field, we ex-
pect the atomic fluctuation to drastically reduce the intrinsic
dissipative nonlinearity. In the following section, we discuss
the motional effects and their impact on the fidelity of single-
and two-qubit operations.

III. ARRAYS OF FLUCTUATING ATOMS:
MOTIONAL EFFECTS

We now consider the fluctuating motion of the array’s
atoms around their trapping position [see Fig. 4(a)]. In this
case, the open dynamics of an array of fluctuating atoms is de-
scribed by the non-Hermitian Hamiltonian (see Appendix A)

Ĥ ≡
∑

j

[ p̂2
j

2m
+ 1

2
mω2

T(r̂j − Rj)
2 + h̄ωgσ̂

j
21σ̂

j
12

]

+ h̄ε2
∑

i,j

G(r̂j, r̂i)σ̂
j
21σ̂

i
12, (14)

where we modeled the mechanical degrees of freedom as
harmonic oscillators of frequency ωT, and m is the atomic
mass. The operator r̂j (p̂j) represents the center-of-mass po-
sition (momentum) displacement relative to the trap center
Rj ≡ (0, l jy, a jz )T , where j ≡ ( jy, jz ), jy = 0, 1 labels the
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FIG. 4. Arrays of moving atoms. (a) Atoms localized around their
trapping positions Ri with a Gaussian probability distribution of
width σ < a. (b) Decay rate �qa of the most-subradiant mode for
a single array as function of the number N of atoms in the array
as calculated by diagonalizing the averaged Hamiltonian over 100
realization of the atomic positions (colored markers). Horizontal
black dashed line corresponds to (σke)2�0. (c) Dependence on N of
the optimal error for preparing the most-subradiant single-excitation
state of a single array for different values of a (colored markers) and√

2σ = 0.05a.

array A,B, and jz = 1, . . . , N the position within each array.
The second line in Eq. (14) represents coherent and dissipative
atomic dipole-dipole interactions where now the interaction
strength G(r̂j, r̂i) is an operator which acts on the atomic
center-of-mass degrees of freedom and reads

G(r̂j, r̂i) ≡ − i
μ0ω

2
e

h̄
|d|2G0

zz(Rj + r̂j − Ri − r̂i, ωe)ekL·(r̂j−r̂i ).

(15)

The exponential operator appearing as the last factor in
Eq. (15) is a result of the Raman transition used to define
the effective two-level system {|g1〉, |g2〉}. Similarly, in the
presence of atomic fluctuations, the driving Hamiltonian reads
(see Appendix B)

V̂ = h̄
0

∑
j

sin[(ka − kb) · (Rj + r̂j)]σ̂
y
j . (16)

In general, the dynamics described by Eq. (14) and Eq. (16)
leads to correlations between the internal and external de-
grees of freedom, which quickly complicate the simulation
of the time evolution of the full system. In two limiting
cases, the study of the dynamics can be greatly simplified [12]:
(1) the slow atomic-motion regime ωT � �qa and (2) the fast
atomic-motion regime ωT 	 �0.

The slow-motion limit describes the situation where the
timescale of the center-of-mass dynamics is much longer than
the one of the slowest internal dynamics, typically propor-
tional to the decay rate of the subradiant modes. Under this
condition, the atoms can be considered frozen at their current
positions during the internal evolution, and the system’s dy-
namics can be approximated solely by the internal dynamics
where the coupling (15) is evaluated with the substitution
r̂j → rj where rj is the particular value of the displacement
which determines the instantaneous position of the jth atom

[12]. The average dynamics of the system is thus determined
by solving the evolution for different realizations of the atomic
position and then averaging the results. Applying this method
to the one- and two-qubit gates described in Sec. II, one finds
poor fidelities.

The fast-motion limit describes the opposite situation in
which the center-of-mass dynamics is much faster than the
internal one. While this regime is usually challenging for
neutral atoms in optical trap, it might be possible to meet such
condition for an appropriate choice of the parameters of the
Raman transition defining the effective two-level atom, such
that ωT/γ1 	 ε2. In this case, the evolution of the system
can still be approximated solely by the internal dynamics
described by the non-Hermitian Hamiltonian in Eq. (14) (and
associated jump operator) averaged over many different real-
izations of the atoms’ positions [12]. This second limiting case
leads to better fidelities for the one- and two-qubit operations
between parallel arrays as we shall now prove.

A. Regime of fast atomic motion

In the limit of fast atomic motion, ωT 	 �0, we approxi-
mate Eq. (14) by the following non-Hermitian Hamiltonian:

Ĥfam ≡ h̄
∑

i,j

(ωgδij + ε2G̃ij)σ̂
i
21σ̂

j
12, (17)

where we defined the averaged coupling over the atomic posi-
tions G̃ij according to

G̃ij ≡
∫
R3

dri drjG(ri, rj)P(ri)P(rj), (18)

where we assumed the atoms’ positions to be independent
variables, normally distributed according to the probability
distribution P(r) ≡ exp(−r2/2σ 2)/(

√
2πσ )3. In the Lamb-

Dicke regime σke � 1, one can approximate Eq. (18) as
(Appendix C)

G̃ij =
{−iγ1/2 for i = j

(1 − 2σ 2k2
e )Gij for i �= j , (19)

where Gij is the coupling between pinned atoms as given in
Eq. (3) and Eq. (5). Substituting Eq. (19) into Eq. (17), we
obtain (in a frame rotating at ωg)

Ĥfam = (
1 − 2σ 2k2

e

)
h̄

∑
i,j

ε2Gijσ̂
i
21σ̂

j
12

− iσ 2k2
e h̄�0

∑
i

σ̂ i
21σ̂

i
12. (20)

According to Eq. (20), the fast atomic motion renormalizes
the coherent and dissipative coupling between the atoms by
a factor (1 − 2σ 2k2

e ), and adds an independent decay rate
∼σ 2k2

e �0 for each atom. The main effect of the atomic motion
is thus to suppress the scaling ∼�0/N3 of the dark mode decay
rate, which saturates at the constant value ∼σ 2k2

e �0 as shown
in Fig. 4(b) for the case of a single array. This effect has
been pointed out before [4,21]. The expression we obtain in
Eq. (20) differs from the corresponding ones [4,21] by a factor
of two. This increased noise originates from the scattering of
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the Raman laser which adds an additional contribution ∼k2
e σ

2

to the atomic center-of-mass diffusion (see Appendix C).
Let us now consider the fidelity for preparing the dark

mode of a single atomic array in the regime of fast atomic
motion. The driving Hamiltonian Eq. (16), averaged over
the atomic fluctuations, reduces to the pinned-atom expres-
sion Eq. (6), with a renormalized driving frequency 
̃0 =

0 exp(−k2

e σ
2) � (1 − σ 2k2

e )
0. Proceeding as in Sec. II, we
simulate the Schödinger evolution generated by the total av-
eraged Hamiltonian (including the driving) and calculate the
error for preparing the most-subradiant single-excitation state
of the system. We calculate G̃ij by averaging Eq. (15) over 100
realizations of the atomic positions assumed to be distributed
around the lattice sites according to P(r). For the driving
Hamiltonian there is no need to average the Rabi frequency
over different realizations, because the effect of the motion
leads to an overall renormalization factor in the driving, which
is irrelevant after optimizing 
0. We present the results of
the numerical simulations in Fig. 4(c). As a consequence of
the saturation of the dark-mode decay rate [Fig. 4(b)], the
state-preparation fidelity decreases at large N for a fixed lattice
spacing a/λe as evidenced in Fig. 4(c), where we consider the
case

√
2σ/a = 0.05. For larger values of σ the dependence on

N is qualitatively the same, albeit with larger noise, and the
small improvement at small N is lost [see cases N = 4, 8, 12
in Fig. 4(c)]. The results in Figs. 4(b) and 4(c) suggest that,
due to the suppression of the Zeno effect in the presence of
atomic fluctuations, it is not advantageous to use larger arrays.

Let us now analyze the effects of fast atomic motion on the
fidelity of the single- and two-qubit gates in a system of two
parallel arrays. Because the decay rate of the single excitation
dark mode is clamped by the fluctuations after N � 40 for the
case

√
2σ = 0.01a [Fig. 4(b)], we investigate the gate fidelity

only for small arrays up to a maximum of N = 40 atoms. The
results of the numerical simulation for the gate fidelity of two
parallel arrays are shown in Fig. 5. In Fig. 5(a) we compare,
for different values of σ , the minimal error for preparing the
state |10〉L of two parallel arrays of N = 20 atoms separated
by a distance l = a as function of the lattice spacing a/λe.
As expected, the error grows with σ as a consequence of the
contribution (σke)2�0 to the dark-mode decay rate. This effect
is particularly prominent at large values of a/λe where the
main contribution to the nonlinearity comes from the Zeno ef-
fect. For small a/λe � 0.05, values corresponding to different
σ yield similar results because the main contribution to the
error comes from populating the state |01〉L, as for the case
of pinned atoms (see discussion in Sec. II B). In Fig. 5(b)
we compare the

√
iSWAP gate error, calculated according

to Eq. (13), as a function of N for different value of the
separation l between the arrays, assuming a position noise
characterized by

√
2σ = 0.10a. The gate fidelity deteriorates

for increasing l , much faster than for the case of pinned atoms
[cf. Fig. 3(e)]. This behavior is consistent with the increased
decay rate of the array’s dark mode, because we expect the
free-space decay to have a larger contribution to the total error
at larger l due to an increased gate time Tg. In Fig. 5(c) we
study in more detail the particular case of l = 2a, which yields
better fidelities than other values of l in Fig. 5(b) [31]. In par-
ticular, we compare the scaling of the error with both N (left
panel) and a/λe (right panel) for different values of position

