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Supplementary Note 1. STABILITY OF THE QUADRATIC ELECTRON-PHONON MODEL

In this section, we derive the stability condition of the quadratically coupled electron-phonon model we consider.
The Hamiltonian of the model reads

H =He +Hph + Ve-ph, (1)

where

He = −J�
i,�

c
†
i,�ci+1,� +H.c., (2)

Hph = !�
i

�b†ibi +
1

2
� , (3)

Ve-ph = gq�
i

(n̂i − 1)(b†i + bi)
2
. (4)

A stable harmonic oscillator mode localized on a given site implies an oscillator stiffness K > 0. To derive the
condition for stability of the coupled electron-phonon system, we rewrite H in terms of the harmonic oscillator
displacement X̂i and momentum P̂i operators. We make use of the relation (�h = 1)

bi =
�

M!

2
(X̂i + i

1

M!
P̂i), (5)

where M is the oscillator mass, to obtain

Hph =�
i

1

2
KX̂

2
i +�

i

1

2M
P̂

2
i (6)

Ve-ph = 2
gq

!
K�

i

(n̂i − 1)X̂2
i , (7)

in which we used K = !2
M . Thus, the quadratic electron-phonon coupling renormalizes the oscillator stiffness on any
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given site

K →K�1 + 4�n̂ − 1�
gq

!
�. (8)

Demanding that K > 0, we arrive at the stability condition of the electron-phonon model:

�gq � <
!

4
. (9)

For spinless electrons n̂ − 1→ n̂ − 1�2 and the stability condition, then, is �gq � < !
2 .

Supplementary Note 2. EFFECTIVE MODEL

In this section, we derive in detail the effective model for the disordered dynamics we obtain within a treatment,
reminiscent of linear response, based on a low-order expansion in gq�! (and valid for arbitrary quench amplitude).
We discuss our approximations and limitations of the model.

As discussed in the main text, we move to a rotating squeezed frame, in which we derive a response theory to
leading order in gq�!. By direct comparison against the exact results we show that the effective model captures the
main qualitative features of the exact model dynamics.

A. Squeezing transformation

Kennes et al. [13] found a transformation that rescales the phonon coordinate, rotating the Hamiltonian
Supplementary Eqs. (1)-(4) into a frame in which the electrons and phonons are approximately decoupled. The
electron density-dependent transformation H → H̃ = UHU †, with U = e

S , S = −∑j
1
2⇣j(b

†
jb

†
j − bjbj) and squeezing

parameter ⇣i = −1
4 ln[1 + 4

gq

! (n̂i − 1)], yields

�
†
i ≡ e

S
b
†
ie
−S = cosh(⇣i)b†i + sinh(⇣i)bi,

�i ≡ eSbie−S = cosh(⇣i)bi + sinh(⇣i)b†i . (10)

Here �
†
i creates a squeezed phonon state on site i. Under this transformation, Hph + Ve-ph is recast into a form

completely diagonal in the squeezed phonon occupation basis:

H̃ = H̃e +�
i

!

�
1 + 4

gq

!
(n̂i − 1)(�†

i �i +
1

2
), (11)

where H̃e = e
SHee

−S is the squeezed electronic Hamiltonian (we discuss a treatment of this term below). Our
formulation of the problem amounts to a quench in which the non-linear electron-phonon coupling is suddenly switched
on. (We have verified that the quench dynamics of electronic correlations obtained from the time evolution of the initial
product state of electrons and phonons exactly resembles that obtained from an initial correlated electron-phonon
state on the accessible timescales in iTEBD.) In the original frame this generates phonon quanta in the dynamics
due to the off-diagonal phonon terms in the coupling (Supplementary Eq. (4)). In contrast, the squeezed Hamiltonian
conserves the boson number, which, however, couples to the square-root of the electron density operator. We will
see next that we can take advantage of this form in order to understand the nature of the dynamics of electronic
correlations.

