
Classification Under Human Assistance

Abir De1*, Nastaran Okati2*, Ali Zarezade2, Manuel Gomez Rodriguez2

1IIT Bombay
2Max Planck Institute for Software Systems

Abstract
Most supervised learning models are trained for full automa-
tion. However, their predictions are sometimes worse than
those by human experts on some specific instances. Motivated
by this empirical observation, our goal is to design classifiers
that are optimized to operate under different automation lev-
els. More specifically, we focus on convex margin-based clas-
sifiers and first show that the problem is NP-hard. Then, we
further show that, for support vector machines, the correspon-
ding objective function can be expressed as the difference of
two functions f = g − c, where g is monotone, non-negative
and γ-weakly submodular, and c is non-negative and modu-
lar. This representation allows us to utilize a recently intro-
duced deterministic greedy algorithm, as well as a more ef-
ficient randomized variant of the algorithm, which enjoy ap-
proximation guarantees at solving the problem. Experiments
on synthetic and real-world data from several applications
in medical diagnosis illustrate our theoretical findings and
demonstrate that, under human assistance, supervised learn-
ing models trained to operate under different automation lev-
els can outperform those trained for full automation as well
as humans operating alone.

1 Introduction
In recent years, machine learning models have matched, or
even surpassed, the average performance of human experts
at tasks for which intelligence is required (Graves, Abdel-
Rahman, and Hinton 2013; Krizhevsky, Sutskever, and Hin-
ton 2012; Silver et al. 2016; Sutskever, Vinyals, and Le
2014). As a consequence, there is a widespread discussion
on the possibility of letting machine learning models take
high-stake decisions—the promise is that the timeliness and
quality of the decisions would greatly improve. For exam-
ple, in medical diagnosis, patients would not need to wait for
months to be diagnosed by a specialist. In content modera-
tion, online publishers could moderate toxic comments be-
fore they trigger incivility in their platforms. In software de-
velopment, developers would easily find bugs in large soft-
ware projects and would not need to spend long hours in
code reviews.

Unfortunately, the decisions taken by machine learning
models are still worse than those by human experts on

*Equal contributions.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

some instances, where they make far more errors than av-
erage (Raghu et al. 2019). Motivated by this observation,
there has been a paucity of work on developing machine
learning models that are optimized to operate under dif-
ferent automation levels (De et al. 2020a; Bordt and von
Luxburg 2020; Mozannar and Sontag 2020; Raghu et al.
2019; Wilder, Horvitz, and Kamar 2020)—models that are
optimized to take decisions for a given fraction of the in-
stances and leave the remaining ones to humans. However,
most of this work has developed heuristic algorithms that do
not enjoy theoretical guarantees. One of the only exceptions
is the work by De et al. (2020a), which has reduced the
problem of ridge regression under different automation lev-
els to the maximization of an α-submodular function (Gat-
miry and Gomez-Rodriguez 2019). In our work, rather than
(ridge) regression, we focus on classification under human
assistance and show that, for support vector machines, the
problem can be solved using algorithms with theoretical
guarantees.

More specifically, we first show that, for convex mar-
gin-based classifiers, the problem of classification under hu-
man assistance is NP-hard. This is due to its combinato-
rial nature—for each potential meta-decision about which
instances the classifier will decide upon, there is an opti-
mal set of parameters for the classifier, however, the meta-
decision is also something we seek to optimize. Then, for
support vector machines, we derive an alternative represen-
tation of the objective function as a difference of two func-
tions f = g − c, where g is monotone, non-negative, and
γ-weakly submodular (Bian et al. 2017; Das and Kempe
2018) and c is non-negative and modular. Moreover, we fur-
ther show that, in our problem, the submodularity ratio γ,
which characterizes how close is the function g to being
submodular, can be lower bounded. These properties allow
a recently introduced deterministic greedy algorithm (Algo-
rithm 1) as well as a more efficient randomized variant of
the algorithm (Harshaw et al. 2019) to enjoy nontrivial ap-
proximation guarantees.

Finally, we experiment with synthetic and real-world data
from several applications in medical diagnosis. Our experi-
ments on synthetic data reveal that, by outsourcing samples
to humans during training, the resulting support vector ma-
chine is able to reduce the number of training samples inside
or on the wrong side of the margin, among those samples it

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

5905

needs to decide upon. Our experiments on real data demon-
strate that, under human assistance, support vector machines
trained to operate under different automation levels outper-
form those trained for full automation as well as humans
operating alone1.
Further related work. There is a rapidly increasing line
of work devoted to designing classifiers that are able to de-
fer decisions (Bartlett and Wegkamp 2008; Cortes, DeSalvo,
and Mohri 2016; El-Yaniv et al. 2010; Geifman and El-Yaniv
2019; Geifman, Uziel, and El-Yaniv 2018; Hsu et al. 2020;
Liu et al. 2019; Ramaswamy, Tewari, and Agarwal 2018;
Thulasidasan et al. 2019; Wiener and El-Yaniv 2011; Ziyin
et al. 2020). However, this line of work does not consider
there is a human decision maker, with a human error model,
who takes a decision whenever the classifiers defer it and the
classifiers are trained to predict the labels of all samples in
the training set, as in full automation.

Our work also relates to the area of active learning (Chen
and Price 2017; Cohn, Ghahramani, and Jordan 1995; Guo
and Schuurmans 2008; Hashemi et al. 2019; Hoi et al. 2006;
Sabato and Munos 2014; Sugiyama 2006; Willett, Nowak,
and Castro 2006), where the goal is to determine which sub-
set of training samples one should label so that a supervised
machine learning model, trained on these samples, genera-
lizes well across the entire feature space during test. How-
ever, there is a fundamental difference between our work and
active learning. In our work, the trained model only needs to
accurately predict samples which are close to the samples
assigned to the machine during training time. In contrast, in
active learning, the trained model needs to predict well any
sample during test time.

Finally, our work advances the state of the art on human-
machine collaboration (Ghosh et al. 2019; Grover et al.
2018; Hadfield-Menell et al. 2016; Haug, Tschiatschek, and
Singla 2018; Kamalaruban et al. 2019; Macindoe, Kael-
bling, and Lozano-Pérez 2012; Meresht et al. 2020; Niko-
laidis et al. 2017, 2015; Radanovic et al. 2019; Tschiatschek
et al. 2019; Wilson and Daugherty 2018). However, rather
than considering a setting in which the machine and the hu-
man interact with each other as most previous work, we de-
velop algorithms that learn to distribute decisions between
humans and machines.

2 Problem Formulation
In this section, we formally introduce the problem of de-
signing convex margin-based classifiers that are optimized
to operate under different automation levels. Then, we show
that, for convex margin-based classifiers, the problem is NP-
hard. For simplicity, we will consider binary classification,
however, our ideas can be extended to m-ary classification.

In binary classification, one needs to find a mapping func-
tion f(x) between feature vectors x ∈ Rm, with x ∼ p(x),
and class labels y ∈ {−1, 1}, with y ∼ p(y |x). To this end,
one utilizes a training set D = {(xi, yi)}i∈V to construct a
mapping that works well on an unseen test set. For margin-
based classifiers, finding this mapping usually reduces to

1Our code and data are available in https://github.com/Networks-
Learning/classification-under-assistance

building a decision boundary defined by a set of parame-
ters θ that separates feature vectors in the training set accor-
ding to their class labels. One typically looks for the decision
boundary that achieves the greatest classification accuracy in
a test set by minimizing a convex loss function `(hθ(x), y)
over a training set, i.e., θ∗ = argminθ

∑
i∈V `(hθ(xi), yi),

where hθ(xi) denotes the signed distance from the feature
vector x to the decision boundary. Then, given an unseen
feature vector x from the test set, the classifier predicts
f(x) = 1 if hθ∗(xi) ≥ 0 and f(x) = −1 otherwise.

