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We derive a general theory of linear coupling and Kerr nonlinear coupling between modes of dielec-
tric optical resonators from first principles. The treatment is not specific to a particular geometry
or choice of mode basis, and can therefore be used as a foundation for describing any phenomenon
resulting from any combination of linear coupling, scattering and Kerr nonlinearity, such as bending
and surface roughness losses, geometric backscattering, self- and cross-phase modulation, four-wave
mixing, third-harmonic generation and Kerr frequency comb generation. The theory is then applied
to a translationally symmetric waveguide in order to calculate the evanescent coupling strength to
the modes of a microresonator placed nearby, as well as the Kerr self- and cross-phase modulation
terms between the modes of the resonator. This is then used to derive a dimensionless equation
describing the symmetry-breaking dynamics of two counterpropagating modes of a loop resonator
and prove that cross-phase modulation is exactly twice as strong as self-phase modulation only in
the case that the two counterpropagating modes are otherwise identical.

I. INTRODUCTION

Since research into dielectric optical microcavities and
microresonators began in the late 1980s [1, 2], we have
understood them using coupled mode theory [3–5], a
framework that was first established in the 1950s in the
context of waveguides [6–9]. This approach underpins
our descriptions of linear coupling between resonators
and other dielectric bodies such as prisms, waveguides
and tapered optical fibers [10, 11] as well as optomechan-
ical, Brillouin and Raman coupling [12–14] and second-
and third-order (Kerr) nonlinear optical effects [15, 16]
including frequency comb generation [17–19]. For the lat-
ter, the modal expansion approach [20] forms the basis
of a description based on the Lugiato-Lefever equation
(LLE) [21–23] that has been particularly successful in
modelling soliton comb generation [24–26].
Another interesting effect of the Kerr nonlinearity in

whispering-gallery-mode (WGM), ring and other loop
microresonators is symmetry breaking between counter-
propagating light [27, 28], obtained for example by pump-
ing a WGM microresonator bidirectionally via a single
tapered optical fiber. Universal behaviors at the critical
point of this symmetry-breaking regime [29, 30] similar
to those found at exceptional points [31, 32] have been
demonstrated in a nonlinear enhanced gyroscope [33],
and could enable other enhanced sensors e.g. for re-
fractive index changes [34]. Meanwhile, the bistable
symmetry-broken regime has been used to realise opti-
cal isolators and circulators [35], memories [36] and logic
gates [37].
The symmetry breaking between counterpropagating

light relies upon a well-known factor of 2 between the
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coefficients of Kerr cross-phase modulation (XPM) and
self-phase modulation (SPM) [38, 39], that is also in-
strumental in frequency comb generation and other Kerr-
nonlinearity-related bistabilities, multistabilities and os-
cillatory and chaotic dynamical behaviors [40–51].

Whereas the coupled mode theory of waveguides is
very well developed [9], this is less the case for microres-
onators, where much of the literature relates to spe-
cific geometries such as plane-wave cavities [4], micro-
spheres [3, 10], microtoroids [20] and ring waveguides [5].
Here we adopt a general approach that makes no as-
sumptions about the geometry of the resonator, initially
defining modes simply as basis states for the electromag-
netic field and only subsequently stating a condition for
them to be stationary or nearly stationary states. We
then derive a Schrödinger-like equation (equivalent to the
single-photon Schrödinger equation) for the evolution of
the amplitudes of a collection of modes under linear cou-
pling. The treatment, given in Sections II and III, is
self-contained and based entirely on Maxwell’s equations,
avoiding variational approaches and making approxima-
tions only when absolutely necessary, whereupon they
are clearly stated. The relationship between standing-
and travelling-wave modes is elucidated, as is the phys-
ical meaning of the complex amplitude of a mode. Our
approach also explains why, even for a purely classical
treatment, it makes sense to choose a normalisation in
which the modulus-squared of the complex amplitude of
a mode is proportional to the number of photons in it,
rather than for example its energy. The same formal-
ism is used to describe the modes of both resonators
and waveguides as well as evanescent coupling between
the two [52]. It can equally be applied to other linear
coupling phenomena such as coupling between two res-
onators or two waveguides, Rayleigh backscattering [53]
and bending [54] and scattering losses [55, 56] in res-
onators and fibres, mode splitting in ring resonators
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caused by coupling to a waveguide [57], and scattering
of plane waves by dielectric bodies [58].
In Section IV we introduce the Kerr nonlinearity into

this framework, again defining everything from first prin-
ciples and keeping the treatment initially very general.
We briefly discuss the different phenomena that the Kerr
effect gives rise to including third-harmonic generation
and four-wave mixing, before focusing on SPM and XPM
in the context of symmetry breaking between two modes
of the same microresonator. We show that when these
modes are counterpropagating but otherwise identical,
the coefficient of XPM is exactly twice that of SPM, while
if they are from the same WGM family but of different
azimuthal order, or if they are of opposite circular polar-
izations but otherwise identical, XPM is slighly less than
twice as strong as SPM. To the authors’ knowledge, this
is the first explicit demonstration that the ratio between
XPM and SPM is exactly 2 for all pairs of counterprop-
agating but otherwise identical travelling-wave modes,
independent of the geometry of the resonator.
Finally we put everything together to derive the di-

mensionless equations (Eq. (90)) that govern the evolu-
tion of the complex amplitudes of two counterpropagat-
ing modes in a microresonator pumped via a waveguide,
in the presence of the Kerr nonlinearity. These equations
form a basis for explaining the aforementioned symme-
try breaking between counterpropagating light in WGM
microresonators and the interesting dynamics associated
with it [27–30]. The generality of the framework devel-
oped means that it can also act as the foundation for ex-
plaining any phenomenon involving linear and Kerr non-
linear coupling in dielectric bodies. For example, it could
be applied to a WGM family to derive the LLE [21–23],
which can be used to model Kerr frequency comb gener-
ation [24–26].

