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Transformations on quantum states form a basic building block of every quantum information system.
From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit
systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging.
The orbital angular momentum modes of photons comprise one such high-dimensional system for which
generation and measurement techniques are well studied. However, arbitrary transformations for such
quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of
the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum.
Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates
implemented experimentally. The concept of the X gate is based on independent access to quantum states
with different parities and can thus be generalized to other photonic degrees of freedom and potentially also
to other quantum systems.
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Introduction.—High-dimensional quantum states have
recently attracted increasing attention in both fundamental
and applied research in quantum mechanics [1–5]. The
possibility of encoding large amounts of information on a
single photon makes them particularly interesting for large-
alphabet quantum communication protocols [6–9] as well
as for investigating fundamental questions concerning local
realism or quantum contextuality [10,11]. The temporal
and spatial structure of a photon provides a natural multi-
mode state space in which to encode quantum information.
The orbital angular momentum (OAM) modes of light [12]
comprise one such basis of spatial modes that has emerged
as a popular choice for experiments on high-dimensional
quantum information [13]. While techniques for the gen-
eration and measurement of photonic qudits carrying OAM
are well known [14–16], efficient methods for their control
and transformation remain a challenge. No general recipe is
known so far, and experimentally feasible techniques are
known only for special cases.
Here we experimentally demonstrate a four-dimensional

X gate and all of its integer powers with the orbital angular
momentum modes of single photons. The four-dimensional
X gate is a generalization of the two-dimensional σx Pauli
transformation and acts as a cyclic ladder operator on a
four-dimensional Hilbert space. The cyclic transformation
required for this gate was designed through the use of the
computer algorithm MELVIN [17], and the working principle

of the cyclic transformation was demonstrated with laser
light [18].
In particular, here we extend the conceptual idea of

the X gate to a complete high-dimensional gate basis.
Additionally, we present the experimental concept for the
X2 andX† gate. Furthermore, we experimentally implement
these three new gates at the quantum level. We show that
these transformations work with a high quality on heralded
single photons carrying orbital angular momentum as well
as with coherent superpositions of OAM.
It is interesting to compare OAM with other high-

dimensional degrees of freedom that allow for the encoding
of quantum information. For path encoding, in particular, it
is known how arbitrary single-qudit transformations can be
performed in a lossless way [19]. Such transformations
have been implemented recently on integrated photonic
chips for the generation and transformation of entangle-
ment [20,21]. General unitary transformations such as these
are not known for the photonic OAM degree of freedom. In
addition to being natural modes in optical communication
systems with cylindrical symmetry, photons carrying OAM
offer an important advantage over path and time-bin
encoding in that quantum entanglement can be generated
[22] and transmitted [23] without the need for interfero-
metric stability. Therefore, the development of new con-
trolled transformations for photonic OAM, as we show
here, fills an important gap.
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The X gate demonstrated here uses the ability to sort
even and odd parity modes as a basic building block [24].
This concept can be extended to other photonic degrees of
freedom such as frequency [25,26]. It will be interesting to
see if our method can also be used in other proposed high-
dimensional quantum systems such as trapped ions [27,28],
cold atoms [29], and superconducting circuits [30] for
constructing similar high-dimensional quantum logic gates.
High-dimensional Pauli gates.—The Pauli matrix group

has applications in quantum computation, quantum tele-
portation, and other quantum protocols. This group is
defined for a single qudit (a single photon with d-dimen-
sional modes) in the following manner [31,32]:

X ¼
Xd−1

l¼0

jl ⊕ 1ihlj; ð1aÞ

Z ¼
Xd−1

l¼0

jliωlhlj; ð1bÞ

where l ∈ f0; 1;…; d − 1g refers to the different modes in
the d-dimensional Hilbert space and l ⊕ 1≡ ðlþ 1Þ mod
d. The Z gate introduces a mode-dependent phase in the
form of ω ¼ exp½ð2πi=dÞ�. Furthermore, the Y gate can be
written Y ¼ XZ. While the two-dimensional X gate swaps
two modes with one another, in high-dimensional Hilbert
spaces (d > 2) it takes the form of a cyclic operation:

