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ABSTRACT

Mutation testing is an established approach for checking whether

code satisfies a code-independent functional specification, and for

evaluating whether a test set is adequate. Current mutation testing

approaches, however, do not account for accuracy requirements

that appear with numerical specifications implemented in floating-

point arithmetic code, but which are a frequent part of safety-critical

software. We present Magneto, an instantiation of mutation testing

that fully automatically generates a test set from a real-valued spec-

ification. The generated tests check numerical code for accuracy,

robustness and functional behavior bugs. Our technique is based on

formulating test case and oracle generation as a constraint satisfac-

tion problem over interval domains, which soundly bounds errors,

but is nonetheless efficient. We evaluate Magneto on a standard

floating-point benchmark set and find that it outperforms a random

testing baseline for producing useful adequate test sets.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging; ·Mathematics of computing→ Interval arithmetic;

· Theory of computation → Constraint and logic program-

ming.
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1 INTRODUCTION

Mutation testing [37] is an established white-box approach for

checking whether code correctly implements a specification. Test

cases are generated from mutations of the specification that simu-

late common programmingmistakes that should be guarded against.

The aim is to develop a test suite that will detect all such faults (or
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kill all mutants), i.e. include at least one test to show that the target

code’s behavior differs from the mutant’s.

Mutation testing has been successful in a number of domains,

such as real-time embedded systems [25], hardware verification in

the micro-electronics industry [60] or more recently performance

testing [23]. Unfortunately, these techniques are not suitable for

numerical specifications that appear frequently for instance in au-

tomotive or avionics applications, because they ignore rounding

errors due to finite-precision arithmetic.

Such numerical functional specifications are given in terms of

real values, but their implementations are (of necessity) written in

terms of finite precision such as floating-point arithmetic [2]. Effec-

tively, this means that the code can only implement the functional

specification approximately: every arithmetic operation inherently

suffers from rounding errors that accumulate throughout the com-

putation. To rigorously test finite-precision code, these rounding

errors have to be taken into account when generating test oracles

and test inputs for common (syntactic) errors, such as incorrect

arithmetic operators. In addition, a meaningful test set should also

check whether the code is implemented with sufficient precision,

i.e. whether it computes accurate enough results.

We present the first mutation testing technique for numerical

specifications with accuracy requirements. Given a real-valued

specification as an arithmetic expression together with an accuracy

requirement, our algorithm generates a test set which adequately

checks for common programming mistakes, such as wrong con-

stants or arithmetic operators, but which also checks whether the

implementation is sufficiently accurate. The accuracy requirement

is given as a relative error, for instance specifying that Equation 1

should be evaluated with relative accuracy of 10−7 with respect to

the exact result computed with infinite precision. Our approach

is agnostic to the actual finite precision used in the code to be

tested, and can thus be used to test floating-point or fixed-point

arithmetic [61] implementations.

Automated test oracle and test case generation for numerical

specifications is nontrivial, because automated reasoning, e.g. in the

form of decision procedures, is expensive for nonlinear real [56] and

floating-point arithmetic [50], and exact reasoning about elemen-

tary functions, such as sine and exponential, is undecidable [45].

Our key technical contribution is to introduce constraint pro-

gramming [1] over interval domains [41] as a foundation for muta-

tion testing of numerical specifications. Interval arithmetic allows

our algorithm to handle specifications with elementary functions

and bounded input domains, and to soundly capture accuracy er-

rors, while at the same time the resulting nonlinear constraints are

efficiently solved by existing tools [33].

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Given a target specification, our algorithm first generates a num-

ber of mutants from three categories of faults: functional behavior,

robustness, and accuracy. These, respectively, test whether the code

implements the correct arithmetic expression, whether it supports

the correct input range, and whether it is implemented with suffi-

cient precision. While the first category of mutants is standard, the

latter two are specific to the domain of finite-precision implemen-

tations.

Given a test input, we show how to compute a test oracle that

checks whether a particular implementation passes the test, cor-

rectly accounting for uncertainties due to finite-precision rounding

errors. Without access to the actual implementation (as in this set-

ting) it is fundamentally not feasible to check whether a test input is

guaranteed to discover when the implementation is not sufficiently

accurate. It is, however, possible to identify test inputs that are

likely to find accuracy issues, which is what our approach does.

Our interval-based test oracle computation can compute oracles for

test inputs obtained with any test generation procedure, including

random testing.

We furthermore show how to encode test generation for numer-

ical mutation testing as an interval constraint problem, and how

to solve it efficiently. Such a principled test generation procedure

can find low-probability test inputs that are hard to find with ran-

dom testing. Furthermore, our procedure is deterministic and thus

applicable in the strict certification process of safety-critical soft-

ware [52] that disallows random testing.

