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We introduce unitary quantum gates for photon pair creation in spontaneous parametric down-conversion
nonlinear crystals (NLs) and for photon path alignment. These are the two key ingredients for the method of
induced coherence without induced emission and many ensuing variations thereof. The difficulty in doing so
stems from an apparent mixing of the mode picture (such as the polarization of photons) and the Fock picture
(such as the existence of the photons). We illustrate utility of these gates by obtaining quantum circuits for
the experimental setups of the frustrated generation of photon pairs, identification of a pointlike object with
undetected photons, and creation of a Bell state. We also introduce an effective nonunitary description for the
action of NLs in experiments where all the NLs are pumped coherently. As an example, by using this simplifying
picture, we show how NLs can be used to create superposition of given quantum states in a modular fashion.
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I. INTRODUCTION

Recently, interest in the “induced coherence without in-
duced emission” [1,2] has been revived due to its various
renewed applications, e.g., in quantum imaging [3–5], gen-
eration of entanglement in multipartite and high-dimensional
systems [6], connections to graphs and computational com-
plexity [7], quantum spectroscopy [8], investigation of the
complementarity relation [9], novel methods to quantify
quantum correlations [10], and recently even superconducting
microwave resonators [11]. Central in the original experiment
was overlapping two paths: one output path from each of a pair
of nonlinear spontaneous parametric down-conversion crystals
(NLs). This overlapping or “path alignment” is responsible for
inducing coherence in the output state of this experiment.

With the advent of quantum computation and extensive
efforts for its optical realizations [12–16], and noting the
importance of the coherence generation, it is imperative to
understand the action of the path alignment and correlated
pair creation in NLs within the context of quantum compu-
tation. To this end, one needs to attribute quantum gates to
these effects. Although quantum circuits for several specific
quantum-optical experiments containing NLs have already
been proposed [17,18], a systematic approach for designing
such quantum circuits is still lacking, mainly due to mixing
of polarization and path degrees of freedom of photons which
are created on-the-fly.

Here we solve this problem systematically. First, by
defining photonic qutrits based on polarization and photon
numbers in each path, we lay out a reduced unitary description
for coherent creation of photon pairs, assuming weak nonlin-
earity or first-order approximation in the NL Hamiltonian. In
addition, we introduce a unitary picture which describes path
alignment. These gates enable one to attribute systematically
unitary quantum circuits [19] to quantum-optical experiments
containing NLs and path alignment and help to bridge the gap
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between quantum-optical experiments and quantum computa-
tion. We employ these gates for presenting quantum unitary
circuits for three important quantum-optical experiments.

Second, we introduce an effective picture for creation of
photon pairs. This picture relies on the fact that vacuum states
cannot be detected in experiments. In addition, in contrast
to the unitary approach, in this picture experiments can be
described with photonic qubits using only the polarization
degrees of freedom. An important feature of this effective
picture is nonlinearity of the action of an NL. Nevertheless,
in special cases one can attribute a linear (yet nonunitary)
operator to an NL. As an application, using this effective
picture, we show how to modularly create a superposition
of a set of given quantum states. The features of this effective
picture may allow one to employ it for realization of tasks
which may seem impossible otherwise.

II. UNITARY DESCRIPTION OF AN NL

The Hamiltonian of an NL is HNL = gapa
†
s a

†
i + g∗a†

pasai ,
where g denotes the down-conversion factor, which is often
assumed � 1, and indices p, s, and i denote distinguishable
pump, signal, and idler photons, respectively [20]. For simplic-
ity, we assume throughout this paper that the creation operators
a
†
p, a†

s , and a
†
i create photons, using the type I phase matching,

only with horizontal polarization [21]. Thus the action of an
NL is given by

UNL = e−iHNL = 1 − igapa†
s a

†
i − ig∗a†

pasai + O(|g|2). (1)

We assume that the pump photon is used only to activate
NL and that the initial state is |α〉p|0〉s |0〉i , where |α〉 is
a coherent state (for the case of a single-photon pump see
Appendix A). In addition, suppose that the laser is sufficiently
weak, i.e., |αg| � 1, and hence we can keep terms only
up to the first order of |αg|. These assumptions lead to
the following conclusions: (1) in a multi-NL setup which is
pumped coherently [2], existence of a signal or idler photon
in any step of the experiment implies that one of the NLs in
some previous step has fired, which in turn means that this
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FIG. 1. Unitary gate for an NL. Here a filled circle implies that the
corresponding NOT gate (which transforms |H 〉 and |0〉 to each other)
applies on the target photon when the state of the control photon is
|H 〉; otherwise, it acts as an identity.