FIG. 5. Gate error for parallel arrays of fluctuating atoms. (a) Er-
ror for the preparation of the state |10〉L as function of a/λe, for
different values of σ . Other parameters: N = 20, l = a, δ = 100�0.
(b)

√
iSWAP gate error as function of N for a/λe = 0.10 and 2σ =

0.1a. Different colored markers corresponds to different values of l
(see legend). (c) Left panel:

√
iSWAP gate error as function of N for

l = 2a and a/λe = 0.10. Right panel:
√

iSWAP gate error as function
of a/λ for l = 2a and N = 12. In both panels different values of σ

correspond to different colored markers (see legend). In all panels we
calculated the coupling in Eq. (17) by averaging over 100 realization
according to P(r).

noise σ . While larger noise typically leads to an increase in
the gate error, we find that for N = 12 moderate noise might
improve the gate fidelity as compared to the pinned-atom case
[see gray arrow in the right panel of Fig. 5(c)]. The left panel
of Fig. 5(c) shows that at larger lattice separation positional
noise always deteriorates the gate fidelity, as expected for a
reduced Zeno blockade. However, for a � 0.10λe, a value of√

2σ = 0.05a leads an improvement in the gate error over the
pinned-atom case. This improvement is attributed to a change
in the effective coupling rate between the states |11〉L and |S2〉,
which leads to a larger population in |11〉L at t = Tg. We do
not further investigate this effect, as we believe the values of
the error calculated from the effective model Eq. (17) does
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not yield correct estimates for a/λe � 0.1 [hatched region in
Fig. 5(c)] as we argue in the following.

B. Limitation of the current description of the atomic
fluctuations and alternative approaches

The treatment of the atomic fluctuations presented in the
previous section does not take into account corrections due
to a finite velocity of the atoms [19,32–35]. Finite atomic
velocity might lead to excitation of the atomic motional state,
which would result in a reduction in the fidelity of the one-
and two-qubit gates between arrays. In the following, we
take into account effects of finite atomic velocity using a
perturbative treatment of the atomic fluctuations [36]. As in
Sec. III A, we consider a subwavelength atomic array (a <

λe/2) where atoms are well localized around their trapping
position, namely, r0 � a, with r0 ≡ √

h̄/2mωT the center-
of-mass zero point motion. Under this assumption and for
low thermal phonon number nth < 1, the system is in the
Lamb-Dicke regime, η ≡ σke � 1, for σ ≡ r0

√
2nth + 1, and

we approximate the coupling between internal and external
degrees of freedom by a power expansion of G(r) to second
order in η [21],

Ĥ � Ĥ0 + ĤI1 + ĤI2. (21)

Here Ĥ0 describes the dynamics in the absence of mechanical
effects of light and is simply given by Eq. (1) with the addition
of the mechanical energy of the atoms. The term ĤI1 (ĤI2)
represents the first- (second-) order correction in the atomic
center-of-mass displacement. They have the general form

ĤI1 ≡ ε2
∑

i,j

(r̂i − r̂j) · ∇G(Rj, Ri)σ̂
j
21σ̂

i
12, (22)

ĤI2 ≡ ε2

2

∑
ji

[(r̂i − r̂j) · ∇]2G(Ri, Rj)σ̂
j
21σ̂

i
12. (23)

Let us here remark that Eq. (21) reduces to Eq. (20), as
expected, if one traces over the center-of-mass degrees of free-
dom assuming the atoms in a thermal state of their mechanical
motion.

The driving Hamiltonian Eq. (16) up to second order in the
center-of-mass fluctuations reads

V̂ � V̂0 + V̂1 + V̂2. (24)

Here V̂0 is the driving Hamiltonian for arrays of pinned atoms
as given in Eq. (10). The term V̂1 (V̂2) represents the first-
(second-) order correction in the Lamb-Dicke parameter. They
read (see Appendix D)

V̂1 ≡ −ih̄
0

N∑
j=1

cos(Kza jz )[ηz(b̂†
z j + b̂z j ) + ηx(b̂†

x j + b̂x j )]σ̂
y
j

(25)

and

V̂2 ≡ ih̄
0

N∑
j=1

sin(Kza jz )
[
η2

z (b̂†
z j + b̂z j )

2

+ 2ηzηx(b̂†
z j + b̂z j )(b̂

†
x j + b̂x j )

+ η2
x (b̂†

x j + b̂x j )
2
]
σ̂

y
j . (26)

FIG. 6. Gate error for arrays of moving atoms: perturbative
treatment. (a) Error for preparing the dark state |10〉L for two parallel
arrays separated by l = a. Solid markers refer to exact digonalization
(ED) results, and empty markers refer to the effective model (Eff.)
where the motion is adiabatically eliminated in its ground state to
second order in η. (b) Total average center-of-mass phonon popu-
lation for δ/�0 = 500 (circles) and δ/�0 = 100 (squares). For both
panels (a) and (b) we used η = 2π × 0.05a/λe. (c)

√
iSWAP gate

error for parallel arrays of fluctuating atoms separated by l = 2a as
function of a/λe. Different values of atomic center of mass fluctu-
ations r0/a are compared (see legend). For all plots the following
values of additional parameters have been used: nth = 0, N = 2,
phonon Hilbert space dimension d = 2, and ωT/�0 = 100.

Here we assumed the driving laser to be directed orthogo-
nal to the y-axis. Moreover, we defined ηx,z ≡ Kx,zr0, where
x̂ j ≡ r0(b̂†

x j + b̂x j ), ẑ j ≡ r0(b̂†
z j + b̂z j ), and Kx ≡ ka sin α −

kb sin β, while Kz is given in Eq. (7).
We now proceed to study the dynamics generated by

Eqs. (21) and (24) in the fast-motion regime ωT 	 �0 for the
case of single- and two-qubit gates between parallel arrays.
We consider here the case where the atoms are initially pre-
pared in their motional ground state (nth = 0). In particular,
we compare the results obtained from exact diagonalization
of the total Hamiltonian (21) and (24), and the results ob-
tained from an effective model in which the atomic motion
has been adiabatically eliminated keeping contribution up to
second order in η (Appendix D). This effective model contains
both contributions from processes which do not change the
motional state of the atoms (first order in ĤI2 and V̂2) and from
second-order processes via intermediate excited states of the
atomic motion (second order in ĤI1 and V̂1). In Fig. 6(a) we
show the error for preparing the state |10〉L for a system of two
parallel arrays of N = 2 atoms separated by a distance l = a
and trapped with a center-of-mass frequency ωT/�0 = 100.
We assume one array to be detuned from the target one by δ.
The results of exact diagonalization and of the effective model
show excellent agreement at large lattice spacings a/λe. For
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smaller interatomic separations, the difference between the
exact and effective model is due the excitation of the center-
of-mass motion from atomic recoil [Fig. 6(b)]. In Fig. 6(c)
we show the dependence on a/λe of the error in performing
a

√
iSWAP operation between two arrays of N = 2 atoms

separated by a distance l = 2a. We ascribe the decrease of
fidelity at small interatomic separations to excitation of the
center-of-mass motion. We observe that the values of a/λe at
which the center-of-mass motion is excited depends on how
tight the trap is: for smaller r0/a (tighter trap) fluctuations are
excited for smaller a/λe.

Figures 6(a)–6(c) show that, at small interatomic sepa-
ration, the main source of error is due to the excitation of
center-of-mass fluctuations caused by the terms Eqs. (22),
(23), (25), and (26). Precisely, the excitation of the atomic
fluctuations is predominantly due to the atomic recoil involved
in the dipole-dipole interaction [Eqs. (22) and (23)] because
these terms represents the largest coupling between internal
and external degrees of freedom. The mathematical origin of
this large coupling is in the faster divergence of the derivatives
of Gij for small separation. Because of the enhancement in the
the coupling rate in Eqs. (22) and (23) for small atomic sep-
aration, the perturbative approach to the atomic fluctuations
developed here is valid only for sufficiently small η such that
ηk−1

e |∂αG(R)/G(r)| � 1 and η2k−2
e ∂α∂βG(R)/G(r) � 1 for

α, β = x, y, z. Furthermore the critical values of η for which
the perturbative approach is justified depends on N : for fixed
η one observes the appearance of unphysical eigenvalues of
Eq. (21) with positive imaginary part as N is increased.

The perturbative model, while not sufficiently accurate to
correctly describe the effects of motion for long arrays, val-
idates the results of the fast atomic motion regime for a �
0.1λe. Furthermore, it indicates that for smaller interatomic
separations the center-of-mass motion is expected to play a
major role in the sytem dynamics, a feature not captured by
the model in Sec. III A.