In binary classification under human assistance, for eve-
ry feature vector x ∈ Rm, the mapping function f(x) can
resort to either a classifier or a human expert. For margin-
based classifiers, finding the mapping then reduces to pi-
cking the subset of training samples S ⊆ V that are out-
sourced to human experts, with |S| ≤ n, and building a de-
cision boundary that separates feature vectors in the subset
of training samples Sc = V\S according to their class la-
bels. Using the same convex loss function `(hθ(x), y) as in
the standard binary classification, our goal is then to solve
the following minimization problem:

minimize
S,θ

∑
i∈V\S

`(hθ(xi), yi) +
∑
i∈S

c(xi, yi)

subject to |S| ≤ n,
(1)

where c(x, y) denotes the human error per sample, which
we will define more precisely in the next section. Here,
we assume that human annotations are independent, which
allows us to cast the total human error as the sum of hu-
man error per sample over all instances. Moreover, we use
a linear constraint on the number of examples outsourced
to humans because, in most practical scenarios, humans get
paid every time they make a prediction—if they make n pre-
dictions, they get paid n times.

Given the optimal set S∗, we can find the optimal para-
meter θ∗ = θ∗(V\S∗) in polynomial time since, by assump-
tion, the loss `(hθ(xi), yi) is convex. Unfortunately, the
following Theorem tells us that, in general, we cannot ex-
pect to find both S∗ and θ∗ in polynomial time (proven in
the long version of our paper (De et al. 2020b)):
Theorem 1 The problem of designing margin-based classi-
fiers under human assistance defined in Eq. 1 is NP-Hard.
Moreover, given the solution to the above minimization
problem, we would still need to decide whether to outsource
an unseen feature vector x from the test set to a human ex-
pert even if x 6= xi for all i ∈ V . To this end, we could train
an additional model π(d |x) to decide which samples to out-
source to a human using the labeled set {(xi, di)}i∈V , where
xi are the feature vectors in the training set and di = +1 if
i ∈ S∗ and di = −1 otherwise. Then, as long as this model
does not make mistakes on the training set, one can readily
conclude that the samples assigned to the classifier during
training are as if they were sampled from the feature distri-
bution p(x)π(d = −1 |x) induced by π. As a direct con-
sequence, if the model π(d |x) is smooth with respect to x,
one can further conclude that the trained margin-based clas-
sifier will work well on the unseen samples it needs to decide
upon at test time, i.e., samples from p(x)π(d = −1 |x).

5906

3 Algorithms with Approximation
Guarantees for Support Vector Machines

In this section, we show that, for support vector machines
(SVMs), the optimization problem defined in Eq. 1 can be
rewritten as a maximization of the difference of two func-
tions g − c, where g is monotone, non-negative, and γ-
weakly submodular and c is non-negative modular. More-
over, we further show that the submodularity ratio γ can be
lower bounded and, as a consequence, a recently introduced
deterministic greedy algorithm (Harshaw et al. 2019) as well
as a more efficient randomized variant of the algorithm en-
joy approximation guarantees at solving the problem.
Monotonicity and weak submodularity. For (soft margin)
SVMs, we can first rewrite the minimization problem de-
fined in Eq. 1 as follows2:

minimize
S,w,b

∑
i∈V\S

[
λ‖w‖2 + [1− yi(w>Φ(xi) + b)]+

]︸ ︷︷ ︸
`(hw,b(xi),yi)

+
∑
i∈S

[1− yih(xi)]+︸ ︷︷ ︸
c(xi,yi)

(2)

subject to |S| ≤ n,
where Φ(·) denotes a given feature transformation, h(·) ∈
[−H,H] is the (normalized) score provided by the human
experts, which is only known for the training samples, and
H > 0 is a given constant. In the above, we measure the
human error c(x, y) using a hinge loss [1−y·h(x)]+ because
the SVM formulation also uses a hinge loss [1− y · (wTx+
b)]+ to measure the machine error. This is necessary in order
to compare human and machine performance meaningfully.
However, our solution is agnostic to this specific choice—it
is applicable to any human error model.

Now, for any given set S , let w∗(V\S) and b∗(V\S) be
the parameters that minimize the objective function above,
i.e., w∗(V\S), b∗(V\S) = argminw,b

∑
i∈V\S [λ‖w‖2 +

(1 − yi(w
>Φ(xi) + b))+]. Here, note that these parame-

ters can be found in polynomial time since the first two pa-
rameters in the objective function are convex. Then, we can
rewrite the above minimization problem as a set function
maximization problem:

maximize
S

g(S)− c(S), subject to |S| ≤ n, (3)

where

g(S) = λ|V|‖w∗(V)‖2+
∑
i∈V

[1−yi(w∗(V)>Φ(xi) + b∗(V))]+

− λ|V\S|‖w∗(V\S)‖2

−
∑
i∈V\S

[1− yi(w∗(V\S)>Φ(xi) + b∗(V\S))]+,

(4)

and
c(S) =

∑
i∈S

[1− yih(xi)]+. (5)

2In the long version of our paper (De et al. 2020b), we also consider hard margin
linear SVMs, which are relevant whenever the data is linearly separable.

Learning to Generate Graphs with Reinforcement Learning

1 Garbage

C�
1/2

C�
1/2C�
1/2 (1)

C�
1C�
1C�
1 (2)

C�
1/s⇤C�
1/s⇤C�
1/s⇤ (3)

C�
1/|V�|C�
1/|V�|C�
1/|V�| (4)

C�C�C� (5)

C�
1/s

C�
1/sC�
1/s (6)

C+C+C+ (7)

C+
1/2

C+
1/2C+
1/2 (8)

C+
1C+
1C+
1 (9)

C+
1/s⇤C+
1/s⇤C+
1/s⇤ (10)

C+
1/|V+|C+
1/|V+|C+
1/|V+| (11)

C+
1/s

C+
1/sC+
1/s (12)

1

Learning to Generate Graphs with Reinforcement Learning

1 Garbage

C�
1/2

C�
1/2C�
1/2 (1)

C�
1C�
1C�
1 (2)

C�
1/s⇤C�
1/s⇤C�
1/s⇤ (3)

C�
1/|V�|C�
1/|V�|C�
1/|V�| (4)

C�C�C� (5)

C�
1/s

C�
1/sC�
1/s (6)

C+C+C+ (7)

C+
1/2

C+
1/2C+
1/2 (8)

C+
1C+
1C+
1 (9)

C+
1/s⇤C+
1/s⇤C+
1/s⇤ (10)

C+
1/|V+|C+
1/|V+|C+
1/|V+| (11)

C+
1/s

C+
1/sC+
1/s (12)

1

Learning to Generate Graphs with Reinforcement Learning

1 Garbage

C�
1/2

C�
1/2C�
1/2 (1)

C�
1C�
1C�
1 (2)

C�
1/s⇤C�
1/s⇤C�
1/s⇤ (3)

C�
1/|V�|C�
1/|V�|C�
1/|V�| (4)

C�C�C� (5)

C�
1/s

C�
1/sC�
1/s (6)

C+C+C+ (7)

C+
1/2

C+
1/2C+
1/2 (8)

C+
1C+
1C+
1 (9)

C+
1/s⇤C+
1/s⇤C+
1/s⇤ (10)