The ratio of energy scales gq�! arises naturally in the squeezed frame. This provides an opportunity to expand the
interaction term in the squeezed Hamiltonian directly in orders of gq�!. In the limit gq � !, we Taylor expand to
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O{(gq�!)2} and find

H̃ ≈ H̃e +�
i

�! − 2�gq +
g
2
q

!
��(�†

i �i +
1

2
) + 2�gq +

g
2
q

!
��

i

n̂i(�†
i �i +

1

2
) − 4

g
2
q

!
�
i

n̂i,↑n̂i,↓(�†
i �i +

1

2
). (12)

To this order the electron-phonon coupling is completely local and the squeezed phonon number on each site is
conserved. The second term describes a squeezed phonon bath term with a renormalized energy scale !̃ = �! − 2�gq +
g2

q

!
��, which includes corrections at both O{gq�!} and O{(gq�!)2}. The third term shows that the phonon occupation

on site i changes the electron’s local chemical potential, again at both orders. This gives rise to disorder, static at
this level of approximation, due to the nature of the initial state (as explained within our effective theory, see below
and main text). Higher-order terms neglected in the transformation will lead to the evolution of �†

i �i, changing the
disorder from static to dynamic. Phonons also mediate an effective local electron-electron attraction (fourth term)
that appears first at second order.

We have so far postponed a treatment of the H̃e. To proceed, we evaluate this term in the electron occupation
number basis:

H̃e ≡ H̃e[{ni, nj}] = −J �
�ij�,�

c
†
i,�cj,�e

(⇣[ni+1]−⇣[ni])Bie
(⇣[nj−1]−⇣[nj])Bj , (13)

where �ij� refers to j = i ± 1 and Bi ≡ 1
2(�

†
i �

†
i − �i�i). Expanding the logarithm in the definition of ⇣i to O{gq�!},

we find ⇣[ni ± 1] − ⇣[ni] = ∓gq�!. Thus, to O{gq�!}, the exponential factors in Supplementary Eq. (13) reduce to
unity and we retrieve the original untransformed electronic hopping term. To incorporate corrections in the electronic
hopping due to the squeezing transformation we must expand the exponentials to next order:

e
(⇣[ni+1]−⇣[ni])Bie

(⇣[nj−1]−⇣[nj])Bj ≈ 1 + (⇣[ni + 1] − ⇣[ni])(⇣[nj − 1] − ⇣[nj])BiBj

+1
2
�(⇣[ni + 1] − ⇣[ni])2B2i + (⇣[nj − 1] − ⇣[nj])B2j )�.

Invoking an inelastic approximation in which one neglects correlations between phonon states on different sites and
thus the BiBj term (this can be rationalized either by simply noting that the initial phonon state is a product over site
wavefunctions whose inter-site correlations ought to be unimportant at very early times or by utilizing an incoherent
approximation to the phonon density matrix [13]), and evaluating the last term in the initial coherent phonon state, we
find a contribution at O{(gq�!)2}: −1

2(
gq

! )
2(�n̂B�2 +2�n̂B�+1), where �n̂B� = �↵�2 is the expectation value of n̂B = �†

�

in the initial state. Re-summing all similar contributions in the exponential, we find

J
∗ = Je−

1
2 (

gq

!
)
2
(�n̂B�

2
+2�n̂B�+1).

This result is exact to O{gq�!} and approximate to O{(gq�!)2} and higher orders due to the inelastic approximation.

Collecting the various terms, we arrive at the approximate effective Hamiltonian, Eq. (4) of the main text:

He↵. = −J∗�
i,�

(c†i,�ci+1,� +H.c.) + !∗�
i

��†
i �i +

1

2
�

+ 2gq�
i

(n̂i − 1)��†
i �i +

1

2
� − 4

g
2
q

!
�
i

(n̂i,↑ − 1�2)(n̂i,↓ − 1�2)��†
i �i +

1

2
� ,(14)

with !
∗ = !̃+2�gq + 1

2

g2
q

!
� = !− g2

q

! . Here, we have recast the Hamiltonian in terms of particle-hole symmetric electronic
operators. In this form, we see that the density-density interaction and the renormalized phonon terms are suppressed
by a factor of !�gq � 1 relative to the particle-hole symmetric electronic density term responsible for disorder (third
term), suggesting that in this limit the density term dominates the dynamics governed by He↵..
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B. Dynamics of observables in the squeezed frame

The form of He↵. in Supplementary Eq.(14) (Eq. (4) of the main text) provides a simple view within which to
understand the influence of the non-linear electron-phonon coupling on electronic properties. However, in order to
expose the intricate details of the dynamics on short and intermediate timescales, one must consider the action
of the transformation on the initial state and observables of interest. Consider an observable Ô measured in the
original frame �Ô(t)� = �0�U†(t)ÔU(t) �0�, where �0� ≡ � � is the initial state and U(t) = e−iHt is the time evolution
operator for H, Supplementary Eqs. (1)-(4) (Eq. (1) of the main text). We can obtain �Ô(t)� equivalently in the
squeezed frame defined by the transformation U = eS discussed above as �Ô(t)� = �0̃� Ũ†(t) ˆ̃OŨ(t) �0̃�, where �0̃� = eS �0�,
Ũ(t) = e−iH̃t and ˆ̃

O = eSÔe
−S are now in the rotated frame. Evaluating �Ô(t)� in this fashion comes with advantages.