Xjli ¼ jl ⊕ 1i: ð2Þ

This results in each state being transformed to its nearest
neighbor in a clockwise direction, with the last state jd − 1i
being transformed back to the first one j0i. The Y gate can
be expressed as a combination of Z and X gates. While
powers of Z lead to different mode-dependent phases,
integer powers of X shift the modes by a larger number:

Xn ¼
Xd−1

l¼0

jl ⊕ nihlj: ð3Þ

The X2 gate, for example, transforms each mode to the
second nearest mode. Likewise, the conjugate of X leads to
a cyclic operation in the counterclockwise direction:

X† ¼
Xd−1

l¼0

jl⊖1ihlj: ð4Þ

Using the Heisenberg-Weyl operators (following
Ref. [33]), we can show that arbitrary unitary transforma-
tions can be achieved by a combination of X and Z gates
and its integer powers (see Supplemental Material [34] for
details). The Z gate for OAM qudits (the generalization of
the two-dimensional σz Pauli transformation) introduces a

mode-dependent phase, which can be implemented
simply with a single optical element [24,35]. In the four-
dimensional space, the here presented X, X2, and X†

transformations in combination with Z, Z2, and Z† are
sufficient for the construction of arbitrary unitary oper-
ations in a four-dimensional state space.
Experimental implementation.—A Z gate for photons

carrying OAM can simply be achieved by using a dove
prism, which has been shown recently [4,36–38]. Since the
Y gate can be achieved by a combination of Z and X gates,
it is sufficient to focus on the X gate and its powers.
Figure 1(a) shows the schematic of the X gate. It consists of
two parity sorters (PS1 and PS2) and a Mach-Zehnder
interferometer (MZI) that is implemented between them.
The input photon is first incident on a spiral phase plate that
adds one quantum of OAM quantum (SPPlþ1) onto the
photon before it enters PS1. The parity sorter is an

FIG. 1. The conceptual diagrams for the three types of quantum
logic gates. The input states for each case is (−2, −1, 0, 1).
(a) A spiral phase plate (SPP) adds þ1 to the mode, leading to
(−1, 0, 1, 2). Afterwards, the first parity sorter separates even and
odd modes, while the second one combines them again—which
forms a large interferometer. Within the interferometer, the even
modes have an odd number of reflections, which leads to the
correct output modes (−1, 0, 1, −2). (b) For the X2 gate, the input
modes are directly separated into even and odd modes. After a
reflection in each arm, the even modes are increased by 2. The
two arms are recombined at the PS2, and all of the modes
are reflected for changing the signs of the modes. That leads to
(0, 1, −2, −1). (c) In the X† transformation, the different parity
modes are separated again, and the even part gets reflected twice,
while the odd modes are reflected once. After recombination, the
l of the modes is decreased by one, which leads to (1, −2, −1, 0).
Note that, in the experiment, it can be adjusted whether even or
odd modes are reflected at the parity sorter. In this conceptual
diagram, for simplicity we have chosen PS1 to reflect even modes
and PS2 to reflect odd modes.
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interferometric device which then sorts the photon accord-
ing to its mode parity [24]. For the first-order cyclic
transformation, the even-parity OAM mode undergoes a
sign flip, while the sign of the odd-parity mode remains the
same. This is achieved by reflecting the odd-parity mode at
a mirror placed in one MZI path, while the even-parity
modes undergo two reflections [see Fig. 1(a)]. The modes
are then input into PS2, which coherently recombines them
into the same path.
Fortuitously, the X gate has the very convenient property