C+
1/|V+|C+
1/|V+|C+
1/|V+| (11)

C+
1/s

C+
1/sC+
1/s (12)

1

Learning to Generate Graphs with Reinforcement Learning

1 Garbage

C�
1/2

C�
1/2C�
1/2 (1)

C�
1C�
1C�
1 (2)

C�
1/s⇤C�
1/s⇤C�
1/s⇤ (3)

C�
1/|V�|C�
1/|V�|C�
1/|V�| (4)

C�C�C� (5)

C�
1/s

C�
1/sC�
1/s (6)

C+C+C+ (7)

C+
1/2

C+
1/2C+
1/2 (8)

C+
1C+
1C+
1 (9)

C+
1/s⇤C+
1/s⇤C+
1/s⇤ (10)

C+
1/|V+|C+
1/|V+|C+
1/|V+| (11)

C+
1/s

C+
1/sC+
1/s (12)

1

(a) C± and C±1/s

�<latexit sha1_base64="uUkjuz/xweMoCjzofg3mUBLrGVE=">AAACN3icbVDLTgIxFO3gC/GFunTTSExcGDIDGHFH1ARXBo0ICRDSKXegofNI2zEhE/7Kjb/hTjcuNMatf2AZZiHgTXpzcu65jx474Ewq03w1UkvLK6tr6fXMxubW9k52d+9B+qGgUKc+90XTJhI486CumOLQDAQQ1+bQsIeXk3rjEYRkvnevRgF0XNL3mMMoUZrqZm/aPXB0bzwpcvvj6K56MY7ME2wVz+M0zsxKRCIpnE5EhbJOVkmLroAr0s3mzLwZB14EVgJyKIlaN/vS7vk0dMFTlBMpW5YZqE5EhGKUgx4bSggIHZI+tDT0iAuyE8WnjPGRZnrY8YV+nsIx+7cjIq6UI9fWSpeogZyvTcj/aq1QOeVOxLwgVODR6SIn5Fj5eGIi7jEBVPGRBoQKpm/FdEAEoUpbndEmWPNfXgQPhbxVzBduS7lKNbEjjQ7QITpGFjpDFXSNaqiOKHpCb+gDfRrPxrvxZXxPpSkj6dlHM2H8/AIFoamB</latexit>

Learning to Generate Graphs with Reinforcement Learning

1 Garbage

C�
1/2

C�
1/2C�
1/2 (1)

C�
1C�
1C�
1 (2)

C�
1/s⇤C�
1/s⇤C�
1/s⇤ (3)

C�
1/V�|C�
1/V�|C�
1/V�| (4)

C�
1/s

C�
1/sC�
1/s (5)

C+
1/2

C+
1/2C+
1/2 (6)

C+
1C+
1C+
1 (7)

C+
1/s⇤C+
1/s⇤C+
1/s⇤ (8)

C+
1/V�|C+
1/V�|C+
1/V�| (9)

C+
1/s

C+
1/sC+
1/s (10)

2 Model

We first define di↵erent components for reinforcement learning with respect to graph modeling. In the
context of reinforcement learning, we define the actions and rewards as follows:
Actions. Actions are defined as,

A = {Gi ⇠ p✓(G|Zi)pprior(Zi)}, (11)

Here Gi is a sampled graph given a latent representation Zi. Note that, we define G as G := (V, E ,Y,F).
where (V, E ,Y,F) means the set of vertices, edges, edge features and node features.

1

Learning to Generate Graphs with Reinforcement Learning

1 Garbage

C�
1/2

C�
1/2C�
1/2 (1)

C�
1C�
1C�
1 (2)

C�
1/s⇤C�
1/s⇤C�
1/s⇤ (3)

C�
1/V�|C�
1/V�|C�
1/V�| (4)

C�
1/s

C�
1/sC�
1/s (5)

C+
1/2

C+
1/2C+
1/2 (6)

C+
1C+
1C+
1 (7)

C+
1/s⇤C+
1/s⇤C+
1/s⇤ (8)

C+
1/V�|C+
1/V�|C+
1/V�| (9)

C+
1/s

C+
1/sC+
1/s (10)

2 Model

We first define di↵erent components for reinforcement learning with respect to graph modeling. In the
context of reinforcement learning, we define the actions and rewards as follows:
Actions. Actions are defined as,

A = {Gi ⇠ p✓(G|Zi)pprior(Zi)}, (11)

Here Gi is a sampled graph given a latent representation Zi. Note that, we define G as G := (V, E ,Y,F).
where (V, E ,Y,F) means the set of vertices, edges, edge features and node features.

1

Learning to Generate Graphs with Reinforcement Learning

1 Garbage

C�
1/2

C�
1/2C�
1/2 (1)

C�
1C�
1C�
1 (2)

C�
1/s⇤C�
1/s⇤C�
1/s⇤ (3)

C�
1/V�|C�
1/V�|C�
1/V�| (4)

C�
1/s

C�
1/sC�
1/s (5)

C+
1/2

C+
1/2C+
1/2 (6)

C+
1C+
1C+
1 (7)

C+
1/s⇤C+
1/s⇤C+
1/s⇤ (8)

C+
1/V�|C+
1/V�|C+
1/V�| (9)

C+
1/s

C+
1/sC+
1/s (10)

2 Model

We first define di↵erent components for reinforcement learning with respect to graph modeling. In the
context of reinforcement learning, we define the actions and rewards as follows:
Actions. Actions are defined as,

A = {Gi ⇠ p✓(G|Zi)pprior(Zi)}, (11)

Here Gi is a sampled graph given a latent representation Zi. Note that, we define G as G := (V, E ,Y,F).
where (V, E ,Y,F) means the set of vertices, edges, edge features and node features.

1

Learning to Generate Graphs with Reinforcement Learning

1 Garbage

C�
1/2

C�
1/2C�
1/2 (1)

C�
1C�
1C�
1 (2)

C�
1/s⇤C�
1/s⇤C�
1/s⇤ (3)

C�
1/V�|C�
1/V�|C�
1/V�| (4)

C�
1/s

C�
1/sC�
1/s (5)

C+
1/2

C+
1/2C+
1/2 (6)

C+
1C+
1C+
1 (7)

C+
1/s⇤C+
1/s⇤C+
1/s⇤ (8)

C+
1/V�|C+
1/V�|C+
1/V�| (9)

C+
1/s

C+
1/sC+
1/s (10)

2 Model

We first define di↵erent components for reinforcement learning with respect to graph modeling. In the
context of reinforcement learning, we define the actions and rewards as follows:
Actions. Actions are defined as,

A = {Gi ⇠ p✓(G|Zi)pprior(Zi)}, (11)

Here Gi is a sampled graph given a latent representation Zi. Note that, we define G as G := (V, E ,Y,F).
where (V, E ,Y,F) means the set of vertices, edges, edge features and node features.

1

Learning to Generate Graphs with Reinforcement Learning

1 Garbage

C�
1/2

C�
1/2C�
1/2 (1)

C�
1C�
1C�
1 (2)

C�
1/s⇤C�
1/s⇤C�
1/s⇤ (3)

C�
1/V�|C�
1/V�|C�
1/V�| (4)

C�
1/s

C�
1/sC�
1/s (5)

C+
1/2

C+
1/2C+
1/2 (6)

C+
1C+
1C+
1 (7)

C+
1/s⇤C+
1/s⇤C+
1/s⇤ (8)

C+
1/V�|C+
1/V�|C+
1/V�| (9)

C+
1/s

C+
1/sC+
1/s (10)

2 Model

We first define di↵erent components for reinforcement learning with respect to graph modeling. In the
context of reinforcement learning, we define the actions and rewards as follows:
Actions. Actions are defined as,

A = {Gi ⇠ p✓(G|Zi)pprior(Zi)}, (11)

Here Gi is a sampled graph given a latent representation Zi. Note that, we define G as G := (V, E ,Y,F).
where (V, E ,Y,F) means the set of vertices, edges, edge features and node features.