The squeezed Hamiltonian conserves the squeezed phonon number, affording an analysis of the dynamics in terms of
these constants of motion. In fact, we can make use of the approximations derived above and systematically consider
the dynamics under the action of He↵. instead of H̃ in the limit gq � ! by making use of the following. We first
write �Ô(t)� = �0̃� Ũ†(t) ˆ̃OŨ(t) �0̃� = �0̃�G†(t)Ue↵.

†(t) ˆ̃OUe↵.(t)G(t) �0̃� . Here Ue↵. = e−iHeff.t and G(t) = U†
e↵.(t)Ũ(t), for

which we can derive an integral equation of motion: G(t) = 1− i ∫
t
0 dt

′
e
iHeff.t

′
(H̃−He↵.)e−iHeff.t

′
G(t′). We expand this

expression for G(t) in linear response, retaining terms of O{gq�!}. As discussed in the previous subsection, He↵. is
exact to O{gq�!}. Thus, the leading-order terms in H̃ −He↵. are already O{(gq�!)2}. We see that

�Ô(t)� = �0̃�U†
e↵.(t)

ˆ̃
OUe↵.(t) �0̃�

to O{gq�!}, and we simply need to consider the transformed initial state and observable under the action of He↵.

instead of H̃. Next, note that the transformation itself is parametrized by the ratio gq�! in ⇣i, which allows us to
simplify this expression by expanding e

S ≈ 1 + S. Thus, the equal-time expectation value of Ô to O{gq�!} in the
squeezed frame is

�Ô(t)� = �0�U†
e↵.(t)ÔUe↵.(t) �0� + �0�U†

e↵.(t)�ÔUe↵.(t) �0� + �0�U†
e↵.(t)ÔUe↵.(t) �g� + �g�U†

e↵.(t)ÔUe↵.(t) �0� , (15)

where �Ô = �S, Ô�, and �g� = S �0�. This result obtained within a linear response-like treatment consistently incorporates
O{gq�!} corrections in the time evolution.

We are interested in the time evolution of the expectation values of electronic operators Ô = Ôe that depend on the
charge or spin density. Noting that charge and spin correlations are conserved under the squeezing transformation
(�C ,�S = 0) and that terms in the above expression connecting �0� and �g� for Ô = Ôe vanish at O{gq�!} for real ↵
used throughout this work, we arrive at (see Eq. (5) of the main text)

�Ô(t)� = �0�U†
e↵.(t)ÔUe↵.(t) �0� .

To O{gq�!}, the dynamics of charge and spin correlations can be understood within an effective model in which we
simply time evolve the initial phonon coherent state (now in the squeezed basis) under the action of He↵..

As we show in the main text, this effective model captures in a qualitative and sometimes semi-quantitative manner
the behavior found in the exact results obtained in the unrotated frame. This simple model, however, provides
evidence that the exact dynamics of the initial phonon coherent state is dominated by physical behavior given by
its time evolution with He↵., which results in an ensemble of trajectories of independent conserved squeezed phonon
configurations, and because the initial state is a Poisson linear superposition over phonon number states, this can be
viewed as exactly equivalent to the disorder-averaged dynamics of a random system quenched to Poisson-distributed
disorder, as has been established for models with binary disorder [27, 28].

The utility of the effective model as a descriptor of the behavior of electronic correlations may in fact extend to long
times, but we have no means of confirming this since we only have access to correlation functions in infinite systems
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for which simulations are limited to short times. Below we will discuss a complementary approach within which to
understand the dynamics of electronic correlations in the original untransformed frame, which lends support to the
persistence of disorder to longer times.

Supplementary Note 3. SUPPLEMENTARY DISCUSSION OF DYNAMICS: DECOHERENCE AND
HEATING

In this section, we discuss supplementary details of the dynamics pertaining to decoherence and its influence on
electronic dynamics, and heating.

