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Efficient Gaussian process regression for prediction of
molecular crystals harmonic free energies
Marcin Krynski 1,2✉ and Mariana Rossi 1,3

We present a method to accurately predict the Helmholtz harmonic free energies of molecular crystals in high-throughput settings.
This is achieved by devising a computationally efficient framework that employs a Gaussian Process Regression model based on
local atomic environments. The cost to train the model with ab initio potentials is reduced by starting the optimization of the
framework parameters, as well as the training and validation sets, with an empirical potential. This is then transferred to train the
model based on density-functional theory potentials, including dispersion-corrections. We benchmarked our framework on a set of
444 hydrocarbon crystal structures, comprising 38 polymorphs and 406 crystal structures either measured in different conditions or
derived from these polymorphs. Superior performance and high prediction accuracy, with mean absolute deviation below
0.04 kJ mol−1 per atom at 300 K is achieved by training on as little as 60 crystal structures. Furthermore, we demonstrate the
predictive efficiency and accuracy of the developed framework by successfully calculating the thermal lattice expansion of aromatic
hydrocarbon crystals within the quasi-harmonic approximation, and predict how lattice expansion affects the polymorph stability
ranking.
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INTRODUCTION
Polymorphism and the prediction of the energetic stability of a
crystal polymorph are a fundamental problem of condensed
matter physics, especially for the research and applications of
molecular crystals. Polymorphism is the capability of solid
materials to form more than one distinct crystal structure1,2. It is
particularly pronounced when multiple atomic or molecular
packing arrangements are characterized by a similar free energy.
The physicochemical properties of these systems, such as
mechanical and optical characteristics, melting point, chemical
reactivity, solubility, or stability are tied strongly to the crystal
morphology, therefore increasing the relevance of a comprehen-
sive structure screening and the prediction of the relative stability
of polymorphs for a broad range of industries3.
High-throughput computational screening of crystal structures

based on free energies is rarely performed due to its high
complexity as well as large computational effort, in particular if a
first-principles potential energy surface is required4. It is more
common to evaluate the relative stability of crystal polymorphs by
calculating the lattice energy taking into account only potential
energy contributions5–9, effectively disregarding enthalpic and
entropic contributions at finite temperature2,10. Finite pressure
contributions when comparing different phases at different
pressures is typically of a lower magnitude, reaching only about
1 kJ mol−1 per molecule for pressure difference of several
gigapascals. It was shown11 that even if the vibrational free
energy difference between two given polymporphs lies typically
around 2 kJ mol−1 per molecule, it is sufficient to cause a
rearrangement of the polymporph relative stability ranking.
Furthermore, even when the vibrational contribution to the
relative stability is taken into account in a number of cases, the
effect of the thermal expansion of the crystal unit-cell on the free
energy is most frequently omitted. This is due to the typically low
impact of the thermal expansion on the free energy (around

1–2 kJ mol−1 per molecule12), which is, nevertheless, also
sufficient to affect the polymporph stability ranking.
The vibrational part of the free energy can be accessed by,

among others, two straightforward types of calculation: within the
harmonic approximation given by lattice dynamics calcula-
tions13,14 and with statistical sampling methods that accounts
for all anharmonic contributions, for example via thermodynamic
integration (TI)15–19. Even though methods like TI are more
accurate, they are also extremely computationally demanding,
requiring a large amount of statistical sampling in order to achieve
the necessary accuracy. This renders this technique often
impossible to carry out within a high-throughput setting.
Approximations to the contribution of anharmonic terms to the
free energy can be accessed by a number of other methods that
are less computationally demanding. However, such approxima-
tions have been shown not to present a significant improvement
over the much less computationally demanding harmonic
approximation for the investigation of polymporph relative
stability20. Still, harmonic lattice dynamics are not a viable solution
for high-throughput screening if force evaluations are a bottle-
neck, since the calculation typically involves hundreds of force
evaluations for a single structure (or costly perturbation theory
techniques), considering the full unit cell.
Within the last decades, the rapid increase of computer power,

allied to the rise of machine learning (ML) and big-data algorithms
in the realm of material science, allowed for large-scale screening
of materials properties, including those related to polymorph-
ism10,21–28. There are only a handful of examples where vibrational
free energies29, or other quantities related to the vibrational
density of states30–33, were successfully predicted with the
assistance of ML methods. Those methods, however, do not focus
on high transferability, or, if they do, rarely achieve the necessary
accuracy to differentiate between polymorphs. Clearly, if one
could train a very accurate ML interatomic potential for a large
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class of systems, it would represent the best solution for the
evaluation of lattice energies and free energies at the same time.
However, despite the exceptional performance of many such
potentials, typical root-mean-square errors on the forces lie
around 20meVÅ−1 per atom34–39. With such errors, the expected
prediction accuracy of phonon modes is ±0.15 THz for the best
performing potentials34. If the resulting phonon accuracy, as in
ref. 34, is assumed to be constant along the entire frequency range,
the harmonic free energy calculation error amounts to 0.38 kJ
mol−1 per atom.
In this study, we target high accuracy and low computational

