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During adolescence, the ability to engage in more com-
plex decision-making strategies increases (Raab & 
Hartley, 2019). However, the successful use of a given 
decision-making strategy does not only depend on the 
mere ability to engage in it—it also depends on how 
flexible individuals are in adjusting their reliance on 
decision-making strategies to changes in internal and 
external demands. In this study, we ask how the abil-
ity for metacontrol of decision making (i.e. the dynamic 
adaptation of decision-making strategies; Eppinger 
et al., 2021; Ruel, Devine, et al., 2021) develops from 
adolescence into young adulthood and whether fram-
ing effects differentially affect the flexible usage of 
decision-making strategies in adolescents as compared 
to young adults.

To study metacontrol, we draw on previous work that 
dissociates two major decision-making strategies: model-
based and model-free decision making (Daw et al., 2011; 
Dayan & Niv, 2008). Model-based decision making rep-
resents a deliberative, prospective strategy that evaluates 
different choice options by means of forward planning 
based on knowledge about the structure of the environ-
ment (a cognitive model). In contrast, model-free deci-
sion making represents a more reflexive, retrospective 
strategy that relies on previously experienced action-
reward contingencies. Previous developmental research 
shows that the reliance on model-based decision mak-
ing (but not model-free decision making) becomes more 
pronounced from childhood to adulthood (Decker et al., 
2016; Potter et al., 2017) and these findings mirror the 
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Abstract

The development of metacontrol of decision making and its susceptibility to fram-

ing effects were investigated in a sample of 201 adolescents and adults in Germany 

(12–25 years, 111 female, ethnicity not recorded). In a task that dissociates model-

free and model-based decision making, outcome magnitude and outcome valence 

were manipulated. Both adolescents and adults showed metacontrol and metac-

ontrol tended to increase across adolescence. Furthermore, model-based decision 

making was more pronounced for loss compared to gain frames but there was no 

evidence that this framing effect differed with age. Thus, the strategic adaptation 

of decision making continues to develop into young adulthood and for both adoles-

cents and adults, losses increase the motivation to invest cognitive resources into 

an effortful decision-making strategy.
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development of executive functions (Munakata et al., 
2012) which model-based decision making is thought to 
rely on (Otto, Gershman, et al., 2013; Otto et al., 2015).

Due to this reliance on executive functions, model-
based decision making is effortful and carries an intrin-
sic cost (Kool et al., 2010). In return, it can provide higher 
behavioral flexibility than model-free decision making 
because dynamic changes in the environment can be ac-
counted for more quickly (Dayan & Niv, 2008). Recent 
theories of metacontrol have proposed that humans 
weigh the cost and benefits associated with a decision-
making strategy against each other when controlling 
their reliance on these strategies (Kool et al., 2019; Lieder 
& Griffiths, 2017). According to this view, the cognitive 
effort associated with employing model-based decision 
making needs to be matched by sufficiently high ben-
efits. This is in line with findings demonstrating that 
adults rely more on model-based decision making when 
this decision-making strategy leads to greater monetary 
pay-offs (Kool et al., 2017). Conversely, the engagement 
in model-based decision making is reduced when the 
task at hand gets more complex and thus this strategy 
becomes cognitively more effortful (Bolenz et al., 2019; 
Eppinger et al., 2017; Kool et al., 2018). Several recent 
findings suggest that the strategic adaptation of physi-
cal and cognitive effort improves from adolescence into 
adulthood (Insel et al., 2017; Rodman et al., 2020). In line 
with these results, in the current study we ask whether 
the metacontrol of decision making improves in a similar 
way with increasing age.

So far, research on the interplay of model-free and 
model-based decision-making strategies has almost ex-
clusively focused on decisions in the gain domain. The 
initial work on the dissociation of model-free and model-
based decision making used rewards (vs. omission of 
rewards) as outcomes to reinforce behavior (e.g., Daw 
et al., 2011; Gläscher et al., 2010) and the studies on meta-
control applied rewards of varying magnitudes (e.g., 
Kool et al., 2017, 2018). Studies that also included losses 
as potential outcomes did not systematically contrast 
the effects of different outcome framings (Kool et al., 
2016) or used a task that has been questioned to elicit 
metacontrol (Voon et al., 2015; Worbe et al., 2016). This 
focus on decisions in the gain domain is surprising given 
behavioral and neuroscientific studies emphasizing the 
greater impact of prospective losses on the engagement 
in effortful behavior: Losses carry a higher subjective 
weight than gains in decisions under risk (Tversky & 
Kahneman, 1981) and losses have been associated with 
a greater allocation of cognitive resources (Yechiam & 
Hochman, 2013). Evidence from neuroscience studies 
supports the idea of dissociable mechanisms involved in 
decisions in the gain domain compared to the loss do-
main. For example, electrophysiological and neuroimag-
ing work points to a unique role of the dorsal anterior 
cingulate cortex in the processing of monetary loss as 
well as in mediating effortful behavioral adjustments 

in response to negative feedback (Fischer & Ullsperger, 
2013; Holroyd et al., 2004; Ullsperger et al., 2014). Taken 
together, these findings suggest that losses may bias the 
cost-benefit evaluations underlying metacontrol and 
point to partially dissociable cognitive and neural pro-
cesses underlying decisions in the gain and loss domain.

