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Abstract
Beamsof lightwith a large topological charge significantly change their spatial structurewhen they are
focused strongly. Physically, it canbe explainedbyan emerging electromagneticfield component in the
directionofpropagation,which is neglected in the simplified scalarwavepicture inoptics.Herewe ask: is
this a specificphotonic behavior, or can similarphenomena alsobepredicted for other species of particles?
We show that the samemodificationof the spatial structure exists for relativistic electrons aswell as for
focusedgravitationalwaves.However, this is for different physical reasons: for electrons,which are
describedby theDirac equation, the spatial structure changesdue to a spin–orbit coupling in the relativistic
regime. In gravitationalwaves describedwith linearized general relativity, the curvatureof space–time
between the transverse andpropagationdirection leads to themodificationof the spatial structure.Thus,
this universal phenomenonexists for bothmassive andmassless elementaryparticleswith spin1/2, 1 and2.
Itwouldbe very interestingwhether other types ofparticles such as composite systems (neutronsorC60)or
neutrinos showa similar behavior andhow this phenomenoncanbe explained in aunifiedphysicalway.

1. Introduction

Two years ago, we found in theoretical calculations that the intensity structure of light with large topological
charge changes greatly when it is focused [1]. At that time, we askedwhether this phenomenon also exists for
other particle types, or whether light andmatter waves differ fundamentally in the non-paraxial regime (since
they are described by very different wave equations). Herewe answer this question for electrons and
gravitational waves: the same change of the intensity structure is theoretically predicted. The changes in intensity
come from the interplay between different vector components of the fields. Surprisingly, forMaxwellfields,
Dirac spinors, andRiemann curvature tensors in linearized gravity the same phenomenon happens, which
points to a fundamental underlying reason that still remains to be discovered.

Nowwefirstmotivate the questions in general, and then show the predictions for photons, electrons and
gravitational waveswith the application of a single formalism.

2. Background andmotivation

2.1. Paraxial Laguerre–GaussModes
The paraxial wave equation
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describes the propagation of beams of light which are onlymoderately focused (more precisely, which have only
small angles between their wave vector k and the axis of propagation z, i.e. k⊥= kz, where k⊥ and kz stand for the
momentum in transverse direction and in the direction of propagation). Light beams can carry a discrete, large
(theoretically unbounded) amount of orbital angularmomentum (OAM) or topological change [2, 3].Within
the paraxial regime, such beams can be described as Laguerre–Gaussianmodes in the following form
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whereℓstands for the orbital angularmomentummodenumber andp is a radialmodenumber (whichwe set to

p= 0 for the rest of the article). ℓ∣ ∣Lp are theLaguerrepolynomials, = + ( )( )w z w 1 z

z0

2

R
is theGaussianbeam

waist at a distance z from the focus, and a focal beamwaistw0. = p
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is the radius of curvature,λ is thewavelength and = p
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k 2 is thewavenumber, andj = ( )arctang
z

zR
denotes the

Gouyphase.

2.2. Radial scaling of LGmodes
Nowwe consider the radial scaling of LGmodes, which—in a naive treatment—leads to an unphysical
prediction. This can easily be calculated by using equation (2) andfinding the extreme point of the intensity
distribution (for p=0 and z=0)

f¶ =∣ ( )∣ ( )ℓ
!

rLG , 0. 3r
2

This leads to = ℓr wmax 0 2
, whichmeans that the intensitymaxima of LGmodes scale with µ ℓrmax .