IV. DISCUSSION

The results presented in the previous sections are obtained
under several assumptions: (1) the possibility to trap atoms in
an optical lattice which is subwavelength with respect to the
transition |e〉 ↔ |g1〉, (2) a particular atomic structure which
comprises two distinct Raman transitions connecting |g2〉 to
|g1〉 via the intermediate levels |e〉 and | f 〉 where ω f � ωe, (3)
a negligible dephasing rate of |g2〉 (κ0 � �0), (4) fast atomic
center-of-mass fluctuations ωT 	 �0, and (5) the Lamb-Dicke
regime for the atomic motion. Let us now show how these
requirements can be met using ultracold alkaline-earth atoms
in an optical lattice. The relevant level structure for such
atoms is shown in Fig. 7, where we marked transitions and
levels used to implement the scheme illustrated in Fig. 1. The
ground-state manifold levels |g1,2〉 are encoded in the levels
3P0 and 3P2 respectively, while the excited state |e〉 is encoded
in 3D1, and the auxiliary state | f 〉 used for the excitation of
the array’s collective dark modes is encoded in 3S1. Decay
from 3P0 to 1S0 is a forbidden transition which happens at a
rate ≈10 mHz for Sr, while decay from 3P2 to 1S0 has an even
longer predicted lifetime [37]. The two levels |g1〉 and |g2〉
can thus be considered stable. Alkaline-earth atoms exhibit

FIG. 7. Relevant level structure (not to scale) of alkaline-
earth-metal atoms. We highlight the transitions and levels used to
implement our scheme with the same notation of Fig. 1.

long range dipole interactions on the transition 3P0 −3D1,
which combined with the possibility of creating optical lat-
tices using transitions from 3PJ to higher excited states allows
for the creation of deep-subwavelength arrays. In the case
of bosonic strontium, for instance, the transition wavelength
between |e〉 and |g1〉 is 2.6 μm which allows us to attain a
subwavelength array with lattice spacing a/λe ≈ 0.08 for an
optical lattice with wavelength λopt � 400 nm [38]. Addition-
ally, the transition between 3P0 −3D1 has a linewidth γ1/2π ≈
290 kHz which is broader than the linewidth γ2/2π ≈ 10 kHz
for 3P2 −3D1 [39] resulting in a weak effective dephasing
κ0/�0 ≈ 3 × 10−3 of the level |g2〉 after the elimination of the
level |e〉. The Raman driving of deep-subwavelength arrays
can be realized with ω f /ωe � 3.8 using the rapid transitions
between 3S1 −3P2 (γ /2π ≈ 45 MHz) and between 3S1 −3P0

(γ /2π ≈ 10 MHz) [39]. Finally let us consider the require-
ment on the atomic motion. We assumed the atoms to be
sufficiently cold initially to be well localized at their optical
lattice sites (in Sec. III B we even assumed them in their
motional ground state). This condition can be achieved via
known cooling schemes for alkali-earth atoms which requires
trapping depths of the order ∼10–103 kHz for standard cold-
atoms experiments [37]. Note that the recoil energy of the
transition |e〉 ↔ |g1,2〉 is weaker than for the scattering of
photons from the optical lattice, thus ensuring the system
is in the Lamb-Dicke regime η = r0ke � 1 with respect to
the relevant dipole transition. For these values of the trap
depth, the trap frequency is of order ωT ∼ 100 kHz which is
comparable to the decay rate γ1 of the transition |e〉 ↔ |g1〉.
Hence, it should be feasible to enter the fast atomic motion
regime (ωT/�0 < 1) as soon as 
/� � 0.1. Lattices of cold
alkaline-earth atoms thus represent a promising platform for
the realization of the scheme proposed in Sec. II and Sec. III.

It is important to point out that the dephasing arising
from the Raman driving [Fig. 1(a)] imposes, in principle, an
upper limit to the length N of an array, which corresponds
to the case in which the decay rate of the most-subradiant
single-excitation state of the array equal the dephasing rate
κ0. For arrays longer than this upper limit, dephasing plays
an important role and cannot be neglected. However, we note
that incoherent processes caused by dephasing in the Raman
scheme could be avoided by using a cycling transition for
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the |e〉 ↔ |g1〉, and a two-photon driving for the transition
|e〉 ↔ |g2〉 as proposed in [12]. Additionally, the limit on the
array length imposed by the dephasing is generally negligible
while considering the effect of the atomic motion which has
a much stronger effects on the optical response of long arrays
(see Sec. III).

Finally, let us remark that the scheme proposed here can
be extended to more than two parallel arrays by generalizing
the idea of selective detuning to several parallel arrays. This
can be done by borrowing techniques used in super-resolved
fluorescence microscopy [40,41]. For instance, the doughnut-
shaped Laguerre-Gaussian mode (p, l ) = (0, 1) has a dark
central region which is not diffraction limited. Illuminating
the system with such a beam and placing the target array in
the dark spot allows one to selectively tune the other arrays
out of resonance.

V. CONCLUSIONS

Our findings can be summarized in four main points.
First, we have discussed how to coherently excite dark modes
of subwavelength arrays using a Raman laser. This tech-
nique represents an alternative to optical phase imprinting
techniques [42–44]. Second, we described how to realize a
universal set of gates based on dipole-blockade between qubit
states. We found that the intrinsic nonlinear response of col-
lective dark modes of arrays of pinned atoms leads to fidelities
of 99% for sufficiently large arrays or small interatomic sepa-
ration. Third, we considered the effects of atomic motion and
showed that its detrimental effects on the nonlinear optical
response of atomic arrays can be partially mitigated in the
fast atomic motion regime. Additionally the center-of-mass
fluctuations place a bound on the size N of the array as well
as on the lattice spacing a/λe. Surpassing this bound by either
considering longer arrays or shorter atomic separations does
not lead to an improvement in the fidelity of gate operations
or, worse, might even increase their errors. It is worth men-
tioning that while working in the fast atomic motion limit
allows us to reduce detrimental motional effects on the ar-
ray’s collective response, it comes at the cost of an increased
gate time and of additional diffusion of the atomic center-of-
mass motion due to scattering of the driving photons. At our
present understanding, this cost is, however, a necessary one
to pay to partially recover the collective nonlinear response
of subwavelength atomic arrays. Is is an interesting question
for future investigations whether a clever pulse scheme can
be devised such as to produce the desired internal dynamics

while disentangling it from the external one after a pulse
cycle, as for the case of trapped ions [45,46]. To this aim one
could think to use the collective mechanical modes of an array
of atoms which arise due to the mechanical forces mediated
by the dipole-dipole interactions [47,48]. Another interesting
direction, which we are currently pursuing, is the development
of better theoretical models which would allow one to extend
the results of Sec. III to larger arrays while accurately taking
into account possible excitation of the center-of-mass motion.
Finally, we showed that realization of the proposed scheme
for manipulating quantum information with arrays of cold
alkaline-earth atoms seems possible in the near future.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
ATOMIC DYNAMICS

In this Appendix, we derive the effective internal dynamics
of the atoms starting from the full Hamiltonian describing the
interaction between the atoms and the free-space electromag-
netic field within the dipole approximation. We include the
atomic center-of-mass motion for the case of harmonically
trapped atoms. These general expressions reduce to the one
of Sec. II, if the position of the atom is treated as a simple
c-number.

The total Hamiltonian of the system when the atoms are
driven by an external laser on the transition |g2〉 ↔ |e〉 reads

Ĥtot ≡ Ĥrad + Ĥat + Ĥint + ĤL(t ). (A1)

In Eq. (A1), we defined Ĥrad (Ĥat) the energy of the field
(atoms), Ĥint the atom-field interaction in the dipole approxi-
mation, and ĤL(t ) the external laser driving. Specifically,these
different terms are defined as

Ĥrad ≡
∑

k

h̄ωkâ†
kâk, (A2)

Ĥat ≡
N∑

j=1

[ p2
j

2m
+ 1

2
mω2

T(R j − r̂ j )
2 + h̄ωe|e j〉〈e j | + h̄ωg|g2, j〉〈g2, j |

]
, (A3)

Ĥint ≡
N∑

j=1

∑
k,εk

[
âkeik·(Rj−r̂ j )

(
g(1)

k |e j〉〈g1, j | + g(2)
k |e j〉〈g2, j |

) + H.c.
]
, (A4)

ĤL(t ) ≡ h̄


2

N∑
j=1

{ei[kL·(Rj−r̂ j )−ωLt]|e j〉〈g2, j | + e−i[kL·(Rj−r̂ j )−ωLt]|g2, j〉〈e j |}. (A5)
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Here kL (ωL = c|kL|) is the laser wave vector (frequency), ωk ≡ c|k|, and upon introducing the dipole dν for the transition
|e〉↔|gν〉 (ν = 1, 2), we defined the coupling constants

g(ν)
k ≡ dν · εk

√
h̄ωk

2ε0V
, (A6)

h̄
 ≡ 2d2 · εLEL, (A7)

where εL (EL) is the polarization (modulus) of the driving electric field and V the quantisation volume. The derivation of Eq. (14)
starting from Eq. (A1) is based on the following two steps. First, we adiabatically eliminate the excited state |e〉 and obtain an
effective Hamiltonian describing the dynamics of two-level systems of levels |g1〉, |g2〉 interacting with the electromagnetic field
[49–51]. The adiabatic elimination can be carried out independently for each atom. The Schrödinger equation for the single-atom
state |�(r)〉 ≡ ψ1(r)|g1〉 + ψ2(r)|g2〉 + ψe(r)|e〉 reads (in a frame rotating at the driving frequency)

ih̄ψ̇e(r) = (Ĥcm + h̄�)ψe(r) + h̄


2
e−ikL·rψ2(r) +

∑
k

â†
ke−ik·r[g(1)∗

k e−i(ωe−�)tψ1(r) + g(2)∗
k e−iωLtψ2(r)

]
, (A8)

ih̄ψ̇2(r) = Ĥcmψ2(r) + h̄


2
eik·rψe(r) +

∑
k

g(2)
k eiωLt âkeik·rψe(r), (A9)

ih̄ψ̇1(r) = Ĥcmψ1(r) +
∑
k,εk

g(1)
k ei(ωe−�)t âkeik·rψe(r), (A10)

where � ≡ ωe − (ωg + ωL) and Ĥcm ≡ p̂2/2m + ω2
T(R − r̂)2/2. We set ψ̇e(r) = 0 in Eq. (A8) and solve for ψe(r) neglecting

the contribution of of Ĥcm under the assumption � 	 ωT. We obtain an effective equation for the dynamics of ψ1(r) and ψ2(r).
Generalizing this procedure to the case of N atoms is straightforward, and one obtains that a Hamiltonian which yields the
effective equations of motion for ψ1 j (r) and ψ2 j (r) reads