state is already of O(|gα|). In this case, the application of
the next UNL on this state is given by the identity operator.
Equivalently, there is at most one pair of photons in the whole
experiment. (2) The state of the pump photon does not change
during the experiment. Thus it is not necessary to include pump
in the matrix representation of the associated unitary gate for
an NL. In contrast to pump photons, since we are interested
in signal and idler photons, their polarization state may be
manipulated by using suitable waveplates. Bearing in mind
that there exists at most one created pair in the setup, one can
describe the quantum state of each path as a qutrit in terms of
three possible quantum states: |0〉 when there is no photon in
the path, |H 〉 when there is one horizontally polarized photon,
and |V 〉 when there is one vertically polarized photon in the
path.

It is evident from Eq. (1) and the above assumptions that the
unitary transformation induced by an NL, in the space spanned
by {|kl〉}k,l=0,H,V , can be described with the quantum gate

Uα
NL|HH 〉 = |HH 〉 − ig∗α∗|00〉,
Uα

NL|00〉 = |00〉 − igα|HH 〉, (2)

and it applies on the seven other basis states as identity. Figure 1
shows the quantum circuit for the action of Uα

NL, where the
generalized-controlled-NOT (G-CNOT) gate is defined through
G-CNOT|H0〉 = |HH 〉 and G-CNOT|HH 〉 = |H0〉 (and iden-
tity for the rest of states). In the qutrit basis we have the matrix
representations

G-CNOT =

⎛
⎜⎝
13×3

0 1
1 0

14×4

⎞
⎟⎠,

Gα =
⎛
⎝ 1 −ig∗α∗ 0

−igα 1 0
0 0 1

⎞
⎠. (3)

Quantum gate for path alignment

When one of the output paths (�1) of an NL is aligned
with the corresponding input path (�2) of another NL, the
effect of this alignment is to transfer photons from �1 to
�2. This action can be described with a two-qutrit SWAP

gate which acts nontrivially only on the subspace defined by
{|H0〉,|0H 〉,|V 0〉,|0V 〉}�1�2 , and it acts as identity on the other
possible states (although here they do not occur).

In the following, we illustrate how to employ these quantum
gates in three important examples. To help clarify the action of
path alignment in these experiments, we draw separate signal

FIG. 2. Setups for (left) frustrated generation of photon pairs and
(right) generation of a maximally entangled pair.

and idler paths for each NL, even if this might seem redundant,
and apply path alignment gate where it is needed.

III. EXAMPLES

A. Quantum circuit for frustrated generation of photon pairs

Using the introduced elements of the quantum circuits, Uα
NL

and SWAP, one can see that the frustrated down-conversion
[22] [Fig. 2 (left)] can be described with the quantum circuit
depicted in Fig. 3. Since the state of the pump throughout
the experiment remains as the initial pump state |α〉, we
can remove it from the state representation of the photons.
Assuming |ψ0〉 = |00〉s1i1 |00〉s2i2 as the initial state for the
quantum circuit of Fig. 3 yields the following states in the
corresponding steps of the experiment:

|ψ1〉 := Uα
NL1|ψ0〉 = (|00〉 − igα|HH 〉)s1i1 |00〉s2i2 , (4)

|ψ2〉 := U�|ψ1〉 = (|00〉 − ie−i�gα|HH 〉)s1i1 |00〉s2i2 ,

|ψ3〉 := (
SWAPs1s2 SWAPi1i2

)|ψ2〉 = |00〉s1i1

× (|00〉 − ie−i�gα|HH 〉)s2i2 ,

|ψ4〉 := Uα
NL2|ψ3〉 = |ψ0〉 − igα(1 + e−i�)|00〉|HH 〉. (5)

It is seen that by choosing � = π in the final state |ψ4〉 one can
reach the initial state |ψ0〉. That is no photon can be detected

FIG. 3. Quantum circuit for frustrated down-conversion.
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FIG. 4. Quantum circuit for identification of a pointlike object with undetected photons. EO is the object, UH is the Hadamard gate, and
BS denotes the beam splitter.

in either of the signal or idler paths. For a single-photon pump
variant of the experiment see Appendix B.

