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We present an in principle lossless sorter for radial modes of light, using accumulated Gouy phases.
The experimental setups have been found by a computer algorithm, and can be intuitively understood in a
geometric way. Together with the ability to sort angular-momentum modes, we now have access to the
complete two-dimensional transverse plane of light. The device can readily be used in multiplexing
classical information. On a quantum level, it is an analog of the Stern-Gerlach experiment—significant for
the discussion of fundamental concepts in quantum physics. As such, it can be applied in high-dimensional
and multiphotonic quantum experiments.
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Introduction.—The spatial modes of light give access
to an in principle unbounded state space. This allows
us to encode information in higher-dimensional alphabets
beyond one bit per photon. A particularly well-studied
mode family are the Laguerre-Gaussian (LG) modes [1].
One of the special features of LG modes is that they carry
well-defined lℏ quanta of orbital-angular momentum
(OAM) where l is one of the two numbers that define
the LG modes [2]. Over the last 25 years, a large toolbox
has been developed to generate [3–5] and manipulate
[6–11] OAM modes. This has led to a manifold of
applications ranging from classical high-speed [12,13]
and long-distance [14,15] communication to high-dimen-
sional quantum entanglement [16–19] and quantum cryp-
tography [20–22].
The second much less investigated degree of freedom of

the LG modes is the radial quantum number p [23–25]. It
spans a second completely independent and in principle
unbounded state space, with the same capability to encode a
vast amount of information. Its quantum character has been
demonstrated by two-photon interference [26] and quantum
correlations and entanglement between radial modes have
been demonstrated [27,28]. The only real manipulation of
radial modes known so far has been demonstrated using the
potential of controlled random material, in order to sort
different radial modes [29]. Unfortunately the manipulation
works in a lossy way which made its application in classical
and quantum experiments challenging so far. In order to
exploit the full potential of the radial modes, the available
toolbox needs to be expanded.
Herewe show how higher-order spatial modes of light—in

particular their radialmodes—can be sortedwith theoretically

100% visibility. For that, we use an interferometer with a
mode-dependent phase difference. This concept has been
used for other degrees of freedom (such as a mode sorter for
OAMmodes inRef. [6], or in a theoretical proposal for amore
general interferometric sorting scheme [30]). The challenging
question then is: How can one experimentally achieve mode
dependent phase shifters for radial modes? We answer this
question with the help of a computer algorithm [31]: One of
the two arms in the interferometer contains a lens configu-
ration, which leads to a difference in the accumulated Gouy
phase Δφg. We show experimentally a phase difference of
Δφg ¼ ðπ/2Þ and Δφg ¼ ðπ/4Þ, and apply it to sort different
spatial modes. We also theoretically demonstrate phase
differences of Δφg ¼ ðπ/nÞ (2 ≤ n ≤ 8).
Our technique can readily be applied to classical experi-

ments [such as (de)multiplexing in classical communica-
tion] or quantum experiments (such as two-photon
interference for high-dimensional entanglement). Our intui-
tive geometric interpretation of the technique can be used to
unify and generalize several similar approaches.
Spatial modes and the Gouy phase.—The paraxial wave

equation in cylindric coordinates leads to Laguerre-
Gaussian mode solutions, which are denoted as

LGp;lðr;ϕ;zÞ

¼
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with the mode number l denoting the orbital angular
momentum (in units of ℏ) and p the radial mode number.

Ljlj
p are the Laguerre polynomials, wz ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz/zRÞ2

p

is the beam waist with w0 being the beam waist at the focus.
zR ¼ ðπw2

0Þ/λ is the Rayleigh range, Rz ¼ z½1þ ðzR/zÞ2� is
the radius of curvature, λ is the wavelength, and k ¼ ð2πÞ/λ
is the wave number. φg ¼ arctanðz/zRÞ denotes the
Gouy phase and is multiplied with the mode order
m ¼ ð2pþ jlj þ 1Þ.
This phase is accumulated by Gaussian beams when they