We implement our algorithm in a prototype tool called Magneto

in the Julia programming language [10], using RealPaver [33] as the

back-end constraint solver. We evaluate Magneto on 69 benchmarks

from the standard floating-point benchmark suite FPBench [19].

Magneto achieves an average mutation score of 0.88 with an av-

erage running time of 77 seconds. Compared to random testing,

Magneto achieves a higher mutation score on 65% of the bench-

marks. In particular, Magneto outperforms random testing by 28%

when checking for accuracy errors and 14% for input domain errors.

Contributions. In summary, this paper makes the following con-

tributions:

• a test oracle computation for numerical specifications (Section 4),

• a novel, fully automated, algorithm for mutation testing-based

test generation of numerical specifications with accuracy re-

quirements (Section 5),

• an implementation in the tool Magneto (Section 6) that is avail-

able as open-source 1, and

• an evaluation showing that Magneto generates adequate test

sets which are better than a random testing baseline (Section 7).

2 OVERVIEW

We first give a high-level overview of the challenges and Magneto’s

solution using an example. The formula

𝑟 = 5 ·
𝑥1 − 𝑥3

𝑥4

𝑥2
(1)

defines the extracted air flow of a helicopter engine, and will serve

as the specification given to Magneto that we will denote by S𝑟 .
Such an expression would, for instance, appear as part of a unit test

1https://github.com/clothildejeangoudoux/Magneto

Input program
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Create
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Input test set
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generation

Quit
True False

Figure 1: Mutation Testing for Automated Test Generation

in a safety-critical application. This specification is real valued, i.e.

𝑥𝑖 , 𝑟 ∈ R, and we further assume that a relative accuracy bound of

𝜀 = 10−7 for the finite-precision implementation is given. Finally,

we will assume the following input domains for the variables:

𝑥1, 𝑥3 ∈ [10−7, 10], 𝑥2, 𝑥4 ∈ [10−7, 1] (2)

over which the formula is meaningful. (Our approach can also work

with unbounded domains.)

The goal of mutation testing [37] and of Magneto is to generate

an adequate test set that will check an implementation ofS𝑟 against
common programming mistakes (we provide more background

in Section 3.1). Figure 1 shows Magneto’s high-level work flow,

which starts by generating a set of mutants. To obtain a mutantM,

Magneto injects a fault, e.g. a syntactic change that corresponds to

a possible programming error, into the specification S. Magneto

then iteratively generates test inputs that distinguish between S
and the mutants. We say that the verdict of a test is KO, if a test

input found an injected bug in a mutant (killed the mutant), and

OK otherwise. The goal is thus to kill all the mutants, i.e. generate

tests which will result in KO for at least one mutant.

Let us ignore the accuracy requirement initially and assume

that both the specification and implementation are real-valued.

One of the mutations that Magneto applies is changing a binary

arithmetic operator for another, simulating a possible typo in the

implementation. For example, changing the subtraction into an

addition in Equation 1 results in a mutantM𝑟 :

𝑟𝑀 = 5 ·
𝑥1 + 𝑥3

𝑥4

𝑥2
(3)

Initially, the test set 𝑇 is empty, so that the mutantM𝑟 lives. The

specification’s input domain (Equation 2) defines a set of valid

values for 𝑟 such that 𝑟 ∈ [−5 · 1015,−5 · 108] as illustrated in

green in Figure 2a. Similarly, the result of the mutant 𝑟𝑀 over

those input intervals can take a value in some (other) interval, here,

𝑟𝑀 ∈ [5.49999 ·10−7, 5.00001 ·1014]. In order to distinguish between
S𝑟 andM𝑟 , Magneto thus has to identify an input, which is in the

result interval ofM𝑟 , but not in S𝑟 , shown in purple with verdict

KO in Figure 2a.

Magneto performs test generation by encoding the constraint

that a distinguishing test output 𝑟 is in the valid range of the speci-

fication, but not in the range of the mutant:

𝑟 ∈ 5 ·
𝑥1 − 𝑥3

𝑥4

𝑥2
∧ 𝑟 ∉ 5 ·

𝑥1 + 𝑥3
𝑥4

𝑥2

This constraint is interval-valued, i.e. the input variables 𝑥𝑖 are

bounded by intervals. With some abuse of notation, we write 𝑟 ∈
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r = −100r =−100.00001 r = −99.99999 0
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(a) in the reals

0r = −100

r · (1+ε) ·
(

1±εs

)

r · (1−ε) ·
(

1±εs

)
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(b) in finite precision

Figure 2: Different verdict scenarios

𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4) to mean that the value of 𝑟 is constrained to be in

the image of 𝑓 (for all possible input valuations).

