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In its standard formulation, quantum
backflow is a classically impossible phe-
nomenon in which a free quantum parti-
cle in a positive-momentum state exhibits
a negative probability current. Recently,
Miller et al. [Quantum 5, 379 (2021)] have
put forward a new, “experiment-friendly”
formulation of quantum backflow that aims
at extending the notion of quantum back-
flow to situations in which the particle’s
state may have both positive and negative
momenta. Here, we investigate how the
experiment-friendly formulation of quan-
tum backflow compares to the standard
one when applied to a free particle in a
positive-momentum state. We show that
the two formulations are not always com-
patible. We further identify a parametric
regime in which the two formulations ap-
pear to be in qualitative agreement with
one another.

1 Introduction
Quantum backflow (QB), as originally introduced
in Ref. [1]1, refers to the classically forbidden fact
that a free particle may exhibit a negative prob-
ability current at a particular space-time point
even though it has, with certainty, a positive mo-
mentum. This original formulation of QB is con-
cerned with a nonrelativistic structureless quan-
tum particle of mass m that follows a free one-
dimensional motion along the x axis. We will be
denoting the state of the particle at time t by |ψt〉
and its position representation by ψt(x) ≡ 〈x|ψt〉.

1The existence of quantum backflow was first pointed
out by Allcock [2] and Kijowski [3], but these were Bracken
and Melloy [1] who carried out the first systematic analysis
of the phenomenon. In particular, they were the first to
discuss it for normalized states.

The probability current jt(a) at a position x = a
is then given by

jt(a) ≡ ~
m

Im
[
ψ∗t (x) ∂

∂x
ψt(x)

]
x=a

, (1)

where Im(z) and z∗ denote the imaginary part
and complex conjugate of a complex number
z, respectively. If |ψt〉 is a positive-momentum
state, then QB occurs whenever [1]

jt(a) < 0 (2)

at some position a and time t.
The phenomenon of QB has been investigated

in a variety of different scenarios, and many ex-
plicit examples of backflowing states have been
constructed, see e.g. Refs. [1, 4–7]. Thus, QB has
been considered for a particle moving in the pres-
ence of linear [8] and short-range [9] potentials. It
has been extended to rotational motion [10–12],
as well as to relativistic [13–15] and many-particle
systems [16]. The spatial extent of QB has been
addressed in Refs. [4, 9, 17]. QB is also known
to bear close relation to the arrival-time prob-
lem [2, 3, 18–25] and some nonclassical aspects
of the flow of probability in quantum systems [7,
26–29].

As of today, QB has never been observed ex-
perimentally. It has been argued that QB can be
observed in experiments with Bose-Einstein con-
densates [30, 31]. Recently, an experimental real-
ization of an optical counterpart of QB has been
reported [32].

Of particular significance to the present study
is Ref. [33] that addresses QB for a parti-
cle, moving in a potential V (x), whose state
ψt(x) contains a priori both positive and nega-
tive momenta. In order to treat this scenario,
the authors propose an alternative, “experiment-
friendly” (EF) definition of QB, which is based on
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replacing the right-hand side of Eq. (2) by an in-
tegral involving the negative momenta. This new
formulation of QB has the advantage of being ap-
plicable in scattering situations. However, as we
show in this brief paper, unless used with care
the EF criterion of Ref. [33] may fail to identify
QB in the standard case of a free particle with a
positive momentum.

Our paper is organized as follows. In Section 2,
we provide a concise summary of the EF formula-
tion of QB put forward in Ref. [33]. In Section 3,
we analyze a concrete example of a positive-
momentum state that is known to exhibit QB
according to the standard criterion, Eq. (2). We
show that, for some parameter values, the EF cri-
terion of Ref. [33] can be violated for this particu-
lar state. Then, in Section 4, we address the ques-
tion of the maximal backflow, computed in accor-
dance with the EF formulation, that can be ob-
tained for an arbitrary positive-momentum state.
We demonstrate that this maximal backflow may
become negligibly small in a certain parametric
regime. Finally, conclusions are drawn in Sec-
tion 5.