A. Dephasing phonon-induced dynamics

Similar to the approach of Ref. [13], we attempt to understand the influence of phonon coherence on the electronic
dynamics. The main result we find is that the onsite phonon reduced density matrix in the phonon-number basis rapidly
relaxes from its initial coherent state to a predominantly diagonal matrix, the elements of which form a unimodal
distribution very similar to the Poisson distribution that describes the eigenvalues of the initial phonon density matrix.
This persistence of the diagonal character of the initial state phonon reduced density matrix accompanied by its rapid
dephasing means that the approximation of the phonon distribution as an incoherent average over Poisson-distributed
occupation-number eigenstates is reasonable, and lends support to the idea that disordered electron dynamics is
intimately related to the nature of the initial state being a Poisson-distributed linear combination over phonon-number
states.

To access these effects in the dynamics in the original unsqueezed frame from the exact data, we devise an
approximate semi-classical in silico approach, which, using the exact phonon reduced density matrix extracted from
the simulations, reproduces qualitatively the flattening in charge correlations. This in silico approach in which one
extracts information from the exact behavior of the phonons in order to reproduce the qualitative features of the
dynamics of electronic correlations is not exact, but serves as a perspective on the influence of phonon decoherence
on the electrons, complementary to the results obtained within the effective model presented in the main text.

We analyze the loss of coherence with time of the onsite oscillator reduced density matrix ⇢
R
ph(t) in the phonon

occupation-number basis. We study the quantity ⌘(t) ≡ ∑⌫≠µ �⇢Rph⌫,µ(t)��∑⌫≠µ �⇢Rph⌫,µ(0)� (⌫ and µ are states of different
phonon occupation number) as a measure of decoherence (Supplementary Fig. 1, panels a and c). We find that ⌘(t)
drops sharply from its initial value of unity corresponding to the pure initial phonon state to below 50% at t ∼ 4J−1

and to vanishingly small values in the long-time limit. This implies that ⇢
R
ph(t) evolves from its initial pure coherent

state �↵� �↵� to a mixed state that is predominantly diagonal in the phonon-number basis, signalling rapid dephasing
of states with different phonon occupation number. The dephased configuration exhibits a unimodal distribution of
diagonal matrix elements, which closely resembles the initial state Poisson distribution. Our numerics reveals a strong
sensitivity of the electron dynamics to the approach of ⇢Rph to diagonality, as also corroborated in finite-size systems
in which we find the phonon coherence and electronic observables (e.g. energy density) both relax and approach the
steady state on the same characteristic timescale t ∼ 5J (not shown). This suggests that the diagonal matrix elements
of the X̂

2 operator can be thought of as a slowly evolving classical dynamical onsite potential for the electrons (see
also Fig. 2 of the main text, showing slow evolution with time of X̂

2 and its correlation with charge at t ∼ 5J).
We may thus invoke a semi-classical approximation in which we neglect the rapidly decaying and small off-diagonal
components of the X̂

2 operator ∝ b
†2 and b

2, and model it as a classical diagonal variable that couples to the electron
density in order to understand the influence of the non-linear coupling on the dynamics of electrons in terms of a
dephasing phonon-generated disorder, which ultimately destroys the initial state quasi-long-ranged electronic density
wave correlations.

To simulate this picture we consider an Anderson model for the dynamics of an initial state of a translation-invariant
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f

e

c

d

b

a

Supplementary Fig. 1. Dynamics of a metal subjected to a quadratic coupling, dephasing phonon-generated
disorder. a and b: Rapid loss of coherence in the onsite phonon reduced density matrix ⇢

R

ph shown via analysis of ⌘(t) ≡

∑⌫≠µ �⇢R

ph⌫,µ
(t)��∑⌫≠µ �⇢R

ph⌫,µ
(0)�. This is verified in Krylov propagation of systems of increasing size (a and b), and can be

already observed on short timescales for infinite systems studied by iTEBD (c). Thin lines in orange hues are fits of ⌘(t) to an
exponential decay to a plateau (a). In the long-time limit, ⌘(t∞) approaches increasingly vanishing values with larger system
sizes (b). c, d and e: We use the approach to diagonality of ⇢