Magneto uses the Realpaver [33] off-the-shelf solver to generate

a solution to this constraint problem:

𝑥1 = 10−2, 𝑥2 = 10−1, 𝑥3 = 10−4, 𝑥4 = 10−1,

which when executed on S𝑟 results in 𝑟 = −50000.5, but when
executed onM𝑟 , gives 𝑟𝑀 = 50000.5.

When both the specification and the implementation are real-

valued, this is sufficient. However, in practice, we need to also

consider the finite precision of the implementation, which leads to

rounding errors in computing 𝑟𝑀 , which in turn are bounded by

the accuracy specification (𝜀 = 10−7). An additional complicating

factor is that the constraint solver itself is using floating-point

arithmetic. This is unavoidable, as our specifications may include

transcendental functions such as sine and exponential which cannot

be efficiently represented exactly. In summary this means that

checking whether a test case reliably kills a mutant is nontrivial in

the presence of floating-point arithmetic as we cannot compute the

outputs for the OK and KO verdicts exactly. Note that this is the case

regardless of how the tests were generated.

Our solution is to use interval arithmetic to not compute just

a single valid output, but rather valid and invalid domains that

soundly over-approximate the rounding errors due to finite preci-

sion. This over-approximation leads to a ‘gap’ between the valid

and invalid domains, where we cannot decide whether an output is

valid or not; we denote this area as UNCERTAIN in Figure 2b. Mag-

neto takes that uncertain area into consideration such that test

generation does not return test inputs giving an output in this area.

We need to consider inaccuracies due to finite precision in gener-

ating test verdicts, but we also need to generate tests that specifically

check whether the implementation is computed with sufficient ac-

curacy, even in the absence of other faults. Magneto checks for

sufficient accuracy by introducing an accuracy mutation, for in-

stance by setting the accuracy bound on the mutant to a higher

value 𝜀𝑀 = 10−6 (allowing for a larger error). However, since we do
not have any syntactic information about the code, it is not possible

to find inputs which can be returned byM, but not by S since the

valid range of S is, by necessity, included in the valid range ofM.

We can, however, test whether those ranges overlap more than a

certain amount. By doing so, we can generate tests for which the

probability of capturing code inaccuracies are high.

3 BACKGROUND

3.1 Mutation Testing

Mutation testing [37] is an approach for generating a test set and

evaluating its ability to detect faults in an implementation. It is

based on the idea of deliberately injecting the faults one wants to

check for, and then check that the test set can correctly identify

them. This approach can be used to evaluate an existing test set

or, as in our setting, generate a test set from a specification to

check an independently developed implementation. That is, the test

set is developed without access to the code to be tested, which is

important for instance for certification purposes in avionics [52].

Since injection of faults requires knowledge of the full specification,

mutation testing is a white-box testing technique.

Injecting a fault into the original program, or mutating it, results

in a mutant. The test set is then executed over the set of mutants

to verify its quality. If a test successfully finds an injected fault,

we say the test verdict is KO and the test killed the mutant. If a

mutant passes the test, i.e. has the correct behavior according to

the specification, the test verdict is OK.

In theory, we say that a test set is adequate if all incorrect versions

of the programwere successfully detected by the test set. In practice,

generating adequate test sets or detecting that a given test set is

adequate is an undecidable problem [11].

Mutation testing focuses on faults based on the Competent Pro-

grammer Hypothesis (CPH), which assumes that programmers tend

to develop programs that are close to their correct version. There-

fore, faults in such programs can be fixed by small syntactic changes.

This assumption makes it possible to aim to find a relatively ade-

quate test set, that will successfully find a finite number of incorrect

versions of the program. In practice, the measure of relative ade-

quacy of the program to a specific test set is called the mutation

adequacy score, or mutation score [24]. The mutation score is the

ratio of the number of mutants that were killed by the test set over

the total number of generated mutants.

3.2 Accuracy and Precision

The specifications from which our approach generates test inputs

are real-valued, but the implementations that these tests are sup-

posed to verify are inevitably implemented in finite precision and

thus necessitate accuracy requirements.

There is a difference between the precision of an implementation,

which is defined by the number of bits used by the finite-precision

arithmetic, and the accuracy of a computation, which in this context

measures how far away a computed value is from the ideal, real-

valued output. An implementation may compute an output with

64 bits of precision, but if many of those digits are wrong it will

nonetheless have low accuracy.

We measure accuracy as a relative error between an ideal value

𝑥 and the computed value 𝑥 :

𝜀 =
𝑥 − 𝑥
𝑥

, if 𝑥 ≠ 0. (4)
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In this paper, we focus on accuracy, because the actual implemen-

tation and thus its precision is not available by design. That is, the

goal of our generated tests is to check, among other faults, whether

the implementation is computing its results sufficiently accurately,

without considering the actual precision of the implementation.