The potential impact of losses on decision making is 
interesting from a developmental perspective because of 
several findings that suggest that the neural systems in-
volved in the processing of loss outcomes and the asso-
ciated behavioral adaptations continue to develop into 
adolescence (Crone & Steinbeis, 2017; Kelly et al., 2009; 
Rubia et al., 2006). The question whether adolescents 
and adults differ in how they attribute subjective weight 
to losses as compared to gains remains unanswered. 
Results of a developmental neuroimaging study on loss 
aversion during descriptive decision making show dif-
ferences in fronto-striatal activation during decision 
making between adolescents and adults but no differ-
ences in behavioral preferences (Barkley-Levenson et al., 
2013). In contrast, results from studies using the Iowa 
Gambling Task suggest that performance deficits in chil-
dren and adolescents may result from a disproportionate 
tendency to shift behavior after receiving loss feedback 
when compared with young adults (Cassotti et al., 2011). 
Moreover, there are diverging findings on how learning 
from relative gains (better-than-expected outcomes) and 
relative losses (worse-than-expected outcomes) devel-
ops from adolescence into adulthood (Nussenbaum & 
Hartley, 2019). Finally, several studies have reported dif-
ferent developmental trajectories for gains as compared 
to losses with respect to effects on behavior and neural 
processing. For example, the neural sensitivity for dif-
ferences in monetary outcomes follows independent de-
velopmental curves during adolescence in gains versus 
loss contexts (Insel & Somerville, 2018) and adolescents 
show a stronger asymmetry between gains and losses 
than adults during probabilistic reinforcement learning 
(Palminteri et al., 2016).

To summarize, in this study we investigated meta-
control and its susceptibility to gain-loss framing effects 
across development from adolescence to young adult-
hood. To do so, we used a sequential decision-making 
task to dissociate model-free and model-based decision 
making. In this task, we manipulated the magnitude of 
monetary outcomes (low stakes vs. high stakes) and out-
come valence (gains vs. losses). Both high stakes and the 
loss framing should increase the benefits of investing re-
sources in a model-based strategy and therefore affect 
the cost-benefit evaluations that are assumed to guide 
metacontrol. Specifically, we expected increased reliance 
on model-based decision making when stakes are high 
(cf. Kool et al., 2017) and when outcomes are framed as 
losses. Moreover, we expected that with increasing age, 
participants would show more overall model-based deci-
sion making (cf. Decker et al., 2016) and—based on the 
findings of improving strategic effort adaptation (Insel 
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et al., 2017; Rodman et al., 2020)—we expected age-
related increases in metacontrol of model-based deci-
sion making with respect to different stakes conditions. 
Finally, given evidence for a stronger gain-loss asymme-
try in more basic reinforcement-learning processes for 
adolescents (Palminteri et al., 2016), we expected a more 
pronounced gain-loss asymmetry in metacontrol for ad-
olescents than for adults.

M ETHODS

Participants

Ninety-seven adolescents (50 female, Mage: 14.5  years, 
age range: 12–17 years) and 104 adults (61 female, Mage: 
21.3 years, age range: 18–25 years) took part in this study. 
We aimed for a larger sample size than previous devel-
opmental studies on model-based decision making be-
cause of our intention to investigate interaction effects 
and because we expected generally weaker effects due 
to the more restricted age range. The target sample size 
of around 200 participants was determined based on 
feasibility considerations. No participant was excluded 
from data analysis. Participants’ age followed an ap-
proximately uniform distribution within the age range 
(Figure S1). We compensated participants with 5 € per 
hour or course credit as a baseline compensation and 
with an additional performance-dependent bonus pay-
ment of 7 cents per 100 points in the sequential decision-
making task (range: 3.99 €–5.46 €). All participants and 
the parents of all underage participants provided written 
informed consent.

The study was conducted from November 2018 to 
February 2020. Participants were recruited by adver-
tising the study on university platforms and by sending 
postal invitations to local families. 100% of the adoles-
cents and 93% of the adults reported German as their 
first language. Our participants had a relatively high 
level of education, with 88% of the adults being uni-
versity students and 73% of the adolescents attending a 
school type that directly qualifies for entering a univer-
sity program. Participants self-assessed their socioeco-
nomic status on a 10-point rating scale as above average, 
with adolescents reporting a mean value of 6.66 (inter-
quartile range: [6, 7]) and with adults reporting a mean 
value of 6.71 (inter-quartile range: [6, 8]).

Procedure

Participants were invited for individual testing sessions 
in the lab. After filling out a demographic questionnaire, 
they performed the sequential decision-making task. 
During the instruction and training phase, an experi-
menter was present to read the task instruction aloud 
from the screen and to answer questions. The instruction 

phase lasted approximately 15 min and the actual task 
lasted approximately 46  min (plus self-paced breaks 
between blocks). During testing, the experimenter left 
the room. Afterward, participants completed a covari-
ate task battery including a cognitive-control task and 
a risk-preference task as well as questionnaires on im-
pulsivity, cognitive effort investment, and real-world risk 
taking. Results of these tasks may be reported elsewhere.

Sequential decision-making task

We used a sequential decision-making task (adapted 
from Kool et al., 2016) to determine reliance on model-
free and model-based decision making. In this task, 
participants make repeated decisions between two 
spaceships—either between an orange and a turquoise 
spaceship or between a blue and a green spaceship, with 
one pair of spaceships being randomly assigned to each 
trial. Each spaceship deterministically leads to one of 
two planets where the participants obtain a number of 
outcomes (see Figure 1a). The number of outcomes avail-
able at the planets slowly drifts according to independent 
Gaussian random walks (with mean 0, standard devia-
tion 2, and reflecting bounds at 0 and 9).

