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ABSTRACT
We study the role of pairwise long-range interactions in the formation of van der Waals molecules through direct three-body recombination
processes A + B + B→ AB + B, based on a classical trajectory method in hyperspherical coordinates developed in our earlier works [J. Pérez-
Ríos et al., J. Chem. Phys. 140, 044307 (2014); M. Mirahmadi and J. Pérez-Ríos, J. Chem. Phys. 154, 034305 (2021)]. In particular, we find the
effective long-range potential in hyperspherical coordinates with an exact expression in terms of dispersion coefficients of pairwise potentials.
Exploiting this relation, we derive a classical threshold law for the total cross section and the three-body recombination rate yielding an
analytical expression for the three-body recombination rate as a function of the pairwise long-range coefficients of the involved partners.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0062812

I. INTRODUCTION

van der Waals (vdW) molecules consist of two atoms held
together by the long-range dispersion interaction1 leading to
(ground state) binding energies ≲1 meV. Thus, setting aside ultra-
long-range Rydberg molecules (with binding energies ∼4 neV2–6),
vdW molecules show the weakest gas-phase molecular bond in
nature. The binding mechanism in vdW molecules is the result of the
compensation between the short-range repulsion, due to the overlap
of closed-shell orbitals, and the attractive vdW interaction (−C6/r6)
caused by zero point fluctuations of atomic dipole moments.

The study of vdW interactions provides a deeper understand-
ing of crucial phenomena in physics, chemistry, and biology. For
instance, these interactions play a key role in the formation and sta-
bility of gases, liquids, vdW heterostructures, and biopolymers;7–9

chemical reactions;10–13 superfluidity of 4He nanodroplets;14,15 and
rare gas crystals and the dynamics of impurities interacting with
dense rare gas vapors.16,17

Recent developments in cooling techniques, specifically buffer
gas cooling,18 have paved the way to new possibilities for investi-
gating the formation of vdW molecules through three-body recom-
bination processes.17,19–24 Three-body recombination is a three-
body collision during which two of the particles form a bound
state. These reactions play an important role in a wide range of
physical and chemical phenomena, ranging from H2 formation

in star-forming regions25,26 to loss mechanisms in ultracold dilute
atomic gases27–33 to the formation and trapping of cold and ultracold
molecules.34–38

In Ref. 39, we considered the formation of atom–rare gas vdW
molecules via a direct three-body recombination mechanism at tem-
peratures relevant for buffer gas cell experiments. As a result, we
found that almost any atom in helium buffer gas will evolve into
a vdW molecule. Fueled by those results, our goal in the present
work is to present a comprehensive study of A + B + B reactions and
derive a classical threshold law for the formation of vdW molecules
in cold environments. To investigate this problem, we use a clas-
sical approach in hyperspherical coordinates, which has previously
been used to consider the three-body recombination of three neutral
atoms,33,39,40 as well as ion-neutral-neutral three-body recombina-
tion processes.36,37,41 In order to derive a threshold law, we have
obtained an effective long-range potential in hyperspherical coor-
dinates. With this, a general expression (as a function of CAB

6 and
CB2

6 ) for the corresponding dispersion coefficient is given by consid-
ering several A and B atoms chosen from alkali metals, alkaline-earth
metals, transition metals, pnictogens, chalcogens, halogens, and rare
gases. Furthermore, we calculated the threshold values for the three-
body recombination rates at 4 K. Our results confirm that any vdW
molecule AB appears with almost the same probability.

This paper is organized as follows: In Sec. II, the Hamil-
tonian governing the classical dynamics during three-body
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recombination in the three-dimensional space and its counterpart
in the six-dimensional space are introduced. In Sec. III, the long-
range potential in hyperspherical coordinates has been obtained,
and the relevant, effective dispersion coefficient as a function of
dispersion coefficients of the pairwise interactions is found. In
Sec. IV, a classical threshold law à la Langevin for the total cross
section and the three-body recombination rate are developed.
Finally, in Sec. V, we summarize our chief results and discuss their
possible applications.