Ĥ eff
T ≡ Ĥrad +

N∑
j=1

{[ p2
j

2m
+ 1

2
mω2

T(R j + r̂ j )
2 + h̄ωgσ̂

j
22

]
−

2∑
ν,μ=1

∑
k,k′,εk,ε′

k

g(μ)
k g(ν)∗

k′

�
e−i[(k−k′ )·(R j−r̂ j )−ωL(ν−μ)t]â†

k′ âkσ̂
j

νμ

− h̄


2�

∑
k,εk

[
âkei(k−kL )·(R j−r̂ j )

(
g(1)

k ei(ωe−�)t σ̂
j

21 + g(2)
k eiωLt σ̂

j
22

) + H.c.
]}

, (A11)

where we redefined ωg to include the AC Stark shift 
2/2�. We stress that such procedure yields a light matter coupling which
can be tuned via 
/�. Second, we eliminate the photonic degrees of freedom assumed to be in the vacuum state and obtain a
Born-Markov master equation for the atomic variables. Master equations for the internal and center-of-mass dynamics of atoms
interacting with electromagnetic field have been derived for single or independent atoms in the context of laser cooling [52,53].
In the case of strong dipole interactions, such a master equation can be extended to include coherent coupling and interference
[54]. Following a similar derivation, the master equation for the effective two-level atom reads

∂t ρ̂ = −i(Ĥ ρ̂ − ρ̂Ĥ†) + J12(ρ̂) + J22(ρ̂). (A12)

Here Ĥ is the non-Hermitian Hamiltonian of the system and reads

Ĥ =
∑

j

[ p2
j

2m
+ 1

2
mω2

T(R j − r̂ j )
2 + h̄ωgσ̂

j
22

]
+

(



2�

)2 ∑
i,j

[
G(r̂j, r̂i)σ̂

j
21σ̂

i
12 + F (r̂j, r̂i)σ̂

j
22σ̂

i
22

]
, (A13)

where we defined the operators

G(r̂j, r̂i) ≡ − i

h̄2

∑
k,ε

g(1)
k g∗(1)

k ei(k−kL )·[(Rj+r̂j )−(Ri+r̂i )]
∫ ∞

0
dτ ei(ωe−�−ωk )τ , (A14)

F (r̂j, r̂i) ≡ − i

h̄2

∑
k,ε

g(2)
k g∗(2)

k ei(k−kL )·[(Rj+r̂j )−(Ri+r̂i )]
∫ ∞

0
dτ ei(ω−ωk )τ . (A15)

Taking the continuum limit for k and making use of the identity
∫ ∞

0 dω exp(±iωx) = πδ(x) ∓ iP.V.(1/x), where P.V.(1/x) stands
for the Cauchy principal value of 1/x, we can write Eq. (A14) and as

G(r̂j, r̂i) = −i

2ε0h̄(2πc)3

∫
dn 
(n)

∫ ∞

0
dωk ω3

kei(k−kL )·[(Rj+r̂j )−(Ri+r̂i )]

[
πδ(ωe − � − ωk ) + iP.V.

(
1

ωe − � − ωk

)]
, (A16)

where 
(n) = ∑
εk

(d1 · εk )2 describes the dipole emission pattern, n is a unit vector which points in the direction of k, and
εk ⊥ k. Before proceeding we need to make an important remark. As it is, Eq. (A16) does not lead to the correct (collective)
shift induced by the electromagnetic field on the atoms as originally derived in [55] using other techniques. Comparing Eq. (A16)
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with the equivalent expressions in [3], which yields results consistent with [55], one notes that integral on ωk should be extended
to the whole real line. The difference between Eq. (A16) and Eq. (15) in [3] originates from the rotating wave approximation we
assumed in Eq. (A4) [56,57]. The largest contribution to the frequency integral in Eq. (A16), comes from values of ωk around
ωe − � � ωe. In the optical domain such frequency is very large as compared to any other frequencies in the system. It is thus
justified to extend the limit of integration

∫ ∞
0 dωk � ∫ ∞

−∞ dωk in Eq. (A16), which then leads to the correct value of the atomic
interaction [58]

G(r̂i, r̂j) = −i
μ0ω

2
e

h̄
ekL·(Rj+r̂j−Ri−r̂i )[d1 · G0(Rj + r̂j − Ri − r̂i, ωe) · d1]. (A17)

In a similar way, starting from Eq. (A15) one can show that

F (r̂i, r̂j) = −i
μ0ω

2
e2

h̄
ekL·(Rj+r̂j−Ri−r̂i )[d2 · G0(Rj + r̂j − Ri − r̂i, ωL) · d2], (A18)

where we approximated ωe + � � ωe and ωe − ωg − � � ωe − ωg ≡ ωe2, and where the components of the free-space electro-
magnetic Green’s function, G0

αβ ≡ eα · G0(r, ω) · eβ (for α, β = x, y, z), read

G0
αβ (r, ω) = eikr

4πk2r3

[
(k2r2 + ikr − 1)δαβ − (k2r2 + 3ikr − 3)

rαrβ

r2

]
. (A19)

The last two terms in Eq. (A12) are the superoperators representing quantum jumps associated respectively to a decay from |g2〉
to |g1〉 or a dephasing of |g2〉. They read

J12(ρ̂) =
(




2�

)2

γ1 e−ike2k̂L·(Ri+r̂i )

[∫
S
dn 
(n) eiken·(Ri+r̂i )σ̂ i

12ρ̂σ̂
j
21e−iken·(Rj+r̂j )

]
eike2k̂L·(Rj+r̂j ), (A20)

J22(ρ̂) =
(




2�

)2

γ2 e−ike2k̂L·(Ri+r̂i )

[∫
S
dn 
(n) eike2n·(Ri+r̂i )σ̂ i

22ρ̂σ̂
j
22e−ike2n·(Rj+r̂j )

]
eike2k̂L·(Rj+r̂j ), (A21)

where the integral is carried out on the unit sphere, γ1 ≡
|d1|2ω3

e/(3πε0 h̄c3), and γ2 ≡ |d2|2ω3
e2/(3πε0 h̄c3). Let us

now interpret the processes in Eqs. (A20) and (A21). The
process in Eq. (A20) describes the correlated emission of a
photon between each pair of atoms i, j associated to the cor-
responding recoil of the atomic center-of-mass wave function.
We observe that the atoms undergo two different recoils: one
associated with the absorption of a photon from the laser
on the transition |e〉 ↔ |g2〉 and a second recoil associated
with the spontaneous emission of a photon on the transi-
tion |e〉 ↔ |g1〉. The first recoil happens always along the
same direction fixed by k̂L ≡ kL/|kL| where |kL| � ke2, while
the second occurs around a random direction as prescribed
by the dipole emission pattern 
(n). Similar interpretation
holds for Eq. (A21). In the following, we assume γ2 � γ1.
Within this approximation the term proportional to F (r̂i, r̂j) in
Eq. (A13) and the contribution J22(ρ̂) are negligible and the
atomic evolution can be approximated by the non-Hermitian
Hamiltonian

Ĥ =
∑

j

[ p2
j

2m
+ 1

2
mω2

T(R j − r̂ j )
2 + h̄ωgσ̂

j
22

]

+ ε2
∑

i,j

G(r̂j, r̂i)σ̂
j
21σ̂

i
12, (A22)

and the action of stochastic quantum jump according to
Eq. (A20).

Limit of pinned atoms

The case of atoms pinned to their lattice site is readily
obtained from Eq. (A22) by setting r̂j = 0. The center-of-

mass motion is thus decoupled from the internal motion
and the mechanical energy contribution in Eq. (A22) can
be neglected. Following this procedure one obtains the non-
Hermitian Hamiltonian

Ĥ0 = ε2
∑

i,j

Gji σ̂
j
21σ̂

i
12, (A23)

where Gji is simply given by Eq. (A17) where the center-
of-mass fluctuations rj have been neglected. The complex
coupling rate Gji is not the same as the free-space dipole-
coupling rate between two two-level systems at positions Ri
and Rj, because of the phase factor ekL·(Rj−Ri ) due to the
Raman driving [cf. Eq. (A17) and Eq. (22) and Eq. (26) in
[3]; note that we used a different notation as compared to
[3]]. However, Gji reduces to the usual form of the free-space
dipole coupling for the case of pinned atom when we consider
the Raman laser in Eq. (A5) to be directed orthogonal to the
plane containing the arrays, i.e. kL ‖ ex, for arrays lying in
the yz-plane. We assumed this to be the case in all results
presented in Sec. II.

APPENDIX B: DERIVATION OF THE DRIVING
HAMILTONIAN

We now discuss in detail the conditions to drive single
excitations dark modes of a single atomic array. The results
generalize easily to the case of parallel arrays discussed in the
main text. We consider an additional highly excited level | f 〉
for each atom, and drive a two-photon transition between |g1〉
and |g2〉 through | f 〉 [see Fig. 2(b)]. When the two driving
lasers are detuned from the intermediate level | f 〉, this latter
is negligibly populated during the process and can be adiabat-
ically eliminated, yielding the effective driving Hamiltonian
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(in a frame rotating at the driving frequency ωd )

V̂ = h̄
0

N∑
j=1

sin[(ka − kb) · (R j + r̂ j )]σ̂
y
j , (B1)

where ka (kb) is the wave vector associated to the laser driving
the transition | f 〉 ↔ |g1〉 (| f 〉 ↔ |g2〉), σ̂

y
j ≡ i(σ̂ j

12 − σ̂
j

21) and

0 ≡ 
a
b/2� f is the effective Rabi frequency of the two-
photon transition. Note that to derive Eq. (B1), we assumed
the system to be driven both from the left and from the right,
a situation which can be achieved using a mirror to reflect the
driving laser as illustrated in Fig. 2(b).

