
Sequence analysis

MBG: Minimizer-based sparse de Bruijn Graph

construction

Mikko Rautiainen 1,2,3,* and Tobias Marschall 4

1Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany, 2Max Planck Institute for Informatics, 66123

Saarbrücken, Germany, 3Saarbrücken Graduate School for Computer Science, 66123 Saarbrücken, Germany and 4Heinrich Heine

University Düsseldorf, Medical Faculty, Institute for Medical Biometry and Bioinformatics, 40225 Düsseldorf, Germany

*To whom correspondence should be addressed.

Associate Editor: Peter Robinson

Received on September 17, 2020; revised on December 14, 2020; editorial decision on December 31, 2020; accepted on January 6, 2021

Abstract

Motivation: De Bruijn graphs can be constructed from short reads efficiently and have been used for many pur-
poses. Traditionally, long-read sequencing technologies have had too high error rates for de Bruijn graph-based
methods. Recently, HiFi reads have provided a combination of long-read length and low error rate, which enables de
Bruijn graphs to be used with HiFi reads.

Results: We have implemented MBG, a tool for building sparse de Bruijn graphs from HiFi reads. MBG outperforms
existing tools for building dense de Bruijn graphs and can build a graph of 50� coverage whole human genome HiFi
reads in four hours on a single core. MBG also assembles the bacterial E.coli genome into a single contig in 8 s.

Availability and implementation: Package manager: https://anaconda.org/bioconda/mbg and source code: https://
github.com/maickrau/MBG.

Contact: mrautiai@mpi-inf.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

De Bruijn graphs (DBGs) have been used in sequence analysis for
purposes such as genome assembly (Bankevich et al., 2012; Garg
et al., 2018; Pevzner et al., 2001; Wick et al., 2017) and error cor-
rection (Miclotte et al., 2016; Rautiainen and Marschall, 2019;
Salmela and Rivals, 2014). Sparse de Bruijn graphs (Ye et al., 2011)
are a form of DBGs which use only a subset of k-mers and so reduce
runtime and memory use. Minimizer winnowing (Roberts et al.,
2004; Schleimer et al., 2003) is a method of selecting a subset of k-
mers from a sequence, which has been applied to building sparse
DBGs (Coombe et al., 2020). Recently, HiFi reads (Wenger et al.,
2019) have reached read lengths of thousands of base pairs with
error rates comparable or superior to short reads. The combination
of long-read lengths and low error rates makes DBGs an attractive
idea for HiFi reads and might enable hybrid methods, which typical-
ly use a combination of Illumina and long reads, to use a combin-
ation of HiFi and even longer ONT reads (Logsdon et al., 2020).
Increasing the k-mer size leads to better repeat resolution and there-
fore better assembly. However, current tools do not scale to k-mer
sizes in thousands.

Contributions. We have implemented the tool MBG (Minimizer-
based sparse de Bruijn Graph) for constructing sparse de Bruijn
graphs. MBG selects k-mers by minimizer winnowing (Schleimer
et al., 2003) and builds the graph from those k-mers. This approach

has previously been used in the ntJoin scaffolder (Coombe et al.,
2020) for building graphs from assembled contigs to scaffold
assemblies.

MBG can construct graphs with arbitrarily high k-mer sizes, and
we show that k-mer sizes of thousands of base pairs are practical
with real HiFi read data. MBG outperforms existing de Bruijn graph
construction tools in runtime, with a runtime of only a few hours on
a single core for constructing a graph of 50� coverage whole human
genome HiFi reads.

2 Materials and methods

We give a brief overview of the implementation here with detailed
explanations of the individual steps in Supplementary Note SA.
Since most errors in HiFi reads are homopolymer run length errors
(Wenger et al., 2019), the input reads are homopolymer compressed
by collapsing homopolymer runs into one character. Homopolymer
compression removes most errors but it might also lead to repeat
collapses if there are long repeats which only differ in homopolymer
run lengths. A rolling hash function (Mohamadi et al., 2016) is used
to assign a hash value to each k-mer. Minimizer winnowing
(Schleimer et al., 2003) is then used to select a subset of k-mers. The
selected k-mers are compressed by hashing them into 128-bit inte-
gers, which form the nodes of the minimizer graph. Edges are added