II. THREE-BODY RECOMBINATION
IN HYPERSPHERICAL COORDINATES

Consider a system consisting of three particles with masses mi
(i = 1, 2, 3) at positions r⃗i, interacting with each other via the poten-
tial V(r⃗1, r⃗2, r⃗3). The motion of these particles is governed by the
Hamiltonian

H = p⃗ 2
1

2m1
+ p⃗ 2

2

2m2
+ p⃗ 2

3

2m3
+ V(r⃗1, r⃗2, r⃗3), (1)

with p⃗i being the momentum vector of the ith particle. It is more
convenient to treat the three-body problem in Jacobi coordinates42,43

defined by the following relations:

ρ⃗1 = r⃗2 − r⃗1,

ρ⃗2 = r⃗3 − R⃗CM12,

ρ⃗CM =
m1 r⃗1 +m2 r⃗2 +m3 r⃗3

M
,

(2)

where R⃗CM12 = (m1 r⃗1 +m2 r⃗2)/(m1 +m2) is the center-of-mass vec-
tor of the two-body system consisting of m1 and m2. M = m1 +m2
+m3 and ρ⃗CM are the total mass and the center-of-mass vectors
of the three-body system, respectively. The Jacobi vectors are illus-
trated in Fig. 1.

Due to conservation of the total linear momentum (i.e., ρ⃗CM is
a cyclic coordinate), we omit the degrees of freedom of the center of

FIG. 1. Jacobi coordinates for the three-body problem illustrated by the red vec-
tors. The black arrows indicate the position of the three particles in Cartesian
coordinates, and the blue arrow indicates the two-body center-of-mass vector
R⃗CM12.

mass and write the Hamiltonian (1) as

H = P⃗2
1

2μ12
+ P⃗2

2

2μ3,12
+ V(ρ⃗1, ρ⃗2), (3)

with reduced masses μ12 = m1m2/(m1 +m2) and μ3,12 = m3(m1

+m2)/M. Here, P⃗1 and P⃗2 indicate the conjugated momenta of
ρ⃗1 and ρ⃗2, respectively. Note that, since the relations given by
Eq. (2) indicate a canonical transformation, the Hamilton’s equa-
tions of motion are invariant under the transformation to Jacobi
coordinates.

A. Hyperspherical coordinates
In the next step, we map the independent relative coordinates

of the three-body system associated with the Hamiltonian (3) in a
three-dimensional (3D) space onto the degrees of freedom of a sin-
gle particle moving toward a scattering center in a six-dimensional
(6D) space under the effect of the Hamiltonian H6D. This 6D space
is described by means of hyperspherical coordinates consisting of a
hyper-radius R and five hyperangles αj (with j = 1, 2, 3, 4, 5), where
0 ≤ α1 < 2π and 0 ≤ αj>1 ≤ π.44,45 The components of a 6D vector
x⃗ = (x1, x2, x3, x4, x5, x6) in hyperspherical coordinates are given by

x1 = R sin(α1) sin(α2) sin(α3) sin(α4) sin(α5),
x2 = R cos(α1) sin(α2) sin(α3) sin(α4) sin(α5),

x3 = R cos(α2) sin(α3) sin(α4) sin(α5),
x4 = R cos(α3) sin(α4) sin(α5),

x5 = R cos(α4) sin(α5),
x6 = R cos(α5),

(4)

and the volume element in this coordinate system is given by

dτ = R5dRdΩ

= R5dR
5

∏
j=1

sinj−1(αj)dαj. (5)

The 6D position and momentum vectors can be constructed
from the Jacobi vectors and their conjugated momenta as40,46

ρ⃗ =
⎛
⎜
⎝

ρ⃗1

ρ⃗2

⎞
⎟
⎠

(6)

and

P⃗ =
⎛
⎜⎜⎜⎜
⎝

√
μ

μ12
P⃗1

√
μ

μ3,12
P⃗2

⎞
⎟⎟⎟⎟
⎠

, (7)

respectively. Here, μ =
√

m1m2m3/M is the three-body reduced
mass. Consequently, the Hamiltonian in the 6D space reads as

H6D = P⃗2

2μ
+ V(ρ⃗). (8)

