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We show a surprising link between experimental setups to realize high-dimensional multipartite
quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-
source information is never created. We find that each of these setups corresponds to an undirected graph,
and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum
superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the
#P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems
from graph theory—such as Hall’s marriage problem—are rephrased in the language of pair creation in
quantum experiments. We show explicitly how this link allows one to answer questions about quantum
experiments (such as which classes of entangled states can be created) with graph theoretical methods, and
how to potentially simulate properties of graphs and networks with quantum experiments (such as critical
exponents and phase transitions).
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When a pair of photons is created, and one cannot—even
in principle—determine what its origin is, the resulting
quantum state is a coherent superposition of all possibilities
[1,2]. This phenomenon has found a manifold of applica-
tions such as in spectroscopy [3], in quantum imaging [4],
for the investigation of a complementarity [5], in super-
conducting cavities [6], and for investigating quantum
correlations [7]. By exploiting these ideas, the creation
of a large number of high-dimensional multipartite
entangled states has recently been proposed [8] (inspired
by computer-designed quantum experiments [9]).
Here we show that graph theory is a very good abstract

descriptive tool for such quantum experimental configura-
tion: Every experiment corresponds to an undirected graph,
and every undirected graph is associated with an experi-
ment. On the one hand, we explicitly show how to translate
questions from quantum experiments and answer them with
graph theoretical methods. On the other hand, we rephrase
theorems in graph theory and explain them in terms of
quantum experiments.
An important example for this link is the number of

terms in the resulting quantum state for a given quantum
experiment. It is the number of perfect matchings that
exists in the corresponding graph—a problem that lies
in the #P-complete complexity class [10]. Furthermore,
the link can be used as a natural implementation for
the experimental investigation of quantum random net-
works [11].

Experiments and graph.—The optical setup for creating
a 3-dimensional generalization of a 4-photon Greenberger-
Horne-Zeilinger state [12,13] is shown in Fig. 1(A) [8]. The
experiment consists of three layers of two down-conversion
crystals each. Each crystal can create a pair of photons in
the state j0; 0i, where the mode number could correspond
to the orbital angular momentum (OAM) of photons
[14–16], or some other (high-dimensional) degree-of-
freedom. A laser pumps all of the six crystals coherently,
such that two pairs of photons are created in parallel. Four-
fold coincidence (i.e., four photons are detected simulta-
neously in detector a, b, c, and d) can only happen if the
two photon pairs are created in crystals I and II, or in
crystals III and IV, or in crystals V and VI. In every other
case, there is at least one path without a photon, which is
neglected by postselection. Between each layer, the modes
are shifted by þ1. This example leads to the final
state jψi ¼ ð1= ffiffiffi

3
p Þðj0; 0; 0; 0i þ j1; 1; 1; 1i þ j2; 2; 2; 2iÞ.

The corresponding graph is shown in Fig. 1(B). Every
optical path a, b, c, d in the experiment corresponds to a
vertex in the graph, and every crystal forms an edge
between the vertices. A four-fold coincidence count hap-
pens if a subset of the edges contains each of the four
vertices exactly once. Such a subset is called perfect
matching of the graph. In the above example, there are
three perfect matchings (two green edges, two blue edges,
and two red edges), thus there are three terms in the
quantum state. We can therefore think of our quantum state

PRL 119, 240403 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

15 DECEMBER 2017

0031-9007=17=119(24)=240403(6) 240403-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.119.240403
https://doi.org/10.1103/PhysRevLett.119.240403
https://doi.org/10.1103/PhysRevLett.119.240403
https://doi.org/10.1103/PhysRevLett.119.240403


as a coherent superposition of the perfect matchings in the
corresponding graph. The correspondence between quan-
tum optical setups and graph theoretical concepts are listed
in Table I.
Now, what will happen when we add more crystals in

each layer? As an example, in Fig. 1(D), three crystals in
each layer produce six photons, there are three layers which
make the photons 3-dimensionally entangled. Surprisingly