cost for harmonic free energy predictions. We build a model for
the prediction of Helmholtz harmonic free energies of molecular
crystals based on Gaussian process regression (GPR) and smooth
overlap of atomic positions (SOAP)40 descriptors for representing
the local atomic environments. We optimize the training and
validation set selection with a computationally cheap empirical
potential, confirm its transferability to a first-principles potential,
and proceed to achieve a model with first-principles accuracy with
a very low cost of training. For a set of hydrocarbon crystals, we
are able to achieve a mean absolute error on the free energies of
0.04 kJ mol−1 per atom. We analyzed the stability ranking for a few
families of hydrocarbon crystal polymorphs up to 300 K,
highlighting the power and accuracy of the model. Furthermore,
this method can predict the anisotropic lattice expansion of these
crystals, allowing a cheap evaluation of volume expansion and
free energies in the quasi-harmonic approximation.

RESULTS AND DISCUSSION
Because it was shown20 that the harmonic approximation to the
free energy can be a suitable estimate for the computation of the
relative stability between different structures of molecular crystals,
this project focuses on predicting the harmonic Helmholtz free
energies F. Contributions from pressure that would be described
instead by the Gibbs free energy are not considered, because the
structures regarded in this study are typically observed much
below 1 GPa of pressure, making this contribution to the free
energy negligible. Throughout this paper, for the sake of
simplicity, F is evaluated at the Γ point of the Brillouin zone of a
given unit cell. We consider unit cells larger than the primitive cell
where needed (see “Methods” section). The harmonic free
energies are thus calculated as

FðV ; TÞ ¼
X3N�3

i¼1

_ωi

2
þ kBT ln 1� e�

_ωi
kBT

� �� �
; (1)

where ωi is the frequency of a given phonon mode at the Γ point.
When taking lattice expansion into account, the vibrational
frequencies depend indirectly on the temperature such that
ωi=ωi(V(T)).

Definition of the GPR model
The key assumption of the free energy prediction approach
explored in this project is that even if free energies are defined
only for the entire collection of atoms of the crystal structure, they
can be decomposed into local contributions of atomic environ-
ments. The approach of casting a global property on local
environments was explored previously41,42 for the generation of
an interatomic potential from quantum mechanical data. The
problem of the harmonic Helmholtz free energy prediction is
approached by connecting the atomic-wise free energy to the full
free energy by

F ¼ MTf; (2)

where F is the vector with all measured free energies for a given
crystal set of dimension Ns (number of crystal structures in the

training set), M is an incidence matrix of dimension Ns × Nae

(number of atom environments in the given set) and f is the
vector of all, unobserved, atom-wise free energies in the chosen
ensemble. Then, the prediction of f in the training set is modeled
as

f0 ¼ Cα; (3)

where C is the matrix containing the similarities between pairs of
atomic environments (dimension Nae × Nae), defined as

Cij ¼ σe�
PD

d¼1
qd;i�qd;jð Þ2
2l2 ;

(4)

where σ is a scaling prefactor, and qi is a vector of length D
describing local atomic environments. Cij corresponds to the
Gaussian kernel. In Eq. (3), α is a vector of Nae weights for each
atomic environment, such that

F0 ¼ MTCα: (5)

Opening up this equation element-wise, the full free energy of
one sample i in the training set is given by

F0i ¼
XNae

j¼1

XNae

k¼1

MT
� �

ijCjkαk: (6)

Optimizing the weights αk is equivalent to minimizing the loss
function

L ¼
XNs

i

F0i � F i
� 	2 þ σ2

ϵα
TCα; (7)

where σ2
ϵ is a regularization parameter related to the variance of

the noise of the data.
Finally, substituting Eqs. (6) into (7), the minimization is

straightforward and leads to

α ¼ M MTCMþ σ2
ϵ I

� ��1
F; (8)

where I is the identity matrix of dimensions Ns × Ns. In this way,
one can obtain the optimized weights with no need to define or
observe atom-wise free energies.
Finally the prediction of the free energy of a new structure that

is not contained in the training set is achieved by calculating

Fðq�Þ ¼
XN
i¼1

XNae

j¼1

C�T� �
ijαj (9)

where C* is the similarity matrix between the atomic environments
q* of the new structure to the ones in the training set, with
elements

C�
ij ¼ σe�

PD

d¼1
ðq�
d;i

�qd;jÞ2

2l2 : (10)