B. Total cross section and three-body
recombination rate

Classically, for scattering in a 3D space, the cross section σ
is defined as the area drawn in a plane perpendicular to particle’s
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initial momentum, which the particle’s trajectory should cross in
order to be scattered (i.e., deviation from the uniform rectilinear
motion). This concept can be extended to the 6D space by visualiz-
ing it as an area in a five-dimensional hyperplane (embedded in the
6D space) perpendicular to the initial momentum vector P⃗0. Simi-
larly, we define the impact parameter vector b⃗ as the projection of
the initial position vector ρ⃗0 on this hyperplane; thus, the necessary
condition b⃗ ⋅ P⃗0 = 0 is satisfied.46

Note that by treating the three-body collision as a scattering
problem of a single particle in a 6D space, we can uniquely define
the initial conditions and the impact parameter. Hence, it is possi-
ble to obtain the probability of a three-body recombination event
as a function of the impact parameter b⃗ and the initial momentum
P⃗0. Consequently, by averaging over different orientations of P⃗0 and
making use of its relation with the collision energy Ec = P2

0/(2 μ),
the total cross section of the three-body recombination process will
be given by

σrec(Ec) = ∫ P(Ec, b⃗)b4 db dΩb

= 8π2

3 ∫
bmax(Ec)

0
P(Ec, b)b4db, (9)

with dΩb being the differential element of the solid hyperangle asso-
ciated with the vector b⃗. To obtain the second equality, we made
use of Ωb = 8π2/3. The function P in Eq. (9) is the so-called opac-
ity function, i.e., the probability of a recombination event as a
function of the impact parameter and collision energy. Note that
bmax represents the largest impact parameter for which three-body
recombination occurs, or in other words, P(Ec, b) = 0 for b > bmax.

Finally, the energy-dependent three-body recombination rate
can be achieved via the following relation:

k3(Ec) =
√

2Ec

μ
σrec(Ec). (10)

C. Potential
Throughout the present work, we make use of the pairwise-

additive approximation, which states that the total potential of a
N-body system is the sum of all two-body interactions in the system.
Thus, introducing the pairwise potentials U(rij), where rij = ∣r⃗j − r⃗i∣,
we write the interaction potential V in Eq. (1) in the following form:

V(r⃗1, r⃗2, r⃗3) = U(r12) +U(r23) +U(r31). (11)

It is known that the pairwise-additive descriptions of vdW
interactions provide appropriate results for the calculation of crys-
tal binding energies47 (showing deviations ≲ 10%), long-range coef-
ficients of small molecules,48 and the spectroscopy of clusters,49

although in the latter case it is used only for its convenience. How-
ever, there are some scenarios in which a many-body interaction
term is required, namely, the calculation of long-range coefficients
in large molecules48 and accurate spectroscopic constants of vdW
complexes.47 On the contrary, scattering observables are accurately
described at the ultracold limit without invoking many-body inter-
action terms in the underlying potential energy surface (see, e.g.,
Ref. 50). Based on these examples and considering the nature of

systems studied in this work, a pairwise approximation for the
three-body potential V(r⃗1, r⃗2, r⃗3) is convenient.

The relative distances rij in the Cartesian coordinate are related
to the Jacobi vectors through the following equations:

r12 = ∣ρ⃗1∣,

r23 = ∣ρ⃗2 −
m1

m1 +m2
ρ⃗1∣,

r31 = ∣ρ⃗2 +
m2

m1 +m2
ρ⃗1∣.

(12)

Using these relations together with Eq. (6), we can obtain the poten-
tial V(ρ⃗) in Eq. (8) from Eq. (11). It is important to emphasize that,
due to the relations given by Eq. (4), the potential is a function of
the magnitude of the 6D position vector, ρ, and the corresponding
hyperangles α ≡ (α1, α2, α3, α4, α5); in other words, V(ρ⃗) ≡ V(ρ, α).

D. Grand angular momentum
To finalize this section, let us briefly explain the notion of grand

angular momentum in hyperspherical coordinates. Further below,
we will use this discussion to develop a capture model in the hyper-
spherical coordinate system and with it a classical threshold law,
which is the main purpose of this work. In classical mechanics, angu-
lar momentum in 6D space is a bivector defined by the exterior
product (also known as the wedge product) of the 6D position and
momentum vectors as

Λ = ρ⃗ ∧ P⃗, (13)

which is isomorphic to a 6 × 6 skew-symmetric matrix with elements

Λij = ρiPj − ρjPi, (14)

for i, j = 1, 2, . . . , 6. This general definition applies in all higher-
dimensional spaces, and for the 3D space, it coincides with the famil-
iar cross product. It is worth mentioning that even though Λ is not
equal to the ordinary total angular momentum of the three-body
system in the 3D space, it contains the components of the angular
momenta (associated with Jacobi vectors) among its elements. Fol-
lowing the original definition by Smith in Ref. 51, Λ is often referred
to as the grand angular momentum.