that it can be converted into the X2 gate and X† gate with
only minor changes to the experimental setup (for d ¼ 4,
X† ¼ X3). This is beneficial in future implementations
where quick, automated changes between gates are neces-
sary (without physically moving optical components via
the use of devices such as a spatial light modulator or a
digital micromirror device). For constructing the X2 gate,
the SPPlþ1 is removed and an SPPlþ2 replaces the extra
reflection in the even MZI path [Fig. 1(b)]. Changing the
mode number within an interferometer is an important
method used in many proposals for high-dimensional
quantum transformation and entanglement creation tech-
niques [17,39] and has not been experimentally demon-
strated before. The X† gate is achieved by simply moving
the SPPlþ1 from the input of PS1 and replacing it with an
SPPl−1 at the output of PS2 [Fig. 1(c)].
The experimental setup is depicted in Fig. 2. We use

heralded single photons produced via the process of type-II
spontaneous parametric down-conversion process (SPDC)
in a 5-mm-long periodically poled potassium titanyl phos-
phate (ppKTP) crystal pumped by a 405 nm diode laser. In
the SPDC process, conservation of the pump angular
momentum leads to the generation of photon pairs with
a degenerate wavelength of λ ¼ 810 nm that are entangled
in OAM. Therefore, whenever the idler photon is measured
to be in mode j þ li, the signal photon is found to be in
mode j − li. Thus, by heralding the idler photon in a
particular OAM mode, we can select the OAM quantum
number of the signal photon that is input into the logic gate.
Here, we use the OAM quantum numbers of −2, −1, 0, and
1 for demonstrating our four-dimensional quantum logic
gates. By changing the mode number before and after the
transformation, the X gate can be used with every con-
nected four-dimensional subspace.
The coherence length of heralded single photons from

SPDC is several orders of magnitude smaller than that of
the laser beam used in Ref. [18]. For this reason, we had to
redesign the experiment to achieve the necessary long-term
stability and control of path lengths: The parity sorter was
originally proposed as an MZI with a dove prism in each
arm [24]. The relative rotation angle between the two dove
prisms is set at 90°, which introduces an lπ phase differ-
ence between the two arms. Depending on the parity of the
OAM mode (l) of the input photon, constructive or
destructive interference results in even and odd modes

exiting different outputs of the MZI. For long-term stability,
in our case we implement this interferometer in a double-
path Sagnac configuration [40]. Two adjacent Sagnac loops
allow for the positioning of a dove prism in each loop. The
outputs of this Sagnac interferometer are then directly input
into the second MZI (denoted as OAM Manipulation in
Fig. 2). In the second interferometer, the sign of odd modes
is flipped by reflection on an extra mirror. For the precise
control of the relative path lengths, a trombone system in
the odd arm is used to adjust the relative path difference to
achieve a coherent combination of even and odd modes.
The concept of the quantum gates (discussed in Fig. 1)

allows in principle for a lossless operation. For simplicity,
we replace the second parity sorter with a polarization beam
splitter (PBS). This allows the odd and even modes in the
MZI to be recombined in a stable manner, albeit with an
additional loss of 50%. As this loss is purely random, it
does not change the OAM state of the transformed photon
but only reduces its overall probability amplitude, i.e., the
efficiency. Importantly, each detected photon is trans-
formed correctly.
Now we explain the experimental details of the X gate

(Figs. 1 and 2). A four-dimensional subset of OAM

FIG. 2. Experimental setup for the four-dimensional X gate
(additional experimental details are partially transparent). A
405 nm cw laser pumps a type-II ppKTP crystal (not shown),
creating photon pairs entangled in OAM. The idler photon is used
for heralding the signal photon in a particular OAM mode. After
passing through a l ¼ þ1 spiral phase plate, the signal photon is
input into a parity-sorting interferometer, which separates the odd
and even OAM components of the photon. After traversing a
series of mirrors, the odd and even components are coherently
recombined in a Mach-Zehnder interferometer through the use of
a polarizing beam splitter (PBS), a half-wave plate (HWP), and an
effective polarizer (in the form of a SLM which acts only on
horizontally polarized light). A spatial light modulator (SLM) and
single mode fiber are used to perform projective measurements of
OAM modes and their superpositions.
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modes l ∈ f−2;−1; 0; 1g is shifted by one leading to
f−1; 0; 1; 2g. The parity sorter separates even and odd
modes. The path for the even modes experiences an odd
number of reflections that causes a sign flip and results in
f−1; 0; 1;−2g. The coherent combination at the PBS and
subsequent erasure of polarization information completes
the X gate: ð−2 → −1 → 0 → 1 → −2Þ. The X2 and X†

gates work similarly; see Fig. 1. The experimental results of
the gate operations are depicted in Fig. 3. The probability
Pi;j to detect a photon in mode j when sending in one in
mode i is given by Pði; jÞ ¼ ðjhjoutjiinij2=