II. RESONATOR MODES AND COUPLINGS

A system of dielectric bodies surrounded by free space
can be described by a spatially dependent permittivity
ε(r), which we will treat for conciseness as though it is
differentiable everywhere. Working in the Weyl gauge in
which the scalar potential is set to zero, the optical elec-
tromagnetic field can be described purely by the vector
potential A(r, t), which, in the absence of free charge and
current, obeys the following form of Maxwell’s equations:

∇×(∇×A) = −µ0 ε
∂2A

∂t2
(1)

where µ0 is the permeability of free space. There is the
additional constraint ∇ · (εA) = 0 [59], although for op-
tical fields this is already implied by Eq. (1) due to the
divergence-free nature of the form on its left-hand side.
It is useful to describe the physics in terms of the time-
evolution of complex amplitudes ασ of a complete basis of
spatial modes with vector potential profiles aσ(r), which
may be either real or complex, by expanding out A(r, t)

as [59]

A(r, t) =
∑

σ

(ασ(t)aσ(r) + α∗
σ(t)a

∗
σ(r)) . (2)

If the basis states are stationary states of the system,
i.e. states where all fields oscillate at a single frequency,
then a real basis (aσ(r) = a

∗
σ(r)) would correspond

to standing-wave modes in which the electric field van-
ishes everywhere twice during each period of oscillation,
whereas a complex basis would correspond to modes in
which different polarizations or spatial regions oscillate
out of phase with each other.
In order to develop a unique and physically meaningful

definition for the complex amplitudes ασ, we will start
by working in a real basis {a′ρ(r)} with real amplitudes
{uρ(t)}:

A(r, t) = 2
∑

ρ

uρ(t)a
′
ρ(r). (3)

Substituting this into Eq. (1), taking the dot product
with a

′
ρ and integrating over all space gives us

∑

ρ′

N ′
ρρ′

d2uρ′

dt2
= −

∑

ρ′

D′
ρρ′uρ′ (4)

where

D′
ρρ′ =

1

µ0

∫

a
′
ρ(r) · ∇×

(

∇×a
′
ρ′(r)

)

d3r (5)

and N ′
ρρ′ =

∫

ε(r)a′ρ(r) · a′ρ′ (r) d3r. (6)

Note thatD′
ρρ′ = D′

ρ′ρ andN
′
ρρ′ = N ′

ρ′ρ, the first of which
is easy to verify via integration by parts given a suitable
boundary condition at infinity. We now transform Eq. (4)
into two first-order differential equations by defining

vρ =
∑

ρ′

N ′
ρρ′

duρ′

dt
(7)

such that

duρ
dt

=
∑

ρ′

(

N ′−1
)

ρρ′
vρ′ and

dvρ
dt

= −
∑

ρ′

D′
ρρ′uρ′ .

(8)
Defining the complex amplitudes {α′

ρ = uρ + ivρ}, we
obtain

dα′
ρ

dt
= −i

∑

ρ′

(

S′
ρρ′α′

ρ′ + T ′
ρρ′α′∗

ρ′

)

(9)

where the matrices

S′ =
D′ +N ′−1

2
and T ′ =

D′ −N ′−1

2
(10)

are real and symmetric.
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We can now transform these results back into the com-
plex basis {aσ(r)} as long as the two bases are related by
a unitary transformation:

aσ =
∑

ρ

Uσρ a
′
ρ where U−1 = U †. (11)

Using 2uρ = α′
ρ + α′∗

ρ and letting

ασ =
∑

ρ

U∗
σρ α

′
ρ so that

∑

σ

ασaσ =
∑

ρ

α′
ρa

′
ρ, (12)

Eq. (3) is transformed back into Eq. (2). Furthermore
Eq. (9) becomes

dασ

dt
= −i

∑

σ′

(Sσσ′ασ′ + Tσσ′α∗
σ′) (13)

where the matrices

S = U∗S′UT =
D +N−1

2
, (14)

Dσσ′ =
1

µ0

∫

a
∗
σ(r) · ∇×(∇×aσ′(r)) d3r (15)

and Nσσ′ =

∫

ε(r)a∗σ(r) · aσ′ (r) d3r (16)

are all Hermitian, and

T = U∗T ′U † =
D̃∗ − Ñ−1

2
, (17)

D̃σσ′ =
1

µ0

∫

aσ(r) · ∇×(∇×aσ′(r)) d3r (18)

and Ñσσ′ =

∫

ε(r)aσ(r) · aσ′ (r) d3r (19)

are all symmetric.
When working in an orthogonal basis of stationary

states, that is one which diagonalises both N and D,
a useful choice of normalisation for those basis states is
to impose the condition N = D−1, which makes T vanish
(since T ′ vanishes) and S = N−1 = D. We can thus say
that

Dσσ′ = δσσ′ωσ and Nσσ′ =
δσσ′

ωσ

(20)

where ωσ > 0 is the angular frequency of mode σ in the
sense that ασ ∝ e−iωσt. In this case, it can be shown
that the total electromagnetic energy in the system is

Etot = 2
∑

σ

ωσ|ασ|2, (21)

meaning that |ασ|2 corresponds to ~/2 times the number
of photons in mode σ. Such a basis, with this normal-
isation, would always be transformable to a real basis
via a block-diagonal unitary matrix in which each block
operates within a subspace of states with equal ωσ.