B. Quantum circuit to create a maximally entangled state

A setup for creation of maximally entangled state between
the polarizations of two photons is given in Fig. 2 (right) [23],
and its circuit-based description is similar to what depicted
in Fig. 3 with this difference that � should be replaced
with two half-waveplates (HWPs) in paths s1 and i1. The
action of HWP is HWP|H 〉 = |V 〉 and HWP|V 〉 = |H 〉 (and
obviously HWP|0〉 = |0〉), which is the Pauli X operator in
the {|H 〉,|V 〉} encoding. Following steps akin to those of
Eq. (5), it is straightforward to see that the final state will be
|00〉s1i1 |00〉s2i2 − igα|00〉s1i1 (|HH 〉 + |V V 〉)s2i2 , which means
that the polarization state of the two photons of paths s2

and i2 are maximally entangled. Note that the probability of
generating this state is of O(|gα|2).

C. Quantum circuit for identification of a pointlike
object with undetected photons

The quantum circuit proposed in Fig. 4 can describe
identification of a pointlike object with unknown transmit-
tance T and phase shift γ parameters such that EO |10〉iw =
T eiγ |10〉iw + √

1 − T 2|01〉iw, in which w denotes the path
where the reflected photon takes [18]. We remark that a real
object can be approximated as a combination of pointlike
objects on a planar region [4]. Hence this circuit can enable
one to analyze the more sophisticated “quantum imaging with
undetected photons experiment.” Details of the states of the
system in each step are given in Appendix C.

IV. EFFECTIVE PICTURE FOR DESCRIBING
SETUPS WITH NLs

Since vacuum cannot be detected in quantum-optical
experiments, it seems easier to work in an effective picture
in which the vacuum states are neglected. We remind that all
the assumptions and remarks we discussed after Eq. (1)—
coherently pumping setups and retaining O(|gα|) terms—are
applied here too. In addition, in contrast to the unitary approach
of Sec. II, in this picture we use only the polarization degrees
of freedom for state representation.

Let us define the effective state |ψeff〉 as

|ψ〉 = |0 · · · 0〉 − igα|ψeff〉, (6)

in which |ψ〉 is the state of the system. The action of an NL in
the effective picture, �α

NL, placed on the signal and idler paths
�i�j reads

�α
NL

∣∣ψeff
in

〉 = ∣∣ψeff
in

〉 + |HH 〉�i�j
, (7)

in which |ψeff
in 〉 is an arbitrary input state in the two-photon

polarization Hilbert space. One can consider �α
NL as the

reduction of Uα
NL to the effective picture. In our notation, the

state of the system on the unwritten paths is vacuum; e.g., by
|HH 〉�i�j

we mean |HH 〉�i�j
|0〉⊗N−2

�i �j

in which �i�j indicates all

paths except �i and �j , and N is the total number of paths.
We note that �α

NL is nonunitary. In addition, �α
NL is nonlinear

in the sense that �α
NL(c1|ψeff

1 〉 + c2|ψeff
2 〉) �= c1�

α
NL|ψeff

1 〉 +
c2�

α
NL|ψeff

2 〉. Due to the nonlinearity property, �α
NL cannot

be described as a two-photon gate and does not admit a
matrix representation in the ordinary sense; rather, it can be
considered as a superposer (which adds |HH 〉�i�j

to input
states).

Remark.—However, it is possible to obtain a matrix repre-
sentation for �α

NL in some restricted sense (see Appendix D).
Here we explain the simplified case where the system has only
two paths. In this case, the nonlinearity of �α

NL can be bypassed
by using an auxiliary extra dimension in an extended vector
space. The effective state of the system in the extended space is

represented as
( 1
|ψeff〉

)
, in which the first entry 1 is the auxiliary

element. With this, the effective operation of NL is given by
the translation matrix

�α
NL =

⎛
⎝1 0

1 1
13×3

⎞
⎠, (8)

where {|a〉,|HH 〉,|HV 〉,|V H 〉,|V V 〉} is used as the basis,
with |a〉 = (1 0 0 0 0)T representing the vacuum

[because |vaceff〉 = (0 0 0 0 )T ]. The matrix represen-
tation for �α

NL can be generalized in systems with more than
two paths using its representation in a direct-sum vector space;
see Appendix D.
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FIG. 5. Quantum circuit for creation of uniform superposition.