R

ph in iTEBD simulations (c) to invoke a semi-classical approximation
in which we treat the phonons classically, as characterized by their reduced density matrix. We extract a disorder potential
from the coupled model for an exemplary time tq =

2⇡

!
via singular value decomposition of ⇢

R

ph, which we use to evaluate an
effective classical disorder potential W(i) given by the expectation value of X̂

2 in the singular vectors iS(⇢R

ph
) (d), and weighed

by the probability distribution ⇤(i) given by the singular values (e). f: We model the dynamics of the electrons quenched to
the dephasing phonon potential given by W(i) weighted by the probability distribution ⇤(i), as prescribed by Supplementary
Eq. (16). A free metal subjected to this disorder potential at initial time exhibits, after disorder averaging, a flattening charge
correlator Ck(t) with a suppressed peak, qualitatively supporting the result of the fully coupled model observed in Fig. 3 of
the main text. We use gq = 0.25 and ! = ⇡�2 in the simulations of the fully coupled model used in this figure.

free-electron half-filled metal �FS� with kF = ⇡�2 evolved via a Hamiltonian that includes a static quenched onsite
disorder potential extracted from the dephased phonon X̂

2 obtained in exact simulations of the fully coupled model
at intermediate times:

HAnderson = −J�
i,�

(c†i,�ci+1,� +H.c.) +�
i

Ein̂i (16)

with Ei drawn from a classical disorder potentialW(i) given by the expectation value of X̂2 in the the singular vectors
i ≡ iS(⇢R

ph)
of the phonon reduced density matrix ⇢

R
ph (i.e., Ei ∈W(i) = �iS(⇢R

ph)
� X̂2 �iS(⇢R

ph)
�) with weights specified by

the probability distribution ⇤(i) of singular values of ⇢Rph over singular vectors i, see Supplementary Fig. 1, panels
c, d and e. We find that the momentum-resolved charge dynamics exhibits a rapid flattening (Supplementary Fig. 1,
panel f), bolstering the dephasing phonon-induced disorder picture of electron dynamics in the pumped metal.

B. Estimates of electron heating and phonon relaxation

An issue that arises naturally in the context of pump-probe experiments pertains to electronic heating due to phonon
relaxation in the dynamics. Here the initial pump creates an excited phonon state that couples to the electrons, and
eventually relaxes by exchanging energy with the electronic and electron-phonon subsectors. Transfer of energy to the
electrons may ultimately destabilize transient phases that could have emerged outside of equilibrium. This proceeds in
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one of the following ways. Either the system, while still far from global thermal equilibrium, evolves to a different out-
of-equilibrium state in which the electronic subsystem heats up to an effective temperature larger than the coherence
temperature of the emergent phase, or the system eventually reaches true (global) thermal equilibrium at which
point out-of-equilibrium behavior ceases to exist and the system becomes fully characterized by thermal distribution
functions. In what follows we provide an analysis, based on numerics of finite size systems, of the asymptotic long-
time behavior of the energy redistribution amongst the system subsectors as a function of pump fluence and phonon
adiabaticity, and of the asymptotic expectation values of local electronic and phononic observables compared against
their thermal expectation values which we use as proxy for the physical temperature of the electronic and phononic
subsystems.

1. Energetics as a function of pump fluence and phonon adiabaticity

To understand the tendency for electronic heating and phononic relexation as a function of the pump excitation
strength ↵ and the adiabaticity regime set by !, we study the asymptotic net change in energy density of the electronic,
phononic and electron-phonon subsectors in the long-time state obtained in finite-size simulations in Supplementary
Fig. 2. The results of Supplementary Fig. 2 can be summarizes as follows.

• Trend of energetics with increasing ↵:
Electron heating increases with ↵. Relaxation of the electron-phonon interaction energy increases with ↵, and is
non-vanishing even at smaller ↵ (this is expected, since the interaction should have a stabilizing contribution).
Phonon relaxation vanishes at the smallest ↵ studied. For even smaller ↵, phonon heating becomes possible since
the initial phonon state approaches the phonon vacuum state as ↵ → 0.