P
njhnoutjiinij2Þ.

The average probability of the expected mode for the X, X2,
and X† gates is 87.3%, 90.4%, and 88.4%, respectively; see
Table I. The lower detection probability for the X gate in the
input mode j1i stems mainly from spatial misalignments
which led to a lower coupling efficiency for this specific
mode to the single photon detector.
In order to demonstrate a transformation of a coherent

superposition, we use a four-dimensional input state for the
gates. For that, we project the heralding photon with an
equal superposition of jTi ¼ j − 2i þ j − 1i þ j0i þ j1i,
which triggers the input photon ideally into jψi¼
αj−2iþβj−1iþ γj0iþδj1i (where α ¼ 0.27, β ¼ 0.47,
γ ¼ 0.7, and δ ¼ 0.46). We measured the input state as ρin.
Then we calculate the overlap between the expected state
σexp ¼ AρinA† (where A stands for the transformation X,
X2, X†) and measured state σout of the gate as
FAðρin; σoutÞ ¼ Trð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σexp;A
p

σout
ffiffiffiffiffiffiffiffiffiffiffi
σexp;A

pp Þ). We find exper-
imentally that

FX ¼ 93.4� 0.9;

FX2 ¼ 94.1� 0.7;

FX† ¼ 91.6� 0.7; ð5Þ

which shows that all three gates work with high quality in a
coherent way. These results are possible only if all possible
superpositions are transformed coherently.
An interesting question is how to compare these results

with a classical gate. We suggest an intuitively appealing
model, which is a measure-and-resend-based protocol,
which we explain in detail in Supplemental Material
[34]. We find that the maximal overlap F for the classical
gate is bounded by Fcl ¼ 0.59 for our input state. All of our
experimental results are significantly above this bound.
Conclusion.—We have shown the experimental genera-

tion of the four-dimensional X gate and all of its unique
higher orders, including the X2 and X3 gates. Together with
the well-known Z gate, this forms a complete basis of
transformations on a four-dimensional quantum system.
This means that it can, in principle, be used to construct
every four-dimensional unitary operation. The X gate is a
basic element required for generating large classes of
entangled states, such as the set of four-dimensional Bell
states [41] or general high-dimensional multiparticle states
[5,42]. Such states can be used, for example, in tests of

FIG. 3. Data showing the operation of the (a) identity,
(b) X gate, (c) X2 gate, and (d) X† gate on the four-dimensional
set of input states fj − 2i; j − 1i; j0i; j1ig. Each row shows the
measured normalized coincidence rate in every output mode
for a given input mode. The X gate implements a clockwise
cyclic transformation ð−2 → −1 → 0 → 1 → −2Þ, the X2 gate
swaps the odd and even modes ð−1 ↔ 1;−2 ↔ 0Þ, and the
X† gate performs a counterclockwise cyclic transformation
ð1 ← −2 ← −1 ← 0 ← 1Þ. The average transformation effi-
ciency for the X, X2, and X† gates are 87.3%, 90.4%, and
88.4%, respectively.

TABLE I. The probabilities Pi;j to detect a photon in mode jji for an input state jii. They are calculated by dividing the number of
photons in the correct output state by the total number of counts measured in all four states. Errors are calculated using Monte Carlo
simulations assuming Poissonian counting statistics.