To understand how model-free and model-based 
decision making differ in this task, consider that a 
model-free decision-maker makes choices based on an 
independent reward expectation for each of the four 
spaceships. In contrast, a model-based decision maker 
predicts the planet to which a spaceship will lead and 
uses the reward expectation associated with this planet 
to guide choices. Crucially, because multiple spaceships 
lead to one planet, the model-based decision maker can 
integrate reward expectations over experiences with dif-
ferent spaceships.

To investigate how the framing of outcomes affects 
model-based decision making, we manipulated the out-
come valence across blocks of trials: In some blocks, 
outcomes were framed as gains (“space treasure”) and 
participants were instructed to maximize reward. In 
other blocks, outcomes were framed as losses (“antimat-
ter”) and participants were instructed to avoid losing. 
Moreover, similar to previous studies (e.g., Kool et al., 
2017), we manipulated how many points were at stake 
in each trial: In low-stakes trials, participants gained/
lost one point for each outcome they had collected and 
in high-stakes trials participants gained/lost five points 
for each outcome (Figure 1b).

The task consisted of 480 trials divided into eight 
blocks of 60 trials. Outcome valence alternated between 
blocks and participants were informed about the upcom-
ing outcome valence at the beginning of each block. The 
stakes condition varied between trials in a random order 
and was cued to participants at the beginning of each 
trial. More details on the task are reported in Supporting 
Information.
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Reinforcement-learning model

To analyze how reliance on model-based decision mak-
ing differed between experimental conditions and across 
development, we used a hierarchical Bayesian version of 
an established reinforcement-learning model (Daw et al., 
2011; Kool et al., 2016; Otto, Raio, et al., 2013). The hi-
erarchical modeling approach is in line with recent rec-
ommendations to improve parameter reliability due to 
partial pooling of parameter estimates in hierarchical 
models (Brown et al., 2020). The model computes both 
model-free and model-based reward expectations for the 
different spaceships in parallel. Model-free reward ex-
pectations are based on a temporal difference learning 
algorithm that updates reward expectations according 
to reward prediction errors (i.e., the difference between 
expected and actually experienced reward). Model-
based reward expectations are computed by integrating 
the transition structure of the task with the reward ex-
pected at the different planets. To model choice behav-
ior, model-free and model-based reward expectations 

are fed into a softmax function that maps reward ex-
pectations to choice probabilities. Here, model-free 
and model-based reward expectations are weighted by 
two independent model parameters: a model-free and 
a model-based weight. These weights represent how 
strongly choices are guided by each of the two strategies. 
Note that while more conventional formulations of the 
reinforcement-learning model (Daw et al., 2011; Kool 
et al., 2017) use a single weighting parameter that reflects 
the relative influence of model-based versus model-free 
decision making, the formulation we used here is alge-
braically equivalent (Otto, Raio, et al., 2013) but comes 
with less bounded parameters which facilitates hierar-
chical model-fitting. In the current implementation, 
model-free and model-based weights independently re-
flect how consistent choices are with the corresponding 
strategy, where a weight of 0 indexes that a strategy has 
no effect on decision making.

In our analyses, we focused on the model-based 
and model-free weight parameters that reflect the 
degree to which choices are guided by model-based 

F I G U R E  1   Decision-making task. (a) Task transition structure. In every trial, one of two pairs of spaceships is presented. Each spaceship 
deterministically leads to one of two planets where a number of outcomes is obtained. The number of outcomes available at the two planets 
drifts over the course of the task. (b) Trial structure. At the beginning of a trial, the stakes condition is cued which determines how the 
outcomes of this trial are converted into points. During some blocks, outcomes are framed as gains and during the other blocks, outcomes are 
framed as losses
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and model-free decision making (see Table S1 for 
a summary of other model parameters and supple-
mental results for a more detailed analysis of other 
model parameters). We used two variants of the 
reinforcement-learning model, a developmental model 
and a non-developmental model. In the developmental 
model, model-based weights were regressed on stakes 
condition, valence condition (using effects-coding for 
both categorical variables), participants’ age (scaled 
to range from 0 to 1), and all two-way and three-way 
interactions. This allows to test how model-based 
weights and the effects of the experimental conditions 
change across development. For the sake of model sim-
plicity and because we do not have specific hypoth-
eses about nonlinear developmental trajectories, we 
did not include quadratic age effects in the model. In 
the developmental model, the coefficients of the cate-
gorical variables (stakes condition, valence condition) 
represent the effects for when the continuous variable 
is 0. Due to rescaling of participants’ age, the coeffi-
cients of the categorical variables thus correspond to 
the effects of the categorical variables for participants 
at the lower end of the age range. For estimating the 
main effects of the categorical variables (i.e., pooled 
effects across all participants regardless of age), we 
also fit a non-developmental model, in which model-
based weights are only regressed on stakes condition, 
valence condition, and their interaction (thus omitting 
age as a predictor variable). If not explicitly stated dif-
ferently, we will report results from the developmen-
tal model for all regression weights that relate to age 
and from the non-developmental model otherwise. 
Note that while the models already incorporate the 
variables stakes condition, valence condition, and age 
as regressors, this structure measures but does not 
enforce any effect of these variables and every effect 
could in principle be estimated as being non-existent. 
More details on the reinforcement-learning model, a 
parameter recovery analysis and a posterior predictive 
check are reported in Supporting Information.

Distributions of all model parameters were estimated 
in a hierarchical manner using Stan (Stan Development 
Team, 2018). When presenting group-level parame-
ters, we report means and 95% credible intervals (CIs) 
of the marginal distributions. CI are computed as the 
[.025,  .975] percentile interval and can be interpreted as 
including the true value of the parameter of interest with 
a probability of 95%. When presenting participant-level 
parameters, we report means of the marginal participant-
level distributions.