This formalism also works well when {aσ(r)} are not
quite stationary states but couple slowly to each other
relative to their own natural frequencies, in other words
if we can write

Dσσ′ = δσσ′ ω̄σ +Gσσ′ and Nσσ′ =
δσσ′

ω̄σ

+Cσσ′ (22)

where ω̄σ is the approximate frequency of mode σ, and
for all σ′, |Gσσ′ | ≪ ω̄σ and |Cσσ′ | ≪ 1/ω̄σ. Such a sit-
uation could arise if {aσ(r)} are stationary states with
eigenfrequencies ω̄σ = ωS,σ under a different permittivity
profile εS(r) of a subsystem S, which is sufficiently sim-
ilar to ε(r) that Gσσ′ and Cσσ′ are small. For example,
εS(r) could be the permittivity profile of a single waveg-
uide or resonator surrounded everywhere by vacuum, and
{aσ(r)} (approximate) stationary states of that subsys-
tem, e.g. guided modes in the waveguide or whispering
gallery modes in the resonator. The overall ε(r) could
describe a system containing more than just that one di-
electric body, such that Nσσ′ is only weakly perturbed by
the change from εS(r) to ε(r) associated with introducing
the additional bodies. For a number of dielectric bodies
coupled to each other in this way, the overall dynamics
of guided light can be described in a basis

{aσ(r)} =
⋃

S

{aS,σ(r), σ ∈ {σ}S} (23)

where each aS,σ(r) is a stationary state, with angular
frequency ωS,σ, of the permittivity profile εS(r). {σ}S
is the set of values of the label σ associated with sta-
tionary states of subsystem S. If necessary, εS(r) can
be modified far from the dielectric in order to keep the
modes confined, for instance in the case of whispering
gallery modes, which are not true stationary states due
to bending losses. Bending and scattering losses can be
calculated by including in the basis free travelling wave
states of the form aσ(r) = eσe

ikσ·r, which are stationary
states of the vacuum. Calculations of the mode profiles
and their coupling strengths for specific geometries are
covered elsewhere, particularly in the case of whispering-
gallery modes [3, 10, 20].
Letting ω̄σ = ωSσ,σ where Sσ denotes the subsystem in

which aσ(r) is a stationary state, i.e. aσ(r) ∈ {aSσ,σ(r)},
we will use the normalisation

Dσσ′ = δσσ′ωSσ,σ and NSσ,σσ′ =
δσσ′

ωSσ,σ

(24)

for states σ, σ′ for which Sσ′ = Sσ, i.e. states from the
same subsystem, where

NSσ,σσ′ =

∫

εSσ
(r)a∗σ(r) · aσ′ (r) d3r. (25)

Note that Gσσ′ = 0 for states from the same subsystem
since Dσσ′ does not depend on ε(r). For general states
σ, σ′ that are not necessarily from the same subsystem,
using Eqs. (22) and (24), we can write

Gσσ′ = ω2
Sσ,σ

CSσ,σσ′ = ω2
S
σ′ ,σ′CS

σ′ ,σσ′ (26)
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where CSσ ,σσ′ = NSσ,σσ′ − δσσ′/ωSσ,σ. In the limit of
small Cσσ′ we have (N−1)σσ′ = δσσ′ ω̄σ−Cσσ′ ω̄σω̄σ′ . Al-
though T no longer vanishes, since we are concerned with
dynamics on timescales much longer than the inverse op-
tical frequencies, the couplings between {ασ} and {α∗

σ}
mediated by T in Eq. (13) can be neglected as they are
off-resonant by twice the optical frequency. This means
that the dynamics are described by

i
dασ

dt
= ω̄σασ +

∑

σ′

Hσσ′ασ′ (27)

where the Hermitian matrix

Hσσ′ =
Gσσ′ − Cσσ′ ω̄σω̄σ′

2
=
ω̄2
σCSσ ,σσ′ − ω̄σω̄σ′Cσσ′

2
(28)

can be thought of as the single-photon interaction Hamil-
tonian divided by ~. If |ω̄σ − ω̄σ′ | ≪ ω̄σ, which must be
true in order for the effect of these small coupling terms
to be significant, then

Hσσ′ =
ω̄2
σ (CSσ ,σσ′ − Cσσ′ )

2
=
ω̄2
σ (NSσ,σσ′ −Nσσ′ )

2

=
ω̄2
σ

2

∫

(εSσ
(r) − ε(r)) a∗σ(r) · aσ′ (r) d3r.

(29)

Losses such as absorption, scattering or bending losses
can be included at this point by adding an anti-Hermitian
matrix to Hσσ′ . Bringing dielectrics together in this
way can thus introduce both couplings between con-
fined modes on the same dielectric, leading most no-
tably to frequency splittings between previously degener-
ate standing-wave modes, and transfer of light between
dielectrics. This general approach can also be used in
other situations, for example to calculate scattering be-
tween free travelling wave states mediated by a dielectric.

III. WAVEGUIDE-RESONATOR COUPLING

Here we are concerned with coupling between guided
travelling-wave states in a single-mode tapered optical
fiber and whispering-gallery modes in a microresonator.
A straight waveguide or sufficiently short section of a ta-
pered optical fiber can be modelled as a permittivity pro-
file ε(r) = ε(x, y). Such a profile will have travelling-wave
stationary states aτk(r) = a0τk(x, y) e

ikz labelled by
their transverse mode index τ and longitudinal wavevec-
tor k. The formalism introduced above can be repro-
duced exactly by assuming that the waveguide has length
L with periodic boundary conditions. However, it will
then be necessary to let L → ∞ to simulate an open-
ended waveguide with a continuum of k states, which
leads to problems with the normalisation of states. We
will fix this by replacing instances of aτk(r) and ατk(t)

with aτ (k, r) and ατ (k, t) respectively, defined as follows:

aτ (k, r) = lim
L→∞

√
Laτk(r) = a0τ (k, x, y) e

ikz (30)

ατ (k, t) = lim
L→∞

√
Lατk(t), (31)

replacing any sums over k with

lim
L→∞

1

L

∑

k

=
1

2π

∫

dk (32)

and any instances of δkk′ with 2πδ(k − k′). Hence we
have

A(r, t) =
1

2π

∑

τ

∫

(ατ (k, t)aτ (k, r)+α
∗
τ (k, t)a

∗
τ (k, r)) dk,

(33)