Limit of pinned atoms

For the case of atoms pinned to their lattice position,
Eq. (B1) reduces to

V̂0 = h̄
0

N∑
j=1

sin(Kza jz )σ̂ y
j , (B2)

where we further assumed the array to be aligned along the
z-axis, Rj = Zjez, Zj ≡ a jz, and we defined Kz ≡ ka cos α −
kb cos β as in Eq. (7). Here ka = k f − � f /c, kb = k f −
� f /c − ωg/c, where k f ≡ ω f /c [see Fig. 1(b)]. For a given
interatomic separation a, the values of α and β which allow us
to tune the driving in Eq. (B2) to match the most-subradiant
single-excitation state can be obtained by setting Kz = π/a.
We write

β = ka

kb
cos α − ke

2kb

λe

a
, (B3)

and assuming ω f = pωa + � f (p ∈ Q), we solve for β vary-
ing a/λ0 and α. The results are shown in Fig. 2(b) for p = 2
demonstrating that a Raman transition through a higher level

allows for exciting dark modes for arrays with small a/λe. Let
us finally remark that larger values of p allow us to drive sub-
radiant modes of arrays with smaller interatomic separation.

APPENDIX C: MOTIONAL AVERAGING IN THE LIMIT OF
FAST ATOMIC FLUCTUATIONS

In the limit ωT 	 γ1, the dynamics of an array of fluc-
tuating atoms on the timescale of the internal dynamics can
be approximated by an effective master equation for the sole
internal degrees of freedom, where the coupling coefficients
have been averaged over the center-of-mass motional state.
Specifically, the non-Hermitian Hamiltonian Eq. (A22) in the
fast-atomic-motion limit is approximated as

Ĥfam = ε2
∑

ij

G̃ij σ̂
j
21σ̂

i
12, (C1)

where G̃ij ≡ 〈G(r̂i, r̂j)〉cm, and the average is taken with re-
spect to the probability distribution of the center of mass
position of atoms at sites i and j. As in the main text, we as-
sume the position fluctuation of the atoms to be independently
and equally distributed according to

P(ri) = e−r2
i /2σ 2

(
√

2πσ )3
. (C2)

In the following, we evaluate the expression for the av-
eraged coupling rate G̃ij for the case of a single array of
atoms polarized along the array direction in the limit of tightly
trapped atoms, σ � a. We start from Eq. (A16) and take
the average over the atoms fluctuation with respect to the
distribution Eq. (C2). Using the result

〈eik·(ri−ri )〉cm = δi j + (1 − δi j )e
−k2σ 2

, (C3)

we obtain, separating real (J̃i j) and imaginary (�̃i j) parts,

�̃i j = − iπ

2ε0h̄(2πc)3

∫
dn 
(n)

∫ ∞

0
dωk ω3

kei(k−kL )·(R j−Ri )
[
δi j + (1 − δi j )e

−|k−kL|2σ 2]
δ(ωe − � − ωk ), (C4)

J̃i j = π

2ε0h̄(2πc)3

∫
dn 
(n)P.V.

∫ ∞

0
dωk ω3

kei(k−kL )·(R j−Ri )
[
δi j + (1 − δi j )e

−|k−kL|2σ 2] (
1

ωe − � − ωk
.

)
(C5)

For the case of i = j, one has �̃ii = γ1 ∀i, and the divergent Lamb shift J̃ii. For the case i �= j is it convenient to analyze Eqs. (C4)
and (C5) separately. Starting from the dissipative coupling rate �̃i j , one proceeds by changing to spherical coordinates, from
which the radial integral can be immediately performed to yield

�̃i j = −i
3γ1

8π
e−2k2

e σ 2
∫ 2π

0
dφ

∫ π

0
dθ sin3 θ eike(Zi−Z j ) cos θe2k2

e σ 2 cos φ sin θ , (C6)

where we defined ke ≡ ke(cos φ sin θ, sin φ sin θ, cos θ )T , kL ≡ kLex � keex, and assumed the array to be aligned along the
z-axis. In the limit of σke � 1, keeping only terms up to order (keσ )2 we obtain

�̃i j = −3

2
γ1

(
1 − 2k2

e σ
2
){ sin[ke(Zi − Zj )]

[ke(Zi − Zj )]3
− cos[ke(Zi − Zj )]

[ke(Zi − Zj )]2

}
� (

1 − 2k2
e σ

2
)
�i j, (C7)

where �i j is the dissipative coupling rate between two pinned atoms at site i and j as given by the imaginary part of Eq. (3). To
evaluate the averaged collective dipole shift (C5), it is convenient to rewrite it in Cartesian coordinates

J̃i j = π

2ε0h̄(2π )3
P.V.

∫
R3

d3k
k

ke − k
ei(k−kL )·(R j−Ri )e−|k−kL|2σ 2

. (C8)
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The integral in Eq. (C8) has been approximated in [4,10] for the case of an infinitely long array. By noticing that e2k2
e σ 2

J̃i j is
independent on σ one can show that a good approximation for J̃i j reads

J̃i j � e−2k2
e σ 2

Ji j � (
1 − 2k2

e σ
2
)
Ji j, (C9)

where in the last passage we assumed k2
e σ

2 � 1, and Ji j is the coherent coupling rate between two pinned atoms at site i and j
given in Eq. (3).

Let us point out that the method of averaging over the
atomic fluctuations albeit yielding for the coupling G̃ij similar
results as the ones obtained in [4,10] following a renormaliza-
tion procedure, it follows a fundamentally different approach.
In particular, in [4,10] the free-space coupling is properly
renormalized yielding finite results for J̃ii. The procedure
followed here is not a renormalization: the coupling is still
between pointlike atoms, which, however, are randomly dis-
tributed according to Eq. (C2).

Averaged driving Hamiltonian

Under the assumption of fast atomic motion, we can ap-
proximate the driving Hamiltonian (B1) as

V̂fam ≡ h̄
0

N∑
j=1

〈sin[(ka − kb) · (R j + r̂ j )]〉cmσ̂
y
j , (C10)

which yields

V̂fam = h̄
0e−|ka−kb|2σ 2/2
N∑

j=1

sin[(ka − kb) · R j]σ̂
y
j . (C11)

The effect of atomic motion, in the limit ωT 	 γ1, is thus a
renormalization of the Rabi frequency 
0.

APPENDIX D: PERTURBATIVE TREATMENT OF ATOMIC
FLUCTUATIONS: LAMB-DICKE EXPANSION

When the atoms are prepared in a deep optical lattice
(r0 < a), where r0 is the zero-point motion of the center of
mass, and if the optical lattice is subwavelength (a < λe/2),
the system is in the Lamb-Dicke regime (η ≡ r0ke � 1).
Within this regime, we expand the dipole coupling in power
series up to second order in r̂j. After the expansion, we write
Eq. (A22) as

Ĥ � Ĥ0 + ĤI1 + ĤI2. (D1)

Here Ĥ0 represents the term to zero-order in r̂j, where center-
of-mass dynamics and internal dynamics are decoupled. It
reads

Ĥ0 ≡
∑

j

[ p̂2
j

2m
+ 1

2
mω2

T(r̂j − Rj)
2 + h̄ωgσ̂

j
21σ̂

j
12

]

+ ε2
∑

i,j

Gjiσ̂
j
21σ̂

i
12, (D2)

where as before we defined ε2G(Ri, Ri) ≡ −iε2γ1/2 ≡
−i�0/2. The term ĤI1 (ĤI2) represents the first- (second-)

order correction in the atomic center-of-mass displacement.
They read

Ĥ1 ≡ ε2
∑

i,j

(r̂i − r̂j) · ∇Gjiσ̂
j
21σ̂

i
12, (D3)

Ĥ2 ≡ ε2

2

∑
j,i

[(r̂i − r̂j) · ∇]2Gijσ̂
j
21σ̂

i
12. (D4)

Analogously, the expansion of Eq. (A20) in powers of r̂j
yields the approximated quantum jump superoperator to sec-
ond order in η. Substituting Eq. (A17) into Eqs. (D3) and
(D4), one obtains the following expressions for the higher-
order corrections:

ĤI1 =
∑
i �=j

[
ikL · (r̂i − r̂j)G

0
ij + (r̂i − r̂j) · ∇G0

ij

]
σ̂

j
21σ̂

i
12,

(D5)

ĤI2 = 1

2

∑
i �=j

{ − [kL · (r̂i − r̂j)]
2G0

ij + 2i[kL · (r̂i − r̂j)]

× (r̂i − r̂j) · ∇G0
ij + [(r̂i − r̂j) · ∇]2G0

ij

}
σ̂

j
21σ̂

i
12. (D6)

Here we defined G0
i,j as G(ri, rj) ≡ ekL·(Ri+r̂i−Rj−r̂j )G0

ij where
G(ri, rj) is given in Eq. (A17). We note that in the limit ωT 	
�0, the perturbative description, Eq. (D1), is consistent with
the fast atomic motion approximation given in Appendix C. In
fact, to first approximation, we take the trace over the center-
of-mass degrees of freedom assuming the the atoms to be in
a thermal state, and we obtain the following effective non-
Hermitian Hamiltonian:

Ĥeff,0 ≡ Tr[ρ̂th(Ĥ0 + ĤI1 + ĤI2)]

� h̄ωg

∑
j

σ̂
j
21σ̂

j
12 + ε2

∑
i,j

Gjiσ̂
j
21σ̂

i
12

− 2ε2k2
e σ

2
∑
i �=j

Gijσ̂
j
21σ̂

i
12, (D7)

where we approximated kL � ke, and used the results in the
Supplemental Material of [21] to approximate [(r̂i − r̂j) ·
∇]2G0

ij � −(keσ )2Gij. Here σ ≡ r0
√

2nth + 1 and nth is the
thermal mean phonon number. Equation (D7) is evidently
equivalent to the Hamiltonian averaged over the atomic po-
sitions given by Eq. (17), with Eqs. (C7) and (C9).