Behavioral proxies of model-based 
decision making

To better understand the effect of model-based deci-
sion making on task behavior, we investigated two 

proxies of model-based decision making: task perfor-
mance and stay probabilities. Task performance was 
assessed as the difference between outcomes obtained 
in a trial and the average number of outcomes avail-
able at the two planets (before applying the stakes 
multiplication). Thus, this performance metric reflects 
how much more outcomes a participant had obtained 
than it would have been expected by a random deci-
sion maker. Importantly, more model-based behavior 
leads to better outcomes in this task (see Supporting 
Information).

For the stay probability analysis, we followed the 
reasoning of Kool et al. (2017) that a model-based de-
cision maker should be more likely to stay with the 
same goal (i.e., travel to the same planet) after a better-
than-expected outcome (a positive second-stage reward 
prediction error) in the preceding trial than after a 
worse-than-expected outcome (a negative second-stage 
reward prediction error). The effect of reward predic-
tion error on subsequent choice behavior should be less 
pronounced for a model-free decision maker because 
model-free decision making relies on separate reward 
expectations for each spaceship and thus the immedi-
ately preceding trial can only have an effect if both trials 
share the same starting state and the same spaceships are 
re-encountered. Thus, a stronger effect of reward predic-
tion error on stay probabilities can be seen as reflective 
of more model-based decision making. Reward predic-
tion errors were obtained from the computational model 
by using the mean of the participant-level parameter dis-
tributions and were added as continuous predictor in the 
analysis.

We analyzed both metrics (task performance and stay 
probabilities) with hierarchical regression models using 
the R package brms (Bürkner, 2017). Similar to the com-
putational modeling approach, we fit separate models 
including or excluding age as a predictor variable and 
report results from the developmental model (including 
age) only where effects relate to age.

RESU LTS

We will first report confirmatory analyses of model-based 
weights that directly test our hypotheses. Thereafter, we 
also report several more exploratory analyses that in-
vestigate how model-based decision making is reflected 
in task performance and stay behavior and whether the 
reliance on model-free decision making is affected by 
age and the experimental conditions in a similar way to 
model-based decision making.

Development of model-based decision making

Across conditions, model-based weights increased with 
age (bage = .21, CI [.12, .30]). Separate analyses showed 
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age-related increases in model-based weights for all ex-
perimental conditions (Figure 2b; bage(low, gain) = .19, CI 
[.09, .30]; bage(high, gain) = .25, CI [.15, .35]; bage(low, loss) = .16, 
CI [.06, .26]; bage(high, loss)  =  .24, CI [.13, .34]). These 
findings suggest that model-based decision making 
continues to develop across adolescence. To establish 
whether developmental changes in model-based deci-
sion making might be confounded by age differences 
in sustained attention, we restricted the computational 
analysis to the first two blocks (120 trials). This analy-
sis showed a similar increase in model-based weights 
with age as the one reported above (bage = .24, CI [.14, 
.34]), suggesting that the age effect is evident early in 
the task and not simply a consequence of older partici-
pants being better able to sustain attention across the 
experiment.

Stakes-based metacontrol

Effects of stakes manipulation

Across all participants, we found increased model-based 
weights for high-stakes trials compared to low-stakes tri-
als (bstakes = .09, CI [.07, .12]; Figure 2a). Consistent with 
previous non-developmental studies (e.g., Kool et al., 
2017), this indicates that participants showed stakes-
based metacontrol, that is, they adapted their reliance 
on model-based decision making to the different stakes 
conditions. Separate analyses for adolescents and adults 
showed stakes-based metacontrol in both age groups (see 
Table S2; Figure S2).

Note that some participants show negative model-
based and model-free weights, especially in low-stakes 
trials (cf. Figures 2b and 6b). While there is a higher un-
certainty for individual parameter estimates, this could 
indicate that sometimes participants deliberately chose 

the option with the lower reward expectation to strategi-
cally explore this option when stakes were low.

Developmental differences

In the developmental model, we found a positive 
slope for the stakes effect (bstakes = .06, CI [.02, .10], 
cf. Figure S3) ref lecting a reliable effect of stakes for 
participants at the lower end of the age range. These 
results indicate that 12-year-old participants already 
showed metacontrol of model-based decision mak-
ing. To investigate whether stakes-based metacon-
trol changes across adolescence, we analyzed stakes 

F I G U R E  2   Metacontrol of model-based decision making and its development across adolescence. (a) Mean model-based weights across all 
participants. Error bars represent Bayesian 95% credible intervals. (b) Model-based weights in all experimental conditions as a function of age. 
The shaded areas represent 95% credible intervals. Points represent means of the participant-level distributions from the developmental model 
(jittered along the x-axis)
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effects as a function of age. We found moderate 
evidence that the stakes effect increased with age 
(bage × stakes = .07, CI [−.01, .15], 94.9% of the posterior 
mass above 0) indicating that metacontrol tended 
to increase with age (Note that the framework of 
Bayesian statistics allows for interpreting evidence 
in a gradual manner without dichotomizing cut-off 
values, cf. Kruschke, 2010). Furthermore, separate 
analyses for gain and loss blocks showed moderate 
evidence for age-related increases in stakes effects 
for both valence conditions (bage  ×  stakes(gain)  =  .06, 
CI [−.03, .15], 88.4% of the posterior mass above 0; 
bage × stakes(loss) = .08, CI [−.02,  .17], 94.2% of the pos-
terior mass above 0).