Note that in quantum mechanics, Λ is an operator. Its square,
Λ2, is the quadratic Casimir operator of so(6) with eigenvalues
λ(λ + 4), where λ is a positive integer, and with hyperspherical
harmonics as the corresponding eigenfunctions.45,52,53

III. LONG-RANGE POTENTIAL IN HYPERSPHERICAL
COORDINATES

Consider a three-body collision A + B + B, where A and B
are neutral atoms in their ground electronic state. The interaction
potential U(rij) consists of a short-range repulsive interaction (due
to the overlap of closed-shell orbitals) and a long-range vdW tail,

U(rij) → −
C6

r6
ij

, (15)

for rij greater than the LeRoy radius.
In Ref. 39, we have shown that the formation of vdW molecules

through direct three-body recombination at collision energies lower
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than the dissociation energy of the product molecule (Ec < DAB
e )

is insensitive to the short-range interaction and is dominated by
the long-range tail of the potential. Note that we do not consider
the contribution of higher order terms (1/r8, 1/r10, . . .) in the long-
range tail of the potential since the effect of long-range interactions
on formation of vdW complexes is mainly through the 1/r6 term.39

Our goal is to find a general expression for the long-range interac-
tion potential associated with the three-body collision A + B + B in a
6D space relevant for the classical trajectory method that we employ
(see Fig. 2).

Following the discussion in Sec. II C, the long-range potential
in hyperspherical coordinates is obtained via the relation

VLR(ρ, α) = −CB2
6

r6
12
− CAB

6

r6
23
− CAB

6

r6
31

. (16)

To fix the coefficients in this equation, we made use of differ-
ent atoms chosen from alkali metals, alkaline-earth metals, transi-
tion metals, pnictogens, chalcogens, halogens, and rare gases. These
atoms together with the dispersion coefficients of the pairwise inter-
actions between atoms A and B, CAB

6 , and between two B atoms, CB2
6 ,

are listed in Table I.

A. ρ-distribution
To find the radial dependence of the potential VLR(ρ, α),

referred to as VLR(ρ) in Fig. 2, we set the right-hand side of Eq. (16)
equal to a constant, −Q, and solve the equation,

CB2
6

r6
12(ρ, α) +

CAB
6

r6
23(ρ, α) +

CAB
6

r6
31(ρ, α) = Q, (17)

for randomly sampled hyperangles. Different hyperangles αj are
generated by means of the probability density function associated
with dΩ given in Eq. (5) to generate random points uniformly dis-
tributed on the six-sphere (in the geometrical sense). This procedure
implies that the solution of Eq. (17) will be obtained as a distribution
of ρ values, f (ρ), for each particular Q. Finally, we choose ρ = ρm
with the maximum likelihood in the ρ-distribution, as a single value
solution of Eq. (17). We select Q from interval [0.001, 1000] K and
solve the equation for 104 randomly generated sets of hyperangles.
Note that even though for each set of α, Eq. (17) will be transformed
into a sixth-degree equation of the variable ρ, we have seen that

FIG. 2. A schematic illustration of the long-range vdW interaction between three
particles in 3D space and its counterpart, VLR(ρ), for a single particle in the 6D
space.

(regardless the value of Q) four of the roots are complex, and from
the two remaining real roots, only one is positive.

Interestingly enough, for all chosen values of Q and disper-
sion coefficients, the probability density function (PDF) of the ρ-
distribution, F f (ρ), is described by the PDF of the generalized
extreme value (GEV) distribution, i.e.,

F f (ρ) =
1
δ

exp
⎡⎢⎢⎢⎣
−(1 + ξ

ρ − β
δ
)
− 1

ξ ⎤⎥⎥⎥⎦
(1 + ξ

ρ − β
δ
)
−1− 1

ξ
, (18)

with 1 + ξ ρ−β
δ > 0. The GEV distribution is a family of continuous

probability distributions developed within the extreme value the-
ory.65,66 It is parameterized with a shape parameter ξ ≠ 0, a location
parameter β, and a scale parameter δ. It is worth mentioning that
here ξ > 0, which corresponds to type II (also known as the Fréchet
distribution) of GEV distributions.66 The parameters of GEV in
Eq. (18) are fitted, yielding an uncertainty below 0.05%.