All hyper-parameters for the GPR model and the representa-
tions were selected by minimizing, using the steepest descent
method, the negative log marginal likelihood function43

�ln PðFjðl; σϵ; θÞÞ ¼ 1
2 ln jMTCðl; θÞMþ σ2

ϵ Ij
þ 1

2 MTCðl; θÞMþ σ2
ϵ I

� ��1 þ 1
2 ln 2π;

(11)

where θ is a vector containing the hyperparameters of the
representations entering q. The application of the steepest
descent method is only guaranteed to find a local minimum. A
wide space of hyper-parameters was considered in order to
increase the probability of finding a global minimum.
In all supervised machine learning based models, the quality of

the model strongly depends on the quality of the training set.
Typically, selecting the training set can be done by either a
random selection of samples, given that the considered ensemble
is fairly homogeneous, or by implementing methods that aim at
covering the sampled domain by maximizing the resulting
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prediction accuracy, such as the "correlation” clustering method44,
genetic optimization45, or k-fold cross-validation46. Unfortunately,
most of the methods from the latter group require a large pool of
data for which the target property, like free energy in this case, is
available. In this study, because one of the objectives is to
minimize the computational cost of obtaining a good training set,
the applied procedure focuses on selecting an optimal training
subset based exclusively on the geometrical parameters of the
crystal structure.
For this purpose, the farthest point sampling (FPS)47 method is

applied, that searches for a subset of the entire investigated
crystal structure ensemble that covers evenly all structural motifs
of the sampled domain with minimal information overlap. First, a
similarity measures between molecular crystal structure Ra→b is
defined according to the best-match structural kernel48 method,
as it is needed for the application of the FPS

Ra!b ¼ 1
nb

Xnb
i¼1

max
j2ð1;naÞ

Cðqa
j ;q

b
i Þ; (12)

where Cðqa
j ;q

b
i Þ is the kernel matrix element defined in Eq. (4), qa

j
and qb

i are jth and ith atomic environment representations of
structure a and b respectively, and similarly na and nb are the
number of atoms in those structures. Ra→b defines how well atoms
of structure a can represent geometrical motifs of structure b and
Ra→b ≠ Rb→a. In other words, it is possible that atomic environ-
ments of structure a represent well those of structure b, while
structure b contains geometric features not present in a. This
method of defining the relationship between crystal structures is
very similar to others typically chosen for such tasks40,48–51, with
the difference that Ra→b is not invariant with respect to the crystal
structure index (Ra→b ≠ Rb→a) so it is not a similarity metric in a
strict sense. Next, according to the FPS algorithm, the training set
is created by iteratively picking structures that are least
represented by those already present in the training set. Since
any crystal structure can be used as the starting point for the FPS
algorithm, the applied method selects NΩ potential training sets,
where NΩ is the number of crystal structures in the considered
ensemble. In order to choose out of NΩ potential training sets, we
have investigated the scaled cumulative sum I(Nm) of the Ra→b,

IðNmÞ ¼
PNm

a

PNΩ

b Ra!bPNΩ

a

PNΩ

b Ra!b

; (13)

where Nm is the total number of the molecular crystal configura-
tions in the training set. This quantity reveals how fast a given
training set candidate converges to unity, which we consider to
represent a full coverage of the sampled feature space. In another
sense, the I(Nm) quantity can be seen as the description of the
information acquisition during consecutive steps of the FPS
algorithm. Finally, training set with the highest recorded value of
I(Nm) after all Nm= 60 steps of the FPS algorithm is chosen. The
training set size of Nm= 60 was chosen because above this
number, the improvement of the prediction accuracy was too
small to justify a larger training set and the associated increase in
computational effort.
In the same spirit of maximizing accuracy and minimizing cost,

with the objective of performing free energy predictions with ab
initio data, the aim was to select an efficient and reliable validation
set, without using the entire ensemble. Here the goal is to create
such a subset that would represent well the entire set, so as to
include, for example, a proportional number of outlier structures
as found in the entire set. A random selection of validation set
would not fulfill this criterion due to the limited size of validation
set used in this project. Additionally, this task largely differs from
selecting the training set, because it typically contains a greater
relative number of outliers compared to the entire set. In order to
optimally select the validation set, while preserving the density of
outliers, a stratified approach was used. Here each crystal structure

a is assigned a similarity index Sa, that compares a given crystal to
entire set

Sa ¼
XNΩ

b

Ra!b: (14)

