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Abstract. We study the beyond-mean-field corrections to the energy of a dipolar

Bose gas confined to two dimensions by a box potential with dipoles oriented in plane

such that their interaction is anisotropic in the two unconfined dimensions. At a

critical strength of the dipolar interaction the system becomes unstable on the mean

field level. We find that the ground state of the gas is strongly influenced by the

corrections, leading to formation of a self-bound droplet, in analogy to the free space

case. Properties of the droplet state can be found by minimizing the extended Gross-

Pitaevskii energy functional. In the limit of strong confinement we show analytically

that the correction can be interpreted as an effective three-body repulsion which

stabilizes the gas at finite density.
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1. Introduction

Ultracold dipolar gases have been attracting great attention in recent years. In these

systems, long-range anisotropic dipole-dipole interaction gives rise to a plethora of novel

effects which makes them useful for various applications in quantum simulation [1].

Different aspects of such systems can be studied using a variety of experimental

platforms including magnetic atoms [2, 3], polar molecules [4] and Rydberg atoms [5],

allowing to access different regimes of interaction strength, geometry, particle number

and quantum statistics. On the mean field level, a dilute gas of dipolar bosons

can become unstable towards a collapse caused by partially attractive nature of the
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interaction [3]. This can be seen also in the excitation spectrum as the Bogoliubov mode

frequencies become imaginary. Depending on the external confinement, the instability

can be tuned to occur at different values of the dipolar interaction strength and change

its character.

The development of experimental techniques allowing to produce Bose condensed

clouds of highly magnetic lanthanide atoms such as erbium and dysprosium [6, 7] has

led to rapid progress in this field. Most notably, the experiments highlighted the role

of beyond-mean-field effects for the dynamics of the gas with the unexpected discovery

of the droplet state [8–12]. It turns out that close to the instability, the mean field

contribution to the energy of the gas vanishes and the beyond-mean-field corrections,

which typically have higher power-law dependence on the density, become important.

The positive correction to the chemical potential can be interpreted as a source of

effective repulsion in the gas. This results in formation of a long-lived finite size droplet

with liquid properties. This kind of quantum droplet was originally suggested to occur

in Bose-Bose mixtures [13,14], and was later observed as well [15,16].

The discovery of quantum droplets resulted in renewed theoretical interest in

calculations of the beyond-mean-field corrections, pioneered already many years ago [17–

20]. For dilute Bose gas with short-range interactions the first results have been provided

by Lee, Huang and Yang (LHY) [17]. For the case of dipolar interactions in free space,

the correction turns out to have the same dependence on the density of the gas, but

its magnitude is enhanced [21]. The presence of external confining potential enriches

the problem by introducing a new lengthscale and allowing for the effective reduction of

the system dimensionality, which modifies the functional form of the beyond mean field

terms [22,23]. For anisotropic interactions, the relative orientation between the dipoles

and trap geometry can be exploited to qualitatively change the excitation spectrum,

developing a roton mode [24–29]. The possibility to modify the properties of the

roton mode allows to explore novel phases of matter. As demonstrated recently, by

carefully tuning the parameters it was possible to bring the ground state of the system

from a single droplet to an array of phase-coherent droplets [30–35], featuring broken

translational symmetry along with superfluid order and, thereby, having the properties

of a supersolid [36–38]. Quantum droplets were also predicted to occur in dipolar bosonic

mixtures [39,40] and in Rabi-coupled Bose mixtures [41].

Theoretical studies of the droplet physics were so far largely restricted to solving

an extended Gross-Pitaevskii (GP) equation with an additional term accounting for

the LHY correction [9, 42, 43] taken from free-space three-dimensional calculation [21].

The validity of this approach relies on the local density approximation (LDA), whereas

external confinement is known to modify the beyond-mean-field corrections [44–47].

Predictions of the extended GP equation have so far been rather successful in

interpreting the experimental results, and have been to some extent supported by

Monte Carlo calculations [48–50]. The aim of this paper is to rigorously study the

LHY term in a confined dipolar system, and to provide the form of the LHY correction

for an effectively two-dimensional system, as well as to check the validity of LDA. The
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calculation can be performed mostly analytically provided that the confining potential

is assumed to be of a box type with periodic boundary conditions.

This work is structured as follows. In Section 2, we introduce the system. In

Section 3 we perform the calculation of the LHY correction for the uniform system. In

Section 4, we show that the calculated correction can give rise to formation of droplets.

Conclusions are drawn in Section 5. Technical details of the calculations are given in

the Appendices.