• Trend of energetics with increasing !:
Electronic heating and phonon relaxation exhibit non-monotonic behavior with ! with large changes in the interval
! ∈ [⇡�

√
2,⇡]J . Dependence of these quantities on the system size decreases for larger !. In this limit, electron

heating and phonon relaxation decrease with ! (the latter becomes basically negligible at the largest !), and the

a

b c

Supplementary Fig. 2. Net asymptotic change in electronic (a), phononic (b) and electron-phonon (c) energy
densities as a function of ↵, which sets the pump fluence (top horizontal axis), and !, the phonon frequency
(bottom horizontal axis). Results are obtained from exact Krylov propagation of small systems L = 4− 6 with phonon local
Hilbert space dimensions d⌫ = 8,10,12 (L = 6 is restricted to d⌫ = 8) to asymptotically long times for the largest electron-phonon
coupling gq = 0.25.
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electron-phonon interaction energy stabilizes (plateaus) at large !. The change in the interaction energy is smallest
for intermediate values of ! in contrast to the behaviour of the electron and phonon energies.

These results establish that in the adiabatic limit (small !) and for modest pump fluence (↵ =
√
2), the long-time

state exhibits non-vanishing electron-phonon correlations, accompanied by a net increase in the electronic energy.

2. Long-time state electronic and phononic distribution functions

Given that observables considered in finite-size simulations reach long-time plateaus with fluctuations that are
consistent with behavior suggestive of equilibration, it is pertinent to ask whether the long-time steady state is thermal,
i.e., if observables have an expectation value consistent with their thermal expectation value at a temperature T that
corresponds to the energy density of the initial state. (Note that absence of thermalization in the small system sizes
accessible in exact diagonalization (and propagation) is not necessarily guaranteed to hold in the thermodynamic
limit.) Here, we use momentum-resolved electronic occupations �n̂k� and onsite phonon populations in the occupation
number basis �n̂⌫� of the long-time state to judge whether it can be approximately considered to resemble a thermal
state. We contrast these against thermal expectation values which we obtain by computing the full Hamiltonian
spectrum using exact diagonalization (ED) of finite-size systems.

In Supplementary Fig. 3 we study �n̂k� in the long-time state. The exact electronic distribution function, at least
at large ↵, resembles a Fermi-Dirac distribution (Supplementary Fig. 3, panel a), however at a significantly lower
T than the physical temperature (Supplementary Fig. 3, panel b). We also find that the long-time steady steady
state for all ↵ exhibits a more strongly peaked distribution relative to its thermal counterpart obtained at T that
corresponds to the initial state energy density (Supplementary Fig. 3, panel b). Note that we could not find good
fits to Fermi-Dirac distributions for long-time states obtained for small ↵ values. These observations suggest that the
electronic subsystem of the long-time state deviates from a thermal distribution.

In Supplementary Fig. 4 we compute �n̂⌫� in the long-time state. The Poisson-like long-time phonon state found

a b

Supplementary Fig. 3. Electron distribution functions for different initial pump strength ↵. a: �n̂(k)� of the long-time
state from exact Krylov propagation of systems with L = 6 and d⌫ = 8 (solid lines) and their fits to Fermi-Dirac distributions
with temperature T determined from the fit (dashed lines). b: ��n̂� ≡ �n̂(k = 0)�− �n̂(k = ⇡)� for an L = 4 (d⌫ = 8) system (this
fully characterizes �n̂(k)� on an L = 4 system due to symmetry/conservation laws) in the long-time state obtained from exact
Krylov propagation with T determined according to the initial state energy density (blue line error-bar markers; error-bars
shows standard deviation of temporal fluctuations). We contrast this against the thermal expectation value of ��n̂� at a given
T obtained from ED (solid black line) and against the value of ��n̂� determined from a Fermi-Dirac distribution at a given T

(solid red line) of an L = 4 system. All results are for gq = 0.25 and ! = ⇡�2.
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a
b

Supplementary Fig. 4. Phonon distribution functions for different initial pump strength ↵. a: �n̂⌫� of the long-time
state from exact Krylov propagation of systems with L = 4 and d⌫ = 10 (dotted lines) and the fits of their exponentially decaying
tails to Maxwell-Boltzmann distributions with temperature T determined from the fit (solid lines). b: Energy density of the
initial state for a given ↵ versus T obtained from the fit of the tail of �n̂⌫� for the same ↵ (blue horizontal lines whose length
indicates temporal fluctuations obtained as standard deviation of the tail fits over different times in the long-time limit). This is
compared to the thermal E as a function of T (solid black line) obtained from the full spectrum of the Hamiltonian computed
in ED for L = 4, d⌫ = 10. All results are for gq = 0.25 and ! = ⇡�2.