The relatively high values of Sa indicate a “typical” crystal and
low values indicate “outliers”. Next, the entire set is sorted with
respect to Sa and the validation set is chosen by selecting every
nth element of the sorted set, with n= round(NΓ/NΘ) where NΓ and
NΘ are the target numbers of structures in the validation and
training sets. All sets sorted with respect to Sa are presented in
Supplementary Fig. 2.
Within the discussed framework, and common to many ML

models, the choice of method encoding the atomic environments
to numerical representations has an impact on the resulting
performance of the model. In this project, three well-established
general-use atomic environment representations52 were selected
and tested, namely: SOAP40 that uses spherical harmonics to
locally expand atomic densities, many body tensor representation
(MBTR)53 that uses distributions of different structural motifs (like
radial or angular distribution functions) and atom-centered
symmetry functions (ACSFs)54 that use two-body and three-body
functions detecting specific features. The Python implementations
of the mentioned representations found in the DScribe package55

were used.

Model implementation and validation
For the purpose of this work we have chosen crystals composed of
seventeen different hydrocarbons: pyrene, methylcyclopentane,
styrene, naphthalene, benzene, tetracene, mesitylene, pentane,
pentacene, hexane, ethylbenzene, propane, heptane, phenan-
threne, butane, hexacene, and anthracene. We have included
most available polymporphs that could be obtained from the
Cambridge Crystallographic Data Center56 (CCDC), leading to an
ensemble of 74 structures. We noted that polymporphs of very
similar lattice constant in CCDC tend to be almost identical, with
close to negligible differences in atomic positions, for example,
the case of ANTCEN20 and ANTCEN22. Finally, the sample domain
was further expanded by introducing structures with perturba-
tions of roughly 5% in the lattice parameters, as this can lead to up
to 16% increase in unit cell volume—a typical volume expansion
percentage for molecular crystals57. The addition of crystal
structures with strongly perturbed lattice parameters was found
to be crucial for the later prediction of lattice expansion
coefficients. Finally, NΩ= 444 crystal structures were considered
in this project.
The building and testing of the framework was initially

performed using a classical force-field potential (AIREBO, as
detailed in “Methods” section). In the first steps of the model
verification, the training and validation set selection criterion,
based on the FPS method and maximization of I(Nm), was
evaluated. For this purpose, based on the classical force field
data with prediction performed at 300 K and with SOAP atomic-
environment representations, free energy mean absolute error
FMAE was calculated

FMAE ¼ 1
N

XN
i

jF i � F0i j; (15)

where N is the number of structures for which the prediction is
performed. The results are presented in Fig. 1a in the form of
learning curves, with increasing size of the training set N and with
the validation set. It is visible that the learning curve obtained
for the chosen training set, so with the highest I(Nm), shows one of
the lowest FMAE at the target training set size among all potential
sets obtained using FPS method.
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Next, the linear and monotonic correlations between bench-
mark F and predicted F0 values was assessed by calculating the
Pearson and Spearman correlation coefficients. For predictions
performed at 300 K with the SOAP representation they were found
to be 0.9996 and 0.9894, respectively. A value so close to 1 for
these coefficients indicate a good performance of the developed
framework. Furthermore, due to the low cost of the lattice
dynamics calculations performed using classical force field, the
FMAE was inspected for the entire set (300 K with the SOAP
representation) and it was found to be 0.042 kJ mol−1 per atom.
Additionally, the FMAE = 0.218 kJ mol−1 per atom was obtained for
10% of the crystals with the poorest prediction and 0.023 kJ mol−1

per atom for the remaining 90% of samples.
Figure 1b shows the predicted free energy values F0 compared

with the benchmark data F for the different crystal families. The
analysis gives an indication of the system-sensitive performance of
the framework, revealing that crystals of pentane, pentacene,
tetracene, and hexane are characterized by the poorest averaged
prediction accuracy, with the FMAE around 2 kJ mol−1 per molecule,

reaching a possible free energy difference between different
polymporphs11,12. Additionally, the predictions performed for
crystal structures with strongly perturbed lattice parameters were
noticeably poorer, even if the training set contained parental crystal
structures. Nevertheless, the prediction accuracy overall is very high,
especially considering the diversity of hydrocarbons represented.
Figure 2a shows the learning curves by monitoring FMAE at