2. Description of the system

The system under study is an ultradilute gas of polarized bosonic dipoles confined in

a highly anisotropic trap. For simplicity, we consider the system being placed between

two infinite planes separated by distance L from each other. We choose the coordinate

system such that z is the direction perpendicular to the planes. The dipoles polarization

direction is taken to be tilted by angle θ from the z direction (see Fig. 1). We assume

that the system forms a Bose-Einstein condensate, and study its properties using the

standard Bogoliubov method. Than the energy of the system reads

E[ψ]=

∫
dr⊥

∫ L/2

−L/2
dz

~2

2m
|∇ψ|2

+
1

2

∫
dr⊥dr

′
⊥

∫ L/2

−L/2
dzdz′ v(r− r′)|ψ(r)|2|ψ(r′)|2+ ELHY [ψ] (1)

where v(r− r′) denotes the interaction potential and ELHY the LHY energy term.

We additionally assume that the gas has a constant density in the z direction. This

naturally restricts our considerations to the systems where the changes of the density

in the x-y plane takes place on distances much larger than L. Below, when we derive

the profile of the droplet, we exploit the variational approach for the wave function

in the x-y plane, but still the z component is position independent [51]. With such

approximation Eq. (1) takes the form

E[ψ⊥]=

∫
dr⊥

~2

2m
|∇⊥ψ⊥|2

+
1

2

∫
dr⊥dr

′
⊥ v2d(r⊥ − r′⊥)|ψ⊥(r⊥)|2|ψ⊥(r′⊥)|2+ ELHY [ψ⊥] (2)

where r⊥ = xex + yey we denote the two-dimensional position vector, ψ⊥ =
√
Lψ and

v2d(r⊥ − r′⊥) =

∫ L/2

−L/2
dzdz′ v(r− r′). (3)

3. Beyond mean field energy correction

After describing the system, we proceed to the calculation of the energy ELHY . To

make the system analytically tractable, we use the local density approximation, i.e., we
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Figure 1. Graphical illustration of the system geometry. The dipoles (thick orange

arrow) lie in the x–z plane and are tilted by the angle θ with respect to the z-axis.

The gas is confined in the z-direction in a box of length L.

calculate the LHY energy density of a uniform system ε0
L2 e

2d
LHY and then approximate

ELHY [ψ⊥] '
∫
dr⊥

ε0
L2
e2d
LHY

[
2

π
aL|ψ⊥(r⊥)|2

]
. (4)

Here, we introduced an energy scale ε0 ≡ ~2
2m

(
2π
L

)2
. We separate out the factors ε0

L2 and
2
π
aL for convenience and brevity of further formulas.

In order to evaluate the energy ε0
L2 e

2d
LHY , we work with periodic boundary conditions

(PBC) along z, which is an approximation that significantly simplifies the calculations.

Although convenient for analytical considerations, mathematically, they introduce

spurious interaction between the Fourier copies of the system in adjacent cells of the

periodic system since the dipole-dipole interaction has a long tail. However, it was

shown in Ref. [52] that this spurious interaction modifies the mean field energy by less

than one percent as compared to the case without PBC. Since in the 3D limit, the local

density approximation was successfully used with the LHY energy in the form of the

generalized Gross-Pitaevskii equation, we expect that the LHY energy, being more local

in nature, will also be little affected by the spurious interaction.

3.1. Interaction potential

To proceed, we first focus on the interaction potential v(k). The bare potential consists

of two parts. The first is the anisotropic dipole-dipole interaction, and the second is a

strong, short-range potential which we assume to be isotropic and dominating over the

dipolar part at small distances. However, as long as only low energy and large distances

are considered, the pseudopotential of the following form can be used [53,54]:

v(r) = g
[
δ(r) +

3εdd
4πr3

(
1− 3(er · e)2

) ]
. (5)

Here the interaction strength g is determined by the scattering length of the total

potential a and atomic mass m by g = 4π~2a
m

and εdd parametrizes the relative strength

of the dipolar part of the interaction with respect to the short-range one, which can be

expressed as a ratio add/a with add being a characteristic dipolar length. In addition,

er = r/|r| and e denotes the polarization direction. We emphasize that a is the

scattering length of the total potential, i.e., the sum of the short-range and the dipolar
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potentials, and it may differ from the scattering length of the short-range potential

significantly [55,56].

Since we calculate LHY energy correction in a system with periodic boundary

conditions, we shall make use of Fourier transform of the v(r) potential given by

v(k) =

∫ L/2

−L/2
dz

∫
dr⊥ e

−ikrv(r)

g
(6)

where r⊥ = xex + yey. Due to periodic boundary conditions kz is quantized, i.e.,

kz = 2π
L
qz where qz is an integer. To simplify further formulas, we use in the above 1/g

prefactor. We obtain the following analytical form of the potential

v(q) = 1 + εdd

{
3
q2
x sin2 θ + qxqz sin 2θ − q2

⊥ cos2 θ

q2
[1− (−1)qze−πq⊥ ] + 3 cos2 θ − 1

}
, (7)

where q = kL/2π, q⊥ =
√
q2
x + q2

y, and we assume, without the loss of generality,

the dipoles to be oriented within the x − z plane. Here, θ is the angle between the

polarization direction and the z-axis, see Fig. 1. Since the dipole-dipole potential scales

as 1/r3 with the distance, some caution needs to be taken at the two limiting cases:

r → 0 and r → ∞. We discuss this issue in Appendix A for the sake of completeness.