1

Learning to Generate Graphs with Reinforcement Learning

1 Garbage

C�
1/2

C�
1/2C�
1/2 (1)

C�
1C�
1C�
1 (2)

C�
1/s⇤C�
1/s⇤C�
1/s⇤ (3)

C�
1/V�|C�
1/V�|C�
1/V�| (4)

C�
1/s

C�
1/sC�
1/s (5)

C+
1/2

C+
1/2C+
1/2 (6)

C+
1C+
1C+
1 (7)

C+
1/s⇤C+
1/s⇤C+
1/s⇤ (8)

C+
1/V�|C+
1/V�|C+
1/V�| (9)

C+
1/s

C+
1/sC+
1/s (10)

2 Model

We first define di↵erent components for reinforcement learning with respect to graph modeling. In the
context of reinforcement learning, we define the actions and rewards as follows:
Actions. Actions are defined as,

A = {Gi ⇠ p✓(G|Zi)pprior(Zi)}, (11)

Here Gi is a sampled graph given a latent representation Zi. Note that, we define G as G := (V, E ,Y,F).
where (V, E ,Y,F) means the set of vertices, edges, edge features and node features.

1

Learning to Generate Graphs with Reinforcement Learning

1 Garbage

C�
1/2

C�
1/2C�
1/2 (1)

C�
1C�
1C�
1 (2)

C�
1/s⇤C�
1/s⇤C�
1/s⇤ (3)

C�
1/|V�|C�
1/|V�|C�
1/|V�| (4)

C�
1/s

C�
1/sC�
1/s (5)

C+
1/2

C+
1/2C+
1/2 (6)

C+
1C+
1C+
1 (7)

C+
1/s⇤C+
1/s⇤C+
1/s⇤ (8)

C+
1/|V+|C+
1/|V+|C+
1/|V+| (9)

C+
1/s

C+
1/sC+
1/s (10)

2 Model

We first define di↵erent components for reinforcement learning with respect to graph modeling. In the
context of reinforcement learning, we define the actions and rewards as follows:
Actions. Actions are defined as,

A = {Gi ⇠ p✓(G|Zi)pprior(Zi)}, (11)

Here Gi is a sampled graph given a latent representation Zi. Note that, we define G as G := (V, E ,Y,F).
where (V, E ,Y,F) means the set of vertices, edges, edge features and node features.

1

Learning to Generate Graphs with Reinforcement Learning

1 Garbage

C�
1/2

C�
1/2C�
1/2 (1)

C�
1C�
1C�
1 (2)

C�
1/s⇤C�
1/s⇤C�
1/s⇤ (3)

C�
1/|V�|C�
1/|V�|C�
1/|V�| (4)

C�
1/s

C�
1/sC�
1/s (5)

C+
1/2

C+
1/2C+
1/2 (6)

C+
1C+
1C+
1 (7)

C+
1/s⇤C+
1/s⇤C+
1/s⇤ (8)

C+
1/|V+|C+
1/|V+|C+
1/|V+| (9)

C+
1/s

C+
1/sC+
1/s (10)

2 Model

We first define di↵erent components for reinforcement learning with respect to graph modeling. In the
context of reinforcement learning, we define the actions and rewards as follows:
Actions. Actions are defined as,

A = {Gi ⇠ p✓(G|Zi)pprior(Zi)}, (11)

Here Gi is a sampled graph given a latent representation Zi. Note that, we define G as G := (V, E ,Y,F).
where (V, E ,Y,F) means the set of vertices, edges, edge features and node features.

1

(b) Sequence of C±1/s for s ∈ N+

Figure 1: Convex hulls and reduced convex hulls. Panels (a)
and (b) show the convex hulls C± and reduced convex hulls
C±1/s of a training set whose feature vectors are non separa-
ble. In both panels, cyan and orange dots represent feature
vectors xi with yi = 1 and yi = −1, respectively.

In the above, the first term λ|V|‖w∗(V)‖2 +
∑
i∈V [1 −

yi(w
∗(V)>Φ(xi)+b∗(V))]+ ensures that the function g(S)

is non-negative and the function c(S) is clearly non-negative
and modular3. Moreover, we have the following proposition,
which shows that g(S) is a monotone function (proven in the
long version of our paper (De et al. 2020b)):

Proposition 2 The set function g(S), defined in Eq. 4, is
monotone, i.e., g(S ∪ {j}) − g(S) ≥ 0 for all S ⊆ V and
j ∈ V .

If the feature vectors in the training set are not separa-
ble according to their class labels, there exist instances of
the problem in which the function g(S) has submodulari-
ty ratio γ = 04. However, we will now identify a general
class of feature distributions for which the function g(S)
has a nonzero submodularity ratio and its value can be lower
bounded. This lower bound will allow a recently introduced
deterministic greedy algorithm as well as its randomized va-
riant to enjoy approximation guarantees at solving the pro-
blem. In the remainder, we first consider linear SVMs, i.e.,
Φ(x) = x, and then nonlinear SVMs.

Let V+ and V− be the set of training samples with po-
sitive and negative labels, respectively, C+ and C− be their
corresponding convex hulls, i.e.,

C± =

{∑
i∈V±

µixi

∣∣∣ ∑
i∈V±

µi = 1, µi ≥ 0

}
, (6)

and ∆ be the minimum distance between them, i.e., ∆ =
minx+∈C+,x−∈C− ‖x+ − x−‖2. Then, note that, whenever
the feature vectors in the training set are not separable ac-
cording to their class labels, the above convex hulls overlap
and thus ∆ = 0. However, under mild technical conditions,
there will always exist subsets of feature vectors within these
convex hulls that do not overlap, as shown in Figure 1. To
characterize these subsets, we introduce the notion of re-

3A set function f(S) is modular iff it satisfies that f(S ∪ {j}) − f(S) =

f(L ∪ {j})− f(L) for all S ⊆ L ⊆ V and j ∈ V .
4A set function f(S) is γ-weakly submodular iff we have

∑
j∈L\S [f(S ∪

{j}) − f(S)] ≥ γ[f(S ∪ L) − f(S)] ∀S,L ⊆ V and j ∈ V . The largest
γ ≤ 1 such that the inequality is true is called submodularity ratio.

5907

duced convex hulls (Bennett and Bredensteiner 2000):

C±1/s =

{∑
i∈V±

µixi

∣∣∣ ∑
i∈V±

µi = 1, 0 ≤ µi ≤
1

s

}
, (7)

where s ∈ N+, with s ≤ min{|V+|, |V−|} and, similarly as
before, we denote the minimum distance between them as
∆1/s = minx+∈C+

1/s
,x−∈C−

1/s
‖x+ − x−‖.

Now, consider the sequence of reduced convex hulls
{(C+1/s, C−1/s)}

Vmin
s=1 , where Vmin = min{|V+|, |V−|}, illus-

trated in Figure 1(b), and note that the corresponding mini-
mum distances, by definition, satisfy that ∆1/s ≤ ∆1/s′ for
all s′ > s. Then, we measure to what extent feature vectors
with positive and negative labels overlap using the distance

∆∗ = min
s∈{1,...,Vmin}

{∆1/s | ∆1/s > 0}, (8)

where the higher the value of s∗ = argmins {∆1/s |∆1/s >
0}, the higher the overlap between feature vectors with pos-
itive and negative labels. Moreover, if there are no elements
in the sequence with positive distance, we set ∆∗ = 0 and
s∗ = 0.