We provide basic background on floating-point arithmetic, which

is one of the most common representations [29, 45] for finite pre-

cision, and in which our own approach is implemented. Note that

the implementations that Magneto generates tests for can be imple-

mented in a different finite precision representation, e.g. in fixed-

point arithmetic.

The IEEE 754 standard [2] defines floating-point arithmetic in

two radices: 2 and 10. We focus on binary floating-point arithmetic,

as hardware support for decimal is limited. In the standard, a binary

floating-point number 𝑥 is described by

𝑥 = (−1)𝑠 ·𝑚 · 2𝑒 ,

where 𝑠 ∈ {0, 1} is the sign bit, 𝑒 ∈ [𝑒min, 𝑒max] is the exponent,
and 𝑚 is the significand of precision 𝑝 such that 0 ≤ |𝑚 | < 2.

Commonly used precisions are binary32 (single precision), with

𝑝 = 8 and 𝑒max = −𝑒min + 1 = 28−1 − 1 and binary64 (double

precision), 𝑝 = 53 and 𝑒max = −𝑒min + 1 = 211−1 − 1.
Additionally, the special values Infinity and Not-a-Number (NaN)

signal overflow, and mathematically ill-defined operations such

as square root of a negative number, respectively. In this paper,

we consider specifications that do not lead to special values, i.e.

consider them as errors.

Finite precisionmeans that not all real numbers are representable

in floating-point arithmetic and thus need to be rounded. Under the

default roundingmode of rounding to nearest, the IEEE 754 standard

defines that the result of every arithmetic operation needs to be

equal to the one obtained if the operation were performed in infinite

precision and then rounded. Transcendental functions such as sine

and exponential are implemented in libraries, which specify the

corresponding, often larger, rounding error bound. While the errors

of individual arithmetic operations are often small and are bounded

by the IEEE 754 standard, they propagate through a program in

often unintuitive ways and can accumulate.

3.3 Interval Arithmetic

Interval arithmetic [42] allows to represent and compute with sets

of values, such as the uncertain results of finite-precision arithmetic.

A closed interval represents a range of values by its lower and upper

bound:X = [𝑥, 𝑥] :=
{

𝑥 | 𝑥 ≤ 𝑥 ≤ 𝑥
}

. Binary arithmetic operations

over intervals X and Y soundly enclose all possible results of the

operation assuming that the input arguments are in X and Y:

X ◦ Y ⊇
{

𝑥 ◦ 𝑦 | 𝑥 ∈ [𝑥, 𝑥] = X, 𝑦 ∈ [𝑦,𝑦] = Y

}

(5)

where ◦ ∈ {+,−,×,÷}. Unary operations are analogous.

Interval arithmetic can in particular be used to soundly bound

real values that are not exactly representable in floating-point

arithmetic, such as 0.1 or 𝜋 . For this, we can use intervals with

floating-point bounds, where 𝑥 is the closest representable smaller

and 𝑥 is the closest representable larger floating-point number, i.e.

𝑥 ≤ 0.1 ≤ 𝑥 .

4 RIGOROUS TEST ORACLES

In this section, we introduce constraint programming over interval

domains as a foundation for rigorous input specification and test

oracle computation for mutation testing of numerical specifications.

We will use the following toy specificationS as running example

to illustrate our explanations:

(S) 𝑦 ∈ 𝑥3 · (1 + 𝜀) , |𝜀 | ≤ 10−4, 𝑥 ∈ [−1.5, 1.5] (6)

4.1 Constraints as Input Specification

The input to our mutation testing algorithm is a formal specification

S. We choose constraint programming [1] over interval domains

as a formalism to represent requirements over real numbers. Con-

straint programming is a paradigm for expressing relationships

between different entities in the form of constraints that must be

satisfied. Constraint programming is essentially characterized by

two phases: modeling involves the identification and formalization

of a problem, and solving, which searches for a solution of the con-

straints. Constraints over intervals allow us to capture, on one hand,

specifications that are valid only over a bounded input domain, and

on the other hand, uncertainties due to finite-precision arithmetic.

We follow the notation of [6] and model a Constraint Satisfaction

Problem (CSP) as a triplet (X,D, C), such that

• X = {𝑥1, . . . , 𝑥𝑛} is a finite set of variables,
• D = {𝐷1, . . . , 𝐷𝑛} is a set of definition domains, such

that a domain 𝐷𝑖 defines all the possible values for a variable

𝑥𝑖 , with 𝑖 = 1, . . . , 𝑛,

• C = {𝑐1, ..., 𝑐𝑚} is a finite set of constraints, restricting the
values that can be assigned simultaneously to the variables.

For an input specification S, the input and output variables of

the specification define the variables 𝑥𝑖 of the CSP. The definition

domains of the input variables are given by the range specified

in the requirement. For output variables, or if no specific domain

is specified for a variable, they are represented in the CSP over

[−∞,∞]. The functional requirement of the specification (i.e. the

equation to be computed) determines the constraints. In order to

take into account the accuracy requirement, we multiply the func-

tional requirement equation by (1 + 𝜀) and restrict 𝜀 to have a

magnitude smaller than the given maximum relative error.