An application of the effective picture: Modular
creation of uniform superposition

Using the effective picture, one can describe how to create
two-photon superposed polarization states modularly by using
a setup consisting of NLs. A high-dimensional generalization
of this method will result in the generation of high-dimensional
entangled states proposed in Ref. [6].

Let us assume that a set of two-photon states
{|φi〉}Ni=1 is given and the objective is to create a
uniformly superposed state as

∑N
i=1 |φi〉 (omitting the

normalization factor). To this end, we find a set of
unitary operators {U (i)}Ni=1 such that |φ1〉 = U (1)|HH 〉,
U (1)−1|φ2〉 = U (2)|HH 〉, U (2)−1

U (1)−1|φ3〉 = U (3)|HH 〉, . . . ,
and U (N−1)−1

. . . U (2)−1
U (1)−1|φN 〉 = U (N)|HH 〉. Figure 5

depicts the quantum circuit achieving the desired superposed
state (for details of the calculations see Appendix E). An
appealing feature of this superposition is that by removing
the ith NL, the related state |φi〉 will also be removed from the
superposition without affecting other states.

It is straightforward to modify the setup of Fig. 5 to create
similar superposition of given single-photon states. This can
be achieved by applying single-photon unitary gates only on
one of the paths (e.g., signal) and discarding the photon on
the other (idler) path. To create a nonuniform superposition,
it suffices to put the proper number of NLs successively (or
equivalently put an NL in a cavity to use it multiply because
of the reflection of photons).

V. SUMMARY AND OUTLOOK

We have obtained a unitary gate representation for photon
pair creation with spontaneous parametric down-conversion
in nonlinear crystals (NLs) which is suitable for describing
experiments with weak pumping. We also have shown that
path alignment can be unitarily described with a SWAP gate.
We have used the introduced gates to obtain the equivalent
quantum circuits for several quantum-optical experiments.
Knowing the unitary gates for elements of experimental setups

FIG. 6. Unitary gate for an NL when pump is a single photon.
Filled circle denotes the corresponding NOT gate applied on the target
photon when the control photon is in |H 〉, and unfilled circle denotes
that the NOT gate is applied on the target when the control photon is
in |0〉; otherwise, it acts as an identity gate.

can be useful in designing quantum algorithms realizable by
quantum optics. It can also be helpful in obtaining equivalent
optical experimental setups for previously known quantum
algorithms. Another application can be in designing computer
programs for automated search for new quantum experiments
[24,25].

Additionally, we have introduced an effective picture
description for NLs which is more suitable for quantum-
optical experiment. Using this picture it is simpler to see
the application of NLs for creating modular superpositions
of given quantum states. The effective picture may also be
useful in constructing manybody quantum states with certain
amount of entanglement [26,27], such as graph states for
measurement-based quantum computation [28,29].

A future question could involve investigation of the inherent
nonlinearity of our effective description in the context of new
quantum computation schemes. It will also be interesting to see
how the effective description of processes can be generalized to
multiphoton systems to allow employment of state-of-the-art
photonic technology [30,31]. Additionally, nonunitarity of the
effective picture may also enable simulating open quantum
dynamics more naturally within this picture.
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APPENDIX A: UNITARY DESCRIPTION OF AN NL WHEN THE PUMP IS A SINGLE PHOTON

As we have already explained in the main text, one does not need to manipulate polarization of pump photons during the
experiment, because the pump is used only to activate NLs. Hence, if we assume the pump is a single photon, only two states
|0〉 and |H 〉 are sufficient to describe its state. With this assumption and considering that for all NLs in the experimental setup
g � 1, and that NLs are pumped coherently, the (truncated) Hilbert space for the possible input states of an NL is spanned by

{|000〉,|H00〉,|0H0〉,|0V 0〉,|00H 〉,|00V 〉,|0HH 〉,|0HV 〉,|0V H 〉,|0V V 〉}psi. (A1)

Among these states the action of NL described by UP
NL (P indicates that pump is a single photon) is nontrivial only on the subspace

{|H00〉,|0HH 〉}psi, and is given as the following (for brevity, the subscripts are removed when it raises no ambiguity):