in finite systems exhibits a maximum in occupation numbers ⌫ and therefore does not fit a thermal distribution. Of
course, in a strongly coupled electron-phonon state a thermal phonon distribution is not expected. However, the high-
energy tail should still decay in a manner controlled by the equilibrium temperature if the system has approached local
equilibrium, and a fit of the exponentially decaying phonon occupation tail to a Maxwell-Boltzmann distribution yields
an effective temperature. Carrying out this analysis for the long-time state obtained from exact Krylov propagation, we
find that the temperatures extracted from the phonon tail (Supplementary Fig. 4, panel a) overestimates the physical
temperature (Supplementary Fig. 4, panel b), except at the largest ↵. This analysis suggests that the long-time state
of the system does not resemble a thermal state. Note that due to the underlying assumption regarding the phonon
tail this constitutes less direct evidence of lack of equilibration than the comparison of the electronic distributions to
thermal ones discussed above.

The evidence presented above indicates that, at least within the limited system sizes available to exact
diagonalization and propagation, the system approaches a non-thermal long-time steady state. Drawing firm
conclusions about thermalization from such small system sizes without proper finite-size scaling analysis (the latter
being inaccessible to exact numerics) is of course not possible. A more thorough analysis of the existence or absence
of thermalization and the associated timescales is left to future work.

Supplementary Note 4. COMPARISON WITH THE LINEARLY COUPLED HOLSTEIN MODEL

In this section we detail the methods we use to decide an appropriate value of the Holstein coupling to compare to
a given value of the quadratic coupling.

The Holstein model with electron-phonon coupling gH(n̂i − 1)(b†i + bi) can be characterized via the dimensionless
coupling �H = g2

H

2!J , the ratio of the ground-state energy in the atomic limit J = 0 to that in the free electron limit
gH = 0. To compare the Holstein and quadratic models one must find the �H most comparable to a given quadratic
coupling gq. We consider the two following approaches to estimate measures of equivalence of coupling strengths:

a. Coupling strengths that give the same double occupancy in the static equilibrium limit:
We find for ! = ⇡�2, gq = 0.25 and gH = 0.29 (�H ≈ 0.027) yield the same double occupancy in the ground state of
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a half-filled chain.

b. Coupling strengths that give the same effective electron-electron interaction obtained from a disentangling
transformation:
The Lang-Firsov transformation [51] demonstrates that Holstein phonons mediate an effective electron-electron
attraction UH = −2 g2

H

! ≡ −4�HJ . The squeezing transformation derived above demonstrates that quadratic phonons

mediate an effective electron-electron attraction Uq = −4
g2

q

! �n̂Bi
+ 1�2� (recall n̂Bi

= �
†
i �i), see Supplementary

Eq. (12). The two models yield the same U when UH = Uq, leading to the condition:

�H =
g
2
q

!J
��n̂B� + 1�2�, (17)

where we replaced the phonon number operator by its average over the phonon distribution �n̂B�. Since the
radiation field creates a coherent state with amplitude ↵, we take an estimate of �n̂B� = ↵

2 the mean boson
number to find �H to be used to compare against a given gq. We thus judge for ↵ =

√
2 and ! = ⇡�2 �H ≈ 0.1 to be

equivalent to gq = 0.25 in the sense that it leads to an effective electron-electron interaction approximately equal
to that obtained from the pumped quadratic model (as analyzed within the squeezing transformation).

To summarize, we employ two methods to estimate a value of �H to compare to a given value of gq. One approach
assumes the two models are comparable when they yield the same double occupancy in the static ground-state limit,
the other compares the undriven Holstein model to the driven quadratic model, making use of analytical results. We
can conceptually use these two values of �H as approximate lower and upper bounds for comparison against a given
value of gq.

Supplementary Note 5. DETAILS OF NUMERICAL METHODS

In this section we detail the numerical methods and employed convergence parameters used in the simulations of
the non-linear electron-phonon model and of the effective model.

A. Details of simulations of the non-linear electron-phonon model

We simulate the time evolution of the initial state �0� ≡ � � under the action of the Hamiltonian of the non-linear
electron-phonon model Supplementary Eqs. (1)-(4) (Eq. (1) of the main text) to intermediate timescales in infinite
systems using iTEBD, and to long timescales in small systems using direct Krylov subspace methods.