As metacontrol could be related to the ability to en-
gage in model-based decision making (i.e., younger par-
ticipants could show less metacontrol because they are 
generally more constrained in their ability to engage in 
model-based decision making), we analyzed if higher 
overall reliance on model-based decision making cor-
related with metacontrol. Our results show that there 
was no or at most only a small positive correlation be-
tween mean model-based weights and stakes effects 
(r = −.03, CI [−.20, .13], 35.8% of the posterior mass above 
0; Figure 3). This suggests that increases in metacontrol 
do not necessarily result from a greater ability to engage 
in model-based decision making.

Valence bias in metacontrol

Effects of valence manipulation

Across all participants, we found higher model-
based weights in loss blocks compared to gain blocks 

(bvalence = −.03, CI [−.05, −.01]; Figure 2). This indicates 
that participants relied more on model-based decision 
making when outcomes were framed as losses than when 
outcomes were framed as gains. Moreover, we found an 
interaction of stakes condition and valence condition 
(bstakes  ×  valence  =  .06, CI [.03, .09]), indicating that the 
effect of outcome valence differed between low-stakes 
trials and high-stakes trials. While we found increased 
model-based weights in loss blocks compared to gain 
blocks for low-stakes trials (bvalence(low) = −.06, CI [−.08, 
−.03]), we did not find evidence for a valence effect for 
high-stakes trials (bvalence(high) = .00, CI [−.02, .02]). Thus, 
loss-induced increases of model-based decision making 
were particularly pronounced in trials with low stakes. 
Separate analyses for adolescents and adults indicated 
interactions of stakes condition and valence condition in 
both age groups (see Table S2; Figure S2).

Developmental differences

In order to examine developmental differences in how 
gains and losses affect model-based decision making, we 
analyzed the effect of outcome valence as well as the inter-
action of stakes condition and valence condition as a func-
tion of age. We did not find evidence for an age-related 
change in the effect of outcome valence on model-based 
weights (bage × valence = .02, CI [−.03, .07], 82.0% of the pos-
terior mass above 0). Moreover, there was no evidence for 
an age-related change in the interaction of stakes condi-
tion and valence condition (bage × stakes × valence = −.02, CI 
[−.11, .08], 34.3% of the posterior mass below 0). Thus, our 
results do not provide evidence for developmental differ-
ences in the asymmetry of gains and losses with respect 
to metacontrol of decision making. However, it should be 

F I G U R E  4   Task performance (baseline-corrected points) and its development across adolescence. (a) Mean task performance across all 
participants. Error bars represent Bayesian 95% credible intervals. (b) Task performance in all experimental conditions as a function of age. 
The shaded areas represent 95% credible intervals. Points represent means of the participant-level distributions from the developmental model 
(jittered along the x-axis)
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noted that the uncertainty around these effects does like-
wise not allow to completely rule out any potential for de-
velopmental effects on these cognitive processes.

Task performance

Effects of experimental manipulations

Task performance was higher in high-stakes trials 
compared to low-stakes trials (bstakes = .11, CI [.07, .14], 
Figure 4). This is in line with increased model-based 
decision making in high-stakes trials compared to low-
stakes trials. There was moderate evidence for increased 
task performance in loss blocks compared to gain blocks 
(bvalence  =  −.02, CI [−.05, .01], 92.2% of the posterior 
mass below 0) but we did not find evidence that the va-
lence effect differed as a function of stakes condition 
(bstakes × valence = .03, CI [−.04, .11], 80.1% of the posterior 
mass above 0).

Developmental differences

In the developmental model, we found a positive inter-
cept (b0  =  .49, CI [.43, .54]) reflecting the grand mean 
of task performance for participants at the lower end 
of the age range. This indicates that even our youngest 
participants were able to perform the task above chance 
level. Task performance increased with age (bage =  .23, 
CI [.13, .33]) but there was only limited evidence that the 
stakes effect on task performance increased with age 
(bstakes  ×  age  =  .07, CI [−.05, .19], 88.6% of the posterior 
mass above 0).

To rule out developmental differences in sustained 
attention, we regressed task performance against trial 
number and age (cf. Figure S4). This analysis revealed 
higher performance with later trials (btrial  =  .13, CI 
[.05,  .21]) for participants at the lower end of the age 
range and we did not find evidence that this effect dif-
fered with age (btrial × age = −.03, CI [−.18, .12], 63.9% of 
the posterior mass below 0). This suggests that across the 
entire age range, participants were able to sustain atten-
tion throughout the task.

Stay probabilities

Effects of experimental manipulations

Participants were more likely to stay with the same 
goal following a better-than-expected outcome com-
pared to a worse-than-expected outcome (bRPE =  .24, 
CI [.22,  .26]). This effect was stronger on high-stakes 
trials than on low-stakes trials (bRPE  ×  stakes  =  .03, CI 
[.02, .05], Figure 5). These findings are consistent with 
the results of the computational analysis and point 
to increased model-based control on high-stakes tri-
als (see also Kool et al., 2017). Moreover, the effect 
of better-than-expected outcomes was larger in loss 
blocks compared to gain blocks (bRPE × valence = −.02, 
CI [−.04, −.01]). Again, this is in line with the finding 
of increased model-based control in loss blocks in the 
computational analysis. We did not find evidence that 
high-stakes trials affected the impact of better-than-
expected outcomes differentially for gain and loss 
blocks (bRPE × stake × valence = −.01, CI [−.04, .02], 81.6% 
of the posterior mass below 0).