U P
NL|0HH 〉 = |0HH 〉 − ig∗|H00〉 + O(|g|2),

U P
NL|H00〉 = |H00〉 − ig|0HH 〉 + O(|g|2), (A2)
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FIG. 7. Experimental setup (left) and quantum circuit (right) for the frustrated generation of photon pairs with a single-photon pump.

and it applies on the other eight states of the subspace (A1) as identity. Using a method based on the Gray codes [19] the
quantum circuit of Fig. 6 for UP

NL is obtained. In this figure, the three-photon G-CNOT gates with two control photons are natural
generalization of two-photon G-CNOTs.
The qutrit-gate G, in the computational basis which is defined in the main text, is given by

G =
⎛
⎝ 1 −ig∗ 0

−ig 1 0
0 0 1

⎞
⎠. (A3)

APPENDIX B: QUANTUM CIRCUIT FOR FRUSTRATED GENERATION OF PHOTON PAIRS WHEN
THE PUMP IS A SINGLE PHOTON

The quantum circuit for frustrated down-conversion with a single-photon pump (see Fig. 7) with quantum state |H 〉p1 |0〉p2 +
|0〉p1 |H 〉p2 is given in Fig. 7. The effect of the circuit on the input |ψ0〉 = |H00〉p1s1i1 |000〉p2s2i2 + |000〉p1s1i1 |H00〉p2s2i2 becomes

|ψ1〉 := U P
NL1|ψ0〉 = (|H00〉p1s1i1 − ig|0HH 〉p1s1i1

)|000〉p2s2i2 + |000〉p1s1i1 |H00〉p2s2i2 ,

|ψ2〉 := U�|ψ0〉 = (|H00〉p1s1i1 − ie−i�g|0HH 〉p1s1i1

)|000〉p2s2i2 + |000〉p1s1i1 |H00〉p2s2i2 ,

|ψ3〉 := (
SWAPs1s2 SWAPi1i2

)|ψ1〉 = |H00〉|000〉 − ie−i�g|000〉|0HH 〉 + |000〉|H00〉,

|ψ4〉 := U P
NL2|ψ2〉 = |H00〉|000〉 − ie−i�g|000〉(|0HH 〉 − ig∗|H00〉) + |000〉(|H00〉 − ig|0HH 〉)

= |ψ0〉 − ig(1 + e−i�)|000〉|0HH 〉 + O(|g|2). (B1)

By choosing � = π , it can be seen that the output state will become equal to the input state, i.e., |ψ4〉 = |ψ0〉, which gives zero
photon on both final paths i2 and s2. In addition, when the phase shifter is placed on path s or even on the input pump path of one
of the crystals, the same effect can be observed.

APPENDIX C: DETAILS OF THE STEPS OF THE CIRCUIT FOR IDENTIFICATION OF A POINTLIKE
OBJECT WITH UNDETECTED PHOTONS

The steps of the circuit of Fig. 4 after the application of the first NL, which yields |ψ1〉 of Eq. (4), are given in the following:

|ψ2〉 := EO |ψ1〉 = |000〉s1i1w − igα|H 〉s1 (T eiγ |H0〉 +
√

1 − T 2|0H 〉)i1w|00〉s2i2 ,

|ψ3〉 := SWAPi1i2 |ψ2〉
= |00〉s1i1 |00〉s2i2 |0〉w − igαT eiγ |H0〉s1i1 |0H 〉s2i2 |0〉w − igα

√
1 − T 2|H0〉s1i1 |00〉s2i2 |H 〉w,

|ψ4〉 := Uα
NL2|ψ3〉

= |ψ0〉|0〉w − igα(|0H 〉 + T eiγ |H0〉)s1s2 |0H 〉i1i2 |0〉w − igα
√

1 − T 2|H0〉s1s2 |00〉i1i2 |H 〉w. (C1)

The action of EO , which is assumed not to affect the polarization of photons, is given in Refs. [3,18]. Tracing out over the idler
path and path w, the state |ψ4〉〈ψ4| yields the same result expected from the experimental setup before the signal photons pass
through the final beam splitter [Eq. (22) of Ref. [18]],

ϒ = 1
2 [|H 〉〈H | ⊗ |0〉〈0| + T eiγ |H 〉〈0| ⊗ |0〉〈H | + T e−iγ |0〉〈H | ⊗ |H 〉〈0| + |0〉〈0| ⊗ |H 〉〈H |]s1s2 . (C2)
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FIG. 8. A system with Ns signal and Ni idler paths, where an NL
is applied on paths nsn