Example. Our running example specification in Equation 6 is

expressed formally as the following CSP:

Variables : 𝑥 ∈ [−1.5, 1.5] , 𝑦 ∈ [−∞,∞] ,
𝜀 ∈ [−10−4, 10−4],

Constraint : 𝑐 : 𝑦 ∈ 𝑥3 · (1 + 𝜀)

We will use the less verbose format of Equation 6 in the rest of

paper, whenever it is suitable.

4.2 Mutant Generation

Next, we define the mutant generation in Magneto, as test ora-

cles depend on the mutants. Magneto automatically and randomly

generates a set of mutants using the set of mutation rules given

in Table 1. These mutations are relevant to test generation for nu-

merical software because they emulate (a subset of) simple errors a

software engineer may introduce. To generate a mutant, Magneto

391



Interval Constraint-Based Mutation Testing of Numerical Specifications ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 1: Set of mutations considered in Magneto

Operator Description

accuracy decrease the accuracy by increasing the error bound 𝜀

bounds replace the bounds of an input variable with new values

constant replace the value of a constant with a new value

variable swap two variables

unary replacement of an unary operator with another
(√

, sin, cos, tan, exp, log
)

binary replacement of an binary operator with another

(+,−,×,÷,max,min)
add add an operator

del delete an operator

selects a mutation from the list and applies it to one randomly

selected subexpression or parameter of the specification.

We only generate first order mutants, meaning a single fault

is injected in each mutant. However, higher order mutations [36],

which inject two or more faults could be added to Magneto in order

to further reduce test effort.

In the context of certified software, one of the requirements

of software verification is traceability [17] between the program

specification, test objectives and the tests. For numerical software,

test objectives form three categories [52], which we use as the basis

for the selection of the mutation operators in Table 1:

• precision: verifies that the implementation uses sufficient

precision, as defined in the accuracy requirement of the

specification (mutation accuracy),

• robustness: verification that the software can proceed safely

under abnormal circumstances, such as input values out-

side of their bounds and abnormal behavior in the output

(mutations bounds, add, del),

• functional behavior: verifies the absence of errors in the

functional behavior (mutations constant, variable, unary,

binary).

Most of these mutation operators aim at capturing common

syntactic mistakes. However, using interval constraints as specifi-

cation allowed us to introduce the accuracy and bounds mutation

operators, which are specific to the domain of finite-precision com-

putations.

Example. Applying the mutation accuracy to the specification

S from our running example (Equation 6), decreases the accuracy

by increasing the corresponding 𝜀 bound. It thus increases the error

bound 𝜀 such that 𝜀 < 𝜀𝑀 < 1 to create the mutant:

(M1) 𝑦 ∈ 𝑥3 · (1 + 𝜀𝑚) , |𝜀𝑚 | ≤ 10−3, 𝑥 ∈ [−1.5, 1.5] (7)

An example of the robustness test objective is to use the mutation

bounds to produce the mutant

(M2) 𝑦 ∈ 𝑥3𝑚 · (1 + 𝜀) , |𝜀 | ≤ 10−4, 𝑥𝑚 ∈ [−1.5, 1.6]

The mutation modifies the bounds of the variable 𝑥 to form the

variable 𝑥𝑚 . This mutation operator relates to a certain type of real

bug, where the specified bounds of a numerical requirement inside

a bigger specification are now met because some numerical error

0rS = −100 0

rM = −100

Verdict : KO

Figure 3: Accuracy mutant comparison with test oracle

occurred before in the code. Hence it is important to know if the

numerical requirement under test is sensitive to changes of those

bounds.

4.3 Computing Test Oracles

Given a test input, either obtained through random testing or with

a principled approach as in Section 5, we need to compute a corre-

sponding test oracle that determines whether an implementation

passes the test, resp. whether a mutant is killed. The test oracles for

a given test set thus allow us to evaluate the adequacy of a test set.

Since we do not have an implementation and its precision avail-

able (by design), we cannot simply evaluate the specification and

the mutant expressions on the test input to obtain single values as

a test oracleÐwe only have the overall uncertainty expressed as a

relative error on the real-valued result. Computing the ideal real-

valued result, however, is not practically feasible in general because

of transcendental functions that do not have a finite representation.

We compute a rigorous test oracle by evaluating the test inputs

over the constraint specification and the constraint mutants with

interval arithmetic, producing two types of domains: valid and

invalid. The verdict of a test input evaluated over a mutant is KO

if the mutant’s valid range is included in the invalid range of the

specification and the mutant is killed. Similarly, the verdict is OK

if the mutant’s valid range is included in the valid range of the

specification; in this case the mutant remains alive.