2.3. Intuitive explanation of the radial scaling
Wenow give amore intuitive explanation of the radial scaling. This is important because the scaling is a key
motivation for the rest of the article, as it leads to the unphysical prediction, whichwe later showhow to solve in
three entirely different physical system. The square-root scaling can be understood in amore intuitive way by
using a coordinate transformationwhich has been explicitly shownby Steuernagel [4, 5] (and in amore general
context by Takagi [6]): the idea is to rescale the transverse coordinates x and y in ordermake the intensity
distribution of LGmodes in equation (2) independent of the distance z from the focus:
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onefinds the remarkable result that the paraxial wave equation transformed into the time-dependent
Schrödinger for the harmonic oscillator
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The energies corresponding to the harmonic oscillator isEn=(n+1/2)ÿ, while the potential scales with
V(x)=αx2. Thus, by equating the energies, one sees that µx n . Solutions to the harmonic oscillator are
usually denoted asHermite–Gauss functions inCartesian coordinates. Laguerre–Gaussmodes can bewritten as
superpositions ofHermite–Gaussmodes. The LGmode and theHGmodesmust have the samemode order,
because theGouy phase needs tomatch (see [7] for a detailed decomposition of LGmodes in terms ofHG
modes). As solutions of the harmonic oscillator scales with µx n , and LGbeams can bewritten as
superpositions of them, also LGmodes need to scale with µ ℓrmax .

2

New J. Phys. 20 (2018) 063006 MKrenn andAZeilinger



2.4. Apparently unphysical prediction
One interesting prediction of these solutions is the following: the superposition of two beamswith opposite

OAMψ(r)=LG+ℓ(r)+LG−ℓ(r) has 2ℓ intensitymaxima andminima at the radius = ℓr w0 2
. The

azimuthal distanceΔ between two intensitymaxima andminima is given by

p p
D = =

ℓ ℓ
( )r w2

2 2
. 90

Itmeans that the distance between twomaxima decreases unboundedly asℓincreases [8], even to unphysically
small values beyond theRayleigh criterion4 or even beyond the Planck length. This is obviously a dubious
situation, whichmotivates amore detailed investigation.

2.5.What is done here?
In our previous investigation of this effect [1], we have used fullMaxwell’s solutions to solve this unphysical
situation: the perfect intensityminima in the paraxial case arefilled in by additional intensity contribution due to
anfield in the direction of propagation, which is neglected in the paraxial approximation. Herewe show that the
phenomenon happens not only for photons (massless spin 1 particles) but also both for relativistic electrons
(massive spin 1/2 particles) and gravitational waves (massless spin 2field).

To do this, we use amethod demonstrated by Iwo andZofia Bialynicki-Birula for all of these particles and
fields: a scalar potential functionχ(r, t)which fulfills theD’Alambert wave equation is used to define the
principle properties of thefield (such as the helical phase patternwhich corresponds toOAMor topological
charge). Then three different vectorized generating function use the potentialχ(r, t) to produce the vector field
components for the electromagnetic fields for light [10, 11], for theDirac spinor for electron [12], and for the
Riemann curvature tensor for gravitational waves [13].

In the non-paraxial and non-relativistic limit, these solutions reassemble properties of the scalar solutions
which arewell studiedmathematically and theoretically. In the non-paraxial and relativistic case, themethod
leads to full, non-approximative solutions of the different wave equations5. There are several ways howone
could generalize these solutions into the non-paraxial regime. Therefore, we have compared the properties
studied herewith independentmethods: for light, we have numerically applied the aplanatic lensemodel
[14–16], which is a standardway to describe focused fields (details can be found in [1]). For electrons, we have
used the analytical solutions developed by Bliokh and others [17, 18]where the spin–orbit coupling can be
conveniently seen.With all thesemethods, we find the same predictions for the properties we are studying,
which is an important consistency check.

We thus see a very similar physical effect, which is encoded in three entirely different physical systems.

3. Photonswith large topological charge

The paraxial wave equation is an approximation of theMaxwell equation for beamswhich are large compared to
thewavelength [19, 20]. In order to describe strongly focused light beams, full solutions of theMaxwell’s
equations need to be used. In [1], we have used the aplanatic lensmodel [14] to calculate electromagnetic fields
after strong focus.