300 K with increasing training set size and a constant validation
set. Additionally, the impact of the atomic environment repre-
sentation on the efficiency of the method was investigated. The
learning is well-behaved for all representations, as expected for
properly parameterized machine learning models. The results
obtained with the SOAP representation, with a 6 Å cutoff and 1 Å
for the standard deviation of the Gaussian functions used to
expand the atomic density, are characterized by the lowest FMAE,
showing that it is the best representation within the investigated
set. Finally, the accuracy of the predictions are noticeably affected
by the temperature at which the free energies are required, going
from 0.019 kJ mol−1 per atom at 300 K and 0.015 kJ mol−1 per
atom at 200 K to as low as 0.002 kJ/mol at 0 K.
Finally, it is worth noting that the atom-wise contributions to F

are not guaranteed to have any physical meaning, but sometimes
their analysis can give interesting insights. In this case, as further
discussed in Supplementary Note 1, this analysis shows that there
are no trends in the contribution to the free energy from different
atomic species or classes of bonded atoms, which could be related
to the strongly non-local character of the free energy.
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Fig. 1 Performance of the developed prediction model. a Learning
curves obtained for 100 randomly chosen learning sets out of total
444 in gray, and the chosen learning set with the highest recorded
value of I(Nm) in red. Data was obtained using SOAP representation
and the classical force field model with the free energy calculated at
300K. b Correlation between predicted and calculated free energies
at 300 K (classical force field, SOAP representations). Different crystal
families are represented by different colors.

Fig. 2 Learning curves of FMAE (300 K) calculated for the training
(dashed line) and the validation set (solid line) obtained with
SOAP, MBTR and ACSF representations. Results are presented for
GPR models obtained based on: a the empirical AIREBO force field
and b density-functional theory (PBE functional with pairwise van
der Waals corrections) data, and are presented as a function of the
number of crystal structures in the training set. Error bars are equal
to the standard deviation of FMAE of training sets with different
structures.
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Transferability of the prediction model
Once the framework was built and proven to deliver a satisfactory
prediction of harmonic free energies based on data coming from
an empirical potential, the transferability of the model when using
DFT data was investigated. For that, the PBE exchange correlation
functional with pairwise van der Waals interactions was employed,
as detailed in “Methods” section. As a test, the similarity between
relaxed structures obtained with the empirical potential and DFT
was assessed by analysing the root mean square deviation (RMSD)
of the atomic positions averaged over entire set. RMSD for carbon
and hydrogen were 0.16Å and 0.20Å, respectively. Importantly,
differences in the SOAP representation were also investigated by
calculating the root mean square error normalized by the standard
deviation ϵX, defined as

ϵX ¼ 100 ´

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD
d

1
N

PN
i qFFd;i � qDFTd;i

� �2

PD
d

1
N�1

PN
j qDFTd � qDFTd;i

� �2

vuuuut ; (16)

where D is the number of features of the representation and N is
the number of atoms for which the ϵX was calculated. Obtained
values for both carbon and hydrogen are ϵC = 1.09 and ϵH = 1.15,
respectively. Those results show that the overall structural features
are in good agreement in these two potential energy surfaces. As
a consequence of this structural similarity between two data sets,
the training and validation sets obtained with the empirical
potential, as explained in the previous section, can be auto-
matically used in DFT. As a cross-check, the same training and
validation set optimization procedure were independently applied
on the optimized DFT structures, indeed obtaining the same
results. This proved that the experience gathered from the first
phase of the project, where only classical data was used, is fully
transferable to the current stage, where we employ more accurate
ab initio data. As a result, the more expensive ab initio lattice
dynamics calculations were only performed for crystal structures

included in the training and validation sets, greatly reducing the
computational cost of the model generation.
Finally, the hyperparameters of the GPR model were re-

optimized and were used to calculate learning curves for training
and validation sets shown in Fig. 2b, with the SOAP, MBTR, and
ACSF representations. All representations presented a good
performance, with MBTR and SOAP yielding very similar learning
curves. The obtained FMAE for the SOAP representation at full
training set was found to be 0.038 kJ mol−1 per atom.
Interestingly, a fairly good prediction performance can be
obtained with as little as 20 crystal structures, resulting in
FMAE = 0.07 kJ mol−1 per atom. Such small training sets typically
do not contain all different molecular components of the crystals
that are present in the entire set, but can still describe it well. The
remainder of this manuscript will focus on results obtained based
on the DFT data with the SOAP representation, exclusively.
The proposed framework is summarized in the flowchart in

Fig. 3. In addition, as it is shown in the SI, the possibility of this
model trained only on hydrocarbons to extrapolate to systems
containing carbon, hydrogen, and nitrogen atoms was investi-
gated. Although the prediction accuracy decreases as the
concentration of nitrogen atoms in the samples increases, the
model is not completely invalid. It shows that with a small addition
of structures to the training set or building representations for
new atoms that combine characteristics of the atoms that were
previously trained58,59, this framework could be easily extended to
other systems.