Dττ ′(k, k′) =
1

µ0

∫

a
∗
τ (k, r)·∇×(∇×aτ ′(k′, r)) d3r (34)

and

Nττ ′(k, k′) =

∫

ε(r)a∗τ (k, r) · aτ ′(k′, r) d3r, (35)

with

Dττ ′(k, k′) = 2πδ(k − k′) δττ ′ ωτ (k) (36)

and

Nττ ′(k, k′) =
2πδ(k − k′) δττ ′

ωτ (k)
, (37)

and thus

1

µ0

∫∫

a
∗
τ (k, r) · ∇×(∇×aτ ′(k′, r)) dxdy = δττ ′ ωτ (k)

(38)
and

∫∫

ε(r)a∗τ (k, r) · aτ ′(k′, r) dxdy =
δττ ′

ωτ (k)
. (39)

Equation (21) becomes

Etot =
1

π

∑

τ

∫

ωτ (k)|ατ (k, t)|2dk, (40)

meaning that |ατ (k, t)|2 is π~ times the density of pho-
tons with respect to k. Monochromatic light of wavevec-
tor k0 in transverse mode τ is represented as

ατ (k, t) = 2πA0δ(k − k0)e
−iωτ (k0)t (41)

which gives

A(r, t) = A0 e
−iωτ (k0)aτ (k0, r) +A∗

0 e
iωτ (k0)a

∗
τ (k0, r).

(42)
This corresponds to a total electromagnetic energy of
2ωτ(k0)|A0|2 per unit length, a result that can be de-
rived from Eqs. (40) and (41) by substituting one of the
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factors of δ(k − k0) for
∫∞

−∞
ei(k−k0)zdz/(2π). Since for

an arbitrarily narrow distribution of wavevectors around
k0 the electromagnetic energy travels along the waveg-
uide at the speed of the envelope function, which is the
mode’s group velocity vg τ (k0) defined as

vg τ (k) =
dωτ (k)

dk
, (43)

the optical power is equal to

P = 2ωτ (k0)|A0|2 vg τ (k0). (44)

It is important to note that waveguides and tapered
fibers used for coupling light into microresonators are
usually single-mode at the operating wavelength, mean-
ing that there are only two possible values of τ , corre-
sponding to the two polarizations of the fundamental
transverse mode. Particularly in the case of the fun-
damental transverse mode, the variation of the trans-
verse mode profile a0τ (k, x, y) with k is extremely grad-
ual, taking place over a range of k of the order of k
itself, and so can be neglected in the context of a nar-
row band of optical frequencies. We can thus write
a0τ (k, x, y) = a0τ (k0, x, y) for a narrow range of k centred
around k0. By defining

Aτ (z, t) =
1

2π

∫

ατ (k, t)e
i(k−k0)zdk, (45)

in which the k integral is over this narrow range, we ob-
tain, again in the case where there is only light in trans-
verse mode τ ,

A(r, t) = Aτ (z, t)aτ (k0, r) +A∗
τ (z, t)a

∗
τ (k0, r), (46)

where we can use ωτ (k) ≃ ωτ (k0) + vg τ (k0)(k − k0) to
say that

∂Aτ (z, t)

∂t
≃ −iωτ(k0)Aτ (z, t)− vg τ (k0)

∂Aτ (z, t)

∂z
. (47)

Bringing a microresonator with whispering gallery
modes aσ(r) close to the waveguide, we may calculate
the transfer matrix element Hσ τ (k) between mode aσ(r)
of the resonator and mode aτ (k, r) of the waveguide us-
ing the formula for Hσσ′ given in Eq. (29) but replacing
aσ′ (r) with aτ (k, r). Noting that in a system of two di-
electrics, εSσ

(r) − ε(r) for each body Sσ simply equals
−ε0 times the electric susceptibility of the other body,
and that Hσσ′ is Hermitian, we obtain

Hσ τ (k) = −ε0ω̄
2
σ

2

∫

χwav(r)a
∗
σ(r) · aτ (k, r) d3r

= −ε0ω̄
2
σ

2

∫

χres(r)a
∗
σ(r) · aτ (k, r) d3r

(48)

where χwav(r) and χres(r) are the electric susceptibility
profiles of the waveguide and resonator respectively. For
k close to k0 as above, we may express this as

Hσ τ (k) =

∫

H̃σ τ (k0, z) e
i(k−k0)zdz (49)

where

H̃σ τ (k0, z) ≃ −ε0ω̄
2
σ

2

∫∫

χres(r)a
∗
σ(r) · aτ (k0, r) dxdy.

(50)
Thus, if we assume that there is only one resonator

mode, namely aσ(r), that couples significantly to aτ (k, r)
for k close to k0 since its frequency is much closer to
ω̄τ (k0) than that of any other resonator mode, then,
combining Eq. (27) with Eq. (47) as well as Eqs. (32),
(45) and (49), and adding an intrinsic loss rate γ0 to the
resonator mode (from processes such as absorption and
scattering), we have

∂Aτ (z, t)

∂t
≃ −iω̄τ(k0)Aτ (z, t)

− vg τ (k0)
∂Aτ (z, t)

∂z
− iH̃∗

σ τ (k0, z)ασ(t)

(51)

and

dασ(t)

dt
= −(iω̄σ + γ0)ασ(t)− i

∫

H̃σ τ (k0, z)Aτ (z, t) dz.