F I G U R E  5   Effect of reward prediction errors on stay probability and its development across adolescence. (a) Mean effect of reward 
prediction errors across all participants. Error bars represent Bayesian 95% credible intervals. (b) Effect of reward prediction errors in all 
experimental conditions as a function of age. The shaded areas represent 95% credible intervals. Points represent means of the participant-level 
distributions from the developmental model (jittered along the x-axis)
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Developmental differences

The effect of better-than-expected outcomes on stay 
probabilities increased with age (bRPE  ×  age  =  .13, CI 
[.07,  .19]) and there was moderate evidence that the dif-
ference in the effect of better-than-expected outcomes 
between low-stakes and high-stakes trials became 
more pronounced with age (bRPE × stakes × age =  .04, CI 
[−.02,  .09], 91.7% of the posterior mass above 0). To 
summarize, the findings for the two proxies of model-
based decision making seem to support the major 
conclusions derived from the computational modeling 
approach.

Model-free decision making

Effects of experimental manipulations

To provide a complete account of developmental 
differences in decision-making strategies, we also 
analyzed the reliance on model-free decision mak-
ing (Figure 6). Model-free weights increased in 
high-stakes trials compared to low-stakes trials 
(bstakes =  .03, CI [.01, .04]). Additional analyses sug-
gest that the relative inf luence of model-based and 
model-free decision making did not change across 
stakes conditions (see Supporting Information). 
Model-free weights were larger in gain blocks com-
pared to loss blocks, contrasting the valence ef-
fect on model-based weights (bvalence  =  .04, CI [.02, 
.05]). There was no evidence that the valence effect 
differed between high-stakes and low-stakes trials 
(bstakes × valence = .01, CI [−.02, .04], 80.2% of the pos-
terior mass above 0).

Developmental differences

There was no evidence that model-free weights dif-
fered with age (bage = −.01, CI [−.06, .04], 65.7% of the 
posterior mass below 0) and additional analyses sug-
gest that the relative influence of model-based deci-
sion making compared to model-free decision making 
became more pronounced with age (see Supporting 
Information). The effect of stakes on model-free 
weights increased with age (bstakes × age = .05, CI [.002, 
.09]), showing that older participants more strongly 
adapted this decision-making strategy to the differ-
ent stakes conditions. There was no evidence for age-
related changes in the valence effect on model-free 
weights (bvalence × age = .01, CI [−.04,  .05], 60.3% of the 
posterior mass above 0) and moderate evidence for an 
age-related change in the interaction of stakes and va-
lence (bstakes × valence × age = .08, CI [−.02, .17], 94.2% of 
the posterior mass above 0).

DISCUSSION

In this study, we investigated the development of 
metacontrol of decision making across adolescence. 
Specifically, we asked how metacontrol of model-based 
decision making toward different stakes changes from 
adolescence into young adulthood and whether metac-
ontrol in adolescents and adults is differentially sensitive 
to framing effects. Model-based decision making im-
proved with age and we found moderate evidence that 
metacontrol of model-based decision making improves 
with age. Our results also show that metacontrol of deci-
sion making is sensitive to outcome valence: the reliance 
on model-based decision making increases when out-
comes are framed as losses compared to when outcomes 
are framed as gains. However, we do not find evidence 
for developmental differences in this valence bias.

Development of model-based decision making

The reliance on model-based decision making increased 
across adolescence. This was evident in the model-based 
weights derived from the computational analysis and in 
two proxies of model-based decision making, task per-
formance and the effect of better-than-expected rewards 
on stay probabilities. Our finding is consistent with the 
results of previous work that has shown an age-related 
increase in model-based decision making from child-
hood (age 8  years) to young adulthood (Decker et al., 
2016; Potter et al., 2017). Going beyond these findings, 
we observe developmental differences in model-based 
decision making in a more constrained age range (be-
tween 12 and 25 years). Thus, the current data suggest 
that model-based decision making is a slowly develop-
ing capacity that continues to mature into early adult-
hood. A recent longitudinal study found consistent 
developmental effects in a similar age range (Vaghi et al., 
2020). Future research should investigate the potential 
neurobiological mechanisms underlying the protracted 
development of model-based decision making. Targets 
for such developmental neuroscience approaches could 
be electrophysiological markers of model-based decision 
making (Eppinger et al., 2017; Ruel, Bolenz, et al., 2021) 
or areas such as the prefrontal cortex and hippocampus 
(Calabro et al., 2020; Casey et al., 2005; Daugherty et al., 
2016; Selmeczy et al., 2019) that have been implicated in 
model-based decision making as well as in the learning 
and consolidation of state transition structures (Gläscher 
et al., 2010; Huang et al., 2020; Smittenaar et al., 2013; 
Vikbladh et al., 2019).

We do not find developmental differences in the re-
liance on model-free decision making. which is consis-
tent with previous findings (Decker et al., 2016). This 
indicates that the age-related changes in model-based 
decision making do not simply reflect a general increase 
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in reward-seeking behavior. Instead, the relative reli-
ance on model-based versus model-free decision making 
increases with age which is also supported by a model 
using relative model-based weights as in a more conven-
tional formulation of the reinforcement-learning model 
(Daw et al. (2011; see Supporting Information).