As an illustration, the distribution f (ρ) obtained by setting
Q = 1 mK in Eq. (17) for the three-body collision As + He + He is
shown in Fig. 3. As can be seen in Fig. 3, the probability density is
positively skewed. Therefore, due to this skewness, the maximum ρm
is achieved by using the mode of the GEV distribution,

ρm = β + δ
ξ
((1 + ξ)−ξ − 1), (19)

instead of its mean value.
It is worth mentioning that we have observed the same

(hyper)radial distribution f (ρ) also in the case of pairwise interac-
tions proportional to 1/r4. In other words, if we change an atom by
an ion, the distribution of the hyper-radius ρ is of the same kind.
However, the results of such a study are beyond the scope of this
work and will be considered elsewhere.

B. Effective dispersion coefficient
The general form of the long-range potential VLR(ρ) in the 6D

space can be derived from the power–law relation between Q and
ρ(= ρm). An example has been shown in Fig. 4. It can be seen that,
as expected, Q is proportional to 1/ρ6 and the corresponding effec-
tive dispersion coefficient, Ceff, is the slope of the fitted line in the
log–log scale. Therefore, Ceff can be obtained as a function of CAB

6
and CB2

6 of the pairwise vdW interactions. Finally, utilizing Eqs. (16)
and (17), we have

VLR(ρ) = −
Ceff

ρ6 . (20)

Through the same procedure for all A-B-B systems mentioned
in Table I and calculating the corresponding vdW coefficients Ceff,
we have found the general expression

Ceff = a(CAB
6 )

c + d(CB2
6 )

g
, (21)

with parameters a = 0.56 ± 0.04, c = 0.189 ± 0.009, d = 1.19 ± 0.04,
and g = 0.155 ± 0.003. Equation (21) is applicable to any three-
body system leading to the formation of vdW molecules. Note that
Ceff is in atomic units, and the value of parameters a, b, c, and
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TABLE I. Dispersion coefficients of pairwise potentials contributing in different three-body collisions A + B + B and their corresponding temperature-dependent three-body
recombination rates calculated from Eq. (28) at T = 4 K, a relevant temperature for buffer gas cell experiments. All the dispersion coefficients are given in atomic units, and
k3(T) is given in units of cm6/s.

A-B-B CAB
6 CB2

6 k3 (T = 4 K) (×10−32) A-B-B CAB
6 CB2

6 k3 (T = 4 K) (×10−32)

Li–He–He 22.51a 1.35a 2.99 F–Ar–Ar 33.44b 64.3 1.64
Na– 23.77a 2.67 Cd– 173.6c 1.36
K– 39.47d 2.69 Hg– 129.9c 1.28
Be– 12.98e 2.79 Zn– 139.4c 1.44
Ca– 36.59d 2.68 Li–Kr–Kr 255e 129.6e 1.99
Sr– 38.64f 2.62 Na– 289e 1.53
N– 5.7f 2.53 K– 444.2d 1.40
O– 5.83b 2.50 Be– 146e 1.82
As– 17.16f 2.49 Ca– 400e 1.39
P– 14.69f 2.54 Sr– 482.1d 1.21
Ti– 27.61a 2.60 O– 64.77b 1.52
Cd– 24.93c 2.53 F- 47.53b 1.44
Hg– 18.92c 2.46 Cd– 250.9c 1.12
Zn– 20.1c 2.52 Hg– 186.9c 1.02
Li–Ne–Ne 46.4e 6.38e 2.09 Zn– 201.2c 1.21
Na– 52.4e 1.69 Li–Xe–Xe 404e 285.9e 1.94
K– 77.5d 1.61 Na– 460.8d 1.48
Be– 27.7e 1.92 K– 698.1d 1.35
Ca– 74.8e 1.60 Be– 226e 1.77
Sr– 86.36d 1.49 Ca– 624e 1.33
O– 13.13b 1.64 Sr– 750.3d 1.14
Cd– 46.3c 1.40 O– 103.4b 1.48
Hg– 34.99c 1.34 F– 79.4b 1.40
Zn– 37.29c 1.45 Cd– 385.7c 1.05
Li–Ar–Ar 174.1d 64.3e 2.24 Hg– 285.8c 0.94
Na– 196.8d 1.75 Zn– 308.9c 1.15
K– 317e 1.64 Be–Li–Li 467e 1389e 4.91
Be– 101e 2.05 Be–Na–Na 522d 1363e 3.39
Ca– 276e 1.62 Be–Mg–Mg 364.9d 629.6d 3.07
Sr– 327.1d 1.46 Be–Be–Be 213e 213 3.69
O– 43.88b 1.73 He–He–He 1.35a 1.35 2.74
aDispersion coefficient C6 for alkali–helium pairs is taken from Refs. 54 and 55, for He–He from Ref. 56, and for Ti–He from Ref. 39.
bDispersion coefficient C6 for O–B is taken from Ref. 63 and for F–B from Ref. 64.
cDispersion coefficient C6 is obtained through the London–Drude theory of dispersion interactions and taken from Ref. 8.
dDispersion coefficient C6 is taken from Ref. 57.
eThe dispersion coefficient C6 is taken from Refs. 58–60.
fDispersion coefficient C6 for Sr–B is taken from Ref. 61 and for pnictogen–He from Ref. 62.