1. Details of iTEBD simulations.

The quadratic electron-phonon model connects a phonon state of occupancy ⌫ only to states with ⌫′ = ⌫ ± 2. These
processes conserve phonon parity. We take advantage of this symmetry and parallelize most simulations over even and
odd phonon parity subsectors employing up to d⌫ = 12 states, see discussion below. We use a fourth-order trotterization
scheme for the iTEBD time evolution with time-steps dt. After each time-step, we truncate the Schmidt values of
a two-site unit cell state embedded in an infinite system; the discarded Schmidt values squared ✏TEBD denotes the
error due to truncation. We ensure that the bond dimension � of the time-evolved state after each time-step does not
saturate an upper bound we set, which we take to be, for the data points we study, in the range of 3000 − 5000. We
converge our results with respect to both dt and ✏TEBD, as we explain below.
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a. Convergence with respect to dt and ✏TEBD. Errors due to dt compete with those due to ✏TEBD. A sufficiently
small dt ensures negligible Trotter error. At the same time, however, it results in more frequent incidents of truncation
of the Schmidt values, each of an amount √✏TEBD, thus leading to overall greater Schmidt truncation in order to
access a specific desired final time tf . A sufficiently small ✏TEBD would eliminate Schmidt errors to within a desirable
accuracy, but instead leads to faster growth of entanglement, which scales exponentially in time, and this limits the
accessible tf . To ensure accurate results one needs to converge results with respect to the competing effects due to
dt and ✏TEBD, finding an optimal compromise of a sufficiently small (but not too small) dt to eliminate Trotter error
given a reasonably small ✏TEBD to ensure minimal error due to Schmidt truncation. In Supplementary Fig. 5, we
demonstrate convergence for two quantities Pk(t) and Ck(t). The same choices of dt and ✏TEBD allows convergence
of all other quantities considered in this work to the same standard or better. This allows us to approach tf ∼ 5J−1.

b. Convergence with respect to d⌫ . We converge results for electronic and phononic observables with respect to
the phonon Hilbert space dimension d⌫ within a reasonable accuracy of a few percent. Supplementary Fig. 6 shows
satisfactory convergence of representative quantities for d⌫ = 12, which we use to obtain the data presented in the
main text.
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Supplementary Fig.5. Convergence of time-evolved charge Ck(t) and pairing Pk(t) correlations with respect to
truncation error ✏TEBD and time-step dt used in iTEBD simulations. We use gq = 0.25 and ! = ⇡�2 here, which enables
the assessment of convergence for the strongest coupling and smallest phonon frequency considered. We observe satisfactory
convergence for ✏TEBD = 10−3.5 and dt = 0.1 on the accessible timescales.
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Supplementary Fig.6. Convergence of time-evolved energy densities �He(t)�, �Hph(t)� and �Ve-ph(t)� with respect to
the local phonon Hilbert space dimension d⌫ used in iTEBD simulations. We use ✏TEBD = 10−3.5 in the simulation
performed here for gq = 0.25 and ! = ⇡�2. We find that d⌫ = 12 suffices to achieve convergence within a reasonable bound at all
accessible times.

2. Details of propagation using direct Krylov subspace methods

We perform exact time evolution via direct Krylov space methods for system sizes L = 3−6 with a twisted boundary
condition: ei(⇡�2)L, employing a parallelization with respect to the local bosonic parity sectors. For small system sizes,
convergence with respect to the local bosonic Hilbert space dimension can be achieved, while for L = 6 we are restricted
to a truncated bosonic Hilbert space dimension d⌫ = 8,10.
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B. Details of simulations of the effective model

We simulate the time evolution of the initial state �0� in the squeezed basis under the action of He↵. using iTEBD,
employing d⌫ = 12 phonon states to accurately represent the initial coherent state. We use a fourth-order trotterization
scheme for the iTEBD time evolution with time-steps dt. After each time-step, we truncate the Schmidt values of a
two-site unit cell state embedded in an infinite system. We ensure that the bond dimension � of the time-evolved state
after each time-step does not saturate an upper bound of 5000. We converge our results with respect to both dt and
✏TEBD, finding that dt = 0.1 and ✏TEBD = 10−3.5 provide satisfactory convergence and access to timescales t ∼ 5J−1 for
the largest coupling (gq = 0.25) and smallest phonon frequency (! = ⇡�2) considered.
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