The above formula has also been calculated in [52,57]. However, there L had a meaning

of a cutoff in the position space. Therefore, kz present in these works are not quantized.

3.2. Critical point

We now proceed to the analysis of the critical point of the uniform system defined

above. We define it as the instability point of the spatially uniform solution within

the mean field approximation. We assume that initially the gas is homogeneous and

search for the instability with increasing εdd. This instability can be found by analysing

the spectrum of the Bogoliubov quasiparticles ε(q) =
√
q2[q2 + 2ξv(q)] =

√
q2f(q)

where f(q) = q2 + 2ξv(q) ≥ 0. To simplify the notation we introduce ξ = gn/ε0 as

the dimensionless parameter measuring the strength of the interactions. In the stable

phase, all the quasiparticle energies should be real. However, at the critical point,

the function f(q) = q2 + 2ξv(q) ≥ 0, while for at least a single value of q = qc, we

have f(qc) = q2
c + 2ξv(qc) = 0. It is straightforward to find that for |δθ| � 1 where

δθ = θ − π/2 the above shall hold for qz = 0. In other words, the instability occurs in

the plane, where dipolar attraction is the strongest. In such a case, according to Eq. (7)

we have

f(q) = q2 + 2ξ
(
1 + εdd,crit(3 cos2 θ − 1)

)
+ 6ξεdd,crit(sin

2 φ sin2 θ − cos2 θ) [1− e−πq⊥ ],

where sinφ = qx/q⊥. The minimal value is achieved for φ = 0. At the critical point

q = qc we have f(q) = 0 and ∇qf(q) = 0, which leads to

q2
c + 2ξ(1− εdd,crit) + 6ξεdd,crit sin2 δθ e−πqc = 0
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and

qce
πqc = 3πξεdd,crit sin2 δθ .

The above can be rewritten as

εdd,crit − 1 =
1

2ξ

(
q2
c +

2

π
qc

)
, (8)

where qc is a solution of

qce
πqc = 3πξ sin2 δθ

(
1 +

1

2ξ

(
q2
c +

2

π
qc

))
. (9)

As we can see, in general εdd,crit depends on δθ and ξ. However, there are special cases

that we want to address. Firstly, for δθ = 0 the solution simplifies to qc = 0 and

εdd,crit = 1 which does not depend on the value of ξ. There is also another interesting

limit where δθ � 1 and simultaneously δθ2ξ � 1, where we find that

εdd,crit ' 1 + 3δθ2 (10)

which again shows lack of ξ dependence.

3.3. The beyond-mean-field term calculation

We proceed to the calculation of the analogue of the Lee-Huang-Yang term for the

trapped gas interacting with the potential given by Eq. (5) in the case of uniform system.

We express Lee-Huang-Yang 3d energy density of the system as ε0
L3 e

2d
LHY (εdd, θ, ξ),

and [58]

−2e2d
LHY

ξ2
=
∑
qz

∫
dq⊥

v2(q)

ε(q) + q2 + ξv(q)
−
∫
dq
v2

3d(q)

2q2
, (11)

where q⊥ = qxex + qyey, v(q) is given by Eq. (5), ε(q) =
√
q2[q2 + 2ξv(q)] and

v3d(q) =
∫

dr exp
(
−i2π

L
qr
)
v(r)/g = 1 + εdd

(
3 (q·e)2

q2
− 1
)

is the three-dimensional

Fourier transform of the potential v(r). Here e = sin θex + cos θez is the direction

of the dipoles’ polarization (see Fig. 1). The second term in Eq. (11) results from

the standard high momenta renormalization procedure which we describe in Appendix

B. For ξ � 1, the atoms occupy many excitation levels in the confined direction and

the system should behave as three-dimensional. Indeed, we find that for ξ � 1, the

beyond-mean-field energy e2d
LHY recovers the 3D result [21]

e2d
LHY (ξ)

ξ→∞−→ e3d
LHY = ξ5/2 8π

√
6

5
. (12)

3.3.1. Critical point calculation We now focus on the properties of e2d
LHY (ξ) for δθ = 0

and εdd = 1, which as described in Section 3.2, is the critical point. Fig. 2 shows the

numerically calculated results for the corrections described by Eq. (11) as a function

of ξ. The beyond-mean-field term approaches the 3D limit with increasing ξ. As can

be seen from the figure, the value of e2d
LHY is already close to the limiting case of e3d

LHY
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for ξ & 0.1. This means that a rather strongly confined gas can still be reasonably well

described using the free space results with the trap incorporated in the LDA fashion.