however, in contrast to the natural generalization of the
4-photon case in Fig. 1(A)–(C) (and in contrast to what
some of us wrote in [8]), the resulting state is not a high-
dimensional GHZ state. In contrast to the previous case,
there are four perfect matchings, thus the resulting quantum
state has four terms [Fig. 1(F)]. One perfect matching
comes from each of the layers (which are the terms
expected for the GHZ state), and one additional perfect
matching arises due to a combination of one crystal from
each layer (which we call the Maverick term). If the mode
shifter between the layers is þ1 as before, the Maverick
term has j1a; 1ci from the blue layer, j2b; 2di from the green
layer, and j0e; 0fi from the red layer. This leads to the final
state

jψi ¼ 1

2
ðj0; 0; 0; 0; 0; 0i þ j1; 1; 1; 1; 1; 1i

þ j2; 2; 2; 2; 2; 2i þ j1; 2; 1; 2; 0; 0iÞ: ð1Þ

A GHZ state can only appear when all perfect matchings
are disjoint, meaning that every edge appears only in one
perfect matching. Otherwise, additional terms are present in
the quantum state.
When the number of layers of crystals is increased to

four (with three crystals per layer) and modes are shifted by
þ1 as before (and no phase shifters are used), there are
eight terms in the resulting quantum state: Four GHZ-like
terms and four additional Maverick terms. For five layers,
the resulting 6-photon quantum state consists of 15 terms
(5 GHZ-like terms and 10 additional Maverick terms),
entangled in five dimensions (see Supplemental Material
[17]). In general, n crystals in one layer produce 2n
photons. One can design setups with d ¼ ð2n − 1Þ layers,
which correspond to a complete graph K2n (in a complete
graph, every vertex is connected with every other one
exactly once). It produces a state with ½ð2nÞ!=n!2n� terms,
(2n − 1) of them are GHZ-like (see Supplemental Material
[17]). By changing the mode shifters and phase shifters
between the layers, a vast amount of different quantum
states can be created.
Now one could ask what types of GHZ states are

possible, in general, using the experimental scheme above.
We show a proof based on graph theory which answers that
question. For that, we first translate the quantum physics
question “Which d-dimensional GHZ states can be cre-
ated?” into the graph theory question “Which undirected
graphs exist with d perfect matchings which all are
disjoint?”. The proof strategy is to construct a graph with
a maximum number of disjoint perfect matchings, starting
from n vertices [24]. The concept and the proof are
described in Fig. 2. We find that one can create arbitrarily
large 2-dimensional GHZ states, and a 3-dimensional 4-
photon GHZ state. In an analogous way, different questions
in such quantum experiments can be translated and
answered with graph theory.

FIG. 1. (A) An optical setup which can create a 3-dimensional
4-photon GHZ-state with the method of entanglement by path
identity [8]. It consists of three layers of crystals, and in between
there are variable mode- and phase-shifters (depicted in grey).
(B) The corresponding graph with four vertices (one for each
path) and six edges (one for each crystal). Every layer of crystals
leads to a four-fold coincidence count. (C) These correspond to
three disjoint perfect matchings, or 1-factors, in the graph. (D) An
optical setup for creating 3-dimensional entanglement with six
photons. (E) The corresponding graph. (F) It has four perfect
matchings, thus the corresponding quantum state has four terms.
One terms comes from each of the three layers (the GHZ terms),
and one additional term comes from different layers (the
Maverick-term, with orange background). For that reason, the
resulting quantum state has not the form of a GHZ state. In the
Supplemental Material [17], we show how to construct the
experimental setup from a given graph.

TABLE I. The analogies between quantum experiments involv-
ing multiple crystals and graph theory.

Quantum experiment Graph theory

Optical setup with crystals Undirected graph GðV;EÞ
Crystals Edges E
Optical paths Vertices V
n-fold coincidence Perfect matching
#(terms in quantum state) #(perfect matchings)
Maximal dimension of
photon

Degree of vertex

n-photon d-dimensional
GHZ state

n-vertex graph with d disjoint
perfect matchings
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In order to build 3-dimensional GHZ-type experiments
with six photons (without extra terms), one can use two
copies of the 3-dimensional 4-photon GHZ state [presented
in Fig. 1(A)], and combine them with a 3-dimensional Bell-
state measurement [25,26]. In the graph this is represented
by two graphs that are merged (see Supplemental Material
[17]). Many other classes of entangled states, such as a two-
dimensional W-state [27,28] or asymmetrically entangled
Schmidt-Rank Vector (SRV) [29,30], can be created by
exploiting multigraphs (graphs with more then one edge
between two vertices), as shown in the Supplemental
Material [17].
An important result is that calculating the final quantum