1. Perturbative expansion of the driving Hamiltonian

Within the Lamb-Dicke regime, we can expand the driving
modulation in Eq. (B1) up to second order in power of r j
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as V̂ � V̂0 + V̂1 + V̂2. The three contributions to the driving
Hamiltonian read

V̂0 ≡ h̄
0

N∑
j=1

sin(Kza jz )σ̂ y
j , (D8)

V̂1 ≡ h̄
0

N∑
j=1

cos(Kza jz )[ηz(b̂†
z j + b̂z j ) + ηx(b̂†

x j + b̂x j )]σ̂
y
j ,

(D9)

V̂2 ≡ − h̄
0

2

N∑
j=1

sin(Kza jz )
[
η2

z (b̂†
z j + b̂z j )

2

+ 2ηzηx(b̂†
z j + b̂z j )(b̂

†
x j + b̂x j ) + η2

x (b̂†
x j + b̂x j )

2
]
σ̂

y
j .

(D10)

Here we assumed the two lasers to be directed orthogonal
to the y-axis, defined ηx,z ≡ Kx,zr0, where x̂ j ≡ r0(b̂†

x j + b̂x j ),

ẑ j ≡ r0(b̂†
z j + b̂z j ), and

Kx ≡ ka sin α − kb sin β, (D11)

Kz ≡ ka cos α − kb cos β. (D12)

As illustrated in Fig. 1(b), ka = k f − � f /c, kb = k f −
� f /c − ωg/c, where k f ≡ ω f /c.

2. Adiabatic elimination of the center-of-mass motion: Effective
Hamiltonian for the internal dynamics

In the regime ωT 	 �0, we can approximate the dynamics
of Eq. (D1) and Eqs. (D8)–(D10) by adiabatically eliminating
the center-of-mass motion. Combining the expression for the
Hamiltonian and the driving up to second order in the Lamb-

Dicke parameter we obtain Ĥt = Ĥ (0)
t + Ĥ (1)

t + Ĥ (2)
t , where

Ĥ (i)
t ≡ Ĥi + V̂i contains the array and driving Hamiltonian

up to order ηi (i = 0, 1, 2). Assuming the array to be in its
motional ground state, we calculate the effective Hamiltonian
for the atoms’ internal dynamics as

Ĥeff = P̂
(
Ĥ (0)

t + Ĥ (2)
t

)
P̂ − P̂Ĥ (1)

t Q̂
1

Ĥ0
Q̂Ĥ (1)

t P̂

≡ Ĥeff,0 + V̂eff + Ŵeff. (D13)

Here we introduced the projectors P̂ = 1int ⊗ |0〉〈0| and Q̂ ≡
1int ⊗ ∑

n �=0 |n〉〈n|, where 1int is the identity operator acting
on the internal atomic degrees of freedom and |n〉 is the Fock
state containing n phonons in the array. Let us now derive an
expression for the different terms on the right-hand side of
Eq. (D13).

We define, Ĥeff,0 ≡ P̂(Ĥ0 + ĤI2)P̂, which is easily obtained
from Eqs. (D2) and (D6), and reads

Ĥeff,0 = h̄ωg

∑
j

σ̂
j
21σ̂

j
12 + (1 − 2η2)ε2

∑
i,j

Gjiσ̂
i
12σ̂

j
21. (D14)

Equation (D14) corresponds to Eq. (D7) for σ = r0, and is
thus equivalent to the limit of a fast-moving atom [Eq. (17)].
The second term on the right-hand side of Eq. (D13) is defined
as V̂eff ≡ P̂(V̂0 + V̂2)P̂, and it can be written as

V̂eff = h̄
0

[
1 − η2

(
Kz

ke

)2

− η2

(
Kx

ke

)2] ∑
j

sin(Kza jz )σ̂ y
j ,

(D15)
where σ̂ j

y ≡ i(σ̂ j
12 − σ̂

j
21). The contribution of Eq. (D15) cor-

responds to an averaging of the driving modulation over the
atomic center-of-mass state. The last term in Eq. (D13), Ŵeff ≡
−P̂Ĥ (1)

tot Q̂Ĥ−1
0 Q̂Ĥ (1)

tot P̂, represents the coupling between differ-
ent collective states mediated by the atomic motion. It reads

Ŵeff = −η2
∑

m

∑
i �=j

∑
j�=m

[ ∑
α=y,z

G′
α (Rji)G

′
α (Rjm)

](
σ̂

j
21σ̂

i
12 + σ̂ i

21σ̂
j
12

) 1

ωT + P̂Ĥ0P̂

(
σ̂

j
21σ̂

m
12 + σ̂ m

21σ̂
j
12

)
(D16)

− η2
0

∑
i �=j

[∑
α=yz

Kα

ke
G′

α (Rji)

][
σ̂ j

y

cos (Kza jz )

ωT + P̂Ĥ0P̂

(
σ̂

j
21σ̂

i
12 + H.c.

) + (
σ̂

j
21σ̂

i
12 + H.c.

) cos (Kza jz )

ωT + P̂Ĥ0P̂
σ̂ j

y

]
(D17)

− η2
2
0

∑
j

cos2(Kza jz )σ̂ j
y

1

ωT + P̂Ĥ0P̂
σ̂ j

y , (D18)

where we defined G′
α (Rij) ≡ k−1

e ∂αGij. The interpretation of
the different contributions in Ŵeff is the following. The term
Eq. (D16) is an off-diagonal contribution to the dipole cou-
pling in Eq. (D2) for it couples different eigenstates of P̂Ĥ0P̂
within the same n-excitation manifold. The term in Eq. (D17)
can be interpreted as a distortion of the driving modulation,
which couples the initial state to states other than the tar-
geted dark mode. The last term Eq. (D18) is correction to
second order in the driving V̂1 and thus excites two-photon
transitions.

APPENDIX E: EFFECTIVE THREE-LEVEL DYNAMICS OF
A DRIVEN ARRAY OF PINNED ATOMS

In the following, we show that the complex many body
dynamics of driven single arrays of pinned atoms is effectively
confined to a handful of levels. We do so by deriving an
effecting model for the driven dynamics.

Within the blockade regime the dynamics of a single driven
array is effectively confined to the three-state manifold con-
taining the ground state |0〉 and the most-subradiant one- and
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two-excitation state. The remaining one- and two-excitation
states are not populated due to the mode matching of the driv-
ing, while the population transferred to the three excitation
manifold is negligible due to the nonlinearity of the array
(Dipole blockade and Zeno effect). We note that the array’s
non-Hermitian Hamiltonian (2) can be diagonalized in terms
of right |nμ〉 and left |n̄μ〉 eigenvectors (n = 1, . . . , N). The set
of left and right eigenvectors, which do not form a separately
orthogonal basis, satisfy the biorthogonality relation

〈n̄μ|mν〉 = δnmδμν, (E1)

where we univocally fix the normalization of the left and
right eigenvector by the additional requirement 〈nμ|nμ〉 =
1 ∀n, μ. In the following, it is convenient to define |n1〉 ≡
|n〉 (|n̄1〉 ≡ |n̄〉) to represent the most-subradiant right (left)
eigenstate with n excitations. The effective three-state non-
Hermitian Hamiltonian to second order in the coupling V̂ is
obtained as [59]

Ĥ ′
eff = P̂′(Ĥ1array + V̂1array)P̂′

− P̂′V̂1arrayQ̂′(E0 + Ĥ1array)−1Q̂′V̂1arrayP̂′, (E2)

where Ĥ1array is the Hamiltonian of a single array as given in
Eq. (2), V̂1array is given in Eq. (6), we defined the projectors
P̂′ ≡ |0〉〈0| + |1〉〈1̄| + |2〉〈2̄|, Q̂′ = 1 − P̂′, and the average
complex energy of the three-level manifold E0, assuming the
driving laser to be resonant with |1〉. On the biorthogonal basis
{|0〉, |1〉, |2〉, |1̄〉, |2̄〉}, the effective three-state non-Hermitian
Hamiltonian in the frame rotating at the driving frequency
thus reads

Ĥ ′
eff =

⎛
⎝ 0 
01 0


10 δ̃1 − i�̃1/2 
12

0 
21 δ̃2 − i�̃2/2

⎞
⎠. (E3)

Here we defined the coupling rates 
nm ≡ 〈n̄|V̂1array|m〉, and
we neglected the complex energy shift of the ground state as
well as a direct coupling between the ground state and the
two-excitation state. Both these latter quantities are in fact
much smaller than the remaining matrix elements already for
arrays of few atoms and decrease for increasing array size.
The diagonal elements in Eq. (E3) already contain the correc-
tion due to coupling to higher excitation manifolds. They read

δ̃1 − i
�̃1

2
≡−i

�1

2
−

(N
2 )∑

μ=2

〈1̄|V̂ |2μ〉〈2̄μ|V̂ |1〉
E0 + (�2,μ − i�2,μ/2)

, (E4)

δ̃2 − i
�̃2

2
≡ δ2 − i

�2

2
−

N∑
μ=2

〈2̄|V̂ |1μ〉〈1̄μ|V̂ |2〉
E0 +(�1,μ − i�1,μ/2)

−
(N

3 )∑
μ=1

〈2̄|V̂ |3μ〉〈3̄μ|V̂ |2〉
E0 +(�3,μ−i�3,μ/2)

, (E5)

where �n,μ is the detuning of the driving from the energy of
the μth state in the n-excitation manifold of Ĥ1array, and �n,μ

its decay rate. In Eqs. (E4) and (E5) the indexes μ label states
within each n-excitation manifold ordered for increasing val-
ues of the decay rate �n,μ. We also defined δn ≡ �n,1 and
�n ≡ �n,1. The effective three-level model in Eq. (E3) cap-
tures the correct dynamics of the system in the Zeno regime

FIG. 8. Effective three-level model. (a) Overlap |〈2̄|(Ŝ+)2|0〉|2
as function of N . (b) Dependence of δ1 (blue circles) and δ2 (red
squares) on the array length N . The arrows point at the sudden jumps
in the detuning which corresponds to the jumps in the population
shown in Fig. 2(c). In both panels we set a = λe/4.

as shown by the pink diamond in Fig. 2(c). Furthermore, via
the effective description in Eq. (E3) we can understand the
discontinuous behavior as function of N of the total popula-
tion in the ground state and the subradiant two-excitation state.
We point out that the state obtained by creating two subradiant
collective excitations on top of each other in the array, |2kN 〉 ∼
(Ŝ+

kN
)2|0〉, where Ŝ+

kN
≡ ∑N

j=1

√
2/(N + 1) sin(z jkN )σ̂+

j , has a
large overlap with the two-excitation most-subradiant state
of the array even in the limit N 	 1 [Fig. 8(a)]. Population
transfer from the single-excitation subradiant state to the two-
excitation subradiant state under the action of the driving is
prevented by the detuning δ2 of the latter with respect to the
laser driving. The dependence of δ1,2 on the array’s length N
is discontinuous as shown in Fig. 8(b). This discontinuity is a
consequence of the discreteness of the array, and it is reflected
by the discontinuous jumps in the total population transferred
to |0〉 and |2〉 observed in Fig. 2(c).