Given the above, we are now ready to present and prove
one of our key results, which characterizes the submodu-
larity ratio of the function g(S) in terms of the amount of
overlap between feature vectors with positive and negative
labels, as measured by the distance ∆∗ (proven in the long
version of our paper (De et al. 2020b)):
Theorem 3 Let Φ(x) = x, ρ∗ = Vmin/|V|, σ∗ = s∗/|V|,
η =

(
2
√
λ+ maxi∈V ‖xi‖

)
/
√
λ. Then, the submodularity

ratio γ of the function g(S) (defined in Eq. 4) satisfies that

γ ≥ γ∗ =

min

{
[∆∗σ∗]2

4λ
,

1

(η − 2)2

}

η +
η2

2

(
1

2
+

√
1

4
+

4|V|(η − 1)

η2

)
+ (η − 1) |V|

as long as the number of samples outsourced to humans n ≤
(ρ∗ − σ∗)|V|.

For nonlinear SVMs, rather than characterizing the sub-
modularity ratio in terms of ∆∗ and s∗, we resort to the spec-
tral properties of the kernel matrix K = [K(xi,xj)]i,j∈V . In
particular, our key result is the following Theorem (proven
in the long version of our paper (De et al. 2020b)):

Theorem 4 Let η =
(

2
√
λ+ maxi∈V

√
K(xi,xi)

)
/
√
λ,

Y = diag({y}i∈V), ρ∗ = Vmin/|V|, and

ζ = minimize
µ≥0,∑i∈V+ µi=1,

∑
i∈V− µi=1

µ>Y >KY µ,

If the kernel matrix is full rank, i.e., rank(K) = |V|, then the
submodularity ratio γ of the function g(S) satisfies that

γ ≥ γ∗ =

min

{
ζσ∗2

4λ
,

1

(η − 2)2

}
η +

η2

2

(
1

2
+

√
1

4
+

4|V|(η − 1)

η2

)
+ (η − 1) |V|

as long as n ≤ (ρ∗ − σ∗)|V| for some σ∗ ∈ (0, ρ∗].

Algorithm 1: Distorted greedy algorithm
Input: Ground set V , functions g and c, parameters n and γ.
Initialize: S ← ∅
for i = 0, . . . , n− 1 do

ωi ←
(
1− γ

n

)n−(i+1)

k∗ ← argmax
k∈V\S

{ωi · [g(S ∪ {k})− g(S)]− c({k})}

if ωi · [g(S ∪ {k∗})− g(S)]− c({k∗}) > 0 then
S ← S ∪ {k∗}

end
end
Return S

Finally, for the particular case of (soft margin) SVMs with-
out offset, i.e., b = 0 in Eq. 2, we can derive a stronger lower
bound, which does not depend on ∆∗ and s∗, by exploiting
their greater stability properties (proven in the long version
of our paper (De et al. 2020b)):

Theorem 5 If η =
(

2
√
λ+ maxi∈V

√
K(xi,xi)

)
/
√
λ,

then for SVMs without offset, (b = 0 in Eq. 2), the submod-
ularity ratio of the function g(S) is given by

γ ≥ γ∗ = min

{
1

(η − 2)2
,

1

2

}/[
η +

η2

2

]
.

Proof sketch of our key technical results. The proofs of
Theorems 3, 4 and 5 consist of two steps. In the first step,
they show that g(S ∪ {j}) − g(S) ≥ λ ‖w∗(V\S)‖2 and
use the dual formulation of SVM as well as the properties
of the corresponding SVM model to derive a lower bound of
‖w∗(V\S)‖. In the second step, they use the stability pro-
perty of SVM (Bousquet and Elisseeff 2002) to derive the
upper bound on g(S ∪ L)− g(S). These two steps together
lead to the bound on γ∗.

While the bounds in all the above theorems are tight in
terms of the size of the dataset, there are notable differences
between the different model classes. For SVMs with off-
sets, Theorems 3 and 4 suggest that the submodularity ra-
tio bound decreases proportionally to 1/|V| and this is due
to their poor stability properties (Hush, Scovel, and Stein-
wart 2007). For SVMs without offsets, Theorem 5 tells us
that the submodularity ratio bound is independent of |V| and
this is due to their greater stability properties (Bousquet and
Elisseeff 2002). More specifically, for any L ⊆ V\S , the
marginal gain g(S ∪ L) − g(S) can be upper bounded by a
smaller quantity than in the case of SVMs with offsets and
this results into a stronger lower bound.
Distorted greedy algorithm. The distorted greedy algo-
rithm (Harshaw et al. 2019) proceeds iteratively and, at each
iteration, it assigns to the humans the sample (xk, yk) that
provides the highest marginal distorted gain among the re-
maining training samples V \ S . Algorithm 1 summarizes
the algorithm, which requires the value of the submodular-
ity ratio γ as an input. Since we only have data dependant
bounds on γ, in our experiments, we use the meta algorithm
proposed in Harshaw et al. (2019) to guess the value of γ.

Since we have shown that the objective function in Eq. 3
can be expressed as the difference of two functions g − c,

5908

S, y = 1 S, y = −1 V\S, y = 1 V\S, y = −1

−10 0 10

−10

0

10

n/|V| = 0.12

−10 0 10

−10

0

10

n/|V| = 0.3

(a) Linear SVM

−10 0 10

−10

0

10

n/|V| = 0.12

−10 0 10

−10

0

10

n/|V| = 0.3

(b) Nonlinear SVM

Figure 2: Linear and non linear support vector machines with offset under human assistance trained using the stochastic greedy
algorithm (Alg. 1). In each panel, circles represent the feature vectors in the training set, filled and empty circles are assigned to
humans and machines, respectively, the solid line indicatesw∗>(V\S∗)φ(x) + b(V\S∗) = 0, and the cyan and orange dashed
lines indicate w∗>(V\S∗)φ(x) + b(V\S∗) = 1 and w∗>(V\S∗)φ(x) + b(V\S∗) = −1, respectively. For both linear and
nonlinear SVMs, we used λ = 1, ∆H = 0.2 and, for nonlinear SVMs, we used a quadratic kernel K(xi,xj) = (1

2 〈xi,xj〉)2.

where g is monotone, non-negative and γ-weakly submod-
ular and c is non-negative modular, it readily follows from
Theorem 3 in Harshaw et al. (2019) that the distorted greedy
algorithm enjoys approximation guarantees. More specifi-
cally, the distorted greedy algorithm is guaranteed to return
a set S such that

g(S)− c(S) ≥ (1− e−γ)g(OPT)− c(OPT), (9)
where OPT is the optimal set and γ ≤ γ∗ with γ∗ defined in
Theorem 3 (linear SVMs with offset), Theorem 4 (nonlinear
SVMs with offset), or Theorem 5 (SVMs without offset).

In addition to the distorted greedy algorithm, which needs
to make O(n|V|) evaluations of the function g(·), Harshaw
et al. (2019) has also proposed a randomized variant of the
algorithm, which enjoys an asymptotically faster run time
due to the use of sampling techniques and is also applicable
to our problem. Instead of optimizing over the entire ground
set V at each iteration, it optimizes over a random sample
Bi ⊆ V of size O(|V|n log 1

ε). Hence, it only needs to make
O(|V| log(1

ε)) evaluations of g(·) and it returns a set S such
that
E[g(S)− c(S)] ≥ (1− e−γ − ε)g(OPT)− c(OPT). (10)

In the next sections, we will demonstrate that, in addition to
enjoying the above approximation guarantees, the distorted
greedy algorithm as well as its randomized variant perform
better in practice than several competitive baselines.