(52)

Defining the amplitudes Fτ (z, t) = Aτ (z, t) e
iω̄τ (k0) t and

ψσ(t) = ασ(t) e
iω̄τ (k0) t in the rotating wave approxima-

tion, as well as the detuning θ = ω̄τ (k0)− ω̄σ, we obtain

∂Fτ (z, t)

∂t
≃ −vg τ (k0)

∂Fτ (z, t)

∂z
− iH̃∗

σ τ (k0, z)ψσ (53)

dψσ(t)

dt
= (iθ−γ0)ψσ − i

∫

H̃σ τ (k0, z)Fτ (z, t) dz. (54)

Now for a high-Q resonator, the dynamics of light in a
single resonance takes place on a timescale of the inverse
cavity linewidth, which is many orders of magnitude
larger than the time it takes light to traverse the coupling
region (i.e. the region where H̃σ τ (k0, z) is non-negligible)
whilst travelling along the waveguide. Therefore, as-
suming that the light input into the waveguide is of a
linewidth similar to or smaller than the resonance of the
cavity (as indeed it must be in order to couple resonantly
into it), we may say that |∂Fτ/∂t| ≪ |vg τ (k0) ∂Fτ/∂z|,
allowing us to neglect the left-hand side of Eq. (53) to
obtain

∂Fτ (z, t)

∂z
= − iH̃

∗
σ τ (k0, z)

vg τ (k0)
ψσ. (55)

We thus have ∂Fτ (z, t)/∂z = 0 outside the coupling re-
gion. Defining Fin(t) and Fout(t) to be the values of
Fτ (z, t) for z before and after the coupling region re-
spectively, we may integrate Eq. (55) over z to give

Fout(t) = Fin(t)−
iH∗

σ τ (k0)

vg τ (k0)
ψσ(t) (56)

via Eq. (49). For convenience, we treat integrals over z
through the entire coupling region as being between −∞
and ∞, meaning that Eq. (49) is equivalent to

H̃σ τ (k0, z) =
1

2π

∫

Hσ τ (k) e
−i(k−k0)zdk. (57)
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Integrating Eq. (55) up to an arbitrary z thus gives

Fτ (z, t) = Fin(t)−
iψσ(t)

vg τ (k0)

z
∫

−∞

H̃∗
σ τ (k0, z

′)dz′ (58)

= Fin(t)−
iψσ(t)

2πvg τ (k0)

∫

H∗
σ τ (k)I(k, z)dk (59)

where

I(k, z) =

z
∫

−∞

ei(k−k0)z
′

dz′ (60)

= ei(k−k0)z

(

πδ(k − k0)−
i

k − k0

)

. (61)

Substituting for H̃σ τ (k0, z) and Fτ (z, t) in Eq. (54) using
Eq. (57) (with the dummy variable k replaced by k′) and
Eq. (59) respectively, and integrating first over z and then
over k′, we obtain

dψσ(t)

dt
= (iθ′ − γ)ψσ(t)− iHσ τ (k0)Fin(t) (62)

where γ = γ0 + κ, θ′ = θ − δωσ and

κ =
|Hσ τ (k0)|2
2vg τ (k0)

(63)

δωσ = − 1

2πvg τ (k0)

∫ |Hσ τ (k)|2
k − k0

dk. (64)

We refer to κ as the coupling half-linewidth, to γ0 and γ
as the intrinsic and total half-linewidths respectively, and
to θ′ again as the detuning. These expressions can also be
derived from Fermi’s golden rule and second-order per-
turbation theory respectively. Although unlikely to be
zero, the second-order correction δωσ to the frequency
of the resonator mode will likely be negligible compared
to the first-order correction given by Hσσ that comes
from the modification of the permittivity in the vicinity
of the resonator due to the waveguide. First-order inter-
action terms Hττ ′(k, k′) between the waveguide modes
also exist, and have the effect of slightly increasing the
wavevector of light as it traverses the coupling region,
perhaps in a polarization-dependent way, although this
would have little effect on the phenomenology apart from
a slight change in the apparent values of the coupling
strengths Hσ τ (k). Bringing the waveguide close to the
resonator will also in general increase the effective intrin-
sic loss rate γ0 due to coupling to the other guided mode
of the waveguide and to free-space modes. Note also that
momentum-nonconserving couplings between modes in
either the waveguide or resonator that are counterprop-
agating at the coupling region are strongly suppressed
due to the fact that the coupling region is uniform over
a lengthscale of many wavelengths.
In the steady state where Fin, Fout and ψσ are all time-

independent, we can thus say that

ψσ = − iHσ τ (k0)Fin

γ − iθ′′
and Fout = Fin

(

1− 2κ

γ − iθ′′

)

,

(65)

where θ′′ = θ′ −Hσσ = ω̄τ (k0)− ω̄σ − δωσ −Hσσ.
The input and output optical powers of the waveguide

and stored energy in the cavity are given respectively by

Pin,out = 2 ω̄τ(k0)vg τ (k0)|Fin,out|2 and Eσ = 2ω̄σ|ψσ|2.
(66)

Thus Eσ and Pout follow Lorentzian profiles with respect
to θ′′ with half-linewidth γ, and

Pout = Pin

(

1− ηin
1 + (θ′′/γ)2

)

(67)

where the in-coupling efficiency ηin = 4κγ0/γ
2. For a

whispering-gallery mode, we may define the circulating
power to be

Pcirc = Eσ ∆νFSR (68)

where ∆νFSR is the free spectral range of the mode family
in question at mode σ, which is also the mode’s angular
group velocity around the resonator divided by 2π.

IV. KERR NONLINEARITY

Turning now to the Kerr effect in the resonator, this
adds an extra term χ(3)(E ·E)E to the electric polariza-
tion vector P [60], where E(r) = −∂A/∂t is the electric
field. We are assuming a scalar form for χ(3)(r) as is nec-
essarily true for isotropic materials, and that both the
Kerr and linear dielectric effects act intantaneously. If
we include this term in Maxwell’s equations as part of
the displacement field D = ε0E+P, Eq. (1) becomes

∇×(∇×A) = µ0

(

ε
∂2A

∂t2
+ ε0χ

(3) ∂

∂t

(

∣

∣

∣

∣

∂A

∂t

∣

∣

∣

∣

2
∂A

∂t

))

.