We use interval arithmetic with lower and upper bounds im-

plemented with MPFR, i.e. floating-point arithmetic with a high

working precision. Due to rounding errors in the computation of

the test oracle domains, and the over-approximation of interval

arithmetic, there is a ‘gap’ between the valid and invalid ranges. If

the mutant’s valid range overlaps with that gap, or if the mutant

invalid range overlaps with the valid range of the specification, the

verdict is UNCERTAIN. We say that our test oracle is rigorous because

the UNCERTAIN verdict does not kill the mutants.

Example. For the requirement S (Equation 6), two values 𝑦1 and

𝑦2 are computed from the input input 𝑥𝑖 with interval arithmetic,

such that 𝑦1 = 𝑥3
𝑖
· (1 + 𝜀) = [𝑦1, 𝑦1] and 𝑦2 = 𝑥3

𝑖
· (1 − 𝜀) = [𝑦2, 𝑦2].

The bounds of 𝑦1 and 𝑦2 then become the bounds of the valid and

invalid output ranges. That means that, if 𝑦1 < 𝑦2, then the valid

range will be [𝑦1, 𝑦2], and the invalid range ] − ∞, 𝑦1 [ ∪ ]𝑦2, +∞[.

Accuracy Mutation. For the accuracy mutation, the verdict of

the test according to our test oracle is always UNCERTAIN, since, as

shown in Figure 3, the valid range of the specification (top line)

is always included in the valid range of the mutant (bottom line).

Effectively, generating tests that are guaranteed to capture accuracy

errors requires knowledge of the actual code. Instead, we aim at

identifying test inputs for which the overlap between the mutant’s
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valid and the specification’s invalid range is ‘big’. We consider that

overlap big enough when the difference between the values is larger

than three order of magnitude of the relative error 𝜀, i.e. if 𝜀 = 10−7,
the difference must be larger than 10−4.

The width of the specification’s valid range essentially measures

numerical instability, since it is computed in interval arithmetic

with high-precision floating-point bounds. The difference between

the mutant’s and the specification’s valid range is due to the mu-

tant’s larger error, which effectively accentuates the instability. The

larger the instability of the arithmetic expression on the particular

test input is, the larger the (absolute) overlap of the mutant’s valid

and the specification’s invalid domain will be. Further, for accuracy

mutations where the difference between 𝜀 and 𝜀𝑀 is smaller, the

underlying instability has to be larger to pass the test oracle.

Note that when the result of an actual implementation on a

test input lies outside of the valid range of the specification, we

have definitely discovered a bug. Conversely, however, when the

result is inside the specification’s valid range, we cannot exclude

an accuracy bug.

Going back to the example in Equation 1, suppose Magneto

generates the test input 𝑥1 = 49 · 10−5, 𝑥2 = 5 · 10−7, 𝑥3 = 10−4, 𝑥4 =
2 · 10−1. For those inputs Magneto defines the valid output in the

interval 𝑟𝑆 ∈] − 100.0000099,−99.9999900[ and the invalid output

in 𝑟𝑠 ∈] −∞, 100.0000799[ ∪ ] −99.9999100, +∞[, whereas the valid
range of the mutant is 𝑟𝑀 ∈] − 100.00311,−99.998398[. Figure 3
shows these ranges at the top for the specification and below for the

mutant. Since the interval ] − 100.00311,−100.0000799[ represent
the overlapping range, and | − 100.00311+ 100.0000799| > 10−4, the
mutant is considered to be killed.

5 PRINCIPLED TEST GENERATION

A naive approach to generate an adequate test set is to use random

testing. Random testing over a constraint specification and a set of

constraint mutants amounts to evaluating a randomly generated

test input with our rigorous test oracle. If the new test kills a live

mutant, then it is added to the test set, otherwise the test is discarded

and a new test is randomly generated. The procedure stops when

all mutants are killed or when a timeout is reached.

While random testing is a straight-forward approach for test gen-

eration, it is not allowed for certifying safety-critical software [52],

and may fail to kill mutants which require very particular inputs.

This section covers Magneto’s algorithm based on constraint

programming over interval domains for test generation, first at a

high-level and then in more detail.

5.1 High-Level Algorithm

Recall the overall mutation testing algorithm from Figure 1. Mag-

neto first creates a list of mutants (Section 4.2) from the specification

S, and then iteratively generates test inputs until all mutants have

been killed (or until a time-out) using Algorithm 1. For each test

input, Magneto computes a test oracle using the procedure outlined

in Section 4.3.