Input mode j − 2i j − 1i j0i j1i
X gate 88.1� 3.2% 90.3� 1.8% 90.9� 1.5% 80.1� 2.9%
X2 gate 90.8� 2.7% 87.1� 2.1% 90.3� 1.5% 93.4� 1.6%
X† gate 85� 3% 87.6� 1.9% 92.6� 0.9% 88.4� 1.7%
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quantum contextuality [43] and for Bell-like tests of local
realism in a higher-dimensional state space [10,44].
These quantum logic gates can find application in

various high-dimensional quantum protocols, such as
high-dimensional quantum key distribution [6,7,45,46]
where transformations between mutually unbiased bases
are necessary. Other applications could include multiparty
secret sharing [8] or dense coding [47], where transforma-
tions between orthogonal sets of entangled states are
required. In quantum computing where complete sets of
quantum gates are necessary, high-dimensional quantum
states allow for the efficient implementation of gates [48,49]
and offer advantages in quantum error correction [50].
Interestingly, a high-dimensional generalization of the

CNOT gate consists of a controlled-cyclic transformation
[51]. In a polarization-OAM hybrid space, one can create a
lossless three-, six-, and eight-dimensional generalization
[17] of our method. An important next step is the
construction of high-dimensional two-particle gates. This
would allow the implementation of complex quantum
algorithms such as quantum error correction in high
dimensions [50].

The authors thank Marcus Huber for helpful discussions.
This work was supported by the Austrian Academy of
Sciences (ÖAW), the European Research Council (SIQS
Grant No. 600645 EU-FP7-ICT), and the Austrian Science
Fund (FWF) with SFB F40 (FOQUS) and FWF project
CoQuS No. W1210-N16. F. W. was supported by the
National Natural Science Foundation of China (NSFC
Grant No. 11534008). M. M. acknowledges support from
the Austrian Science Fund (FWF) through the START
Project No. Y879-N27 and the joint Czech-Austrian project
MultiQUEST (I 3053-N27 and GF17-33780L).

A. B., M. E., and F. W. contributed equally to this work.

*mario.krenn@univie.ac.at
†manuel.erhard@univie.ac.at

[1] M. Agnew, J. Leach, M. McLaren, F. Stef Roux, and R.W.
Boyd, Tomography of the quantum state of photons en-
tangled in high dimensions, Phys. Rev. A 84, 062101
(2011).

[2] J. Romero, D. Giovannini, D. S. Tasca, S. M. Barnett, and
M. J. Padgett, Tailored two-photon correlation and fair-
sampling: A cautionary tale, New J. Phys. 15, 083047
(2013).

[3] M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S.
Ramelow, and A. Zeilinger, Generation and confirmation
of a (100 × 100)-dimensional entangled quantum system,
Proc. Natl. Acad. Sci. U.S.A. 111, 6243 (2014).

[4] Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and
A. Forbes, Engineering two-photon high-dimensional states
through quantum interference, Sci. Adv. 2, e1501165
(2016).

[5] M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and
A. Zeilinger, Multi-photon entanglement in high dimen-
sions, Nat. Photonics 10, 248 (2016).

[6] S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A.
Zeilinger, Experimental quantum cryptography with qutrits,
New J. Phys. 8, 75 (2006).

[7] A. Sit et al., High-dimensional intracity quantum cryptog-
raphy with structured photons, Optica 4, 1006 (2017).

[8] M. Smania, A. M. Elhassan, A. Tavakoli, and M.
Bourennane, Experimental quantum multiparty communi-
cation protocols, npj Quantum Inf. 2, 16010 (2016).

[9] C. Lee, D. Bunandar, Z. Zhang, G. R. Steinbrecher, P. Ben
Dixon, F. N. C. Wong, J. H. Shapiro, S. A. Hamilton, and
D. Englund, High-rate field demonstration of large-alphabet
quantum key distribution, arXiv:1611.01139.

[10] A. Vaziri, G. Weihs, and A. Zeilinger, Experimental Two-
Photon, Three-Dimensional Entanglement for Quantum
Communication, Phys. Rev. Lett. 89, 240401 (2002).