4 Experiments on Synthetic Data
In this section, we first look into the solutions provided by
the distorted greedy algorithm (Alg. 1) in a variety of syn-
thetic examples. Then, we compare the performance of the
distorted greedy algorithm and its randomized variant with
several competitive baselines. Finally, we investigate the in-
fluence that the amount of human error has on the number
of samples outsourced to humans by the distorted greedy al-
gorithm.
Experimental setup. In all our experiments, we gene-
rate |V| = 400 samples using a generative process un-
der which the corresponding SVM under full automation

is unable to perform well. For linear SVMs with offset,
we draw the class labels uniformly at random, i.e., y ∼
Bernoulli(0.5), and then draw the features from two diffe-
rent distributions, p(x|y = −1) = N ([0, 0], [6, 1; 1, 6])
and p(x|y = 1) = βN ([5, 5], [6, 1; 1, 6]) + (1 −
β)N ([−5,−5], [6, 1; 1, 6]), where β ∼ Bernoulli(0.5). For
nonlinear SVMs, we draw the features from a single distri-
bution p(x) ∼ N ([0, 0], [12, 1; 1, 14]) and, for each sam-
pled feature x, we set y = +1 if ‖x− [1, 1]‖ ≤ 2 or
‖x+ [1, 1]‖ ≥ 5 and y = −1, otherwise. Here, we use
a quadratic kernel K(xi,xj) = (1

2 〈xi,xj〉)2. Moreover,
we generate the scores provided by human experts h(x)
per label by drawing samples from two uniform distribu-
tions, i.e., h(x) ∼ Unif[−∆H,−∆H + 1] if y = 1 and
h(x) ∼ Unif[−1 + ∆H,∆H] otherwise. The exact choice
of ∆H varies across experiments and is mentioned therein.
Finally, in each experiment, we use 60% of samples for trai-
ning and 40% of samples for testing, set λ = 1 and we fo-
llow the procedure described in Section 2 to train a multi-
layer perceptron π(·|x) that decides which samples to out-
source to humans at test time.
Baseline methods. We compare the performance of the dis-
torted greedy algorithm and its randomized variant with four
competitive baselines:
— Triage based on algorithmic uncertainty (Raghu et al.
2019): it first trains a support vector machine for full au-
tomation, i.e., S = ∅. Then, at test time, it outsources to hu-
mans the top n testing samples sorted in decreasing order of
the classification uncertainty of this support vector machine,
defined as 1/|w∗(V)φ(x) + b∗(V)|.
— Triage based on predicted error (Raghu et al. 2019): it
trains a support vector machine for full automation, i.e.,
S = ∅, and two additional supervised models that predict
the human error and the support vector machine error. Then,
at test time, it outsources to humans the top n testing sam-
ples sorted in decreasing order of the difference between the
predicted machine error and the predicted human error.
— Full automation: it trains a support vector machine for
full automation and, at test time, the trained support vector

5909

Distorted greedy

Stochastic distorted greedy

Algorithmic uncertainty triage

Predicted errors triage

Full automation

0.0 0.06 0.12 0.18 0.24 0.3

n/|V|

0.25

0.4

0.55

P(
y
6=
ŷ

)

(a) Misclassification error

0.0 0.06 0.12 0.18 0.24 0.3

n/|V|

0.1

0.4

0.7

F
1

S
co

re

(b) F1 score

Figure 3: Performance of all methods on synthetic data with
linear SVM with offset. For all methods, we set ∆H = 0.2.
If humans predict all testing samples (No automation), we
have that P(ŷ 6= y) = 0.19 and F1-score = 0.81.

machine predicts all testing samples.
— No automation: humans predict all testing samples.

We evaluate the performance of all the methods in terms
of the misclassification test error P(y 6= ŷ) and F1 score on
positive test samples. Here, our F1 score is a useful metric in
medical diagnosis, since it measures the ability of a model
to detect the specific disease.
Results. First, we look into the solutions (S∗,w∗(V\S∗),
b∗(V\S∗)) provided by the distorted greedy algorithm. Fi-
gure 2 summarizes the results, which shows that: (i) the dis-
torted greedy algorithm outsources to humans those sam-
ples that are more prone to be misclassified by the ma-
chine, i.e., {(x, y) | y[w∗>(V\S∗)φ(x) + b(V\S∗)] < 0};
and, (ii) the higher the samples n outsourced to humans, the
lower the number of training samples inside the margin, i.e.,
{(x, y) | |w∗>(V\S∗)φ(x) + b(V\S∗)| ≤ 1}, among those
samples the SVM needs to decide upon.

Next, we compare the performance of the distorted greedy
algorithm and its randomized variant with all the baselines—
algorithmic uncertainty triage, predicted error triage, full au-
tomation and no automation—in terms of the misclassifi-
cation test error P(y 6= ŷ) and F1 score on positive test
samples. Figure 3 summarizes the results, which shows that
both algorithms consistently outperform all the baselines
by large margins. Finally, we investigate the influence that
the amount of human error has on the number of samples
|S| ≤ n outsourced to humans by the distorted greedy al-
gorithm and its randomized variant. Figure 4 summarizes
the results for the linear SVM with offset. We find that, as
long as the amount of human error is small, both algorithms
outsource |S| = n samples to humans, however, for higher
levels of human error, the algorithm outsources fewer sam-
ples |S| < n since it is more beneficial for the minimization
of the overall error.

5 Experiments on Real Data
We experiment with three real-world medical datasets and
first show that, under human assistance, support vector ma-
chines trained using the distorted greedy algorithm as well
as its randomized variant outperform those trained for full
automation as well as humans operating alone. Then, we in-

E[c(x, y)] = 0.2

E[c(x, y)] = 0.4

E[c(x, y)] = 0.6

E[c(x, y)] = 0.8

E[c(x, y)] = 1.0

0.0 0.06 0.12 0.18 0.24 0.3

n/|V|
0.0

0.1

0.2

0.3

|S
|/
|V
|

(a) Distorted greedy

0.0 0.06 0.12 0.18 0.24 0.3

n/|V|
0.0

0.1

0.2

0.3

(b) Stochastic distorted greedy

Figure 4: Number of samples |S| outsourced to humans by
the distorted greedy algorithm and its randomized variant
against the maximum number of outsourced samples n for
different amount of human errors.

vestigate the influence that the amount of human error has
on the performance of the distorted greedy algorithm.
Experimental setup. We experiment with three pub-
licly available datasets (Decencière et al. 2014; Hoover,
Kouznetsova, and Goldbaum 2000), each of them from a
different application in medical diagnosis:

(i) Messidor: It consists of |V| = 400 eye images. Each
image is assigned a score by one single medical expert,
on a four-point scale, which measures the severity of a
retinopathy.

(ii) Stare: It consists of |V| = 373 retinal images. Each im-
age is assigned a score by one single medical expert, on a
five-point scale, which measures the severity of a retinal
hemorrhage.

(iii) Aptos: It consists of |V| = 705 retinal images. Each im-
age is given a score by one single clinician, on a five-point
scale, which measures the severity of diabetic retinopathy.