Here we use the elegantmethod of the Riemann–Silberstein vector [11, 21], which combines electric and
magnetic fields in the formof

 m
= + ( )F

E B

2
i

2
, 10

0 0

where F is the Riemann–Silberstein vector, andE andB is the electric andmagnetic field. The Riemann–
Silberstein vector can be calculated using a generating function froma scalar potentialχ(r, t) (which satisfies the
d’Alambert differential equation). For a beampropagating in z-direction, onefinds

4
Superoscillations allow for situationswhere high frequency oscillationswith perfect visibilities can be achieved, in places where the intensity

is exponentially small [9]. However, we investigate situationswhere thefield intensities aremaximal.
5
In order to produce freely propagating solutions instead of evanescent waves, one needs to fulfil the criterion = + + = p

l
k k k kx y z

2 2 2 2

with Îkz .
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, whereN is a normalization constant,σ=±1 is the circular polarization (we use
right-handed circular polarizationσ=1 in thewholemanuscript), W =

l
c is the optical (mean) frequency and

w0 is the beamwaist at the focus.
For large beamwaistsw0, the fields reassemble the property of the scalar Laguerre–Gauss beams in

equation (2). For example, when one creates superpositions of positive and negative topological charges

c f c c= +s s s
W  W + W -( ) ( ( ) ( )) ( )ℓ ℓ ℓr z t t tr r, , ,

1

2
, , , 13, , ,

onefinds an electromagnetic intensity distribution

f =( ) ∣ ∣ ( )I r F, 142

with 2ℓmaxima andminima distributed on a ring, as seen infigure 1(a). Interestingly, for strongly focused
beams and large values ofℓ, the intensity in theminima increases (starting from zero intensity in the paraxial
case), as can be seen infigure 1(b). This is because of an increasing electromagnetic field componentEz andBz,
which is neglected in the scalar solution in equation (2)6. The additional intensity contribution has been
described and discussed in the context of the diffraction limit in [1], and has recently been observed
experimentally [22].

From the intensity I(r,f), one can calculate the visibility betweenmaxima andminima for the radius of
maximum intensity. The radius ofmaximal intensity can be obtained (analog as for the paraxial case in
equation (3)) as f¶ =∣ ( )∣ !

I r, 0r 0
2 which leads to rmax (withf0 being the angle where the intensities

constructively interfere at the ring). The intensity in azimuthal direction I(rmax,f) hasmaxima andminima,

Figure 1. Intensity of electromagnetic waves from equation (14)with anOAMsuperposition ofℓ=±15ÿwith visibilities vis=0.99
and vis=0.5, according to equation (16). (a)Here, the beamwaistw0=149 μmismuch larger than thewavelengthλ=800nm.
Theminima andmaxima are clearly visible. (b) For a focused beamwithw0=6.2 μm, the contrast betweenminima andmaxima
becomes smaller due to a growingfield component Ez, whose intensity structure is shifted. AGaussian beamwith awaist of

w0=6.2 μmhas anNA =l
p

 0.04
w0

. An investigation using the aplanatic lensmodel we have presented in [1].

6
The existence of a longitudinal component in the electromagnet field follows directly fromGauss’ law ofMaxwell’s equations. For a

uniformly polarized beam, it is easy to calculate the longitudinal Ez andBz components given the transverse components. A very good
summary of thismethod is shown in [23].
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3.1.Why is the additionalfield out of phase?
The contrast between theminima andmaxima of the intensity distribution decreases for smaller beam, because
the additionalfield in z-direction Fz (the longitudinal component)has an amplitudewhich is shiftedwith respect
to the transverse components Fx and Fy (i.e. themaxima of Fz are located at theminima of Fx and Fy). This can be
understood by observing that the potential for the superposition in equation (13) can bewritten as
c f c f=s s
W  W ℓ( ) ˜ ( ) · ( )ℓ r z t r z t, , , , , sin, . From equation (11) one can see that the dominant term in Fx and Fy

scales with =¶f( ) ( )ℓ
r r

while the dominant term for Fz scales with =
¶f( ) ( )ℓ
r r

2

2

2

2 . Thus, whenℓis

increased or the beamwaistw0 (and thereby r) decreases by stronger focusing, the non-paraxial propagation
starts dominating and forming the longitudinal field component Fz. Furthermore, the two competing terms
generated by afirst and second derivative of a fℓ( )sin , thus one term is fℓ( )cos while the other is fℓ( )sin —and
they are out of phase. This is the reasonwhy the transverse components Fx and Fy are out of phasewith the
longitudinal component Fz.