state cannot be done efficiently: Counting the number of
perfect matchings in a graph (i.e., calculating the number of
terms in the resulting quantum state) is in the #P-complete
complexity class. In a bipartite graph, it is equivalent to
computing the permanent of the graph’s biadjacency matrix
[10] (see Supplemental Material for such an experimental
setup [17]). Furthermore, for general graphs, counting the
number of perfect matchings corresponds to calculating the
Hafnian (a generalization of the permanent) of the graph’s

adjacency matrix. Even for approximating the Hafnian,
there is no known deterministic algorithm that runs in
polynomial time [31,32]. An example is given in Fig. 3(A)
for a random graph, its corresponding perfect matching and
Hafnian in Fig. 3(B)–(C), and the corresponding quantum
setup in Fig. 3(D).
While the information about the number of terms is

encoded in every n-photon quantum state emerging from
the setup, the question is how one can obtain this
information (or approximate it) efficiently. Measurements
in the computation basis are not sufficient, otherwise it
could be calculated classically as well. One direction would
be to investigate the frustrated generation of multiple
qubits [33] (for instance, by using phase shifters instead
of mode shifters between each crystal), or by analyzing
multiphoton, high-dimensional entanglement detections
[34]. A detailed investigation of the link between the
outcome of such experiments and complexity classes
would be valuable, but it is outside the scope of this Letter.
As it is possible to generate experimental setups for

arbitrary undirected graphs, the presented scheme is also
a natural and inexpensive implementation of quantum

FIG. 2. Application of the bridge between quantum experiments and graph theory: As a concrete example, we ask which
d-dimensional n-photon GHZ states can be created experimentally with this method. The idea of the proof is to construct a graph starting
with n vertices without edges. We try to maximize the number of disjoint perfect matchings (PMs) by adding appropriate edges to the
graph [24]. In disjoint PMs, every edge appears in only one perfect matching. The example in the figure is for n ¼ 8, but the proof works
for any arbitrary even n. Step I: InA, we add the first PM to a set of eight vertices (green). Step II: InB, we add more edges to construct a
second PM (red). Whenever the new PM, together with the first (green) PM, creates more than one cycle (here: edges 1-6,6-7,7-8,8-1;
and 2-3,3-4,4-5,5-2), we immediately find an additional Maverick PM (indicated with white boundary, edges 1-6,2-3,4-5,7-8). Thus the
graph cannot represent a GHZ state (as a GHZ state has only disjoint perfect matchings). The only choice for the second PM is to create
together with the first PM one cycle that visits every vertex—a Hamilton cycle, shown in C. Hamilton cycles consist of 2 PMs, and
therefore correspond to 2-dimensional GHZ states. It can be arbitrarily large, and thus there can be arbitrarily large n-photon
2-dimensional GHZ states. Step III: Starting with the Hamilton cycle, we try to add a third PM with blue edges. In D, we observe that if
the new edge splits the graph into an even number of vertices (upper part: vertices 7,8; lower part: vertices 2,3,4,5), we always find a new
Maverick PM. It consists of the new edge (here: 1–6) and edges from the Hamilton cycle (here edges 2-3,4-5,7-8). We learn—as we
require only disjoint perfect matchings—no edge of a new PM should split the graph into even numbers of vertices (otherwise Maverick
PMs appear). Finally, in E we try to add edges that split the graph into an odd number of vertices. We observe that in every additional
PM there are at least two neighboring edges that intersect (neighboring edges start from consecutive vertices; here—shown in blue—
they start at vertex 1 and vertex 2). This pair always forms a new Maverick PM with additional edges from the Hamilton cycle (here:
1-5,2-6,3-4,7-8). There is one exception for the case of n ¼ 4: There can be a 3rd disjoint PM, because a Maverick PM needs at least 3
edges (2 blue ones and one from the Hamilton cycle). Therefore, a 4-photon 3-dimensional GHZ state can be created, while for n > 4,
GHZ states can only be created with d ¼ 2.
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(random) networks (see Fig. 3). This could be used to
experimentally investigate entanglement percolation
[35–37] and critical exponents that lead to phase transitions
in quantum random networks [11]. As an example, it has
been shown that for large quantum networks with N nodes,
every quantum subgraph can be extracted with local
operations and classical communication (LOCC) if the
edges are connected with a probability p ≥ N−2 [11]. In
close analogy to the experimental schemes here, N is the
number of output paths of photons, and p corresponds to
the probability for a down-conversion event in a single
crystal. The quantum state for the edge between vertices a
and b, with mode number l can be written as