Following previous work, we first generate a 1000 dimen-
sional feature vector using Resnet (He et al. 2016) for each
sample in the Stare dataset and a 4096-dimensional feature
vector using VGG16 (Simonyan and Zisserman 2014) for
each sample in the Messidor and the Aptos datasets. Then,
we use the top 50 features, as identified by PCA, as x in
our experiments. Moreover, for each sample, we set y = −1
if its severity score q corresponds to one of the two lowest
grades of the associated disease and y = +1 otherwise.

For each sample, we only have access to the score q given
by a single human expert. Therefore, we sample the scores
given by humans from a categorical distribution h(x) = q̂ ∼
Cat(px,q), where px,q = Dirichlet(χx,q) are the probabili-
ties of each potential score q̂ for a sample (x, y) andχx,q is a
vector parameter that controls the human accuracy, and then
scale these scores so that h(·) ∈ [−1, 1] and compute the hu-
man error as c(x, y) = E [(1− yh(x))+]. For each sample
(x, y), the element of χx,q corresponding to the score q̂ = q
given by the human expert has the highest value.

Finally, for each dataset, we use 60% of samples for train-
ing and 40% of samples for testing, set the value of λ using
cross validation under full automation, and followed the pro-
cedure described in Section 2 to train a logistic regression
model π(d |x) that decides which samples to outsource to

5910

Distorted greedy

Stochastic distorted greedy

Algorithmic uncertainty triage

Predicted errors triage

Full automation

0.0 0.04 0.08 0.12 0.16 0.2

n/|V|

0.27

0.3

0.33

P(
y
6=
ŷ

)

0.0 0.04 0.08 0.12 0.16 0.2

n/|V|

0.19

0.21

0.23

0.0 0.04 0.08 0.12 0.16 0.2

n/|V|

0.15

0.16

0.17

0.0 0.04 0.08 0.12 0.16 0.2

n/|V|

0.66

0.7

0.74

F
1

S
co

re

(a) Messidor

0.0 0.04 0.08 0.12 0.16 0.2

n/|V|

0.65

0.68

0.71

(b) Stare

0.0 0.04 0.08 0.12 0.16 0.2

n/|V|

0.83

0.84

0.85

(c) Aptos

Figure 5: Performance of all methods on three medical datasets. If humans predict all testing samples (No automation), we have
that P(ŷ 6= y) = 0.15, 0.14, 0.20 and F1-score = 0.87, 0.78, 0.8 for Messidor, Stare and Aptos datasets respectively.

humans at test time. Here, the logistic regression model uses
just |w∗(V\S)φ(x) + b∗(V\S)| as the only single feature.
The long version of our paper (De et al. 2020b) contains
additional details about the generation of human scores, the
additional model π and the baseline algorithms.
Result. First, we compare the performance of all methods
in Figure 5. The results show that the distorted greedy algo-
rithm as well as its randomized variant: (i) outperform the
triage baselines in most of the automation levels and (ii)
benefit from human assistance both in cases when humans
on their own (No automation) are better than machines on
their own (Full automation) and vice versa (Panels (a) and
(b) vs Panel (c)); and, (iii) perform comparably, sometimes
one beating the other and vice versa (refer to Section 3.4.
in Harshaw et al. (2019) to better understand the reasons).
Here, note that we intentionally experimented with different
values of χ•,• across different datasets so that the perfor-
mance of the no automation baseline varies. Moreover, since
in our datasets, the parameter ρ∗ = min{|V+|, |V−|}/|V| ∈
(0.33, 0.45), then to satisfy the conditions of Theorem 3, we
only experiment with n/|V| ≤ 0.2 < ρ∗.

Next, we assess the influence that the human error c(x, y)
has on the performance of the greedy algorithm. Figure 6
summarizes the results for the Aptos dataset, which show
that, as long as the human error is small, the performance of
the distorted greedy algorithm improves with respect to the
maximum number of samples n. However, for higher levels
of human error, outsourcing samples does not help.

6 Conclusions
In this paper, we have shown that, for support vector ma-
chines, we can solve the problem of classification under hu-
man assistance using algorithms with approximation gua-
rantees. Moreover, we have further shown that, under human
assistance, support vector machines trained to operate under
different automation levels can provide superior empirical

E[c(x, y)] = 0.01

E[c(x, y)] = 0.03

E[c(x, y)] = 0.05

E[c(x, y)] = 0.12

E[c(x, y)] = 0.23

0.0 0.04 0.08 0.12 0.16 0.2

n/|V|
0.12

0.14

0.16
P(
y
6=
ŷ

)

(a) Missclassification error

0.0 0.04 0.08 0.12 0.16 0.2

n/|V|
0.83

0.85

0.87

F
1

S
co

re

(b) F1 score

Figure 6: Performance of the stochastic distorted greedy al-
gorithm against the maximum number of outsourced sam-
ples n for different levels of human error c(x, y) on the Ap-
tos dataset.

performance than those trained for full automation.
Our work also opens many interesting venues for future

work. For example, we have assumed that the human error is
known, however, in practice, the spectrum of human abilities
spans a broad range. It would be interesting to develop algo-
rithms that, over time, adapt to the particular human(s) they
are dealing with. Moreover, we have assumed that the human
annotations are independent, however, there exist scenarios
in which annotations are correlated, e.g., when a single user
sequentially reviews a set of items in a session. It would be
interesting to lift the independence assumption and design
algorithms that account for the correlation between annota-
tions. It would also be valuable to find tighter lower bounds
on the parameter γ, which better characterize the good em-
pirical performance. Finally, it would be worth to extend our
analysis to other convex margin-based classifiers as well as
design machine learning algorithms operating under differ-
ent automation levels in sequential decision-making tasks,
e.g., semi-autonomous driving (Meresht et al. 2020).

5911

Broader Impact
There are several technical, societal, and legal challenges
that prevents the use of fully autonomous machine learn-
ing systems for high-stake decision making in safety-critical
applications such as medical diagnosis. In our work, we ar-
gue that it is possible to address such challenges by letting
humans and machines to assist and complement each other.
Moreover, our theoretical and experimental results suggest
that humans and machines working together may achieve
better performance than what they would achieve on their
own.

Acknowledgements
This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 945719).

References
Bartlett, P.; and Wegkamp, M. 2008. Classification with a
reject option using a hinge loss. JMLR 9(Aug): 1823–1840.
Bennett, K. P.; and Bredensteiner, E. J. 2000. Duality and
geometry in SVM classifiers. In ICML, volume 2000, 57–
64.
Bian, A. A.; Buhmann, J. M.; Krause, A.; and Tschiatschek,
S. 2017. Guarantees for greedy maximization of non-
submodular functions with applications. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, 498–507.
Bordt, S.; and von Luxburg, U. 2020. When Humans and
Machines Make Joint Decisions: A Non-Symmetric Bandit
Model. arXiv preprint arXiv:2007.04800 .
Bousquet, O.; and Elisseeff, A. 2002. Stability and general-
ization. Journal of machine learning research 2(Mar): 499–
526.
Chen, X.; and Price, E. 2017. Active regression via linear-
sample sparsification. arXiv preprint arXiv:1711.10051 .
Cohn, D.; Ghahramani, Z.; and Jordan, M. 1995. Active
learning with statistical models. In NeurIPS, 705–712.
Cortes, C.; DeSalvo, G.; and Mohri, M. 2016. Learning with
rejection. In ALT, 67–82. Springer.
Das, A.; and Kempe, D. 2018. Approximate submodularity
and its applications: subset selection, sparse approximation
and dictionary selection. The Journal of Machine Learning
Research 19(1): 74–107.
De, A.; Koley, P.; Ganguly, N.; and Gomez-Rodriguez, M.
2020a. Regression under human assistance. In AAAI.
De, A.; Okati, N.; Zarezade, A.; and Gomez-Rodriguez, M.
2020b. Classification Under Human Assistance. arXiv
preprint arXiv:2006.11845 .
Decencière, E.; Zhang, X.; Cazuguel, G.; Lay, B.; Cochener,
B.; Trone, C.; Gain, P.; Ordonez, R.; Massin, P.; Erginay, A.;
Charton, B.; and Klein, J.-C. 2014. Feedback on a publicly
distributed database: the Messidor database. Image Analysis
& Stereology 33(3): 231–234.