These findings are relevant in quantum entanglement experiments aswell: the intensity structures have been
used to verify entanglement between photonswith very large values of angularmomentum, such asℓ=300ÿ
[24] and recently (with the help of spiral phasemirrors)withℓ=10.000ÿ [25]. If such entangled photonswere
focused, the entanglement cannot bemeasuredwith simple intensitymasking anymore.

4. Relativistic electronswith large topological charge

For analyzing the energy distribution of electronswith superposedOAMbeams, we use the recently derived
analytic and finite-energy solution in [12], which derives theDirac spinor for the relativistic electron using a
generating function:
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Comptonwavelength, with themass of the electronme.

To obtain theDirac spinorΨ(r, t) for the electron, one can use the generating function
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Electronswith a superposition of oppositeOAMare described by

Y = Y + Y + -( ) ( ( ) ( )) ( )ℓ ℓ ℓt t tr r r,
1

2
, , . 19

The probability density

f = Y Y( ) ( )†I r, 20

for a non-relativistic and relativistic case is shown infigure 2. It clearly shows that the contrast betweenminima
andmaxima decreases in a similar way as they did for photons. In contrast to the photonic case where an
additionalfield in the direction of propagation emerged, the reason for electrons is different: the additional
probability arises due to a large contribution the fourth component ofΨℓ(r, t). That component stands for a
= -S 1

2
contribution in the rest frame of the electron. It represents a spin–orbit coupling for relativistic electrons
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[18]. Itsminima are at the position of themaxima offirst component ofΨℓ(r, t), which is the leading
contribution for the non-relativistic case.

An analogous effect occurs for relativistic electrons in Besselmodes, which have been described for the first
time in 2011 [17, 18] (also described in [12]). Bessel beams are not normalizable therefore would require an
infinite amount of energy for their generation. For this reason, we describe the situationwith finite-energy
Laguerre–Gaussian beams.

The investigation above could be interesting because powerful experimentalmethods have been developed
in recent year for free electrons carrying orbital angularmomentum (see for example here: [18, 26]) since they
have been observed for thefirst time in 2010 [27, 28]. In particular, electronswith up to 100 [29], 200 [30]
and 1000 [31] of orbital angularmomentumhave been created recently. It would be interesting whether this
effect can be observed in experiments.

5.Gravitational waveswith large topological charge

Gravitational waves in free space can be described by linearized gravity, which is aweak-field solution of
Einstein’s general relativity (GR) in the absence ofmatter. The similarities between electromagnetic and
gravitational waves has been used to employwell-developed techniques from electromagnetism to study
properties of weak-fieldGR (see for instance a recent and very illuminating article by Barnett [32] and references
therein). In particular, the construction of solutions of gravitational waves allows for the usage of potentials and
generating functions [33, 34]. Based on amethod by Penrose, Iwo andZofia Bialynicki-Birula have shown a
technique to construct analytic solutions for gravitational waves carryingOAM [13].We use their technique to
investigate focused gravitational waveswith a superposition ofℓ. Analog to the electromagnetic case in
equation (10), one constructs a self-dual version of the Riemann curvature tensor

= +mnlr mnlr mnab lr
ab ( )G R R

i

2
21

and in analogy to the Riemann–Silberstein vector in electrodynamics, one defines

 = ( )G 22ij i j0 0

which is a symmetric 3×3 tensor that carries the full information about the linearized gravitational field. It has
been extensively studied in electromagnetic analogies for weak-field gravity [35]. The six different components
can be obtained via a potential function using
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Figure 2. Intensity of electron beams from equation (20)with anOAMsuperposition ofℓ=±15ÿ, with visibilities according
vis=0.99 and vis=0.5, to equation (16). (a)Anon-relativistic electron beam (with b = 1500, and the relativistic Lorentz factor
γ=1+5 × 10−5) has clearly visibleminima andmaxima. (b)A focused relativistic e− beam (with b=142.1, and the relativistic
Lorentz factor γ=1.9) shows that the contrast betweenminima andmaxima decreases.