[11] Y. Cai, J.-D. Bancal, J. Romero, and V. Scarani, A new
device-independent dimension witness and its experimental
implementation, J. Phys. A 49, 305301 (2016).

[12] L. Allen, M.W. Beijersbergen, R. J. C. Spreeuw, and J. P.
Woerdman, Orbital angular momentum of light and the
transformation of Laguerre-Gaussian laser modes, Phys.
Rev. A 45, 8185 (1992).

[13] M. Krenn, M. Malik, M. Erhard, and A. Zeilinger, Orbital
angular momentum of photons and the entanglement of
Laguerre-Gaussian modes, Phil. Trans. R. Soc. A 375,
20150442 (2017).

[14] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Entangle-
ment of the orbital angular momentum states of photons,
Nature (London) 412, 313 (2001).

[15] M. Mirhosseini, O. S. Magaña-Loaiza, C. Chen, B.
Rodenburg, M. Malik, and R.W. Boyd, Rapid generation
of light beams carrying orbital angular momentum, Opt.
Express 21, 30196 (2013).

[16] M. P. J. Lavery, D. J. Robertson, G. C. G. Berkhout, G. D.
Love, M. J. Padgett, and J. Courtial, Refractive elements for
the measurement of the orbital angular momentum of a
single photon, Opt. Express 20, 2110 (2012).

[17] M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A.
Zeilinger, Automated Search for New Quantum Experi-
ments, Phys. Rev. Lett. 116, 090405 (2016).

[18] F. Schlederer, M. Krenn, R. Fickler, M. Malik, and A.
Zeilinger, Cyclic transformation of orbital angular momen-
tum modes, New J. Phys. 18, 043019 (2016).

[19] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani,
Experimental Realization of Any Discrete Unitary Operator,
Phys. Rev. Lett. 73, 58 (1994).

[20] C. Schaeff, R. Polster, M. Huber, S. Ramelow, and A.
Zeilinger, Experimental access to higher-dimensional en-
tangled quantum systems using integrated optics, Optica 2,
523 (2015).

[21] J. Carolan et al., Universal linear optics, Science 349, 711
(2015).

[22] J. Romero, D. Giovannini, S. Franke-Arnold, S. M. Barnett,
and M. J. Padgett, Increasing the dimension in high-
dimensional two-photon orbital angular momentum entan-
glement, Phys. Rev. A 86, 012334 (2012).

PRL 119, 180510 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

3 NOVEMBER 2017

180510-5

https://doi.org/10.1103/PhysRevA.84.062101
https://doi.org/10.1103/PhysRevA.84.062101
https://doi.org/10.1088/1367-2630/15/8/083047
https://doi.org/10.1088/1367-2630/15/8/083047
https://doi.org/10.1073/pnas.1402365111
https://doi.org/10.1126/sciadv.1501165
https://doi.org/10.1126/sciadv.1501165
https://doi.org/10.1038/nphoton.2016.12
https://doi.org/10.1088/1367-2630/8/5/075
https://doi.org/10.1364/OPTICA.4.001006
https://doi.org/10.1038/npjqi.2016.10
http://arXiv.org/abs/1611.01139
https://doi.org/10.1103/PhysRevLett.89.240401
https://doi.org/10.1088/1751-8113/49/30/305301
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1098/rsta.2015.0442
https://doi.org/10.1098/rsta.2015.0442
https://doi.org/10.1038/35085529
https://doi.org/10.1364/OE.21.030196
https://doi.org/10.1364/OE.21.030196
https://doi.org/10.1364/OE.20.002110
https://doi.org/10.1103/PhysRevLett.116.090405
https://doi.org/10.1088/1367-2630/18/4/043019
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1364/OPTICA.2.000523
https://doi.org/10.1364/OPTICA.2.000523
https://doi.org/10.1126/science.aab3642
https://doi.org/10.1126/science.aab3642
https://doi.org/10.1103/PhysRevA.86.012334


[23] M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and A.
Zeilinger, Twisted photon entanglement through turbulent
air across Vienna, Proc. Natl. Acad. Sci. U.S.A. 112, 14197
(2015).