d should be modified for Ceff in other systems of units. Figure 5
displays the surface plot of the coefficients obtained from Eq. (21)
with the mentioned parameters, plotted for different values of CAB

6
and CB2

6 .

IV. CLASSICAL THRESHOLD LAW
A threshold law for the three-body recombination cross section

and rate can be established based on the pioneering capture the-
ory of Langevin.67 In the framework of this classical capture model,
every trajectory associated with the collision energy (Ec) above the
potential barrier leads, with unit probability, to a reaction event. To

implement the same idea in the 6D space, we first need to define the
effective potential.

In a three-body collision, after including the centrifugal energy,
the effective long-range potential in hyperspherical coordinates
reads as51 (in atomic units)

Veff(ρ) = VLR(ρ) +
Λ2

2μρ2 , (22)

with a maximum (the so-called centrifugal barrier) at ρ0

= (6μCeff/Λ2)1/4
. Here, Λ2 = (ρ⃗ ∧ P⃗)2 can be obtained from

the components given by Eq. (14), and after applying (algebraic)
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FIG. 3. The PDF of ρ-distribution f(ρ) (blue histogram) and the fitted PDF of GEV
distribution (red curve) for Q = 1 mK in the three-body collision As + He + He. ρ
is given in units of the Bohr radius a0 ≈ 5.29 × 10−11 m. Parameters of GEV are
obtained as ξ ≈ 0.67, δ ≈ 12.11, and β ≈ 69.03.

FIG. 4. Power-law relation between different Q and ρ values (circles) for the three-
body recombination process As + He + He → AsHe + He fitted with Q = aρb

(purple line). The results are shown in the log–log scale.

FIG. 5. Calculated effective dispersion coefficient Ceff for different A + B + B
collisions shown in Table I (black symbols) together with Ceff calculated from
Eq. (21) (blue surface). Note that the X and Y axis are in the logarithmic
scale.

Lagrange’s identity,68 one finds

Λ2 ≡ ∑
1≤i<j≤6

Λ2
ij = (

6

∑
i=1

ρ2
i )(

6

∑
i=1

P2
i ) − (∑

6
i=1 ρiPi)

2

= ρ2P2 − (ρ⃗ ⋅ P⃗)2 . (23)

Utilizing the relation between the impact parameter vector b⃗ and the
initial position and momentum vectors,40 we have ρ⃗0 ∧ P⃗0 = b⃗ ∧ P⃗0,
where we used the fact that P⃗0 ∧ P⃗0 = 0. Finally, taking into account
that b⃗�P⃗0, one finds

Λ2 = (b⃗ ∧ P⃗0)
2

= b2P2
0 − (b⃗ ⋅ P⃗0)

2

= 2μEcb2, (24)

which establishes the intimate relation between the grand angular
momentum and the magnitude of the impact parameter.