VC The Author(s) 2021. Published by Oxford University Press. 2476

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(16), 2021, 2476–2478

doi: 10.1093/bioinformatics/btab004

Advance Access Publication Date: 21 January 2021

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/16/2476/6104877 by Adm
inistrative H

eadquarters - M
PS user on 20 O

ctober 2021

http://orcid.org/0000-0003-2971-267X
http://orcid.org/0000-0002-9376-1030
https://anaconda.org/bioconda/mbg
https://github.com/maickrau/MBG
https://github.com/maickrau/MBG
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab004#supplementary-data
https://academic.oup.com/


whenever two minimizers are adjacent to each other in the reads.
Transitive edges caused by sequencing errors are cleaned. Non-
branching paths of the graph are then condensed into unitigs.
Finally, the 128-bit hashes are replaced with their base pair sequen-
ces, and homopolymer runs are expanded. The graph is then written
in the GFA format (Li, 2016).

3 Results

We built sparse de Bruijn graphs using HiFi read data. We varied
the k-mer size k, and for MBG, the window size parameter w
(Schleimer et al., 2003), which determines the sparseness of the
resulting graph, with higher w leading to sparser graphs. Details of
the experimental setup are in Supplementary Note SB. Table 1
shows the results for selected parameters and Supplementary Table
S1 contains the full results.

Comparison to existing tools. We compared MBG to BCalm2
(Chikhi et al., 2016) for building graphs using HiFi reads of E.coli.
Note that N50 is not directly comparable between MBG and
BCalm2 since the homopolymer compression step removes most
errors and therefore greatly improves N50. BCalm2 uses less mem-
ory than MBG with w¼1, but for w¼10 and higher MBG uses less
memory. MBG is faster than BCalm2 when w>1, and slightly
slower with w¼1. The runtime of BCalm2 increases greatly as the
k-mer size increases while MBG scales efficiently to high k. Due to
homopolymer errors in the reads, the N50 for BCalm2 suffers when
k grows above 1001. On the other hand, the homopolymer com-
pression of MBG enables it to scale to higher k. With higher w MBG
is an order of magnitude faster than BCalm2. Supplementary Table
S2 and Supplementary Note SB contain an evaluation of the error
rates of the assemblies. With k¼2501 and w¼2500, MBG assem-
bles E. coli correctly into a single contig in 8 s on a single core with
an estimated error rate of 45 errors per 100kbp. Almost all errors
are homopolymer run length errors, with only 0.18 non-
homopolymer errors per 100kbp.

Whole human genome HiFi. We ran MBG on whole human gen-
ome HiFi data from the individual HG002. Runtime is between 2
and 7 h on a single core with all parameter sets, showing that MBG
is fast and scales to large k. The limitation on increasing k and w
even higher is the error rate and read length of the HiFi reads. We
also ran BCalm2 on the same reads with k¼127. We did not run
BCalm2 with higher k since the previous experiment suggests the
runtime would be prohibitive. MBG is an order of magnitude faster
than BCalm2, however, memory use is higher since MBG keeps all
data in memory while BCalm2 uses temporary files on disk.

4 Conclusion

We have implemented MBG, a tool for building sparse de Bruijn
graphs from HiFi reads using minimizer winnowing. The sparsifica-
tion enables MBG to run orders of magnitude faster than tools for
building dense de Bruijn graphs. Increasing the sparsity parameter w
speeds up assembly but can reduce homopolymer run length consen-
sus accuracy. MBG uses a novel method to compress long k-mers to
constant sized hashes and enables k to scale arbitrarily high.

MBG can quickly build de Bruijn graphs of mammalian sized
genomes, with runtimes ranging from 2 to 7 h on a single core. The
memory use currently prevents MBG from being ran on mammalian
datasets on laptops and desktop computers. However, MBG fits
comfortably in the RAM of most computing servers. Disk-based
approaches used by previous tools (Chikhi et al., 2016) might enable
MBG to run on mammalian datasets on laptops. MBG enables small
genomes such as E. coli to be assembled in a few seconds and mam-
malian genomes in a few hours.

Financial Support: none declared.

Conflict of Interest: none declared.

Data availability

Data used for the E.coli experiment is available in the Sequence
Read Archive run SRR10971019. Data used for the HG002 experi-
ment is available in Wenger et al. (2019).