Before concluding this Appendix, let us remark that the
effective Hamiltonian derived according to Eq. (E2) is gen-
erally different from the one that would have been obtained,
had we performed an adiabatic elimination on the full master
equation describing the array’s dynamics. The two approaches
give consistent results only if the additional correction ob-
tained following the latter (more rigorous) method can be
neglected. The good agreement between the results obtained
from Eq. (E3) and the simulation of the full Hamiltonian in
Eq. (2) justifies a posteriori the simple approach followed
here.

APPENDIX F: DESCRIPTION OF TWO PARALLEL
ARRAYS OF PINNED ATOMS

The non-Hermitian Hamiltonian describing the open dy-
namics (conditioned on no jump occurring) for two parallel
arrays of atoms is given in Eq. (1). As for the case of a
single array, the Hermitian and anti-Hermitian parts of Eq. (1)
commute with the total number of excitations N̂e. The Hamil-
tonian of two parallel arrays can thus be block diagonalized
in blocks which act only on a manifold of given number of
excitations n,

Ĥ0 =
2N∑

n=1

Ĥ (n)
0 . (F1)
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TABLE I. Momentum space expression of the conservative gk and dissipative γk coupling between two arrays within the single excitation
subspace. Here Jn(ρ ) (Yn(ρ )) and Kn(ρ ) are respectively the nth-order Bessel function of the first (second) kind and the modified Bessel
function of the second kind. We defined ρ ≡ l

√
k2 − k2

e when k > ke and ρ ≡ l
√

k2
e − k2 when k < ke.

Polarization |k| > ke |k| < ke

dA = dB = dex gk = −3�0

[
K0(ρ ) − ρK1(ρ )

(kel )2 + ρ2K2 (ρ )
(kel )2

]
/kea gk = 3π�0

[
Y0(ρ ) − ρY1(ρ )

(kel )2 + ρ2Y2 (ρ )
(kel )2

]
/4kea

γk = 0 γk = 3π�0

[
J0(ρ ) − ρJ1(ρ )

(kel )2 + ρ2J2 (ρ )
(kel )2

]
/2kea

dA = dB = dey gk = −3�0[K0(ρ ) − ρK1(ρ )/(kel )2]/kea gk = −3π�0[Y0(ρ ) − ρY1(ρ )/(kel )2]/4kea
γk = 0 γk = 3π�0[J0(ρ ) − ρJ1(ρ )/(kel )2]/2kea

dA = dB = dez gk = −3�0

(
1 − k2/k2

e

)
K0(ρ )/kea gk = 3π�0

(
1 − k2/k2

e

)
Y0(ρ )/4kea

γk = 0 γk = 3π�0

(
1 − k2/k2

e

)
J0(ρ )/2kea

Here Ĥ (n)
0 is the Hamiltonian acting on the n-excitations man-

ifold. In the following, we look separately at the eigenvalues
and eigenvectors of the one- and two-excitation block of Ĥ0.

1. Single-excitation structure

We consider first the case of periodic boundary conditions,
where the single-excitation block Ĥ (1)

0 can be diagonalized ex-
actly. We later discuss the relevant case of open boundary con-
ditions. Within the single excitation subspace we can replace
the spin operators in Ĥ (1)

0 with bosonic operators b̂ν, j, b̂†
ν, j

where ν = A,B labels the array. In terms of Fourier modes
b̂k ≡ ∑N

j=0 exp(iZ jk)b̂ j and b̂†
k ≡ ∑N

j=0 exp(−iZ jk)b̂†
j , Ĥ (1)

0
has the block diagonal form

Ĥ (1)
0 =

∑
k

Ĥk, (F2)

where each block Ĥk is a two-level operator containing only
operators with a well-defined quasimomentum k = π/[a(N +
1)], . . . , πN/[a(N + 1)]. Each k-block reads

Ĥk =
∑

ν=A,B

(
ων,k − i

�k

2

)
b̂†

ν,kb̂ν,k

+
(

gk − i
γk

2

)
(b̂†

Bkb̂Ak + b̂†
Akb̂Bk ), (F3)

where the two frequencies ωB,k and ωA,k may differ if the
atoms of one array are detuned from the ones of the other
array. The expression for (gk − iγk/2) appearing in Eq. (F3)
is given in Table I for different directions of the atomic po-
larization (assuming all atoms to be polarized parallel to each
other). The k-space expression of the couplings can be derived
as follows. Let us first define the mixed representation of the
free-space electromagnetic Green’s function as

G0
αβ (r, ω0) = 1

(2π )3

∫
R3

dp
δαβ − pα pβ/k2

e

p2 − k2
e

eip·r

≡ 1

2π

∫
R

d pz G̃0
αβ (x, y, pz, ωe)eipzz. (F4)

Substituting Eq. (F4) into

gi j − i
γi j

2
≡ −μ0ω

2
0

h̄
dAi · G0(rAi − rB j, ωe) · dB j, (F5)

and using the identity∑
R

e−ikR = 2π

a

∑
Q

δ(k + Q), (F6)

where Q ∈ {2nπ/a}n∈Z is the reciprocal lattice vector of the
atomic array, one obtains

gk − i
γk

2
= −μ0ω

2
e

ah̄

∑
Q

G̃0
αβ (x, y, k + Q, ωe). (F7)

Before proceeding to evaluate G̃0
αβ (x, y, k + Q) we remark

that it is sufficient to keep only the term Q = 0 in Eq. (F7).
Higher values of Q represent a contribution coming from
modes beyond the first Brillouin zone (umklapp processes)
which can be neglected since a < λe/2 and ωe 	 �0. The
coupling of an excitation of quasimomentum k between two
parallel arrays within the single excitation manifold thus reads

gk − i
γk

2
= −μ0ω

2
e

ah̄
G̃0

αβ (x, y, k) (F8)

and depends on the polarization direction α, β of the atoms in
the arrays. The 2D-Fourier transform

G̃0
αβ (x, y, k, ω0) =

∫
R2

dp⊥
(2π )2

δαβ − pα pβ

p2
⊥ + k2 − k2

e

eip⊥·r⊥ , (F9)

where p⊥ ≡ pxex + pyey and r⊥ = xex + yey, can be eval-
uated by expressing the integral in polar coordinate and
evaluating the polar integral first. To evaluate the radial in-
tegral it is necessary to distinguish between the two cases (1)
|k| > ke and (2) |k| < ke. The first case represent the coupling
between collective mode lying outside the light cone and thus
its dissipative contribution vanish. The second case corre-
sponds to mode within the light cone, and it thus has a strong
dissipative contribution (see Table I). In the subradiant part of
the spectrum γk = 0, thus the eigenstates of Eq. (F3) are the

usual dressed state with frequency ω± = δ/2 ±
√

δ2 + 4g2
k/2

and decay rate �k . Within the light cone γk and gk are
comparable and one needs to diagonalized a 2 × 2 complex
symmetric Hamiltonian. The results of such diagonalization
are similar to the previous case upon substituting gk with
gk − iγk/2.

For open boundary conditions, the decoupling between col-
lective excitations with different wave number is not exact and
in the subradiant sector the coupling acquires a small dissipa-
tive part [Fig. 9(a)]. Remarkably for l = a � λe/4 the block
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FIG. 9. Single-excitation coupling rate between dark modes of
parallel arrays. Scaling of gk − iγk/2 for atoms polarized along ez

for a = λe/4. (a) γqa in function of N for l = a. (b) gqa in function
of l for different array length N (markers) and for an infinite array
(dashed black line).

diagonal picture still holds accurately for array as short as
N = 6 [see Fig. 3(a)]. In Fig. 9(b) we compare the dependence
of gk for k = qa on the separation l for different array sizes N
with the case N = ∞ in Table I. For small separations the
agreement is good, while at larger separation shorter arrays
deviate from the ideal case. For finite array size, the dressed
state of Eq. (F3) in the subradiant sector has different decay
rate due to a nonzero γk . In the limit γk � gk, δ, the dressed
complex energies to first order in γk read E± ≡ δ ± gk/
k +
i(�0 ± γkgk/
k ) where 
k ≡

√
δ2 + 4g2

k .