[24] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold,
and J. Courtial, Measuring the Orbital Angular Momentum
of a Single Photon, Phys. Rev. Lett. 88, 257901 (2002).

[25] S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphat-
phong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa,
N. C. Menicucci, and A. Furusawa, Ultra-large-scale
continuous-variable cluster states multiplexed in the time
domain, Nat. Photonics 7, 982 (2013).

[26] Z. Xie et al., Harnessing high-dimensional hyperentangle-
ment through a biphoton frequency comb, Nat. Photonics 9,
536 (2015).

[27] A. Muthukrishnan and C. R. Stroud, Jr., Multivalued logic
gates for quantum computation, Phys. Rev. A 62, 052309
(2000).

[28] A. B. Klimov, R. Guzman, J. C. Retamal, and C. Saavedra,
Qutrit quantum computer with trapped ions, Phys. Rev. A
67, 062313 (2003).

[29] A. Smith, B. E. Anderson, H. Sosa-Martinez, C. A. Riofrio,
Ivan H. Deutsch, and Poul S. Jessen, Quantum Control in
the cs 6 s 1=2GroundManifold Using Radio-Frequency and
Microwave Magnetic Fields, Phys. Rev. Lett. 111, 170502
(2013).

[30] M. Hofheinz et al., Synthesizing arbitrary quantum states in
a superconducting resonator, Nature (London) 459, 546
(2009).

[31] D. Gottesman, in Quantum Computing and Quantum
Communications (Springer, New York, 1999), pp. 302–313.

[32] J. Lawrence, Mutually unbiased bases and trinary operator
sets for n qutrits, Phys. Rev. A 70, 012302 (2004).

[33] A. Asadian, P. Erker, M. Huber, and C. Klöckl, Heisenberg-
Weyl observables: Bloch vectors in phase space, Phys. Rev.
A 94, 010301 (2016).

[34] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.119.180510 for the
proof of how to construct arbitrary unitaries with the Z
and X gates including their integer powers and details on the
model how to compare classical and quantum gates.

[35] A. N. De Oliveira, S. P. Walborn, and C. H. Monken,
Implementing the deutsch algorithm with polarization and
transverse spatial modes, J. Opt. B 7, 288 (2005).

[36] M. Agnew, J. Z. Salvail, J. Leach, and R. W. Boyd,
Generation of Orbital Angular Momentum Bell States
and Their Verification via Accessible Nonlinear Witnesses,
Phys. Rev. Lett. 111, 030402 (2013).

[37] X.-L. Wang, X.-D. Cai, Z.-E. Su, M.-C. Chen, D. Wu, L. Li,
N.-L. Liu, C.-Y. Lu, and J.-W. Pan, Quantum teleportation

of multiple degrees of freedom of a single photon, Nature
(London) 518, 516 (2015).

[38] R. Ionicioiu, Sorting quantum systems efficiently, Sci. Rep.
6, 25356 (2016).

[39] M. Krenn, A. Hochrainer, M. Lahiri, and A. Zeilinger,
Entanglement by Path Identity, Phys. Rev. Lett. 118, 080401
(2017).

[40] M. Erhard, M. Malik, and A. Zeilinger, A quantum router
for high-dimensional entanglement, Quantum Sci. Technol.
2, 014001 (2017).

[41] F. Wang, M. Erhard, A. Babazadeh, M. Malik, M. Krenn,
and A. Zeilinger, Generation of the complete four-
dimensional Bell basis, arXiv:1707.05760.

[42] M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, Exper-
imental GHZ entanglement beyond qubits, arXiv:1708
.03881.

[43] R. Lapkiewicz, P. Li, C. Schaeff, N. K. Langford, S.
Ramelow, M. Wieśniak, and A. Zeilinger, Experimental
non-classicality of an indivisible quantum system, Nature
(London) 474, 490 (2011).