6

New J. Phys. 20 (2018) 063006 MKrenn andAZeilinger



with

f c= ¶ - ¶ - ¶ + ¶f
f⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟ ( ) ( )

c r
tr

1
e

i
, , 24ABCD t z

l

r

n
i

where l and n are the numbers of zeros and ones inABCD, respectively. Same as in the electromagnetic and
electronic case,χ(r, t) is the potential functionwhich is a solution of d’Alembert’s equation. Analog to the
electromagnetic case, the intensity distribution can be obtained by

* f =( ) ( )I r,
1

2
. 25ij

ij

Weuse the same potential function as in the electromagnetic case in equation (13) and derive the solution for the
gravitational wave carryingOAMwith equation (23), usingℓ=15 and themean frequencyΩ=150Hz,which
was the frequency of thefirst observed gravitational wave [36]. Infigure 3 it is shown that for very large
gravitational waves, the intensity distribution has the expected structure with 30minima andmaxima aligned in
a ring.However, when the gravitational wave ismuch smaller, theminima are filled and the visibility between
minima andmaxima drops significantly.

The origin of the additional contributions are components 13 and 23, which cannot be neglected anymore
when theGaussian beamwaist is small andℓis large. These components are connectedwith the curvature of the
space–time between transversal and longitudinal direction in the Riemann curvature tensor.

6.Discussion

The paraxial, small-angle solutions for beams carrying orbital angularmomentumpredicts a curious,
unphysical effect whichwould allow for breaking the Rayleigh criterion. Recently we have shown for beams of
light, using fullMaxwell’s equation, that this prediction is eliminated by an additionalfield in the direction of
propagation [1], which is neglected in the paraxial approximation. Herewe analyzed the predictions for
electrons and gravitational waves carrying orbital angularmomentum. Thiswas possible using a unifiedmethod
based on scalar potentials and generating functions developed recently by Iwo andZofia Bialynicki-Birula.We
find that in both systems, using full Dirac equations for free electrons and linearizedGR for gravitationwaves,
additional intensity distributions emerge—in a very similar way as for the photonic case, but for different
physical reasons. In electrons, a relativistic spin-to-orbit coupling accounts for themodified intensity
distributionwhile for gravitational waves, curvature between the transverse and longitudinal direction of space–
time contributes additional intensity.

On the experimental side, this effect has been demonstrated in an impressive experiment for photons [22]. It
would be very interesting whether it can also be experimentally confirmedwith other particles such as electrons
with largeOAM [30, 31].

Also, several questions remain open: how can these phenomena be explained intuitively? Can this effect be
explainedwithout taking advantage of the specific physical implementation? Is there a reason stemming from
the uncertainty principle which can explain the predicted behavior7,8?

Figure 3. Intensity of gravitational wave from equation (25)with anOAMsuperposition ofℓ=±15ÿ, with visibilities vis=0.99 and
vis=0.5, according to equation (16). (a)A large gravitational wavewith a frequencyΩ=150 Hz similar asGW150914 [36] and
w0=63.1λ. (b)A focused gravitational wave (withw0=7.41λ)with 50%visibility.

7
Ole Steuernagel points out that [37] (which deals with the uncertainty relation for higher-order spatialmodes) could be relevant for this

question.
8
Dmitry Karlovets points out that when one focuses tightly a superposition of beams, theWigner function of such a state acquires regions of

negativity in phase phase, as the beam starts to interfere with itself in free space [38].
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What happens to other types of strongly focused particles carrying large topological charge9, such as
molecularmatter waveswhich can be composed of 100s of atoms [39, 40]; free propagating neutronswithOAM
[41, 42]—especially when they decay; neutrinos—especially as theirflavors oscillate [43, 44]; or to fundamental
scalar particles [45, 46] as vectorial characters of the field (which are responsible for the decreasing contrast
betweenminima andmaxima of the particles investigated here)might not contribute to the intensity
distribution?

Wehave to come back to these questions another time.
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