Knowing that a reaction occurs only if Ec ∼ Veff(ρ0), we can
find a threshold value for the impact parameter, bmax, which is
assigned to Ec = Veff(ρ0). Upon substituting for Λ2 obtained from
Eq. (24) into Veff(ρ0), we derive the relation

bmax =
√

3
2
(2Ceff

Ec
)

1/6
. (25)

Inserting Eq. (25) into Eq. (9), we obtain the geometric cross section
(P(Ec, b) = 1 for b ≤ bmax) in the following form:

σrec(Ec) =
8π2

3 ∫
bmax(Ec)

0
b4db

= 6
√

3π2

5
√

2
(2Ceff)5/6E−5/6

c

= 6
√

3π2

5
√

2
[2a(CAB

6 )
c + 2d(CB2

6 )
g]

5/6
E−5/6

c , (26)

where in the last line we made use of Eq. (21). Employing Eq. (10),
the three-body recombination rate can be calculated as a function
of the collision energy and dispersion coefficients of the pairwise
interactions as

k3(Ec) =
6
√

3π2

5√μ
[2a(CAB

6 )
c + 2d(CB2

6 )
g]

5/6
E−1/3

c . (27)

Finally, the corresponding thermal average is obtained via integrat-
ing Eq. (27) over the appropriate three-body Maxwell–Boltzmann
distribution of collision energies, yielding

k3(T) =
1

2(kBT)3∫
∞

0
k3(Ec)E2

c e−Ec/(kBT)dEc ,

= 4π3(kBT)−1/3

3Γ(1/3)√μ
[2a(CAB

6 )
c + 2d(CB2

6 )
g]

5/6
, (28)

where kB is the Boltzmann constant and Γ(x) is the gamma func-
tion of argument x. We should emphasize that these relations are
best valid for collision energies smaller than the dissociation energy
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of the vdW molecules, which is typically below 100 K (≈10 meV).
Moreover, one should also verify the validity of the classical
approach based on the number of involving partial waves, which will
be discussed in what follows.

A. Estimated number of contributing three-body
partial waves

From the perspective of a scattering problem of a single particle
in a 6D space, each (grand) angular momentum quantum number
λ is a so-called partial wave. Following this fact, we introduce λ as
the partial wave associated with a three-body recombination in 3D
space.

It is known that the reliability of the classical approach depends
on the number of partial waves contributing to the scattering observ-
ables.46,69 In other words, the large number of partial waves (≈20)
contributing to the scattering washes out quantum effects, such as
resonances. The number of partial waves that impart a significant
effect to the scattering problem can be estimated from the strength
of the interaction, i.e., the collision energy Ec.39,46

Setting Λ2 equal to the eigenvalues of its quantum mechanical
counterpart, λ(λ + 4), from Veff(ρ0) = Ec, we can establish the fol-
lowing relation between the maximum three-body partial wave λmax
and a given collision energy:

λmax =
√

6 μ[a(CAB
6 )

c + d(CB2
6 )

g]
1/6
(Ec

2
)

1/3
, (29)

where we made use of the fact that for λ≫ 4, λ(λ + 4) → λ2.
Equation (29) provides a measure to check the validity of classi-
cal calculations for different A-B-B systems based on the collision
energy, reduced mass, and pairwise dispersion coefficients. For a
more detailed comparison between the quantum and classical results
obtained by hyperspherical classical trajectory method in three-body
recombination, see Ref. 40.

B. Low-energy limit: s-wave collisions
In the final part of this section, we derive a classical threshold

law associated with the quantum s-wave scattering, i.e., λ = 0. In this
case, one may define the parameter bmax as the distance at which
the collision energy is comparable to the strength of the interac-
tion potential, i.e., Ec = CB2

6 r−6
12 + CAB

6 r−6
23 + CAB

6 r−6
31 in the 3D space or

equivalently Ec = Ceffρ−6 in the 6D space. Therefore, the maximum
impact parameter in the hyperspherical coordinate system reads as

bmax = (
Ceff

Ec
)

1/6
. (30)

By a similar argument as above, we obtain the cross section from
Eq. (9), which yields

σsw
rec(Ec) =

8π2

15
[a(CAB

6 )
c + d(CB2

6 )
g]

5/6
E−5/6

c . (31)

Consequently, the three-body recombination ksw
3 (Ec) and its ther-

mal average ksw
3 (T) are given by

ksw
3 (Ec) =

8
√

2π2

15√μ
[a(CAB

6 )
c + d(CB2

6 )
g]

5/6
E−1/3

c (32)

and

ksw
3 (T) =

16
√

2π3(kBT)−1/3

27Γ(1/3)
√

3 μ
[a(CAB

6 )
c + d(CB2

6 )
g]

5/6
, (33)

respectively.