propagate through the focus, and was first observed by
Louis Georges Gouy in 1890. Several physical interpreta-
tions have been given, such as the geometric effect of the
Gaussian beam [32], as a geometric [33] or topological
phase [34], or a phenomena arising due to an uncertainty
relation [35]. The Gouy phase has been used with higher-
order Gaussian modes, for example, to convert between
higher-order modes [36] or to interferometrically sort
Hermite-Gauss modes [37,38].
We use an interferometer, where one of the two arms

contains a lens configuration and thus accumulates a
different Gouy phase [39,40], as shown in Fig. 1(a).
When they recombine, the two beams have the same
spatial dimensions (beam waist and radius of curvature)
but a mode-dependent phase difference m · Δφg. If the
phases are fractions of π, the interferometer can be used to
sort higher-order Gaussian modes. The action of the
interferometer can be intuitively understood in a geometric
way, shown in Fig. 1(b). For that, we take advantage of the
complex beam parameter q ¼ zþ izR, which completely
determines the spatial properties of (higher order) Gaussian

beams after propagation through a lens system. Thus, also
the Gouy phase can be written in terms of q as φgðqÞ ¼
arctan½ReðqÞ/ImðqÞ�, where Re() and Im() stand for the real
and imaginary part of the complex q parameter. One can plot
the Gouy phase in the complex q space, where the two
coordinates are the real and imaginary part of the q
parameter. In this space, one can plot the propagation of
the two beams, and directly observe the accumulation of the
Gouy phase, as shown in Fig. 1(b). The free-space propa-
gation of a Gaussian beam continuously changes ReðqÞ,
while a lens performs a discrete jump in the complex q
space (as it discretely changes z and zR at the same time).

FIG. 1. Accumulated Gouy phase interferometer. (a) Schematic of the theoretical setup with accumulated Gouy phase. A Mach-
Zehnder interferometer with three lenses (L1, L2, L3: 500, 40, 300 mm; D1, D2: 560.8, 344.3 mm for a 1 mm collimated incoming
beam) in one arm. The phase difference is introduced by propagating the beam through the three lenses. We obtain the accumulated
Gouy phase difference Δφg ¼ ð3π/2Þ ¼ −ðπ/2Þ. The device can sort light beams depending on the p and l values, which will be
detected through the two cameras CCD1 or CCD2. (b) Complex q-parameter space: The complex beam parameter q determines the
spatial shape of a Gaussian beam—its beam waist and radius of curvature—unambiguously. The Gouy phase of a beam can be
determined as a function of q, which is the plotted surface. The accumulated Gouy phase of a beam while propagating freely is given by
the height difference on the surface. Here, the green line corresponds to free propagation in path B, while the red and yellow line
corresponds to the propagation after L1 and after L2, respectively. The black lines indicate the action of the lenses in the q space: Both z
and zR change discretely, which gives a jump in the q space. The shape of the black curves is calculated from a continuous transition of
the lens from f ¼ ∞ to f ¼ 500, f ¼ 40, and f ¼ 300 mm, respectively. In order to interfere, the two beams in path A and Bmust have
the same spatial properties, i.e., must have the same q parameter. Thus, the end point of the green line must be at the end point of the
black line for lens L3.

FIG. 2. To sort higher mode numbers, one could cascade the
interferometers (a folded Sagnac-interferometer for long-term
stability). Combining three such interferometers allows for sorting
modes from p ¼ 0 to p ¼ 3: The first interferometer (with blue
background) sorts even and odd modes, while the subsequent two
interferometers sort p ¼ 0/p ¼ 2 and p ¼ 1/p ¼ 3, respectively.
In our experiments, we show the results for both types of
interferometers.
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The Gouy phase difference is then the difference between the
accumulated phase of the two beams.
By combining several of these interferometers, one can

in principle access very high-dimensional mode spaces (see
Fig. 2). Cascaded interferometers can be built extremely
stable with modern production techniques (such as shown
in Ref. [41], where 30 interferometers have been stable for
more than 3 days with a visibility of more than 99%).
Experimental implementation.—We implement the