(69)
Since this is a small perturbation, we can work in the
basis {aσ(r)} of stationary states of Eq. (1) as previously
defined, and let ασ(t) = ξσ(t)e

−iωσt where |dξσ/dt| ≪
ωσ|ξσ|. To first order in |dξσ/dt|/(ωσ|ξσ |), looking at
Eq. (2), we have

∂2A

∂t2
=
∑

σ

((

−ω2
σξσ − 2iωσ

dξσ
dt

)

e−iωσtaσ(r)

+

(

−ω2
σξ

∗
σ + 2iωσ

dξ∗σ
dt

)

eiωσta
∗
σ(r)

)

.

(70)

Since the χ(3) term in Eq. (69) is already small, we only
need to calculate it to leading order, giving

− µ0ε0χ
(3) ∂

∂t
((E0 ·E0)E0) (71)

where

E0(r, t) = i
∑

σ

ωσ(ξσe
−iωσtaσ(r)− ξ∗σe

iωσta
∗
σ(r)). (72)
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As the basis states {aσ(r)} are unperturbed, so too is
the left-hand side of Eq. (69) (when expressed in terms
of {ασ} or {ξσ}), so we may equate the total first order
perturbation to the right-hand side of Eq. (69) to zero,
which yields

2iε(r)
∑

σ

ωσ

(

dξσ
dt

e−iωσtaσ(r)−
dξ∗σ
dt

eiωσta
∗
σ(r)

)

= −ε0χ(3) ∂

∂t
((E0 · E0)E0) . (73)

We may expand the right-hand side as a triple sum over
ρ, µ and ν by expressing each instance of E0 in the
form given in Eq. (72), but with the index σ replaced
by ρ, µ and ν respectively. Doing this, we see that for
one of the resulting eight terms to be resonant with the
positive-frequency (e−iωσt) term on the left-hand side it
must satisfy ωσ ± ωρ ± ωµ ± ων ≃ 0 for some combi-
nation of plus and minus signs. Terms that satisfy this
with one or three minus signs correspond to processes
that convert one photon into three or vice versa, such
as third-harmonic generation, and will not be discussed
here. We are interested in terms that satisfy it with
two minus signs, that correspond to processes that con-
serve the total photon number and can thus operate en-
tirely within a single narrow band of optical frequencies.
As explained below, these processes comprise self- and
cross-phase modulation (which cause frequency shifts of
modes) and four-wave mixing (which transfers light be-
tween modes), although in a given situation the choice of
term may depend on the mode basis being used. Thus,
taking the dot product of both sides of Eq. (73) with
a
∗
σ(r) and integrating over all space, noting the normal-

isation Nσσ′ = δσσ′/ωσ, equating the e−iωσt terms on
each side and using the fact that to leading order the
d/dt on the right-hand side simply multiplies these by
−iωσ, we obtain

dξσ
dt

= i
∑

ρ

∑

µ

∑

ν

Kσρµν ξ
∗
ρξµξνe

i(ωσ+ωρ−ωµ−ων)t (74)

or equivalently

dασ

dt
= −iωσασ + i

∑

ρ

∑

µ

∑

ν

Kσρµν α
∗
ραµαν (75)

where

Kσρµν =
ε0
2
ωσωρωµων

∫

χ(3)
(

(a∗σ ·a∗ρ)(aµ ·aν)

+ (a∗σ ·aµ)(a∗ρ ·aν) + (a∗σ ·aν)(a∗ρ ·aµ)
)

d3r.

(76)

Terms with σ = ρ = µ = ν correspond to self-phase
modulation (SPM), which can be seen as coming from a
change in the refractive index seen by a light wave that
is proportional to the wave’s own local intensity. For a
linearly polarised travelling-wave mode,

Kσσσσ =
3ε0ω

4
σ

2

∫

χ(3)‖aσ‖4d3r. (77)

Observing that this term results in a self-induced fre-
quency shift ∆ωσσ = −Kσσσσ|ασ|2, we may use this to
calculate the change in refractive index for a given optical
intensity by treating a plane wave in an infinite uniform
medium as though it is propagating inside a cuboid with
volume V and periodic boundary conditions. We equate
∆ωσσ/ωσ to −∆n/n0 where ∆n is this change in refrac-

tive index and n0 =
√

ε/ε0 is the linear refractive index.
Noting that the optical intensity is I = 2ωσ|ασ|2c/(n0V )
where c is the speed of light in a vacuum and that

Kσσσσ =
3ω2

σχ
(3)

2n2
0εV

(78)

given the normalisation of aσ, we can show that

∆n = n2I, where n2 =
3χ(3)

4εc
(79)

is known as the nonlinear refractive index. We can gen-
eralise Eq. (78) to any optical mode in a resonator by
defining the effective mode volume to be

Vσ =
1

ω2
σε

2
res

∫

res ‖aσ(r)‖4d3r
=

(∫

ε(r)‖aσ(r)‖2d3r
)2

ε2res
∫

res ‖aσ(r)‖4d3r
(80)

where εres is the value of ε in the resonator and subscript
“res” on the bottom integral indicates that it is only over
the volume of the resonator itself, as opposed to the top
integral which is over all space including any evanescent
regions outside the resonator. We have assumed that
χ(3) is a constant inside the resonator and zero outside
it, as is the case for any resonator made of a homogeneous
material. Thus