El-Yaniv, R.; et al. 2010. On the Foundations of Noise-free
Selective Classification. Journal of Machine Learning Re-
search 11(5).

Gatmiry, K.; and Gomez-Rodriguez, M. 2019. Non-
submodular Function Maximization subject to a Ma-
troid Constraint, with Applications. arXiv preprint
arXiv:1811.07863 .

Geifman, Y.; and El-Yaniv, R. 2019. SelectiveNet: A Deep
Neural Network with an Integrated Reject Option. arXiv
preprint arXiv:1901.09192 .

Geifman, Y.; Uziel, G.; and El-Yaniv, R. 2018. Bias-
Reduced Uncertainty Estimation for Deep Neural Classifiers
.

Ghosh, A.; Tschiatschek, S.; Mahdavi, H.; and Singla, A.
2019. Towards deployment of robust AI agents for human-
machine partnerships. In AAMAS.

Graves, A.; Abdel-Rahman, M.; and Hinton, G. E. 2013.
Speech recognition with deep recurrent neural networks. In
ICASSP.

Grover, A.; Al-Shedivat, M.; Gupta, J. K.; Burda, Y.; and
Edwards, H. 2018. Learning policy representations in mul-
tiagent systems. In ICML.

Guo, Y.; and Schuurmans, D. 2008. Discriminative batch
mode active learning. In NeurIPS, 593–600.

Hadfield-Menell, D.; Russell, S. J.; Abbeel, P.; and Dragan,
A. 2016. Cooperative inverse reinforcement learning. In
Advances in neural information processing systems, 3909–
3917.

Harshaw, C.; Feldman, M.; Ward, J.; and Karbasi, A. 2019.
Submodular Maximization Beyond Non-negativity: Guaran-
tees, Fast Algorithms, and Applications. In ICML.

Hashemi, A.; Ghasemi, M.; Vikalo, H.; and Topcu, U. 2019.
Submodular Observation Selection and Information Gather-
ing for Quadratic Models. arXiv preprint arXiv:1905.09919
.

Haug, L.; Tschiatschek, S.; and Singla, A. 2018. Teaching
inverse reinforcement learners via features and demonstra-
tions. In Advances in Neural Information Processing Sys-
tems, 8464–8473.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR.

Hoi, S.; Jin, R.; Zhu, J.; and Lyu, M. R. 2006. Batch mode
active learning and its application to medical image classifi-
cation. In ICML.

Hoover, A.; Kouznetsova, V.; and Goldbaum, M. 2000. Lo-
cating blood vessels in retinal images by piecewise threshold
probing of a matched filter response. IEEE Transactions on
Medical imaging 19(3): 203–210.

Hsu, Y.-C.; Shen, Y.; Jin, H.; and Kira, Z. 2020. Gen-
eralized odin: Detecting out-of-distribution image without
learning from out-of-distribution data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 10951–10960.

5912

Hush, D.; Scovel, C.; and Steinwart, I. 2007. Stability of
unstable learning algorithms. Machine learning 67(3): 197–
206.
Kamalaruban, P.; Devidze, R.; Cevher, V.; and Singla, A.
2019. Interactive teaching algorithms for inverse reinforce-
ment learning. In IJCAI.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In NIPS.
Liu, Z.; Wang, Z.; Liang, P. P.; Salakhutdinov, R. R.;
Morency, L.-P.; and Ueda, M. 2019. Deep Gamblers: Learn-
ing to Abstain with Portfolio Theory. In NeurIPS.
Macindoe, O.; Kaelbling, L. P.; and Lozano-Pérez, T. 2012.
Pomcop: Belief space planning for sidekicks in cooperative
games. In Eighth Artificial Intelligence and Interactive Dig-
ital Entertainment Conference.
Meresht, V. B.; De, A.; Singla, A.; and Gomez-Rodriguez,
M. 2020. Learning to Switch Between Machines and Hu-
mans. arXiv preprint arXiv:2002.04258 .
Mozannar, H.; and Sontag, D. 2020. Consistent Estima-
tors for Learning to Defer to an Expert. arXiv preprint
arXiv:2006.01862 .
Nikolaidis, S.; Forlizzi, J.; Hsu, D.; Shah, J.; and Srinivasa,
S. 2017. Mathematical models of adaptation in human-robot
collaboration. arXiv preprint arXiv:1707.02586 .
Nikolaidis, S.; Ramakrishnan, R.; Gu, K.; and Shah, J.
2015. Efficient model learning from joint-action demon-
strations for human-robot collaborative tasks. In 2015 10th
ACM/IEEE International Conference on Human-Robot In-
teraction (HRI), 189–196. IEEE.
Radanovic, G.; Devidze, R.; Parkes, D.; and Singla, A. 2019.
Learning to collaborate in markov decision processes. In
ICML.
Raghu, M.; Blumer, K.; Corrado, G.; Kleinberg, J.; Ober-
meyer, Z.; and Mullainathan, S. 2019. The algorithmic
automation problem: Prediction, triage, and human effort.
arXiv preprint arXiv:1903.12220 .
Ramaswamy, H.; Tewari, A.; and Agarwal, S. 2018. Consis-
tent algorithms for multiclass classification with an abstain
option. Electronic J. of Statistics 12(1): 530–554.
Sabato, S.; and Munos, R. 2014. Active regression by strat-
ification. In NeurIPS, 469–477.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; et al. 2016. Mas-
tering the game of Go with deep neural networks and tree
search. Nature .
Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556 .
Sugiyama, M. 2006. Active learning in approximately lin-
ear regression based on conditional expectation of general-
ization error. JMLR 7(Jan): 141–166.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
sequence learning with neural networks. In NIPS.

Thulasidasan, S.; Bhattacharya, T.; Bilmes, J.; Chennu-
pati, G.; and Mohd-Yusof, J. 2019. Combating Label
Noise in Deep Learning Using Abstention. arXiv preprint
arXiv:1905.10964 .
Tschiatschek, S.; Ghosh, A.; Haug, L.; Devidze, R.; and
Singla, A. 2019. Learner-aware teaching: Inverse reinforce-
ment learning with preferences and constraints. In Advances
in Neural Information Processing Systems, 4147–4157.
Wiener, Y.; and El-Yaniv, R. 2011. Agnostic selective classi-
fication. In Advances in neural information processing sys-
tems, 1665–1673.
Wilder, B.; Horvitz, E.; and Kamar, E. 2020. Learning to
Complement Humans. arXiv preprint arXiv:2005.00582 .
Willett, R.; Nowak, R.; and Castro, R. M. 2006. Faster rates
in regression via active learning. In NeurIPS.
Wilson, H. J.; and Daugherty, P. R. 2018. Collaborative in-
telligence: humans and AI are joining forces. Harvard Busi-
ness Review 96(4): 114–123.
Ziyin, L.; Chen, B.; Wang, R.; Liang, P. P.; Salakhutdi-
nov, R.; Morency, L.-P.; and Ueda, M. 2020. Learning Not
to Learn in the Presence of Noisy Labels. arXiv preprint
arXiv:2002.06541 .

5913