2 Statement of the problem
A one-dimensional nonrelativistic structureless
quantum particle can be described by the wave
function ψt(x) in position space, or alternatively
by its Fourier transform ψ̃t(p) in momentum
space. Both functions satisfy the normalization
condition∫

R
dx |ψt(x)|2 =

∫
R
dp |ψ̃t(p)|2 = 1 , (3)

so that |ψt(x)|2 (respectively, |ψ̃t(p)|2) is inter-
preted as the probability density of finding the
particle at position x (respectively, with momen-
tum p) at time t. Hereinafter, the Fourier trans-
form g̃(p) of a function g(x) is taken to be

g̃(p) = 1√
2π~

∫
R
dx e−ipx/~g(x) , (4a)

with the inverse transform hence given by

g(x) = 1√
2π~

∫
R
dp eixp/~ g̃(p) . (4b)

As is well known (see e.g. [34, 35]), the fact
that the position and momentum observables do

not commute precludes the construction of any
well-defined quantum probability distribution in
phase space. Instead, every quantum state can
be associated with infinitely many phase-space
distributions, all of them being functions of the
phase-space variables x and p, i.e., classical-like
commuting variables. None of these functions
however simultaneously satisfies all of the follow-
ing three defining properties of probabilities, also
known as Kolmogorov’s axioms: positivity, nor-
malizability, and additivity (see e.g. [36]). This
is the reason why quantum phase-space distribu-
tions are often referred to as quasiprobability dis-
tributions. While all these distributions embed
the same physical information, their mathemati-
cal properties may drastically differ from one an-
other. Commonly used quasiprobability distribu-
tions include the Wigner, Husimi, and Glauber-
Sudarshan representations.

In Ref. [33], the authors consider a particular
class of phase-space distributions ft(x, p) that are
everywhere positive. This property, along with
the normalization condition∫

R2
dxdp ft(x, p) = 1 , (5)

allows one to assign a (quasi)probabilistic mean-
ing to the distribution ft. The latter is defined
by

ft(x, p) = |Wψt,χ(x, p)|2 (6)

in terms of the so-called Wigner-Moyal trans-
form [37]

Wψt,χ(x, p) ≡ 1√
2π~

×
∫
R
dy e−ipy/~χ∗

(
y − x

2

)
ψt

(
y + x

2

)
. (7)

The function χ represents the precision function
of a measurement apparatus, and is normalized
to unity2, i.e. ∫

R
dx |χ(x)|2 = 1 . (8)

2There is a slight difference between the definition of
the Wigner-Moyal transform in Eq. (7) and the way the
transform is defined in Eq. (2) of Ref. [33]: The prefac-
tor in the right-hand side of Eq. (7) is 1/

√
2π~, whereas

it is 1/2π~ in Ref. [33]. The expression in Ref. [33]
is recovered from Eq. (7) by means of the substitution
χ(x) = φ(x)/

√
2π~.
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It is easy to see from Eq. (4) that Wψt,χ can
also be expressed as an integral over momentum,
namely

Wψt,χ(x, p) = 1√
2π~

×
∫
R
dp′ eixp

′/~ χ̃∗
(
p′ − p

2

)
ψ̃t

(
p′ + p

2

)
. (9)

The “experiment-friendly” (EF) definition of
quantum backflow (QB) put forward in Ref. [33]
states that QB takes place at point x = a and
time t if the probability current jt(a) satisfies the
inequality

jt(a) < 1
m

∫
R−

dp pft(a, p) . (10a)

Hereinafter we use the notation R− (respectively,
R+) for the set of negative (respectively, positive)
real numbers. Note that the criterion (10a) can
be alternatively written as

Jt(a) < 0 (10b)

in terms of the quantity Jt defined as

Jt(a) ≡ jt(a)− 1
m

∫
R−

dp pft(a, p) . (11)

The form of condition (10b) is reminiscent of the
standard QB criterion (2), with Jt(a) playing the
role of an effective backflow current at position a
and time t.

Let us look into the structure of criterion (10)
in more detail. First, note that in view of (1)
the left-hand side of Eq. (10a) depends solely
on the state ψt of the system. However, it is
clear from Eqs. (6) and (7) that the right-hand
side of Eq. (10a) depends on ψt as well as on
the precision function χ. The latter is by con-
struction an arbitrary function, independent of
the state ψt. This means that by changing the
precision function χ one changes the right-hand
side of Eq. (10a) while leaving the left-hand side
unchanged. Therefore, in principle, criterion (10)
could, for a given state ψt, be satisfied for one
precision function χ but violated for another. In
fact, this is precisely what we demonstrate in Sec-
tion 3 below.