Relative free energies of molecular crystals: stability ranking
The GPR model was employed to create a stability ranking of
several families of hydrocarbon molecular crystals. Sixteen crystal
families were considered, encompassing 38 polymorphs and 36
variants corresponding to different thermodynamical conditions
with lattice parameters as they are given by the CCDC56.
Additionally, 370 crystal structures with randomly distorted lattice
parameters derived from the initial 74 were included. Figure 4
shows the lattice energy and the free energy obtained at various
temperatures, presented as relative values to the crystal structure
characterized by the lowest free energy at 300 K (full data is found
in Table S2, in the SI). The identifiers of all crystal structures follow
the convention used in CCDC56. For many crystal families, the
structure with the lowest lattice energy is not the same as the one
with the lowest free energy especially at the room temperature. A
clear example is the pyrene crystal and its three polymorphs: Form
I is represented by PYRENE02 and PYRENE03 (structures measured
at 423 K and 113 K, respectively, and ambient pressure); Form II is
represented by PYRENE07 and PYRENE10 (at 93 and 90 K, ambient
pressure); and Form III is represented by PYRENE08 and PYRENE09
(measured at at 0.3 GPa and 298 K, and at 0.5 Gpa and 298 K,
respectively). Form I is measured to be more stable than form III at
all temperatures up to and beyond 430 K, at ambient pressure.
Here, it is shown that the energy ranking formed based on lattice
energy exclusively would place the high-pressure form III
PYRENE09 (form III) structure very close to PYRENE02 (form I).
An inclusion of zero-point-energy and vibrational contributions
already at low temperatures irrevocably destabilizes form III.
A similar example is the benzene crystal. Here, structures of the

ambient-pressure form I, represented by, for example, BENZEN15,
BENZEN19, or BENZEN26, are characterized by overall lower free
energy comparing to the high-pressure form II structures, like
BENZEN16 and BENZEN17. Interestingly, for this crystal family, the
lattice energy can provides a satisfactory relative stability ranking.
However, the need for including the vibrational contributions
becomes visible once a high and ambient pressure variants of one
polymorph are compared, e.g., BENZEN13 and BENZEN26. It is
visible in Fig. 4 that if considering only lattice energies,
BENZEN13 shows the lowest energy compared to other crystal

Geometry relaxa�ons 
and phonons for the 

en�re set

Training and valida�on
set selec�on

Hyper-parameter 
op�misa�on

Valida�on

Geometry relaxa�ons of 
the training and 

valida�on set

Transferability check

Hyper-parameter
op�misa�on

Phonons for the training 
and valida�on sets

Valida�on

FFF DFT

Predic�ons

Fig. 3 Flowchart of the developed framework. An optimal and
small training set is obtained by training the model on force field
data (green boxes) and then used to train the model on DFT data
(blue boxes).
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variants, with lattice energy lower than that of BENZEN26 by
2.58 kJ mol−1 per molecule. However, the free energy prediction
shows that at 300 K, the BENZEN26 structure becomes the most
stable out of all those investigated, and its relative free energy
with respect to BENZEN13 is now lower by 2.92 kJ mol−1 per
molecule, effectively swapping places in the relative ranking
stability with BENZEN26. For this case, and to test the predictions
of the model in practice, the free energies for both BENZEN13 and
BENZEN26 structures were additionally calculated with DFT. These
calculations showed that BENZEN13 is characterized by a free
energy that is 3.43 (kJ mol−1 per molecule) higher than that of
BENZEN26 at 300 K, confirming the results obtained with the
GPR model.
The rearrangement of the relative stability ranking when room

temperature free energy is taken into account is a very common
trend among the investigated samples, and there are a number
of cases, where even at 0 K the zero point energy contribution is
high enough to affect the relative stability ranking. These
observations are in good agreement with previous studies,
where more direct methods were used11. In some cases, the
prediction accuracy of this model is not sufficient to determine
the relative stability of some structures. Nevertheless, the model
is accurate enough to point towards those few that are
characterized by the lowest free energies. Here, even only
narrowing the pool of considered strucrures can effectively
decrease the computational effort of phonon calculations
required, if more accuracy is needed.

Predicting lattice expansion
Because one of the challenges in high throughput computational
screening of crystal structures is accounting for thermal lattice
expansion, the application of the trained free energy model was
explored in this context. To illustrate the procedure, a simple case
where only one of the lattice parameters is being perturbed was
considered. For this purpose the BENZEN11 crystal was chosen,
with the lattice parameter a being sampled within 6.52 and
7.32 Å. Next, within the quasi-harmonic approximation, the free
energy was calculated and predicted as a function of a. Figure 5a
shows the comparison between the GPR model and DFT
calculations for the free energy at 200 K. The optimal lattice
parameter a is determined by a Birch-Murnaghan60 fit. While there
are small differences between the DFT and the GPR curves, mostly
consisting of a shift in energy, the resulting optimal lattice
parameter a is very similar in both cases, and equal to 6.92 Å and
6.95 Å, respectively. This simple and fairly artificial example
illustrates that the prediction accuracy of this framework is
sufficient to be employed in the context of the lattice expansion/
contraction prediction.
A more challenging task is the prediction of anisotropic lattice