C. Results
The results derived by performing the thermal average (28) for

different A + B + B reactive collisions for T = 4 K (relevant for buffer
gas cells) are shown in Table I. To calculate these values, we used the
mass of the most abundant isotopes of A and B atoms. Note that the
calculated recombination rates account for both AB and B2 prod-
ucts of the three-body process. However, based on the relative values
of the dispersion coefficients, AB molecules are formed more often
than B2 ones, unless the dispersion coefficient for B2 is larger than
that of AB. It is important to notice that all calculated three-body
recombination rates are of the same order of magnitude. One reason
is the very close values of Ceff obtained for different systems, which
almost neutralizes the effect of the three-body reduced mass μ.

Table II shows the three-body recombination rates k3(T) given
by Eq. (28) for six different A + He + He collisions at T = 4 K,
together with values of knum

3 (T) taken from Ref. 39. knum
3 (T) are

the numerical values calculated via the classical trajectory method
introduced in Ref. 40. The recombination rates k̃3(T) in this table
are obtained from a capture model that only takes into account the
pairwise interaction of the stronger long-range tail, i.e.,39

k̃3(T) =
4π3(kBT)−1/3

Γ(1/3)√μ
(2CAB

6 )
5/6

. (34)

It can be seen that the trend of the rates calculated with a cap-
ture model à la Langevin (k3) is in reasonably good agreement with
the trend of knum

3 except for Li and Na. This is because the dissoci-
ation energy of LiHe and NaHe is below 2 K. Hence, the collision
energies considered to calculate k3(T = 4 K) have reached the high-
energy regime (Ec > De). Since this regime is sensitive to the short
region of the potential, the capture model is not as accurate as in the
other cases. Finally, we must highlight the considerable improve-
ment (about one order of magnitude) in the threshold values k3
obtained from Eq. (28) over those values derived from the threshold
law given by Eq. (34).

TABLE II. Temperature-dependent three-body recombination rates k3(T) from
Eq. (28), k̃3(T) from Eq. (34), and knum

3 from Ref. 39 calculated at T = 4 K. Recom-
bination rates are given in units of (cm6/s × 10y ), where y is given in parentheses
beside of each number.

A k3 k̃3 knum
3

Li 2.99 (−32) 2.03 (−31) 5.94 (−33)
Na 2.68 (−32) 1.89 (−31) 9.30 (−34)
N 2.53 (−32) 5.99 (−32) 3.00 (−33)
As 2.49 (−32) 1.37 (−31) 2.94 (−33)
P 2.54 (−32) 1.25 (−31) 3.09 (−33)
Ti 2.61 (−32) 2.07 (−31) 3.09 (−33)
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V. CONCLUSIONS AND PROSPECTS
After developing a clear picture of the (hyper)radial depen-

dence of a three-body potential in a 6D space and studying more
than 40 three-body systems relevant for vdW molecule formation,
we have found how the long-range interaction of three-body sys-
tems depends on pairwise interactions between the colliding part-
ners. Then, employing a classical trajectory method in hyperspher-
ical coordinates, we have established a classical threshold law for
the formation of vdW molecules through direct three-body recom-
bination processes relevant for buffer gas cooling experiments. In
addition, we have shown that at a given temperature, the three-body
recombination rate is of the same order of magnitude independently
of the atomic species under consideration, which corroborates our
previous studies on the matter.

The most valuable achievement of this work is to offer a simple
expression that makes it possible to obtain the three-body recombi-
nation rate by only using the long-range dispersion coefficients and
masses of the colliding atoms. This result helps to quickly estimate
the role of three-body recombination in a given scenario and with
it provides a new avenue for the calculation of three-body recombi-
nation rates avoiding costly computations. Finally, we hope that our
findings help to make three-body collisions more approachable for
the chemical physics community.
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