References

Bankevich,A. et al. (2012) SPAdes: a new genome assembly algorithm and its

applications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

Chikhi,R. et al. (2016) Compacting de Bruijn graphs from sequencing data

quickly and in low memory. Bioinformatics, 32, i201–i208.

Coombe,L. et al. (2020) ntJoin: fast and lightweight assembly-guided scaffold-

ing using minimizer graphs. Bioinformatics, 36, 3885–3887.

Garg,S. et al. (2018) A graph-based approach to diploid genome assembly.

Bioinformatics, 34, i105–i114.

Li,H. (2016) Minimap and miniasm: fast mapping and de novo assembly for

noisy long sequences. Bioinformatics, 32, 2103–2110.

Logsdon,G.A. et al. (2020) The structure, function, and evolution of a com-

plete human chromosome 8. bioRxiv. 10.1101/2020.09.08.285395

Miclotte,G. et al. (2016) Jabba: hybrid error correction for long sequencing

reads. Algorithms Mol. Biol., 11, 10.

Mohamadi,H. et al. (2016) ntHash: recursive nucleotide hashing.

Bioinformatics, 32, 3492–3494.

Pevzner,P.A. et al. (2001) An Eulerian path approach to DNA fragment assem-

bly. Proc. Natl. Acad. Sci. USA, 98, 9748–9753.

Rautiainen,M. and Marschall,T. (2019) GraphAligner: Rapid and versatile

sequence-to-graph alignment. BioRxiv, 810812.

10.1186/s13059-020-02157-2

Roberts,M. et al. (2004) Reducing storage requirements for biological se-

quence comparison. Bioinformatics, 20, 3363–3369.

Salmela,L. and Rivals,E. (2014) LoRDEC: accurate and efficient long read

error correction. Bioinformatics, 30, 3506–3514.

Schleimer,S. et al. (2003) Winnowing: local algorithms for document finger-

printing. In Proceedings of the 2003 ACM SIGMOD international confer-

ence on Management of data, pp. 76–85. 10.1145/872757.872770

Table 1. Experimental results

Dataset Tool k w CPU-time Memory (Gb) N50

E.coli BCalm2 61 – 0:00:59 1.1 1 025

127 – 0:01:40 2.0 1 212

501 – 0:17:11 3.6 4 999

1001 – 1:42:26 3.5 13 688

2001 – 8:12:45 3.8 5 908

3001 – 10:33:11 4.0 4 393

E.coli MBG 61 1 0:01:33 3.2 73 728

61 10 0:00:25 0.6 82 427

61 20 0:00:16 0.3 82 418

61 30 0:00:13 0.3 82 394

127 1 0:01:53 3.9 132 765

127 10 0:00:30 0.8 132 569

127 20 0:00:17 0.4 132 766

127 30 0:00:13 0.3 132 764

501 500 0:00:10 0.12 177 653

1001 1000 0:00:09 0.13 698 111

2001 2000 0:00:08 0.14 4 639 237

2501 2500 0:00:08 0.14 4 644 046

3001 3000 0:00:08 0.14 4 090 727

HG002 BCalm2 127 – 32:00:32 6.4 249

HG002 MBG 2001 2000 4:07:22 138.5 12 095

3001 3000 3:57:59 137.3 23 104

4001 4000 3:35:03 120.4 26 736

5001 5000 2:06:52 68.9 20 699

2001 400 6:01:18 250.0 8 669

3001 600 6:05:17 243.9 15 085

4001 800 3:55:50 245.3 23 868

5001 1000 4:47:44 244.1 33 649

MBG 2477

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/16/2476/6104877 by Adm
inistrative H

eadquarters - M
PS user on 20 O

ctober 2021

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab004#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab004#supplementary-data


Wenger,A.M. et al. (2019) Accurate circular consensus long-read sequencing

improves variant detection and assembly of a human genome. Nat.

Biotechnol., 37, 1155–1162.

Wick,R.R. et al. (2017) Unicycler: resolving bacterial genome assemblies from

short and long sequencing reads. PLoS Comput. Biol., 13, e1005595.

Ye,C. et al. (2011) SparseAssembler: de novo Assembly with the Sparse de

Bruijn Graph. https://arxiv.org/abs/1106.2603.

2478 M.Rautiainen and T.Marschall

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/16/2476/6104877 by Adm
inistrative H

eadquarters - M
PS user on 20 O

ctober 2021

https://arxiv.org/abs/1106.2603