changes. Direct calculations of anisotropic lattice expansion
requires lattice dynamic evaluations for, typically, hundreds of
structures of the same crystal polymorph, making it a very costly
calculation for a high-throughput setting. Although harmonic and
quasi-harmonic models61 as well as an approach based on the
assumption of the linear relation between free energy and volume
have been proposed to overcome this cost62, with this framework
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these lattice changes can be estimated without relying on any
ansatz for the dependence of the free energy on the lattice
parameters. It is worth noticing that even if the free energy
predictions at various temperatures requires training the ML
model multiple times, it happens with minimal computational
overhead once appropriate lattice vibrations have been com-
puted. Four molecular crystals were picked, namely P21/a
anthracene (ANTCEN), Pbca benzene (BENZEN), P1 pentacene
(PENCEN01), and Pbcn styrene (ZZZTKA01) and hundreds of ionic
relaxations with the a, b, and c lattice parameters perturbed by
around 5% were performed. Next, for each of those perturbed
structures free energy prediction at a number of temperatures
from 0 to 300 K range was performed.

Figure 5b shows a 3D visualization of free energy predictions for
over 300 different combinations of lattice parameters a, b, and c of
the ANTCEN crystal. Even with such a high number of sampled
lattice parameter combinations, the position of the free energy
local minima might not overlap with the gathered data. In this
case, in order to find the minimum in this high-dimensional space,
an active learning based on the GPR algorithm is employed. Here,
the GPR is used as a multi-dimensional, non-linear regressor, as
implemented in the scikit-learn63 package. In detail, the following
bootstrap procedure is used:

● Identifying the position of the data point with the lowest free
energy value according to the GPR 3D interpolation.

● For the chosen set of (a, b, c) lattice parameters perform an
ionic relaxation and predict the free energy with the
trained model.

● If the predicted free energy of the (a, b, c) sample varies from
the free energy obtained by the 3D GPR regression, a new 3D
GPR regression is performed, now explicitly including sample
(a, b, c), then go back to step 1.

● If the predicted free energy of the (a, b, c) sample is sufficiently
close to the one of the 3D GPR regression (within ±0.1%), then
the scheme is stopped and the optimal lattice parameters are
considered to be found.

We found that typically only around three additional relaxations
and free energy predictions (per temperature) are necessary to
achieve sufficient convergence of the lattice parameters. By
employing this procedure to predict the anisotropic lattice
changes the lattice-parameter change is calculated, as well as
the full volume change of the selected crystals, as shown in Fig.
S5.
The results obtained can be compared to experimental values

where data is available. For anthracene the experimentally
measured volume change is Vexp :

290K=V
exp :
90K ¼ 1:02464 and we

obtained VML
290K=V

ML
90K ¼ 1:034. For pentacene, the comparison is

Vexp :
295K=V

exp :
90K ¼ 1:03765 and VML

295K=V
ML
90K ¼ 1:031; for benzene

Vexp :
270K=V

exp :
78K ¼ 1:08966 and VML

270K=V
ML
78K ¼ 1:068; for styrene

Vexp :
120K=V

exp :
83K ¼ 1:01767,68 and VML

120K=V
ML
83K ¼ 1:009. The predictions

are quite close to experimental data and overall a high degree of
anisotropy is observed. Moreover, a deviation from a linear
behavior of the free energy change with respect to volume is
observed, as shown in Fig. S6.
This framework can thus be used to create the relative stability

ranking including the thermal expansion effect on the free energy.
Here, one example of how this can impact the relative stability and
crystal form of these systems is presented. For this purpose,
BENZEN13 and BENZENB26 (high and low pressure variants of the
P21/b21/c21/a benzene I polymorph69) are selected, as well as
BENZEN16 (a high pressure P21/c benzene II polymorph70). The
initial lattice constants were taken from the CCDC. As shown in
Fig. 5c, by simply searching for the free energy minimum at 0 K
using the procedure described above, BENZEN13 and BENZEN26
were found to end up being characterized by almost identical
(predicted) free energies and lattice constants. Further inspection
indicated that indeed the BENZEN13 and BENZEN26 structures
converged to the same structure, and the same behavior was
found at all investigated temperatures. Even if somewhat
expected, given that they are high and low pressure phases
within the same crystal group and in the absence of any applied
pressure it is natural that they both adopt the low-pressure
structure, the fact that this result came from the model alone, and
that the free energy predictions were able to capture this
transition, shows that the method is robust. The
BENZEN16 structure is stabilized by 1 kJ mol−1 per molecule
upon increasing the temperature from 0 to 300 K, as shown in
Fig. 5c. This stabilization is accompanied by an appreciable lattice
expansion with a volume increase of around 6% from 0 to 300 K.