Kσσσσ =
2cn2ω

2
σ

n2
0Vσ

(81)

where n2 and n0 refer to their values inside the resonator.
Each mode also experiences frequency shifts propor-

tional to the intensities of light in the other modes, due to
terms in which σ = µ and ρ = ν, or σ = ν and ρ = µ, but
σ 6= ρ. Known as cross-phase modulation (XPM), the
value of this shift induced on mode σ by mode ρ is thus
given by ∆ωσρ = −2Kσρσρ|αρ|2, since Kσρµν = Kσρνµ.
All other terms transfer light between modes, and are
collectively known as four-wave mixing. Importantly, in
systems with a high degree of symmetry such as a WGM
resonator with rotational symmetry, most of the terms of
Kσρµν will turn out to be zero. These cases can be under-
stood by realising that quantum-mechanically the Kσρµν

term is annihilating a photon in each of modes µ and ν
and creating one in each of modes σ and ρ, and must con-
serve the total linear or angular momentum in the cases of
translational and rotational symmetry respectively. Thus
for whispering-gallery modes, in order to conserve angu-
lar momentum, the sum of the azimuthal mode numbers
of modes σ and ρ must equal that of modes µ and ν in
order for Kσρµν to be non-zero. In WGM resonators,
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distinct modes with the same azimuthal mode number
tend to differ in frequency by more than the free spectral
range of the resonator. This is due to the strong ra-
dial and axial confinement that splits different radially-
and axially-excited modes, as well as to the strong geo-
metric birefringence that splits the radially- and axially-
polarized versions of the same spatial mode. As a con-
sequence, terms of the form Kσρσµ or Kσρµσ with ρ 6= µ
will usually be strongly off-resonant and thus negligible.
Therefore the total Kerr frequency shift of mode σ con-
tains only the SPM and XPM terms already discussed,
and so is given by

∆ωσ = −Kσσσσ |ασ|2 − 2
∑

ρ6=σ

Kσρσρ|αρ|2. (82)

By examining terms of the form Kσρσρ (= Kσρρσ) and
Kσσρρ in Eq. (76) and applying symmetry considera-
tions, we can derive some important results about the
relative magnitudes of these SPM and XPM shifts in
various cases. We start by noting that Kσρσρ is invari-
ant under multiplication of either aσ(r) or aρ(r) by a

spatially dependent phase factor eiϕ(r). Now travelling-
wave modes in a resonator (waveguide) belong to mode
families, which are series (continua) of modes that dif-
fer only by their azimuthal mode number (longitudinal
wavevector). Modes from the same family, particularly
those that are close in this mode number or wavevec-
tor, have essentially the same spatial mode profile up to
a multiplicative spatially dependent phase factor. They
will therefore have Kσρσρ ≃ Kσσσσ ≃ Kρρρρ and hence
XPM that is almost exactly twice as strong as SPM (by
Eq. (82)). Furthermore, all travelling-wave modes have a
counterpropagating but otherwise identical counterpart,
whose mode profile aσ(r) is the complex conjugate of
that of the first mode. This can be seen by from Eq. (2)
by noticing that if ασ(t) ∝ e−iωσt then swapping aσ(r)
and a

∗
σ(r) is equivalent to exchanging t and −t. A per-

fect travelling-wave mode is one that has a distinct coun-
terpropagating counterpart, in other words if aσ(r) and
aσ′ (r) = a

∗
σ(r) are orthogonal as defined by the matrix

elements Nσσ′ (and Dσσ′ ) between them vanishing. The
antithesis of a travelling-wave mode is a standing-wave
mode, for which a

∗
σ(r) = aσ(r) as stated in Section II.

It can be seen from Eq. (76) that if aµ(r) = a
∗
ρ(r) then

Kσµσµ = Kσρσρ, meaning that in a travelling-wave basis
the strength of XPM between any two modes is exactly
the same as between the first mode and the counterprop-
agating partner of the second. Crucially for this paper,
it also implies that XPM is precisely twice as strong as
SPM for modes that are counterpropagating partners of
each other.
Finding the XPM-SPM ratio between modes of differ-

ent polarizations is a little more nuanced. In the case of
plane waves or in the limit of weakly guided waves, aµ(r)
is everywhere perpendicular to the propagation direction,
and every mode has a counterpart with a different po-
larization but otherwise the same spatial mode profile.
This can be seen from the fact that in isotropic media

with only small variations in refractive index, Maxwell’s
equations can be approximated by the same scalar wave
equation for both polarizations [61]. For example, a spa-
tial mode propagating along ez will be have two linearly
polarized modes that can be expressed as ax(r) = exa(r)
and ay(r) = eya(r) for some common scalar function
a(r), where ex,y,z are the Cartesian unit vectors. Eq. (76)
thus tells us that

Kxxxx = Kyyyy = 3K0 (83)

and Kxyxy = Kxxyy = Kyyxx = K0, (84)

where

K0 =
ε0
2
ω4

∫

χ(3)(r) |a(r)|4 d3r (85)

and ω = ωx = ωy. This means that for oppositely lin-
early polarized counterparts, XPM is 2/3 as strong as
SPM. However, light is also transferred between the two
polarizations due to theKxxyy andKyyxx terms, and so a
linearly polarized basis is only appropriate for describing
the physics if there is sufficient mode splitting in that ba-
sis to suppress this transfer (such as in a WGM resonator
or rectangular waveguide, both of which have strong ge-
ometric berefringence). In the absence of such a mode
splitting, a better basis to use is a circularly polarized
one consisting of a+(r) = e+a(r) and a−(r) = e−a(r),

where e± = (ex ± iey)/
√
2. In this basis, Eq. (76) yields

K++++ = K−−−− = K+−+− = 2K0 (86)

and K++−− = K−−++ = 0. (87)

Thus, SPM is only 2/3 as strong as it is in a linearly
polarized basis, however XPM is now twice as strong as
SPM and there is no longer any transfer between the two
modes. Eq. (87) can be justified via conservation of spin
angular momentum, since if it were not true, two pho-
tons with +1 spin angular momentum would be able to
convert into two with −1 and vice versa. Furthermore,
the equality of K+−+− with K++++ and K−−−− can be
deduced from the fact that a+(r) is equal to a