The ξ � 1 regime describes the quasi-2D limit in which the collisions are 3D in

character but the interaction energy is too low to populate the excited states in the

confined direction. As we explain in details in Appendix C, in this limit the two lowest

orders of the expansion in ξ take the form

e2d
LHY (ξ) ' c2ξ

2 + c3ξ
3 , (13)

where c2 ' 0.1974, c3 ' 108. Comparing with the numerical result, we find that

this approximation works well as long as ξ . 0.002. The first term of the expansion

in Eq. (13) is proportional to the square of the density and provides a correction to

the mean field energy of the BEC. This correction originates from the effect of the

confinement on the two-body scattering amplitude and could also be derived from the

two-body problem employing the Born expansion, as observed also in Refs. [45,46]. The

second term proportional to n3 can be interpreted as an emergent three-body term in

the energy functional stemming from quantum fluctuations. This effect is distinct from

three-body forces induced by confinement or internal structure, which have been studied

e.g. in [59, 60]. In our case, this term turns out to be repulsive (c3 > 0), providing a

possible stabilization mechanism for the gas close to the instability, and indicating that

dipolar droplets may exist in a quasi-2D system. We note that similar effective term can

be calculated using perturbation theory on a weakly interacting few-body system [61].

Figure 2. Left panel: the LHY energy e2dLHY as a function of ξ at the critical point.

The energy (solid line) is compared to the 3D limit from Eq. (12) (dotted line). The

dashed blue line shows the result of the approximation from Eq. (13. Right panel: a

magnified view of the comparison of the LHY energies calculated for δθ = 0, εdd = 1

(black), δθ = 0, εdd = 1− 0.01 (green dashed) and δθ = 0.1, εdd = 1 (red dotted).

The expansion in Eq. (13) has a vastly different structure than the beyond-mean-

field term in quasi-2D Bose-Bose mixtures [45] or in a single quasi-2D BEC [46] with

contact interactions. The origin of this discrepancy can be traced back to the fact that

the Fourier transform of the potential v(q) near the critical point is linear in q⊥ (for

qz = 0). This is the reason why the logarithmic terms that are usually present in two

dimensions do not appear here.
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Let us now briefly discuss the typical experimental conditions and the parameters

needed to reach the 2D regime in the LHY term. Most experiments in this field

are performed using dysprosium and erbium [62] at gas densities n ∼ 1014cm−3 with

scattering length being of the order of 100 a0. Assuming the box size of 1µm, we then

obtain ξ ≈ 1 for a typical experiment. In order to study the 2D regime one would need

to increase the confinement strength by more than an order of magnitude, which could

be realized using subwavelength traps [63] or a potential shaped by a digital micromirror

device [64]. Equivalently, one could decrease the gas density to about 1011cm−3, which

would on the other hand require much lower temperatures and longer operation times.

3.3.2. Before the critical point In the considerations above, we have so far discussed

the LHY term calculated at the critical point θ = π/2 and εdd = 1. Below we show that

LHY energy in the region of parameters δθ � 1 and δεdd � 1 does not change much.

We note that, strictly speaking, the LHY energy cannot be calculated after crossing the

critical point. Therefore we calculate numerically the LHY energy before and at the

critical point in three cases: δθ = 0, εdd = 1, δθ = 0, εdd = 1 − 0.01, and δθ = 0.1,

εdd = 1. The results are plotted in the lower panel of Figure 2. We notice that all the

studied cases show the same trend and differ by at most few percent. We have verified

that the correction changes continuously as we depart from the δθ = 0, εdd = 1 point.

Therefore, in the calculations of the droplet state below we take the value of LHY energy

calculated at the critical point εdd = 1 and δθ = 0.

Finally, we note that for the chosen orientation of the dipoles causing the

phonon instability to occur we were able to provide a universal result in the sense

that the expansion coefficients in Eq. (13) do not depend on the box width. This

is related to the fact that for dipoles oriented in plane the condensate depletion

converges, while for perpendicular orientation, where the roton instability occurs, the

condensate depletion calculated within Bogoliubov theory diverges and the system

becomes nonuniversal [26,47,65].

4. The droplet state

So far we have shown that the quasi-2D dipolar gas can in principle support droplet

solutions, as the LHY correction provides the mechanism for stabilization. In this

section, we find the droplet density in the limit of large atom number and numerically

investigate the density profile of the droplets in the finite system case.

From Eqs. (2) and (4) we obtain the energy of the considered system where LHY

energy correction is incorporated using local density approximation

E[ψ⊥(r)]=

∫
dr⊥

~2

2m
|∇⊥ψ⊥|2+

1

2

∫
dr⊥dr

′
⊥ v2d(r⊥ − r′⊥)|ψ⊥(r⊥)|2|ψ⊥(r′⊥)|2

+

∫
dr⊥

ε0
L2
e2d
LHY

[
2

π
aL|ψ⊥(r⊥)|2

]
, (14)
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where by r⊥ = xex + yey we denote the two-dimensional position vector. We note that

the coefficient multiplying the square of the wave function in the LHY part is introduced

because we have calculated the correction as a function of ξ instead of the density alone

(we remind that here a is the scattering length).