From here on, let us focus on a Gaussian pre-
cision function of the form

χ(x) = 1
π1/4√σ

e−x
2/2σ2

. (12a)

The corresponding momentum representation is
given by

χ̃(p) = 1
π1/4
√
σ̃
e−p

2/2σ̃2
. (12b)

Here, the position- and momentum-space widths
σ and σ̃, respectively, are related via σσ̃ = ~.
Our motivation for this choice of χ is twofold.
First, a Gaussian smoothing function is the most
natural choice for mimicking a finite precision
of a measurement apparatus3, and, as such, is
the precision function used in all examples of
Ref. [33]. Second, it follows from Eqs. (6) and
(7) that the phase-space distribution ft obtained
using a Gaussian χ corresponds to the Husimi
distribution (see e.g. Eq. (7.25) in [34]), which
is arguably the most commonly used nonnegative
quantum phase-space distribution function.

Our aim is to compare the EF criterion (10)
against the standard definition of QB, based on
Eq. (2). The latter only applies to a free par-
ticle in a positive-momentum state, i.e., a state
described by the momentum wave function

ψ̃t(p) = e−ip
2t/2m~ψ̃0(p) (13)

that vanishes identically for negative momenta,

ψ̃t(p) = 0 if p < 0 . (14)

So, below we only consider wave functions of this
form.

In the present paper, we argue that the useful-
ness of the EF definition of QB, given by Eq. (10),
is strongly dependent on the width σ̃ of the pre-
cision function. We present our argument in the
following two sections. Thus, in Section 3, we
consider the case of a particle prepared in a par-
ticular positive-momentum state ψ̃0 that satis-
fies the standard criterion (2) of QB, and show
that the EF criterion (10) gets violated if σ̃ ex-
ceeds a certain value. Then, in Section 4, we ad-
dress the problem of the maximal backflow prob-
ability transfer ∆max achievable with positive-
momentum states. On the one hand, numeri-
cal analysis based on the standard backflow cri-
terion (2) yields [1, 4, 38]

∆(BM)
max ≈ 0.0384517 , (15)

3For instance, measurements are modeled by Gaussian
quasiprojectors in [5].
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a number commonly referred to as the Bracken-
Melloy bound. On the other hand, we demon-
strate that ∆max inferred from the EF crite-
rion (10) decays with σ̃ and can become arbitrar-
ily small. This means that the new criterion (10)
may fail to identify QB if the precision function is
too broad in momentum space. We further quan-
tify the range of σ̃ in which the EF definition of
QB is consistent with the standard one.

3 Explicit example
Let us consider the particular positive-
momentum state that was introduced in Ref. [1]
as a concrete example of QB for normalized
states. The state corresponds to a fixed instant
in time, taken to be t = 0, and is given by

ψ̃0(p) ≡


0 , p < 0

18p√
35α3

(
e−p/α − 1

6 e
−p/2α

)
, p > 0

(16a)
where α is a positive constant that has the di-
mension of a momentum. Note that the func-
tion ψ̃0(p) is continuous at p = 0. Substituting
Eq. (16a) into Eq. (4b), one obtains the corre-
sponding position representation [1]

ψ0(x) = 18

√
α~3

70π

[ 1
(~− iαx)2 −

2
3

1
(~− 2iαx)2

]
.

(16b)

The probability current j0(0) at a = 0, calculated
according to Eq. (1), yields [1]

j0(0) = − 36α2

35πm~
< 0 . (17)

The criterion (2) is thus clearly satisfied, meaning
that the particular positive-momentum state (16)
is a backflowing state in the standard sense.