jψa;bi ¼
h
1þ pðâ†a;lâ†b;l − âa;lâb;lÞ

þ p2

2
ðâ†a;lâ†b;l − âa;lâb;lÞ2 þ � � �

i
j0i; ð2Þ

where p is the spontaneous parametric down-conversion
probability. The complete quantum (random) network is a
combination of all crystals being pumped coherently, which
is a tensor product over all existing edges in the form of

jψnetworki ¼ ⨂
eði;jÞ∈E

jψ i;ji; ð3Þ

where i and j are the vertices that are connected by the
edge e ∈ E.
Finally, to strengthen the link between quantum experi-

ments and graph theory, we show that theorems from graph
theory can be translated and reinterpreted in the realm of
quantum experiments. In Fig. 4(A) and (B), we showHall’s

marriage theorem, which gives a necessary and sufficient
condition in a bipartite graph for the existence of at least
one perfect matching [38]. A generalization to general
graphs, Tutte’s theorem [39,40], is shown in the
Supplemental Material [17]. Both graph theory theorems
can be understood in the language of quantum experiments.
To conclude, we have shown a strong link between

quantum experiments and graph theory. It allows to
systematically analyze the emerging quantum states with
methods from graph theory. The new link immediately
opens up many new directions for future research. For
example, the analysis of the number of maximal matchings
and matchings in a graph (called a Hosoya index and often
used in chemistry [41,42]) in the context of quantum
experiments.
A detailed investigation of links between these experi-

ments and computation complexity classes, in particular the
relation to computation complexity with linear optics
would be interesting [43–45].
Furthermore, it would be interesting how the merging of

graphs can be generalized with nondestructive measure-
ments [46], whether it leads to larger classes of accessible
states and how that can be described in the graph theoretical
framework.
The generalization to other graph theoretical methods

would be interesting, such as weighted graphs (which
could correspond to variable down-conversion rates via
modulating the laser power), hypergraphs (which would

FIG. 3. Random graph or quantum random network—and its
connection to quantum experiments. (A) A random graph with 8
vertices and 14 edges. (B) The perfect matchings corresponding
to the random graph. (C) They can be calculated with the matrix
function Hafnian, which is a generalization of the permanent.
Both are very expensive to calculate. (D) The corresponding
quantum experiment. Each of the terms in its quantum state
corresponds to a perfect matching in the graph. It can also be seen
as a quantum random network, to study network properties in the
quantum regime.

FIG. 4. A theorem from graph theory: Hall’s marriage theorem
(A) For a bipartite graph with equal number of elements in X and
Y, Hall’s theorem gives a necessary and sufficient condition for
the existence of a perfect matching. That happens when for every
subset in W ∈ X, the number of neighbors in Y is larger or equal
than jWj. In the example graph, the subset of X consisting of the
vertices c, e, g (indicated in red) has only two neighbors in
Y (d, f—indicated in green), thus there cannot be a perfect
matching. (B) For quantum experiments, the analog question is
whether there can be 2n-fold coincidences, given that n crystals
emit photon pairs. When the two photons are distinguishable
(which corresponds to a bipartite graph), 2n folds can only
happen when for every subset W of signal photon paths the
number of connected idler paths is larger or equal than jWj. In the
example, the subset of signal photon paths (c, e, g—depicted in
red) has only two corresponding idler paths (d, f—depicted in
green), thus there cannot be a 10-fold coincidence count.
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correspond to creation of tuples of photons, for instance via
cascaded down-conversion [47,48]), or 2-factorizations (or
general n-factorizations, which would lead to n photons in
one single arm).
Experimental implementations could not only create a

vast array of well-defined quantum states, but could also
investigate striking properties of quantum random networks
in the laboratory.
Finally, we suggest that recent developments of inte-

grated optics implementations of quantum experiments,
where the photons are generated on a photonic chip
[49–51], could be particularly useful to realize setups of
the type proposed here.
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