∗
−(r) mul-

tiplied by some spatially dependent phase factor eiϕ(r),
as explained earlier. For strongly guided modes, i.e. ones
with transverse features not much larger than the wave-
length, this no longer holds due to the significant compo-
nent of a+(r) pointing along the propagation direction,
meaning that XPM between oppositely circularly polar-
ized modes is less than twice as strong as SPM.
Turning again to four-wave mixing, in cases where ασ

and αρ are initially both zero, the process governed by
Kσρµν will only occur when |αµαν | surpasses a certain
threshold where the gain in ασ and αρ through mutual
positive feedback becomes greater than their losses. This
is true for sideband and frequency comb generation start-
ing from monochromatic light. Since this is also governed
by the Kerr effect, its threshold power is roughly the same
as that for the symmetry breaking effect between coun-
terpropagating light mentioned in Section I and studied
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in Refs. [27–30], and in fact is normally higher due to
dispersion in the resonator. Therefore it is usually pos-
sible to pump a pair of counterpropagating modes with
sufficient power to observe the symmetry breaking but
no other Kerr nonlinear processes.
Thus, returning to Eq. (62), letting σ = 1, 2 denote

two counterpropagating partner modes along with waveg-
uide input field amplitudes Fin,1,2(t) in the corresponding
directions and including the SPM and XPM frequency
shifts, we obtain

dψ1,2

dt
=
(

iθ′′1,2 + iK
(

|ψ1,2|2 + 2|ψ2,1|2
)

− γ
)

ψ1,2

− iHFin,1,2, (88)

where θ′′1,2 are the detunings of the pumps in each direc-
tion from the resonance without Kerr shift, H denotes
the value of Hσ τ (k0) between each resonator mode and
the copropagating waveguide mode, and K = K1111 =
K2222 = K1212 = K2121. The values of Hσ τ (k0) for each
direction are the same by symmetry, with any difference
due to a difference in pump frequency being negligible,
and linear couplings between counterpropagating modes
are assumed to be negligible. Finally, we may put this in
dimensionless form by letting

t̄ = γt, ∆1,2 = −
θ′′1,2
γ
, e1,2 =

√

K

γ
ψ∗
1,2,

ẽ1,2 = iH∗

√

K

γ3
F ∗
in,1,2, ė1,2 =

de1,2
dt̄

,

(89)

yielding

ė1,2 = ẽ1,2 −
(

1 + i
(

|e1,2|2 + 2|e2,1|2 −∆1,2

))

e1,2, (90)

which forms the basis of the analysis of the symmetry-
breaking dynamics in Refs. [29, 30]. Table I provides
a more empirical set of definitions for the quantities
in Eq. (90) that mirror those in Refs. [29, 30], in which
|ẽ1,2|2 and |e1,2|2 are the dimensionless pump and circu-
lating powers p̃1,2 and p1,2 respectively. These definitions
may be reconciled with the rest of this paper by exam-
ining Eqs. (63), (66), (68) and (81), substituting ω̄τ (k0),
ω̄σ and ωσ with ω0 and Vσ with V .

V. CONCLUSION

We have brought together the various elements of the
coupled mode theory descriptions of linear coupling and
Kerr interaction between modes of a dielectric optical
microresonator and a waveguide, starting from first prin-
ciples. The treatment is initially very general and not
specific to a particular geometry or choice of mode ba-
sis, and can thus be applied to many scenarios not dis-
cussed here such as geometric scattering between res-
onator modes, bending losses and losses due to surface

TABLE I. Definition of dimensionless quantities in Eq. (90).
ηin is the resonant in-coupling efficiency equal to 4κγ0/γ

2

where κ, γ0 and γ = γ0+κ are the coupling, intrinsic and total
half-linewidths respectively. Pin,1,2 and Pcirc,1,2 are the pump
and circulating powers respectively. P0 = πn2

0V/(n2λQQ0)
is the characteristic in-coupled power required for Kerr non-
linear effects, where n0 and n2 are the linear and nonlinear
refractive indices, V is the mode volume, and Q = ω0/(2γ)
and Q0 = ω0/(2γ0) are the loaded and intrinsic quality factors
respectively for cavity resonance frequency ω0 (without Kerr
shift). F0 = ∆ωFSR/(2γ0) is the cavity’s intrinsic finesse for
free spectral range ∆ωFSR, and ω1,2 are the pump frequencies.

Symbol Description Formula

p̃1,2 Pump powers ηinPin,1,2/P0

p1,2 Circulating powers 2πPcirc,1,2/(F0P0)

∆1,2

Pump detunings from
resonance frequency
without Kerr shift

(ω0 − ω1,2)/γ

ẽ1,2 Pump field amplitudes p̃1,2 = |ẽ1,2|
2

e1,2 Circulating field amplitudes p1,2 = |e1,2|
2

roughness. We then used this theory to derive the di-
mensionless equation governing the symmetry-breaking
dynamics of a pair of counterpropagating modes in a
WGM or ring resonator, proving that the factor of two
between the coefficients of SPM and XPM is exact when
the two modes are time-reversal conjugates of each other.
This factor is slightly less than two for modes of opposite
circular polarization and/or different frequency, due to
small differences between the two spatial mode profiles.
All the approximations used in this paper are essentially
based on the same assumption, that all the dynamical
processes in the resonator (decay of light, coupling of
light from and to the waveguide, and Kerr interaction)
occur on timescales much longer than the inverse optical
frequency. They are therefore valid to a very high degree
of accuracy on the order of 1/Q, where the quality factor
Q of the resonator is generally at least 106 (sometimes
even exceeding 1010) for resonators used to realise Kerr
nonlinear effects [19]. The method and assumptions used
to describe a continuum of optical modes of a translation-
ally symmetric waveguide in terms of a complex field vari-
able of a single spatial dimension can be easily adapted
to describe a mode family of a rotationally symmetric
WGM resonator, allowing the LLE to be derived from
the terms already discussed plus one or more dispersion
terms.
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