′
i

APPENDIX D: EXTENSION OF THE MATRIX
REPRESENTATION OF NL IN AN EFFECTIVE PICTURE

FOR A HIGHER NUMBER OF PATHS

We now show that the effective picture descriptions of the
states and NLs lead to the reduction of tensor-product Hilbert
space to a direct-sum Hilbert space. Consider a system with 2N

paths, comprising N signal paths (labeled by ns ∈ {1, . . . ,N})
and N idler paths (labeled by n′

i ∈ {1, . . . ,N}). We define
the subspace Hnsn

′
i
= span{|HH 〉,|HV 〉,|V H 〉,|V V 〉}nsn

′
i

at-
tributed to signal path ns and idler path n′

i .

In a system comprising coherently pumped NLs with a
weak laser beam, where the possibility of activation of two
NLs at the same time is negligible (hence, there is at most
one photon pair in the system), the total accessible Hilbert
space is Hacc = ⊕ns ,n

′
i
Hnsn

′
i
. All state vectors of Hacc can now

be represented as

|ψeff〉 = |ψ〉1s1i
⊕ · · · ⊕ |ψ〉nsn

′
i
⊕ · · · ⊕ |ψ〉NsNi

, (D1)

in which |ψ〉nsn
′
i
= Pnsn

′
i
|ψ〉, with Pnsn

′
i
=∑

k,l,p,q=H,V |kl〉nsn
′
i
〈pq| being the projector into the

Hnsn
′
i
.

Interestingly, the above decomposition also allows that
the action of an NL on paths ns and n′

i be represented in a
restricted fashion: (�α

NL)nsn
′
i

: Hnsn
′
i
→ Hnsn

′
i
; that is, (�α

NL)nsn
′
i

acts only on Hnsn
′
i
. Thus an NL on paths ns and n′

i is given
by (�α

NL)nsn
′
i
⊕ 1

nsn
′
i

(see Fig. 8). This implies that in this
projective decomposition of the accessible Hilbert space NL
acts nontrivially only on the vectors of the corresponding
subspace.

APPENDIX E: DETAILS OF THE CALCULATIONS OF THE MODULAR SUPERPOSITION EXAMPLE

Following the steps of Fig. 5 by using the matrix representation for NLs, one obtains that

|00〉 �α
NL−→ |HH 〉 U (N)−→ U (N)|HH 〉 �α

NL−→ U (N)|HH 〉 + |HH 〉 U (N−1)−→ U (N−1)U (N)|HH 〉 + U (N−1)|HH 〉
· · ·

U (2)−→ U (2) · · · U (N−1)U (N)|HH 〉 + U (2) · · · U (N−1)|HH 〉 + · · · + U (2)U (3)|HH 〉 + U (2)|HH 〉
�α

NL−→ U (2) · · · U (N−1)U (N)|HH 〉 + U (2) · · · U (N−1)|HH 〉 + · · · + U (2)U (3)|HH 〉 + U (2)|HH 〉 + |HH 〉
U (1)−→ U (1) · · · U (N−1)U (N)|HH 〉 + U (1) · · · U (N−1)|HH 〉 + · · · + U (1)U (2)|HH 〉 + U (1)|HH 〉

≡ |φN 〉 + |φN−1〉 + · · · + |φ3〉 + |φ2〉 + |φ1〉. (E1)

Alternatively, we can represent the whole action of the circuit in the matrix language as follows:⎛
⎜⎜⎜⎝

1
0
0
0
0

⎞
⎟⎟⎟⎠

�α
NL−→

⎛
⎜⎜⎜⎝

1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1
0
0
0
0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
1
0
0
0

⎞
⎟⎟⎟⎠ ≡

(
1

|HH 〉
)

U (N)−→
(

1
U (N)

)(
1

|HH 〉
)

=
(

1
U (N)|HH 〉

)
�α

NL−→

⎛
⎜⎜⎜⎝

1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠

(
1

U (N)|HH 〉
)

=
(

1
U (N)|HH 〉 + |HH 〉

)
U (N−1)−→ · · ·

�α
NL−→

(
1

U (1) · · ·U (N)|HH 〉 + U (1) · · · U (N−1)|HH 〉 + · · · + U (1)U (2)|HH 〉 + |HH 〉〉
)

. (E2)
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