[44] A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E.
Andersson, Experimental high-dimensional two-photon en-
tanglement and violations of generalized Bell inequalities,
Nat. Phys. 7, 677 (2011).

[45] M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren,
M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus,
and A. Forbes, Higher-dimensional orbital-angular-
momentum-based quantum key distribution with mutually
unbiased bases, Phys. Rev. A 88, 032305 (2013).

[46] M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B.
Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J.
Gauthier, and R.W. Boyd, High-dimensional quantum
cryptography with twisted light, New J. Phys. 17, 033033
(2015).

[47] A. Hill, T. Graham, and P. Kwiat, Hyperdense coding with
single photons, Front. Opt. FW2B (2016).

[48] T. C. Ralph, K. J. Resch, and A. Gilchrist, Efficient
Toffoli gates using qudits, Phys. Rev. A 75, 022313
(2007).

[49] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein,
T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A.
Gilchrist, and A. G. White, Simplifying quantum logic using
higher-dimensional Hilbert spaces, Nat. Phys. 5, 134
(2009).

[50] A. Bocharov, M. Roetteler, and K. M. Svore, Factoring
with qutrits: Shor’s algorithm on ternary and meta-
plectic quantum architectures, Phys. Rev. A 96, 012306
(2017).

[51] J. C. Garcia-Escartin and P. Chamorro-Posada, A swap gate
for qudits, Quantum Inf. Process. 12, 3625 (2013).

PRL 119, 180510 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

3 NOVEMBER 2017

180510-6

https://doi.org/10.1073/pnas.1517574112
https://doi.org/10.1073/pnas.1517574112
https://doi.org/10.1103/PhysRevLett.88.257901
https://doi.org/10.1038/nphoton.2013.287
https://doi.org/10.1038/nphoton.2015.110
https://doi.org/10.1038/nphoton.2015.110
https://doi.org/10.1103/PhysRevA.62.052309
https://doi.org/10.1103/PhysRevA.62.052309
https://doi.org/10.1103/PhysRevA.67.062313
https://doi.org/10.1103/PhysRevA.67.062313
https://doi.org/10.1103/PhysRevLett.111.170502
https://doi.org/10.1103/PhysRevLett.111.170502
https://doi.org/10.1038/nature08005
https://doi.org/10.1038/nature08005
https://doi.org/10.1103/PhysRevA.70.012302
https://doi.org/10.1103/PhysRevA.94.010301
https://doi.org/10.1103/PhysRevA.94.010301
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.180510
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.180510
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.180510
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.180510
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.180510
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.180510
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.180510
https://doi.org/10.1088/1464-4266/7/9/009
https://doi.org/10.1103/PhysRevLett.111.030402
https://doi.org/10.1038/nature14246
https://doi.org/10.1038/nature14246
https://doi.org/10.1038/srep25356
https://doi.org/10.1038/srep25356
https://doi.org/10.1103/PhysRevLett.118.080401
https://doi.org/10.1103/PhysRevLett.118.080401
https://doi.org/10.1088/2058-9565/aa5917
https://doi.org/10.1088/2058-9565/aa5917
http://arXiv.org/abs/1707.05760
http://arXiv.org/abs/1708.03881
http://arXiv.org/abs/1708.03881
https://doi.org/10.1038/nature10119
https://doi.org/10.1038/nature10119
https://doi.org/10.1038/nphys1996
https://doi.org/10.1103/PhysRevA.88.032305
https://doi.org/10.1088/1367-2630/17/3/033033
https://doi.org/10.1088/1367-2630/17/3/033033
https://doi.org/10.1364/FIO.2016.FW2B.2
https://doi.org/10.1103/PhysRevA.75.022313
https://doi.org/10.1103/PhysRevA.75.022313
https://doi.org/10.1038/nphys1150
https://doi.org/10.1038/nphys1150
https://doi.org/10.1103/PhysRevA.96.012306
https://doi.org/10.1103/PhysRevA.96.012306
https://doi.org/10.1007/s11128-013-0621-x