Now we focus on the δθ = 0 case. To calculate the energy we need to have e2d
LHY as

the function of εdd. In the previous Section we have presented calculation for εdd = 1 and

εdd = 1−0.01. We found that e2d
LHY weakly depends on this change of εdd. The calculation

of LHY in the uniform system case are not possible within standard Bogoliubov above

the critical point i.e. for εdd > 1, due to the imaginary frequencies of low modes. Still, it

is shown, using more sophisticated techniques, that generally e2d
LHY changes very weakly

after crossing the critical point [66, 67]. Therefore in what follows in the vicinity of

εdd = 1 we approximate e2d
LHY by its value at εdd = 1.

We now mention an interesting property. This comes from the analysis of the

interaction energy which in the Fourier space takes the form∫
dr⊥dr

′
⊥ v2d(r⊥ − r′⊥)|ψ⊥(r⊥)|2|ψ⊥(r′⊥)|2 =

g

(2π)2

∫
dk⊥ v2d(k⊥)[n2d(k⊥)]2,

where on the right-hand side n2d and v2d are the Fourier transforms of the two-

dimensional density, i.e., n2d(k⊥) =
∫
dr⊥ e

−ik⊥r⊥ |ψ⊥(r⊥)|2 and interaction potential

v2d(k⊥) =

∫
dr⊥ e

−ik⊥r⊥
v2d(r⊥)

g
.

The latter can be calculated analytically and for δθ = 0 reads

v2d(k⊥)=
1

L

{
1+εdd

[
3k2

x

k3
⊥L

(
e−k⊥L+k⊥L−1

)
−1

]}
. (15)

The form of the potential from Eq. (15) suggests it can be split into two parts. The

first one is v2d,loc(k⊥) = 1−εdd
L

, whose inverse Fourier transform yields a contact (local)

potential v2d,loc(r⊥) = 1−εdd
L

gδ(r⊥). The second part is the nonlocal potential

v2d,non(k⊥) =
εdd
L

3k2
x

k3
⊥L

(
e−k⊥L + k⊥L− 1

)
. (16)

We notice that this potential goes to zero for k⊥ → 0, and so we expect it to be less

important as the size of the droplets grows.

Having the above we now focus on the quasi-2D limit. Here we make use of

expansion given by Eq. (13). Firstly, we calculate the equilibrium density |ψ⊥|2 = neq of

a large droplet. Here we make a simple model of the droplet as having constant density

and volume in the two-dimensional plane denoted as V⊥. We assume that the droplet

finishes sharply and neglect the energies of the boundaries. In such a case, the energy

of the droplet is

E =
g

2L
(1−εdd)(neq)2V⊥+

ε0
L2

(
c2

(
2

π
aLneq

)2

+ c3

(
2

π
aLneq

)3
)
V⊥.(17)

Note that above we use the approximation described above and neglect v2d,non.

Substituting here the normalization condition, i.e., N = neqV⊥, and requiring
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(∂E/∂V⊥)N = 0, we find the equilibrium density of the droplet

neq =
1

a2

π2ε

16c3

.

Here ε = εdd−1− 4
π
a
L
c2 is the stability parameter, and the droplet is formed when ε > 0.

We notice that the critical point is shifted from the usual condition εdd − 1 > 0 by the

correction to the mean field coupling strength due to confinement.

With the equilibrium density at hand, we rewrite the energy functional in the

convenient dimensionless units, i.e., the unit of length d =
√

2c3
π3/2ε

√
aL, the unit of energy

E0 = g
L
ε(neq)2d2, and we set ψ⊥/

√
neq → ψ⊥. Such a transformation results in

E=

∫
dr⊥

[
|∇⊥ψ⊥(r⊥)|2− 1

2
|ψ⊥(r⊥)|4+

1

4
|ψ⊥(r⊥)|6

]
+δE, (18)

where the first integral contains the local terms and δE is the contribution to the total

energy from the nonlocal part of the dipole-dipole term

δE =
L

8π2ε

∫
dk⊥ v2d,non

(
k⊥
d

)
|n2d(k⊥)|2.

We note that here n2d(k⊥) is the Fourier transform of the density (defined as before but

now in the new units), and v2d,non is given by Eq. (16). The physical number of atoms

in the droplet is

Nat = neqd2N =
L

a

1

8πε
N,

where N =
∫
dr⊥ |ψ⊥(r⊥)|2.