experimental setup shown in Fig. 1(a) in order to sort
higher-order Laguerre-Gauss modes, in particular their
radial modes. For that, we require that the Gouy phase
is a fraction of π, as well as that the resulting Gaussian
beams have the same complex beam parameter q in order
to interfere perfectly. With arbitrary, custom-tailored lens
configurations, we could easily find such configurations [as
it is indicated in Fig. 1(b)]. However, we restrict ourselves
to standard lenses which are easily commercially available
(see Supplemental Material [42] for a list of lenses). We use
the computer algorithm MELVIN to search for suitable
experimental configurations [31]. We found setups using
three lenses in one of the arms, for Δφg ¼ ðπ/nÞ with
2 ≤ n ≤ 8 in the Supplemental Material [42], and it is
straightforward to find other phase configurations.
Experimentally we realizedΔφg¼ðπ/2Þ andΔφg¼ðπ/4Þ,

where both configurations use the same lenses but different
distances D1 and D2 between them.
To ensure interference even with slightly different optical

path length introduced by the lenses in one arm, we use a
λ ¼ 810 nm laser with a sufficiently long coherence length.
To create higher-order Laguerre-Gauss modes with a high
quality, we use a phase-only spatial light modulator (SLM),

and apply the method to generate such modes suggested
in Ref. [43].
Radial modes are dependent on the beam waist; thus, it is

intuitively clear that the interferometer requires that the
input beam has specific properties to give correct Gouy
phases (in our case, λ ¼ 810 nm, w0 ¼ 1 mm, z ¼ 0 m).
For long-term stability, we build the interferometer in a
double-path Sagnac configuration (see Supplemental
Material [42] for details on the experimental setup).
After the interferometer, we split the output beams and
direct them to two CCDs (which we use to image the output
modes) and two power meters (which we use to measure
the interference visibilities).
Experimental results for (π/2).—In order to produce

Δφg ¼ ðπ/2Þ, we use L1¼500, L2¼40, L3¼300, D1¼
560, and D2 ¼ 343 mm and a corresponding free-space

(a) (b)

(d)(c)

FIG. 3. Experimental results for p and l modes in a Δφg ¼ ðπ/2Þ interferometer. (a) We show the sorting of four different p modes
from p ¼ 0 to p ¼ 3, with different OAM values of l ¼ 0 − 3. The intensity images taken with CCD cameras clearly show high quality
sorting of different mode orders. To quantify the quality, we calculate the visibility vis ¼ jðP1 − P2Þ/ðP1 þ P2Þj (where Pi stands for the
power in the output arm i). All visibilities are beyond 75%. The errors stand for statistical uncertainties calculated from 10 independent
measurements. (c)–(d) We measure OAM modes l ¼ 0 to l ¼ 6. Every even mode number is sorted, while every odd mode number is
split and propagates to both detectors, which gives a vanishing visibility.

(a) (b)

FIG. 4. Mode superpositions ψ ¼ ð1/ ffiffiffi
2

p ÞðLG2;0 þ LG0;2Þ and
ψ ¼ ð1/ ffiffiffi

2
p ÞðLG1;1 þ LG2;1Þ. (a) The images show the intensity

of the superposition, the inset shows the theoretical intensity
distribution. (b) Measured intensity distributions. The following
two images show the output of the CCDs in the two output arms.
As the modes have different mode numbers, they are sorted to
different outputs of the interferometer.
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propagation length in path B of D ¼ D1þD2 ¼ 903 mm.
In Figs. 3(a) and 3(b), we show the results for sorting the
radial p modes from p ¼ 0 to p ¼ 3 (with l ¼ 0, 1, 2,
and 3). The visibilities are all above 75%, and 83.5% on
average. In Figs. 3(c) and 3(d), we show the sorting of l
modes, every even mode is sorted, while every odd mode
is equally separated in both output ports. We measure
l ¼ 0–6 for p ¼ 0 (l ¼ 0–6 with p ¼ 1, 2, and 3 can be
seen in the Supplemental Material [42]). The sorting
efficiency is very high, leading to visibilities beyond
85%. Intuitively, one would expect a lower visibility for
higher order modes. Instead, here we observe the highest
visibility for the p ¼ 1 radial mode. This has two reasons:
Deviations of the experimentally generated input beam qin
(beam waist w0 and focus position z) from the ideal beam;
and small errors in the distances between the three lenses.
These misalignments lead to a slightly different accumu-
lated Gouy phase difference, with the effect that higher
order modes are sorted less efficient. Additionally, they also
lead to different complex q parameters for the two paths A
and B, and therefore to Newton rings which lower the
interference visibility. None of the above two reasons are of
fundamental nature and can be overcome with carefully
designing and manufacturing the interferometric device.
In order to show that our proposed method is also