Development of stakes-based metacontrol

Both adolescents and adults showed stakes-based metac-
ontrol, that is they adapted their reliance on model-based 
decision making toward the different stakes conditions. 
This was observed in the model-based weights derived 
from the computational modeling analysis as well as in 
task performance and the effect of better-than-expected 
outcomes on stay probabilities. Contrary to previous 
studies (e.g., Bolenz et al., 2019; Kool et al., 2017) how-
ever, we find no evidence for a relatively greater shift 
to more model-based decision making as compared to 
model-free decision making, as reliance on both strat-
egies similarly increased in high-stakes trials. This 
indicates that participants generally showed greater re-
liance on goal-directed decision-making strategies in 
high-stakes trials. In line with this, we found an effect 
of stakes condition on the inverse softmax temperature 
(often interpreted as reflecting choice consistency) but 
not on the relative model-based weight in an alterna-
tive parameterization of our computational model (see 
Supporting Information).

The developmental analyses revealed metacontrol 
of model-based decision making early on, showing 
that metacontrol is in principle available at the age of 
12  years. There was moderate evidence that stakes-
based metacontrol became more pronounced with age 
across adolescence: Older participants tended to show 
stronger increases in model-based decision making 
when outcomes were amplified. This finding extends the 

results from a recent study reporting that stakes-based 
metacontrol increased with age in 5- to 11-year-old chil-
dren (Smid et al., 2020), an age range which is adjacent 
to our study. Furthermore, the increased metacontrol 
of model-based decision making parallels findings that 
the strategic adaptation of physical and cognitive ef-
fort toward different reward magnitudes improves from 
adolescence into adulthood (Insel et al., 2017; Rodman 
et al., 2020).

We observed comparable age-related increases in 
the stakes effect for model-free decision making: Older 
participants showed stronger increases in model-free 
decision making when outcomes were amplified than 
younger participants. In line with this, an alternative 
parameterization of our computational model did not 
show an age-related increase in the stakes effect on rel-
ative model-based weights but an age-related increase 
in the stakes effect of the inverse softmax temperature 
(see Supporting Information). Thus, the increasing effect 
of stakes seems to reflect a more efficient use of goal-
directed decision-making strategies.

Together with studies in other age groups (Bolenz 
et al., 2019; Smid et al., 2020), our findings suggest that 
metacontrol of decision-making strategies is a cogni-
tive process which is subject to dynamic developmental 
changes across the lifespan. However, one could also 
think of potential alternative interpretations for these 
developmental differences. First, less metacontrol of 
model-based decision making toward the different 
stakes conditions might be explained by an attenuated 
sensitivity to differences in outcomes; that is, the differ-
ence in subjective values for low-stakes and high-stakes 
outcomes might be reduced for adolescents. However, 
findings from neuroimaging studies speak against 
this interpretation by showing an increased sensitiv-
ity for differences in rewards in adolescents (Insel & 
Somerville, 2018). Second, the reduced capacity for 
model-based decision making in younger participants 

F I G U R E  6   Metacontrol of model-free decision making and its development across adolescence. (a) Mean model-free weights across all 
participants. Error bars represent Bayesian 95% credible intervals. (b) Model-free weights in all experimental conditions as a function of age. 
The shaded areas represent 95% credible intervals. Points represent means of the participant-level distributions from the developmental model 
(jittered along the x-axis)
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might have constrained the degree to which metacon-
trol is possible. This would mirror suggestions that 
higher incentives only boost performance when the 
task demands match an individual's cognitive capaci-
ties (Davidow et al., 2018; Ruel, Devine, et al., 2021). 
However, we did not find that participants who showed 
more model-based decision making also showed more 
stakes-based metacontrol. Thus, our findings seem to 
suggest that the development of model-based decision 
making may be independent from the development of 
stakes-based metacontrol. This is in line with findings 
that varying the difficulty of cognitive-control tasks 
does not necessarily affect the adaptation of cognitive 
effort (Devine et al., 2021) suggesting that the adapta-
tion of effort is to some degree independent from one's 
capacity for the task.

Valence bias in metacontrol

When avoiding losses, participants showed a greater reli-
ance on model-based decision making than when seek-
ing gains. This was observed in the model-based weights 
derived from the computational modeling analysis, in the 
effect of better-than-expected outcomes on stay proba-
bilities and—with lesser certainty—in task performance. 
It is commonly assumed that losses carry a higher sub-
jective weight than gains (Tversky & Kahneman, 1981). 
This higher subjective weight of losses might increase 
the expected benefit of investing in an effortful decision-
making strategy and thus affect cost-benefit evaluations 
that have been hypothesized to underlie metacontrol of 
decision making (Kool et al., 2017, 2019). In short, the 
motivation to avoid losses makes people allocate more 
cognitive resources to a more accurate but also more de-
manding decision-making strategy.

The effect of outcome valence was reversed for model-
free decision making: When outcomes were framed as 
gains, participants showed more model-free decision 
making than when outcomes were framed as losses. This 
suggests that participants may have partly compensated 
for reduced model-based decision making in gain blocks 
by switching to a less effortful strategy instead of simply 
becoming more stochastic in their choices.

Previous studies have reported valence effects on 
model-based decision making in psychiatric patients 
or under pharmacological interventions but not in 
healthy or placebo controls (Voon et al., 2015; Worbe 
et al., 2016). Importantly, these findings were based on 
a different decision-making task (Daw et al., 2011) that 
has been questioned to elicit metacontrol (Kool et al., 
2016, 2017). Therefore, the valence effects reported in 
these studies might not be reflective of an actual modu-
lation of metacontrol but might represent more general 
effects associated with altered psychiatric or physiolog-
ical conditions. In contrast, by using a task that previ-
ously has been shown to elicit metacontrol (Kool et al., 

2017) and by testing a sample of healthy participants, 
our study provides evidence that outcome valence typ-
ically modulates model-based decision making and its 
metacontrol.