Fig. 5 Application of the developed framework to predict the
thermal lattice expansion. a Predicted (red) and calculated (blue,
DFT) free energies as a function of one lattice parameter of the
BENZEN11 crystal at 200 K. Solid lines correspond to a Birch-
Murnaghan fit. b 3D visualization, in lattice parameter space (a, b, c),
of the free energy prediction including lattice expansion of the
anthracene crystal at 200 K, with 300 different combinations of
perturbed lattice parameters. The red line indicates the observed
change in the lattice parameters when increasing the temperature
from 0 to 300 K. c Relative predicted free energies of benzene crystal
structures when considering fixed lattice constants (taken from
CCDC), and when considering lattice expansion at 0 and at 300 K.
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In summary, the framework proposed here provides a machine
learning model with first principles accuracy for the harmonic
Helmholtz free energies of molecular crystals, that is suitable for
high-throughput studies. In addition, it was shown that the
training and validation set of the model can be optimized using a
cheaper empirical potential, and then transferred to first-principles
calculations, thus substantially decreasing the cost of training,
without sacrificing accuracy.
The model was tested to predict the relative energetic stability

ranking of several diverse hydrocarbon polymorphs and distorted
crystal structures derived from them, and the changes on this
ranking with increasing temperature was studied. We observed
that, in most cases, omitting thermal effects and instead using
only the lattice energy produces misleading results. Furthermore,
it was shown that the model can be efficiently employed to
calculate the anisotropic lattice expansion—a task rarely
approached due to its complexity and high computational
demand when performed at the ab initio level. Unsurprisingly,
taking the anisotropic lattice expansion into account leads to
further changes in the stability ranking. Naturally, the same
framework could be used to predict other quantities derived from
vibrational properties, like the vibrational heat capacity.
The strengths of this framework lie in its low computational

cost, reliability and accuracy. However, because the model is
trained to directly predict free energies, one still has to deal with
the computational cost of obtaining optimized structures, which
we here obtained from first-principles geometry optimizations.
Fitting a machine-learned interatomic potential is becoming more
streamlined71, even though these potentials rarely target the
accurate description of vibrational properties due to the added
complexity of including them in the learning procedure. The
presented framework, on the other hand, can be easily combined
with any potential that can predict structures in a reasonable
manner and has the potential to be more accurate.
Extending this framework beyond hydrocarbon-based crystals

could be straightforward, albeit perhaps requiring different
training data. We have already observed that the framework is
capable of predicting DFT free energies from FF-relaxed structures
with promising accuracy (see Supplementary Note 2). Finally,
targeting fully anharmonic free energies with ab initio accuracy is
still a daunting task that can, nevertheless, profit from the
knowledge gained in this study.

METHODS
Force field model
Geometry optimization calculations with empirical potentials were
performed using LAMMPS72 together with AIREBO73 interatomic poten-
tials. The conjugate gradient minimization algorithm was used with
dummy parameters to ensure full convergence, namely 10−25 (1) and 4 ×
10−25 kJ mol−1Å−1 for energy and forces respectively and with 5 × 104

maximum iterations of the minimizer. Phonon calculations with the
empirical potentials were performed using the i-PI74 code, considering 2 ×
2 × 2 repetitions of the primitive cell. The phonons were calculated by
finite differences with a 0.005Å displacement in all Cartesian directions.

Density functional theory model
All ab initio simulations were performed using the FHI-aims package75. For
this purpose, we employed light settings for all atomic species, together
with the Perdew-Burke-Ernzerhof exchange-correlation functional76 and
many-body dispersion corrections77. We have used 5 × 5 × 5 k-point
sampling of the Brillouin zone. A self-consistency convergence criterion
of 10−5 eVÅ−1 was imposed on the forces, which ensured that energies
were converged to 10−7 eV or below. The relaxation was performed using
the trust radius version of the Broyden–Fletcher–Goldfarb–Shanno78,79

optimization algorithm with the maximum residual force component
threshold equal to 10−4 eV Å −1. Lattice dynamics calculations were
performed through finite differences using Phonopy80. The atomic
displacements were of 0.002 Å in all Cartesian directions. The size of the

supercell was individually chosen for the different molecular crystals, with
the requirement that at least twice the distance between molecular
centers of mass of adjacent molecules was comprised by the vector
lengths in each direction.

Framework development
The framework for the GPR model was developed using Python3 and
Fortran95 languages. The SOAP, MBTR, and ACSF representations were
calculated using the DScribe55 package.

DATA AVAILABILITY
All data necessary to replicate and interpret the free energy prediction framework
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