We now investigate the predictions of the EF
criterion (10) for the state (16). To this end, we
first compute the corresponding phase-space dis-
tribution f0(0, p) obtained from Eq. (6) for x = 0
and t = 0. In order to focus on the role played by
the width σ̃ of the Gaussian precision function,
we use a system of units that is adapted to this
particular state by introducing the dimensionless
momentum

η ≡ p

α
. (18)

Then, combining the definitions (6) and (9) with
Eqs. (12b), (16a) and (18), we find

f0(0, αη) = 162
35π3/2~

I2(η; s)
s

, (19)

where s is the dimensionless momentum width of
the precision function,

s ≡ σ̃

α
, (20)

and I is given by the integral

I(η; s) ≡
∫
R+
dη′ η′e−(η′−η)2/2s2

(
e−η

′ − e−η
′/2

6

)
.

(21)

Alternatively, I can be expressed as

I(η; s) = se−η
2/2s2

{5s
6

−
√
π

2 (s2 − η)e(s2−η)2/2s2 erfc
(
s2 − η√

2s

)

+
√
π

2
s2 − 2η

12 e(s2−2η)2/8s2 erfc
(
s2 − 2η
2
√

2s

)}
(22)

with

erfc(z) = 1− erf(z) = 2√
π

∫ ∞
z

dy e−y2 (23)

being the complementary error function.
Substituting Eqs. (17) and (19) into Eq. (11),

we obtain the effective backflow current:

J0(0) = − 18
35π

α2

m~

[
2 + 9√

πs

∫
R−

dη ηI2(η; s)
]
.

(24)

It is clear from this expression that the sign of
J0(0) only depends on the (dimensionless) width
s of the precision function. In particular, note
that the integral in the right-hand side of (24) is
necessarily negative.

We now evaluate J0(0) for various values of s by
numerically computing the integral in Eq. (24).
The results are shown in Fig. 1, where the (scaled)
effective backflow current is depicted by the solid
blue curve. We see that for small enough val-
ues of s the current J0(0) takes negative values
(hashed green region). In this regime, the EF cri-
terion (10b) predicts the occurrence of QB and is

Accepted in Quantum 2021-08-25, click title to verify. Published under CC-BY 4.0. 4



Figure 1: Scaled effective backflow current (solid blue
curve), as given by (24), as a function of the (dimen-
sionless) width s of the Gaussian precision function.

in agreement with the standard backflow crite-
rion (2). However, for s & 5.6 the current J0(0)
takes positive values (hashed red region). In this
regime, condition (10) is no longer fulfilled, im-
plying that the EF criterion fails to identify QB.

This shows that the compatibility between the
EF criterion (10) and the standard one, Eq. (2), is
sensitive to the momentum width σ̃ of the preci-
sion function. While this conclusion was reached
based on the particular state (16), we now inves-
tigate the predictions of condition (10) for general
positive-momentum states.

4 Maximal backflow
We now consider the following question, origi-
nally posed in Ref. [1]: For a free particle in a
positive-momentum state and a given time inter-
val (0, T ), what is the maximal amount of prob-
ability ∆max that can possibly cross the space
point x = 0 in the “wrong” direction? If one re-
lies on the standard definition of QB, Eq. (2), the
answer to this question is given by the Bracken-
Melloy bound, Eq. (15). Here, we want to answer
this question adopting the new, EF definition of
QB, Eq. (10), and compare the results with the
standard case.

To this end, we use the approach developed in
Ref. [1]. The particle is described by the wave
function

ψt(x) = 1√
2π~

∫
R+
dp eixp/~ e−ip

2t/2m~ψ̃0(p) .

(25)

Substituting Eq. (25) into Eq. (1) and setting a =
0, we obtain

jt(0) = 1
4πm~

∫
(R+)2

dpdp′ ψ̃∗0(p)

× (p+ p′)eit(p2−p′2)/2m~ψ̃0(p′) . (26)

Then, upon combining the definitions (6) and (9)
with Eqs. (12b), (13), and (14), we get

1
m

∫
R−

dp pft(0, p) = 1
4πm~

∫
(R+)2

dpdp′ ψ̃∗0(p)

× U(p, p′; σ̃)eit(p2−p′2)/2m~ψ̃0(p′) , (27)

where the function U is defined as

U(p, p′; σ̃)

≡ 2√
πσ̃

∫
R−

dp′′ p′′e−[(p′′−p)2+(p′′−p′)2]/2σ̃2
.