We observed a valence bias for model-based weights 
when stakes were low but not when stakes were high. 
Similarly, task performance did not further increase as 
a consequence of the loss framing in high-stakes trials. 
One possible explanation for this differentiation could be 
that participants show ceiling performance already for 
high-stakes trials during gain blocks and thus might not 
be able to further increase model-based decision mak-
ing when outcomes are framed as losses. One way to test 
this would be by making the task more demanding. This 
should lead to a more selective use of model-based deci-
sion making and could uncover potential valence effects 
even in the high-stakes condition.

Contrary to our expectations, we did not find devel-
opmental differences in this valence bias. While previ-
ous studies have reported independent developmental 
trajectories for processing gains and losses (Insel & 
Somerville, 2018) and stronger valence-related asym-
metries for learning in adolescents (Palminteri et al., 
2016), our results might suggest that these develop-
mental effects are not necessarily reflected in higher-
order decision-making processes such as metacontrol. 
However, our task design also differed in some as-
pects from previous studies (Insel & Somerville, 2018; 
Palminteri et al., 2016): For instance, we employed a 
block-wise manipulation of outcome valence while in 
these other studies, the framing of outcomes as gains or 
losses changed across trials. Trialwise manipulations 
of outcome valence have been suggested to result in 
higher ambiguity about the current valence condition 
(cf. literature review in Verburg et al., 2019), so age dif-
ferences in these trialwise approaches could potentially 
also reflect differences in resolving this ambiguity. It 
remains a question for future research how these dif-
ferences in task design might affect behavior in adoles-
cents and adults. Despite our comparably large sample 
size, there was still a considerable degree of uncertainty 
in our analysis of developmental differences in framing 
effects. Thus, it is not warranted to completely rule out 
any potential for developmental effects on these cogni-
tive processes.

There was moderate evidence for age-related 
changes in valence effects on model-free decision mak-
ing with the interaction effect of stakes condition and 
valence condition becoming more pronounced with 
age. Keeping in mind the exploratory character of this 
analysis, this points to the possibility that developmen-
tal differences in valence effects are more likely to be 
observed for simpler rather than complex and effort-
ful decision-making strategies. Clearly more research 
is needed in this area to uncover the developmental 
changes in the effects of valence biases on decision 
strategies of different complexity.
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Limitations

Recently, concerns have been raised as to whether the 
often reported mixture of model-based and model-free 
decision-making strategies reflects an artifact due to 
participants misconceiving the experimental tasks and 
people instead actually fully rely on a model-based 
strategy (Feher da Silva & Hare, 2020). While these con-
cerns have been brought up with reference to a decision-
making task different from the one used in our study, we 
also think that it is unlikely that participants in our study 
only relied on a model-based strategy. First, we observe 
a worse model fit when the model-free strategy is omitted 
from the reinforcement-learning model (see Supporting 
Information), indicating that model-free decision mak-
ing is a necessary component of participant behavior. 
Second, if participants were actually relying only on a 
model-based strategy throughout the task, our within-
subject experimental manipulations would need to af-
fect how participants (mis-)conceived the task in order 
to generate the observed differences in model-based 
weights. That would imply different conceptions of the 
task from trial to trial within individual participants. 
We think that it is unlikely and rather think that the ob-
served differences in model-based weights indicate that 
behavior actually resembled more closely a model-based 
strategy in some conditions than in others. Therefore, we 
think that our experimental paradigm is suitable to as-
sess metacontrol of decision-making strategies.

We interpret metacontrol of decision making as being 
indicative of the adaptation of cognitive effort in decision 
making. However, we do not have a direct marker of ef-
fort to support this interpretation. The results of an anal-
ysis that takes response time as an indicator of cognitive 
effort do not consistently mirror the patterns observed 
for model-based weights (see Supporting Information). 
One potential reason for this is that model-based compu-
tations can occur at multiple points in time during a trial 
(e.g., during the presentation of the stakes cue or during 
the presentation of the first-stage state) and thus do not 
necessarily affect response times at a specific stage in the 
task. Future studies could use physiological variables 
such as pupil dilation or neural activity to assess devel-
opmental differences in effort allocation (though see 
Shenhav et al., 2017, for potential caveats in measuring 
cognitive effort).

Our computational model makes several simplifying 
assumptions. For example, while we use the same stimuli 
for the spaceships across blocks, we do not assume that 
reward expectations carry over from one block to the 
next. However, given the high reward learning rate (cf. 
Table S1), we think that the effect of this simplification 
is minimal because potentially transferred reward ex-
pectations will be overwritten quickly within one or two 
trials. Note that high reward learning rates are adaptive 
in this task because participants directly observe the true 
value of the states and do not need to integrate observed 

outcomes over multiple trials as in other paradigms (such 
as Daw et al., 2011).

CONCLUSIONS

In this study, we found that both adolescents and adults 
show metacontrol of model-based decision making. 
Furthermore, metacontrol seems to continue to de-
velop from adolescence into young adulthood. We also 
found that metacontrol is sensitive to outcome valence: 
When outcomes are framed as losses, participants show 
a greater willingness to engage in the cognitively more 
demanding, model-based decision-making strategy. This 
valence bias in metacontrol is present in both adolescents 
and young adults. However, contrary to our predictions, 
we did not find evidence for developmental differences in 
this gain–loss asymmetry on metacontrol.
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