Algorithm 1 for test generation takes as input the specification

S and one mutantM, both represented as a constraint satisfaction

problem (CSP) over continuous domains (Section 4.1). A suitable

test to kill this mutant would be a test that discriminates the mutant

Algorithm 1: Test generation procedure

Input: Program Specification ś S = {X,D, C}
Live Mutant śM = {X𝑀 ,D𝑀 , C𝑀 }

Output: New test case ś 𝑡

1 R ← gen_csp_test (S,M)
2 Δ← 𝜀S
3 while Δ > Δmin do

4 𝑟 ← solve_csp (R,Δ)
5 if No solution is found then

6 Δ← Δ / 10.0

7 else

8 𝑡 ← pick_test (S, 𝑟 )
9 Return 𝑡

10 end

11 end

12 Return ⊥

from the specification. The first step of the algorithm is thus to

create a new CSP R (gen_csp_test) that defines the set of values

that are solutions of S but not solutions ofM (Section 5.2).

The procedure solve_csp calls a CSP solver in order to solve R,
i.e. to find inputs that are solutions of the constraints. The solution

itself is also given as a set of intervals. The CSP solver searches for a

solution by iteratively and on-demand subdividing the input ranges

until it can show that one of the (small) intervals is a solution (Sec-

tion 5.3) or until it reaches intervals of a minimumwidth Δ, given as

a parameter to the solver. If no solution was found, Δ is decreased,

and the solving starts again, but will now take potentially longer as

with a smaller Δ, the solver has to perform more subdivisions. Mag-

neto repeats this loop until Δ = Δmin, for a predetermined value of

minimum interval width, which we discuss further in Section 5.3.

If a solution is found that solves R, then pick_test proceeds to

select a test input from the produced intervals. It then computes

valid and invalid ranges for the result of the specification expression,

which determine the test verdict (Section 5.3).

If Algorithm 1 reaches Δ𝑚𝑖𝑛 without finding a solution (line

13), the mutantM is equivalent or too similar to the specification

S such that the CSP solver cannot distinguish them. We discuss

limitations of Algorithm 1 in Section 5.4.

Example. If we apply the constant mutation that changes the
constant (power) 3 to 2 in specification S (Equation 6), we obtain
the following mutant:

(M1) 𝑦 ∈ 𝑥2 · (1 + 𝜀) , |𝜀 | ≤ 10−4, 𝑥 ∈ [−1.5, 1.5] (8)

The output of the gen_csp_test procedure with this mutant is

the constraint
(

𝑦 ∈ 𝑥3 · (1 + 𝜀)
)

∧
(

𝑦 ∉ 𝑥2 · (1 + 𝜀)
)

,

|𝜀 | ≤ 10−4, 𝑥 ∈ [−1.5, 1.5] .

With Δ = 𝜀S = 10−4, the solver returns the solution 𝑥 ∈
[0.88008, 0.88012] (the values are rounded for presentation pur-

poses). pick_test heuristically selects the input 𝑥 = 0.8801,

and determines the bounds of the valid range of 𝑦 to be 𝑦 =

[0.681645, 0.68165] and 𝑦 = [0.68179, 0.68180]. Thus, the test input
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and oracle generated for the mutant in Equation 8 is:

𝑥 = 0.8801,

𝑦 ∈ [0.68165, 0.68179] → OK,

𝑦 ∈ ] − ∞, 0.681645[ ∪ ]0.68180, +∞[ → KO.

In order to check whether the mutantM1 is killed, we evaluate

it with the input 𝑥 = 0.8801 using interval arithmetic, resulting in

𝑦 ∈ [0.77465, 0.77449]. This result is included in the invalid domain,

that is [0.77465, 0.77449] ∈ ]0.68180, +∞[ , and thus the verdict of

the test is KO and the mutant is killed. If the output of the test on

that mutant was inside [0.68165, 0.68179], i.e. the valid range, the

verdict would be OK and the mutant survived. By solving the output

constraint of the gen_csp_test procedure appropriately, we ensure

that the test inputs are designed to kill this mutant.

5.2 Modeling the Test CSP

Algorithm 1 is called when a mutant is not killed by the current test

set. Magneto then generates a new test that is a discriminating point

allowing to distinguish S fromM. The first step of Algorithm 1

is to generate a new CSP R, with the procedure gen_csp_test,

encoding a constraint that defines the distinguishing points.

In general, there are two ways of distinguishing the specification

from the mutant: either Magneto finds a set of input values which

are a valid solution of S and an invalid solution of M, or the

opposite. Let 𝑐 denote the constraint of the specification and𝑚 the

constraint of the mutant. The constraint 𝑐 ∧ ¬𝑚 encodes a value

that is a valid solution of S and an invalid solution ofM.