(28)

The function U can also be expressed in terms of
the complementary error function (see Eq. (34)
below). Substituting Eqs. (26) and (27) into
Eq. (11) yields the effective backflow current

Jt(0) = 1
4πm~

∫
(R+)2

dpdp′ ψ̃∗0(p)

×
[
p+ p′ − U(p, p′; σ̃)

]
eit(p2−p′2)/2m~ψ̃0(p′) .

(29)

The backflow probability transfer through x =
0 over the time interval 0 < t < T is given by

∆ ≡ −
∫ T

0
dt Jt(0) . (30)

The maximization of ∆ is performed under the
constraint that ψ̃0 is normalized according to
Eq. (3). Substituting Eq. (29) into Eq. (30), eval-
uating the time integral, and using the method of
Lagrange multipliers, we find that the maximum
of ∆ (subject to the normalization constraint) is
given by the largest eigenvalue ∆max (≡ supλ) of
the following integral eigenvalue problem:

∫
R+
dp′

i

2π
p+ p′ − U(p, p′; σ̃)

p2 − p′2

×
[
eiT(p2−p′2)/2m~ − 1

]
ψ̃0(p′) = λψ̃0(p) .

(31)
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We now rewrite Eq. (31) in a dimensionless
form. Making the change of variables

u ≡

√
T

4m~
p and u′ ≡

√
T

4m~
p′ , (32)

defining the dimensionless width ς of the precision
function as

ς ≡

√
T

m~
σ̃ , (33)

and introducing the dimensionless functions

U(u, u′; ς)

≡

√
T

4m~
U

√4m~
T

u,

√
4m~
T

u′;

√
m~
T
ς


= u+ u′

2 e−(u−u′)2/ς2 erfc
(
u+ u′

ς

)
− ςe−2(u2+u′2)/ς2

2
√
π

(34)

and

ϕ(u) ≡
(4m~

T

)1/4
e−iu

2
ψ̃0

√4m~
T

u

 , (35)

we arrive at the following dimensionless integral
eigenproblem:∫

R+
du′

u+ u′ − U(u, u′; ς)
π(u′2 − u2) sin(u2 − u′2)ϕ(u′)

= λϕ(u) . (36)

We then numerically solve the eigenvalue equa-
tion (36) and evaluate the largest eigenvalue
∆max

4, i.e. the maximal backflow, for different
values of the (dimensionless) width ς. The re-
sults are presented in Fig. 2. The solid blue curve
shows the behavior of ∆max as a function of ς, and
the dash-dotted horizontal red line represents the
Bracken-Melloy bound, Eq. (15).

Our first observation is that ∆max approaches
the Bracken-Melloy bound as ς → 0. This means
that for small enough widths, i.e., for a Gaussian
precision function that is sufficiently narrow in
momentum space (and, consequently, sufficiently
broad in position space), the EF criterion (10) al-
lows for the same maximal backflow probability

4The numerical method is based on the approach origi-
nally presented in Ref. [1], and has been further discussed
in Section IIIB of Ref. [29] and the appendix of Ref. [12].

Figure 2: Behavior of the maximal eigenvalue ∆max
(solid blue curve) of the eigenvalue equation (36) with
respect to the (dimensionless) width ς of the Gaussian
precision function. The dash-dotted horizontal red line
represents the Bracken-Melloy bound (15). Inset: Log-
arithm of ∆max as a function of ς2 (solid blue curve).
The dashed green curve shows a Gaussian decay.

transfer as the standard criterion (2). This fully
agrees with the fact, explicitly noted in Ref. [33],
that in the limiting case of a precision function
given by a Dirac δ-function in momentum space,
the EF formulation (10) of QB reduces to the
standard one, Eq. (2), for positive-momentum
states.

Our second observation is that ∆max monoton-
ically decreases with ς. This means that the EF
criterion (10) is less efficient at signalling the pres-
ence of QB at larger momentum widths of the
precision function. Furthermore, Fig. 2 strongly
suggests that ∆max vanishes in the limit ς →∞.

At first sight, it might seem that the curve
∆max(ς) follows a Gaussian decay. This is how-
ever not the case, as is clear from the inset in
Fig. 2. The latter indeed shows that the loga-
rithm of ∆max (solid blue curve) depends on ς2

in a more intricate way than a simple linear de-
pendence (dashed green curve).