We have minimized the functional from Eq. (18) numerically and found the density

profiles of the droplet for different total number of atoms. In the numerical calculations

we take a = 10 nm, the length L = 1 µm, and we set ξeq = 0.001. These numbers lead

to ε = ξeq a
L

8c3
π
' 0.0027 and neqd2 = L

a
1

8πε
' 1400. In order to find the density that

minimizes the function, we calculate the functional derivative of E − µN with respect

to ψ⊥(x, y); here, we impose an additional constraint on the total norm so a Lagrange

multiplier µ appears. This procedure leads to a Gross-Pitaevskii-type equation for ψ⊥.

In the first step of our numerical approach, we drop from the functional the term δE,

and then we solve it by the imaginary-time method. This leads to a profile ψ⊥ which

is spatially symmetric. This solution is then treated as the initial point for the full

problem including now the term δE.

Fig. 3 displays the numerically calculated density profiles of the droplets for three

values of the two-dimensional norm N = 15, 300 and 500. This corresponds to the

number of atoms: Nat = 2.1× 104, 4.2× 105 and 7.0× 105, respectively. We note that

for these parameters the three-dimensional density of atoms is on the order of 1011cm−3,

and so the three-body losses not included in the theory should still be moderate.

As can be seen in Fig. 3, due to the effect of δE, the droplet shape that we obtain

is not cylindrically symmetric. The observed anisotropy, however, is not prominent. For

larger atom numbers, for instance N = 300 or 500, the density in the middle is almost

constant and close to the analytically predicted equilibrium value neq (see also the inset
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Figure 3. The cuts through the two-dimensional density of the droplet along the

x and y directions taken through the centre of the cloud |ψ⊥(x, 0)|2 and |ψ⊥(0, y)|2.

The black solid line is calculated for N = 15; here the two cuts are indistinguishable

and no anisotropy can be seen. The red dotted (red dotted-dashed) and blue dotted

(blue dotted-dashed) lines are for N = 300 and 500, respectively, and the cuts along

y (x) direction; the norm N is also indicated by arrows. In each case, the double-

dotted-dashed line between the two cuts shows the result of the calculation without

the anisotropic contribution δE which gives a symmetric profile. The inset (the units

on axes are the same as in the main panel) shows the zoom in of the cloud center.

The symmetric solution (without δE) always overestimates the central density. With

increasing the normN , the full solution approaches the homogeneous limit. In the main

panel, the horizontal, dotted gray line indicates the homogeneous limit |ψ⊥| = neq.

of Fig. 3). Finally, we see that with increasing the number of atoms, the droplet grows in

its volume by keeping almost constant central density, but attaching the atoms mainly

to its surface. This effect indicates that the system has liquid properties.

Now we shortly discuss the validity of the assumptions made in Sections 2 and 3.

In Sec. 2, we assumed that the length on which the density changes in the x and y

directions is much larger than L. From our analysis, we find that this characteristic

lengthscale is given by d, and the required condition is d� L. In the case of quasi-2D

limit analyzed in this Section, we have L
d

= σeq
√

a
L

4
√

2πc3, and using the values of the

parameters taken from numerical simulations, we obtain L/d ' 0.01, which confirms

the separation of lengthscales.

Additionally, in Sec. 3 we assumed the validity of the LDA. When we calculated

the LHY energy in the uniform case, we integrated and summed over the wave vectors k

with a characteristic cutoff kc. In the quasi-2D geometry, kc is of the order of a few 1/L,

but the coefficients c2 and c3 have their values approximately the same as for kc = ∞.

The LDA is justified, when kc is much larger than the inverse of the length on which

the density changes in the x-y plane, which we found to be equal to d. Therefore, in

the quasi-2D limit, we arrive at d� L, which is the same condition as obtained above

where we analyzed the assumptions stated in Sec. 2.



Quantum droplets in a dipolar Bose gas at a dimensional crossover 12

Finally, we discuss the droplet formation in the case δθ 6= 0 and δθ � 1. This

problem can be found by minimization of the energy functional given by Eq. (14). In

the above we did that for δθ = 0. Still for δθ � 1 the potential v2d(r⊥) shall not change

much (as it is a continuous function of δθ) with respect to δθ = 0 case. In addition we

have shown that the change of LHY energy term for δθ � 1 is negligible. The droplet

state comes from the interplay between interaction and LHY energy. As both of these

does not change much for δθ � 1 thus the properties of the droplet state shall also be

close to those analysed above (δθ = 0 case).