capable for possible quantum applications, we investigate
the device’s capability of sorting coherent superpositions
of different radial and OAM modes. In Fig. 4, we show
the measurement results for coherent superposi-
tions of LG modes with different orthogonal modes. In
particular, we show the coherent superposition of ψ ¼
ð1/ ffiffiffi

2
p ÞðLG2;0 þ LG0;2Þ and ψ ¼ ð1/ ffiffiffi

2
p ÞðLG1;1 þ LG2;1Þ.

High quality separation of the superposition is clearly
visible.

Experimental results for (π/4).—The device explained
above can sort modes with even and odd p values.
However, it cannot separate two even p values. With
simple adjustments of the lenses (D1 ¼ 506 and
D2 ¼ 326 mm), we are able to perform a Δφg ¼ ðπ/4Þ
phase shift which can separate even and odd p/2 modes,
such as p ¼ 0 and p ¼ 2—as shown in Fig. 5(a). In
Fig. 5(b), the sorting visibilities of LG modes with
l ¼ 2 and p ¼ 0 to p ¼ 8 are shown. Every odd mode
is equally separated, while the even modes are sorted. All
visibilities are beyond 85% for p ≤ 4 and larger than 75%
for all modes smaller or equal to LGp¼8;l¼2.
Conclusion.—We have identified and realized a method

to interferometrically sort higher-order spatial Gaussian
modes using accumulated Gouy phases. Particularly, it
allowed us to experimentally sort radial Laguerre-Gaussian
modes. It is also possible to cascade several p-mode sorters
to increase the independently accessible modes, or to
combine it with OAM-mode sorters [6] to access the
complete set of spatial modes. This can readily be used
for multiplexing and demultiplexing technologies in high-
speed classical communication schemes. Our presented
method can also be used in quantum optics as an in
principle lossless two-input two-output device. This is in
direct analogy to the polarizing beam splitter which is the
workhorse for multiphoton qubit entanglement experi-
ments [44]. The p-mode sorter expands the toolbox to
manipulate higher-dimensional quantum states [10] and
generate multiphoton high-dimensional entanglement
[45,46]. It can also be used to create controlled quantum
gates (e.g., CNOT gates) exploiting hybrid systems involv-
ing radial spatial modes. Having access to the radial modes
would allow quantum teleporation of multiple degrees of
freedom of a photon [47]. In particular, it could enable us to
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FIG. 5. Experimental results for p and l modes in a Δφg ¼ ðπ/4Þ interferometer. (a) Here we show an example for l ¼ 2, p ¼ 0 − 8.
From the two CCD outputs, we clearly see that modes with even p constructively or destructively interfere, while modes with odd p split
randomly. (b) The corresponding visibilities are consistently larger than 75%. Even modes with up to p ¼ 8, l ¼ 2 (which has a mode
order of m ¼ ð2pþ lþ 1Þ ¼ 19) can be interfered well beyond 75%. The errors stand for statistical uncertainties calculated from 10
independent measurements.
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teleport the complete quantum information encoded in the
two-dimensional transverse plane of a single photon. Two
basic building blocks for arbitrary high-dimensional uni-
tary transformations are the generalized X and Z gate
[11,48]. Our demonstrated p-mode sorter implicitly uses a
generalized Z gate (the lens system). The high-dimensional
X gate requires individual access to different parities
(which we have demonstrated here) as well as a mode
shifter. Thus the last missing experimental tool to generate
arbitrary unitary transformations in the radial degree of
freedom is the possibility to shift modes by a constant
value. The implementation of such a mode shifter remains
an important open question.
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Note added.—Recently, we learned about a similar research
project [49]. There, the authors solve the question for the
p-mode dependent phase in a different way: They use a
fractional Fourier transform for which the p modes are
eigenfunctions.
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