Figure 2 allows us to estimate the paramet-
ric regime in which the EF criterion (10) is ca-
pable of identifying QB. At the practical level,
the backflow probability transfer is only appre-
ciable for ς . 1. (We can see from the data that
∆max = 1

2∆(BM)
max for ς ≈ 1.29.) This condition

can, in view of Eq. (33), be interpreted as fol-
lows: A measurement apparatus, characterized
by a momentum precision σ̃, may be able to de-
tect QB only if the measurement is performed on
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a time scale T satisfying

T .
m~
σ̃2 . (37)

5 Conclusion

We have investigated the compatibility of two
formulations of quantum backflow (QB) – on
the one hand, the original formulation due to
Bracken and Melloy [1], with the backflow cri-
terion given by Eq. (2), and, on the other hand,
the “experiment-friendly” (EF) formulation, with
criterion (10), recently proposed in Ref. [33]. In
order to make a direct comparison, we applied
both formulations to the case of a free particle
in a positive-momentum state. The EF criterion,
Eq. (10), involves a free parameter σ̃, playing the
role of a momentum-space width of the precision
function of a measurement apparatus. Our main
conclusion, in a nutshell, is that the two formula-
tions of QB are compatible only if σ̃ is substan-
tially small, i.e., only if the measurement appara-
tus is sufficiently precise in momentum space.

More specifically, we have considered a
concrete example of a normalized positive-
momentum state, given by Eq. (16), that ex-
hibits QB in the standard sense of criterion (2).
We have demonstrated the existence of a critical
value of the width σ̃ above which the EF crite-
rion (10) is not satisfied, implying that, in the lat-
ter parameter range, the EF formulation of QB
is in conflict with the standard one.

Then, in the context of the EF formulation
of QB, we have investigated the maximal back-
flow probability transfer ∆max through a spatial
point over a fixed time interval. We have numeri-
cally determined ∆max as a function of the width
σ̃. Our analysis indicates the following behav-
ior of this function. As σ̃ tends to zero, ∆max
approaches the Bracken-Melloy bound, given by
Eq. (15). Then, as σ̃ increases, the maximal back-
flow transfer decays monotonously and vanishes
in the limit σ̃ →∞. This allows us to identify the
following parametric regime in which the EF cri-
terion (10) is capable of signaling the occurrence
of QB: The measurement apparatus has to oper-
ate on a sufficiently short time scale T , satisfying
condition (37), in order to make the detection of
QB practically feasible.

The EF formulation aims at providing a defini-
tion of QB that is better suited to an experimen-

tal investigation as compared to the standard one.
Therefore, a brief discussion of the possibility of
an experimental validation of the EF backflow is
in order. Checking the validity of Eq. (10a) ex-
perimentally requires to measure the probability
current jt(a) and, in addition, to evaluate the mo-
mentum integral of pft(a, p). As pointed out e.g.
in Ref. [1], the problem of measuring jt(a) can
be mapped onto a more conventional problem of
measuring an electric current if one conducts the
experiment with electrically charged particles.5

Evaluating the momentum integral of pft(a, p)
is clearly a more challenging problem, as it re-
quires one’s ability to experimentally access the
phase-space distribution ft, i.e. the Husimi func-
tion in our case. This challenge however is not be-
yond the reach of cutting-edge experimental tech-
niques. As stated in Appendix A of Ref. [40], the
Husimi function is the expectation value of an
observable and, as such, is a measurable quan-
tity. While more ingenious strategies may exist,
an experimental measurement of the wave func-
tion itself (using, e.g., techniques developed in
Refs. [41–44]) can in principle be used to recon-
struct the Husimi distribution.

One of the main appeals of the EF formulation
of QB, introduced in Ref. [33], is that it offers
a promising approach for studying QB in situa-
tions where a particle moves in the presence of
external forces and in systems of many interact-
ing particles. However, as we have shown in this
paper, care must be exercised when using the EF
criterion (10): One must make sure that the mea-
surement apparatus is sufficiently precise in mo-
mentum space and operates on short enough time
scales.
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