5. Conclusions

We analysed the beyond-mean-field behaviour of dipolar Bose gas subject to quasi-

two-dimensional confinement. Under several simplifying assumptions, we determined

analytically the Lee-Huang-Yang correction to the mean field energy. We showed that

close to the phonon instability the correction can become decisive for the properties of

the system, preventing it from collapse. The ground state of the system in this case is a

finite size self-bound droplet similar to the three-dimensional case. Crucially, we found

that for moderate confinement strength the magnitude of the correction is close to its

free-space limit, validating the use of the local density approximation.
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Appendix A. Evaluation of the Fourier transform of the dipole-dipole

interaction potential

In the case of the 3D dipole-dipole interaction the Fourier transform of vdip(r) =

gεdd
3

4π
1−3(er·e)2

r3
(where er = r/|r| and e denotes the direction of dipole polarization)

is evaluated by taking the integral in a finite space region between two spheres of radius

r0 and R0. After performing the integral, the limit r0 → 0 and R0 →∞ is taken arriving

at vdip,3d(k) = εdd (3(k · e)2/k2 − 1). Here we need to perform the integral

vdip(k) =

∫ L/2

−L/2
dz

∫
dr⊥ e

−ikrvdip(r)

g
(A.1)

where kz = 2π
L
nz is quantized. As we are restricted to the quasi-2d space, we do not

need to use the cutoff at large distances and we only take a cutoff at small distances r0.

This can be done by taking

vdip(r) =
1

(2π)3

∫
dk′ eik

′rvdip,3d(k
′)h(k′). (A.2)
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where h(k′) is a function being equal to unity for small k′ and then going to zero for

k′ > k0 where k0 ' 1/r0. Finally we take the k0 → ∞ limit. Inserting Eq. (A.2) into

Eq. (A.1) leads to

vdip(k) =
1

(2π)3

∫ L/2

−L/2
dz

∫
dr⊥ e

−ikr
∫

dk′ eik
′rvdip,3d(k

′)h(k′).

Performing the above analytical integrals gives

vdip(k) =
1

2π

∫ L/2

−L/2
dz

∫
dk′z e

−i(kz−k′z)zvdip,3d(kx, ky, k
′
z)h

(√
k2
x + k2

y + k′z
2

)
.

In the considered geometry vdip,3d(k) = εdd(3(kx sin θ + kz cos θ)2/k2 − 1). Inserting vdip
into the above we obtain

vdip(k) =
1

2π

∫ L/2

−L/2
dz

∫
dk′z e

−i(kz−k′z)zεdd

(
3(kx sin θ + k′z cos θ)2

k2
x + k2

y + k′z
2 − 1

)
h

(√
k2
x + k2

y + k′z
2

)
.

=
1

2π

∫ L/2

−L/2
dz

∫
dk′z e

−i(kz−k′z)zεdd

(
3 cos2 θ − 1 + 3

k2
x sin2 θ − (k2

x + k2
y) cos2 θ + 2kxk

′
z sin θ cos θ

k2
x + k2

y + k′z
2

)

× h
(√

k2
x + k2

y + k′z
2

)
.

In the above we deal with three different kinds of integrals. The first one

1

2π

∫ L/2

−L/2
dz

∫
dk′z e

−i(kz−k′z)z(3 cos2 θ − 1)h

(√
k2
x + k2

y + k′z
2

)
simply equals to 3 cos2 θ − 1 after taking the limit k0 → ∞. To see it clearly one can

take h(k′) = exp(−k′2/k2
0), perform the integrals analytically and at the end take the

limit. The second integral is

1

2π

∫ L/2

−L/2
dz

∫
dk′z e

−i(kz−k′z)z3
k2
x sin2 θ − (k2

x + k2
y) cos2 θ

k2
x + k2

y + k′z
2 h

(√
k2
x + k2

y + k′z
2

)
.

Here the integrand goes as 1/k′z
2 for large k′z . Thus we may readily set h = 1 obtaining

an analytical result that reads

3
k2
x sin2 θ − k2

⊥ cos2 θ

k2

(
1− exp

(
−k⊥L

2

)
(−1)kzL/(2π)

)
where k2

⊥ = k2
x + k2

y and kz = 2π
L
nz. The third kind of integral reads

1

2π

∫ L/2

−L/2
dz

∫
dk′z e

−i(kz−k′z)z3
kxk

′
z sin 2θ

k2
x + k2

y + k′z
2h

(√
k2
x + k2

y + k′z
2

)
.

Setting h = 1 we obtain an analytic result that reads

3
kxkz sin 2θ

k2

(
1− exp

(
−k⊥L

2

)
(−1)kzL/(2π)

)
Adding the above together we arrive at

vdip(k) = εdd

(
3 cos2 θ − 1 + 3

k2
x sin2 θ + kxkz sin 2θ − k2

⊥ cos2 θ

k2

(
1− exp

(
−k⊥L

2

)
(−1)kzL/(2π)

))
.
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Appendix B. Derivation of the formula for e2d
LHY

Here we start from analyzing the system of atoms interacting via potential ṽ(r). We

choose as an effective potential a function of the form

ṽ(r) = vc(r) + gf(|r|) 3εdd
4πr3

(
1− 3 cos2 θ

)
= vc(r) + vdip(r). (B.1)

In the above equation vc(r) is a non-negative central and local potential of width σ.