2. Two-excitation structure and dynamics

Let us now study the two-excitation structure of two paral-
lel atomic arrays. Here we focus in particular on the subradiant
sector of the two-excitation manifold. Due to the dipole inter-
action Eq. (4) between the arrays, we cannot make general
statements on the form of the first few dark modes as was
done for the case of an isolated array [11]. In particular, the
structure of the subradiant states strongly depends on the sepa-
ration l between the arrays. In the limit of separation l/a 	 1,
the arrays do not interact. The two-excitation most-subradiant
state of the system is thus given by the state |11〉L = |qa, qa〉,
which contains one subradiant excitation in each array and is
characterized by a decay rate �11 = 2�qa . When the arrays
are brought closer they start to interact thus modifying the
structure of the ground state. In particular, at small separation
l ∼ a, we expect the two excitations to exhibit antibunching
behavior between the two arrays due to strong dipole-dipole
interaction. In Fig. 10(a) we plot the overlap between |11〉L

and the two-excitation most-subradiant state of the system
|ψ2〉. In Fig. 10(b) we plot the probability distribution of |ψ2〉

FIG. 10. Two-excitation subradiant-state structure. (a) Overlap
between |11〉L and the two-excitation most-subradiant state of two
parallel arrays |ψ2〉. We plot the overlap as function of l/a for a/λe =
0.1 and for N = 20 (blue circles), N = 40 (red squares), and N = 60
(pink diamonds). (b) Probability distribution of the two-excitation
most-subradiant state for N = 60 and a/λe = 0.1 at l/a = 1 (bottom
panel) and l/a = 3 (top panel).

on the sites of each array and show that while for l = a it
shows antibunching behavior (bottom panel) at large separa-
tion it converges towards |11〉L (top panel).

The dynamics of |11〉L during the
√

iSWAP gate operation
depends strongly on the array’s separation l and length N .
Generally |11〉L couples to a large number of two-excitation
eigenstates of the system, and the resulting dynamics is quite
complicated. To elucidate the evolution of |11〉L and gain
a qualitative understanding of its dynamics, it is convenient
to implement a Lanczos transformation [60]. According to
such transformation, we can imagine the dynamics of |11〉L

as the dynamics of a chain of neighboring coupled sites [see
Fig. 11(a)]. Each site j is represented by a state |φ j〉 reached
by the dynamics such that states corresponding to different

FIG. 11. Analysis of the dynamics of |11〉L. (a) Virtual chain for
the dynamics of parallel array starting in |φ0〉 = |11〉L constructed
according to the symmetric Lanczos transformation. (b) Ratio t1/δ1

(we choose a frame where δ0 = 0) as function of N for different
array separation l/a = 1 (blue circles), l/a = 2 (red squares), l/a =
3 (pink diamond), l/a = 4 (green inverted triangles), and l/a = 5
(yellow triangles).
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FIG. 12. Array with transverse atomic polarization. Optimal er-
ror for preparing the most-subradiant state of a transverly polarized
single array (d ⊥ ez) as function of N for different lattice spacing
(see legend).

sites are orthogonal. In particular, |φ0〉 ≡ |11〉L. On the basis
|φ j〉 the dynamics of the system starting in |φ0〉 is represented
by a tridiagonal Hamiltonian

Ĥchain =

⎛
⎜⎜⎜⎜⎜⎝

δ0 t1 0 . . . 0

t1 δ1
. . . 0

...

0 . . .
. . .

. . . 0
... 0 . . .

. . . tM
0 . . . 0 tM δM

⎞
⎟⎟⎟⎟⎟⎠, (F10)

which describes the nearest-neighbor hopping of excitations
at rate t j between the sites j and j + 1, as well as the en-
ergy δ j of each site. In the particular case considered here,
the state directly coupled to |11〉L by Eq. (1) reads |φ1〉 =
|S2〉 ≡ (|2qa, 0〉 + |0, 2qa〉)/

√
2. and the coupling rate is sim-

ply given by t1 = L〈11|ĤAB|φ1〉. In general, the dynamics of
|11〉L cannot be reduced to an effective two-level dynamics
on the subspace {|11〉L, |S2〉}, for the coupling between |S2〉
and |φ3〉 is typically strong. Such reduction to an effective
two-level dynamics is justified only at large separation l/a as
shown by the agreement between the black dashed markers
and the colored markers in Figs. 3(d) and 3(e). The two-level
dynamics represented by the first block in Eq. (F10) gives,
however, a qualitative explanation to the trend observed in
Fig. 3(e). In fact, the decrease in the gate fidelity over the
array’s size N at small separation l/a can be understood as
coming from a reduction in the detuning δ1 [Fig. 11(b)].

APPENDIX G: PERPENDICULAR POLARIZED ATOMS

In this Appendix, we consider the case of an array of
pinned atoms which are polarized along a direction orthogonal
to the array’s direction. Mathematically, the only difference
between this case and the one of atoms polarized along the
array’s direction is the value of the coupling in Eq. (A19),
which now includes a long-range coupling term which scales
as 1/r, r being the distance between two atoms. A single- and
two-qubit gate can be realized following the same protocol as
presented in Sec. II. As an example, we show in Fig. 12 the de-

pendence on N of the error for preparing the most-subradiant
state of a single array. The error scaling is qualitatively the
same as for the case of atoms polarized along the array [cf.
Fig. 2(b)]. We observe an oscillating behavior of the error
as function of N for a < λe/4, which can be attributed to a
nonmonotonic dependence on a/λe of the dark mode decay
rate �qa when a � λe/4 [61]. Such behavior is characteristic
of the case of transversly polarized arrays. It is believed to
originate in the long-range behavior of the coupling and in
the existence of modes with same energy but different wave
vector in the array’s dispersion relation [16,61].

APPENDIX H: DETAILS ON THE NUMERICAL
SIMULATIONS

In the following Appendix, we explain how we obtained
the numerical results presented in Figs. 2 and 3. We simulated
the dynamics generated by the Schödinger equation

∂t |ψ〉 = −iĤ |ψ〉, (H1)

where Ĥ is the non-Hermitian Hamiltonian for the evolution
of the driven single, Ĥ = Ĥ1array + V̂1array array or parallel
arrays, Ĥ = Ĥ0 + V̂0. The state of the system at time t > 0
reads

|ψ (t )〉 = e−iĤt |ψ (0)〉 (H2)

and can be obtained from a given initial state |ψ (0)〉 by nu-
merical diagonalization of Ĥ . For array length larger than just
a dozen of atoms it is impossible to diagonalize exactly the
full 2N × 2N Hamiltonian Ĥ of the system, and we thus resort
on the truncation of the Hilbert space of the system. Within
the blockade regime, we expect higher excitation manifold
to be only marginally populated. We checked numerically in
Figs. 13(a) and 13(b) that for a single array driven at the
Rabi frequency which maximizes the target state population,



opt
0 [see Fig. 2(d)], non-negligible population transfer occurs

only up to the second excitation manifold. Hence, the results
in Figs. 2 and 3 are obtained by numerically diagonalizing
the Hamiltonian H̃ describing the dynamics of the system
on the Hilbert subspace containing at most two excitations.
The dimension of the truncated Hilbert space scales as N2.
According to Fig. 13(b), this truncation gives an error which
decreases with N and is negligible compared to the values of
fidelities obtained in the range of parameters we simulated.
We numerically diagonalized H̃ with two different methods.
The first method is the exact diagonalization of the truncated
Hamiltonin which yields the full spectrum of H̃ . The spectrum
can be used to calculate the transition amplitude between the
initial state |ψ (0)〉 and a target state |ψtarg〉 at any time t as

〈ψtarg|ψ (t )〉 =
1+N+(N

2 )∑
ν=1

〈ψtarg|ν〉〈ν̄|ψ (0)〉e−iEν t . (H3)

Here we labeled |ν〉 (〈ν̄|) the right (left) eigenvector of H̃
and Eν their corresponding complex eigenvalue. The size oc-
cupied by H̃ in the memory ultimately limits the array size
that can be simulated with this method. Furthermore, as the
interaction between the emitters in the array are long range
[see Eqs. (A17)–(A19)], the dimension of the Hamiltonian
matrix H̃ cannot be reduced efficiently using sparse matrix
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FIG. 13. Numerical details for subradiant state excitation in a driven single array at the optimal Rabi frequency in Fig. 2(d). (a) Comparison
of the infidelity obtained with full diagonalization of H̃ (blue circles), Krylov-Schur diagonalization truncating after the second (red squares)
and third (magenta triangle) excitation manifold. (b) Total population in the ground state (red squares), two-excitation manifold (blue circles),
three-excitation manifold (magenta triangles), and states other than the target in the one-excitation manifold (black stars). (c) Left (right) panel:
simulation of the driven array infidelity (total population in other manifold) in function of N for different values of M. In all panels we set
a = λe/4.

without truncating the dipole couplings after a fixed number of
sites. To simulate N > 200 array sizes as shown in Fig. 2, we
diagonalize H̃ on a Krylov subspace of dimension M � N2.
The transition amplitude in Eq. (H3) can then be calculated as

〈ψtarg|ψ (t )〉 �
M∑

ν=1

〈ψtarg|rν〉〈r̄ν |ψ (0)〉 e−iRν t , (H4)

where |rν〉 (|r̄ν〉) and Rν are the Ritz right (left) eigenvectors
and eigenvalues obtained from a Krylov-Schur diagonal-
ization procedure using MATLAB [62]. Due to the mode
matching of the driving and the finite decay rate of the eigen-

states of H̃ , the state evolved from |ψ (0)〉 = |0〉 at t ∼ 1/

opt
0

overlaps with the first handful of states ordered for increasing
decay rate [see Fig. 13(c)]. We stress that, as the Ritz spectrum
approximate the exact spectrum up to an estimated tolerance
at least �10−10, the main error in calculating the transition
amplitudes is due to the truncation in Eq. (H4). The result
displayed in Figs. 2 and 3 have been calculated with M = 30.

The simulation for the fast motion regime (Figs. 4 and 5)
are obtained using the same truncation as described above but
with the Hamiltonian Eq. (17) instead. Due to a reduced arrays
length used for those simulations, there was no need to used
the Krylov-Schur method.
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