In Eq. (B.1) we additionally introduced a function f(r) which is equal to unity for

r0 < r < R0 and goes to zero otherwise, where r0 and R0 are the small and large

distance regularization used in Appendix A.

Applying Bogoliubov method to the homogeneous system in the same geometry as

in the main part of the paper we obtain the ground state energy density equal to

e0 =
1

2
n2gṽ(k = 0) +

1

2(2π)2L

∑
kz

∫
dk⊥ (ε(k)− Ek − ngṽ(k)) (B.2)

where ε(k) =
√
Ek(Ek + 2ngṽ(k)) and ṽ(k) =

∫ L/2
−L/2 dz

∫
dr⊥ e

−ikrṽ(r)/g. Additionally

we define ṽc(k) and ṽd(k) in the same way as ṽ(k). In the above the ground state energy

is given as a function of ṽ(k). Now we have to relate ṽ(k) to the universal quantities

like the scattering length. In order to do it we use Born expansion of the potential up

to the second order

g = gṽ3d(k = 0)− 1

(2π)3

∫
dk

g2ṽ2
3d(k)

2Ek
+ . . . (B.3)

where ṽ3d(k) =
∫

dr e−ikrṽ(r)/g. As before we additionally defined ṽc,3d(k) and ṽd,3d(k).

We fist notice that ṽd,3d(k = 0) = 0 which results in ṽ3d(k = 0) = ṽc,3d(k = 0).

Now we assume that the potential vc(r) is negligible for r > L/2. This implies that

ṽc(k) = ṽc,3d(k). We thus obtain

ṽ(k = 0) = ṽ3d(k = 0) + ṽd(k = 0). (B.4)

Combining Eqs. (B.2), (B.3) and (B.4) leads to

e0 =
1

2
n2g (1 + ṽd(k = 0))+

n2

2(2π)3

∫
dk

g2ṽ2
3d(k)

2Ek
+

1

2(2π)2L

∑
kz

∫
dk⊥ (ε(k)− Ek − ngṽ(k)) .(B.5)

In the above we identify the LHY energy density which reads

eLHY =
n2

2(2π)3

∫
dk

g2ṽ2
3d(k)

2Ek
− 1

2(2π)2L

∑
kz

∫
dk⊥

n2g2ṽ2(k)

ε(k) + Ek + ngṽ(k)

where we additionally used the relation − n2g2ṽ2(k)
ε(k)+Ek+ngṽ(k)

= ε(k)− Ek − ngṽ(k).

We now assume that the width of the vc(r) potential σ is much larger than the

scattering length ac of the vc potential (which is positive as vc(r) ≥ 0), and additionally

much larger than a, i.e., σ � ac, σ � a. These assumptions imply that for |k| � 1
σ

we

have ṽ(k) ' v(k) which in fact justifies the use of pseudopotential v(r) given by Eq. (5).

In the above we still have r0 and R0 present which make the above quantities finite. We
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want to take the limit r0 → 0 and R0 → ∞. In such a case we need to define how we

take the limit. We do it taking

eLHY = − 1

2(2π)2L

∑
kz

∫
dk⊥

(
n2g2ṽ2(k)

ε(k) + Ek + ngṽ(k)
− L

2π

∫ kz+∆kz/2

kz−∆kz/2

dk′z
g2ṽ2

3d(kx, ky, k
′
z)

~2
m

(k2
x + k2

y + k′z
2)

)

We now take the limit which gives ṽd,3d(k) = v3d(k) where v3d(k) = 1 + εdd

(
k2x
k2
− 1
)

.

After doing that we equate the above to ε0
L3 e

2d
LHY (ξ), substitute into the above the

definition of ξ and q. As a result we arrive at Eq. (11) from the main text.

Appendix C. Evaluation of the quasi-2D limit

In this section we evaluate analytically the quasi-2D limit of the LHY correction. We

rewrite Eq. (11) as:

e2d
LHY = −ξ

2

2

∑
qz

∫
dq⊥

v2(q)

εq + q2 + ξv(q)
−
∫

d q
v2

3d(q)

2q2
= −ξ

2

2
(g(ξ)− 2c2)

where

g(ξ) =
∑
qz

∫
dq⊥

(
v2(q)

εq + q2 + ξv(q)
− v2(q)

2q2

)
− 2c2 =

∑
qz

∫
dq⊥

v2(q)

2q2
−
∫

dq
v2

3d(q)

2q2
.

Expanding function g(ξ) around ξ = 0, we obtain

g(ξ) ' −ξ
∑
qz

∫
dq⊥

v3(q)

2q4
= −2c3ξ

In the above we notice that the two constants c2 and c3 are given by convergent sums

and can be evaluated to obtain

c2 =
27

256
π(3− 2ζ(3)) ' 0.1974

c3 =
135π3

8192

(
167 + 6π2 − 12ζ(3)

)
' 108.
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