For our running example specification S and the mutantM1

the full formal CSP for 𝑐 ∧ ¬𝑚 looks as follows:

Variables : 𝑥 ∈ [−1.5, 1.5] , 𝑦 ∈ [−∞,∞] ,
𝜀 ∈ [−10−4, 10−4],

Constraint : 𝑦 ∈ 𝑥3 · (1 + 𝜀) ∧ 𝑦 ∉ 𝑥2 · (1 + 𝜀)
(9)

A more detailed analysis of the constraints shows that there are,

in fact, two tests that can be generated from this constraint. We can

write the constraint𝑚 with 𝜀 as a constant, as the set of solutions

belonging to𝑚1 ∧𝑚2, such that

𝑚1 : 𝑦 ≤ max
(

𝑥2 · (1 + 𝜀) , 𝑥2 · (1 − 𝜀)
)

,

𝑚2 : 𝑦 ≥ min
(

𝑥2 · (1 + 𝜀) , 𝑥2 · (1 − 𝜀)
)

.

Note that the 𝜀 is crucial for taking into account the finite-precision

uncertainties.

Then, both of the following two constraints provide distinguish-

ing test inputs:

(𝑐 ∧ (¬𝑚1)), (𝑐 ∧ (¬𝑚2)).
If we encode the constraint that the input values are a valid

solution ofM and an invalid solution of S, i.e. the opposite case of
𝑐 ∧ ¬𝑚, we obtain in symmetric fashion two more CSPs:

((𝑚 ∧ (¬𝑐1)), (𝑚 ∧ (¬𝑐2)) .
Hence, in total we can generate four different CSPs to distinguish S
fromM. In practice, we only need one test input to kill the mutant,

but the CSP solver may not be able to generate test inputs from all

four CSPs. Hence, Magneto calls the CSP solver on the different

CSPs until it finds a test input, and disregards the remaining ones.

The above CSP construction works for all mutations, except for

accuracy, which is special: increasing 𝜀means that, by definition, all

valid solutions of S are also valid solutions ofM. For the accuracy

mutantM2 (Equation 7), the test CSP R defines solutions of the

mutant which are not solutions of the specification as follows:

Variables : 𝑥 ∈ [−1.5, 1.5] , 𝑦 ∈ [−∞,∞] ,
𝜀 ∈ [−10−4, 10−4], 𝜀𝑚 ∈ [−10−3, 10−3],

Constraint : 𝑦 ∉ 𝑥3 · (1 + 𝜀) ∧ 𝑦 ∈ 𝑥3 · (1 + 𝜀𝑚) .
(10)

Note that for accuracy only the constraint ¬𝑐 ∧𝑚 makes sense,

such that two tests can be generated (instead of four).

5.3 Solving the Test CSP

Solving the CSP will provide a solution in the form of a set of

values {𝑑1 ∈ 𝐷1, . . . , 𝑑𝑛 ∈ 𝐷𝑛} for the variables {𝑥1, . . . , 𝑥𝑛}, which
are consistent with the constraints, that is, each variable takes a

value from its definition domain so that all constraints are satisfied

at the same time. Since our constraints are interval-valued, the

solution of the CSP is also provided as a union of interval domains,

or boxes [21], i.e. the 𝑑𝑖 ’s are intervals. The CSP solver we utilize

uses a branch-and-bound algorithm [16]. The algorithm starts with

the full input domain. It iterates subdividing the variable domains

and checking each subdomain for whether it is a solution of the

given constraint. Checking of the constraints is done by evaluating

them using interval arithmetic. The goal is to find a subdomain

which contains only points that are solutions to the CSP; these

subdomains are called inner boxes [13].

Subdivision is necessary for two reasons: a) the subdomain may

contain points which are not solutions, or b) interval arithmetic

may not be accurate enough to show that a subdomain contains

only solutions. The latter happens because interval arithmetic does

not keep track of correlations between variables and can thus over-

approximate the true range; reducing the input domains also re-

duces over-approximation.

Even if no solution, i.e. inner box is found, the solving step

eventually stops when all boxes have reached a minimum width Δ,

the smallest size possible for one box.

The procedure solve_csp is a call to the constraint solver, to

solve the constraints of R at the solver’s working precision Δ. If an

inner box is found, the solver can stop searching for solutions. The

procedure pick_test then chooses values to assign to the new test

𝑡 . If no test is found at the precision Δ, Δ is decreased and solving

starts over. If no solution is found at the precision Δmin, then the

algorithm terminates without finding a new test to kill the mutant.

One of the reasons why the algorithm might not be able to find a

new test comes from the fact that strict inequalities do not exist for

CSP with continuous constraints. This is because continuous CSP

defines the solution set as a reliable over-approximation in which

no solution is lost [49]. Negated constraints of the mutants or the

specification are therefore expressed with non-strict inequalities,

i.e. closed intervals (this is safe, but slightly over-approximate).

Choosing Δ. The CSP solver solves the test constraint for boxes

of minimum width Δ, roughly meaning that the working precision

of the solver is on the order of − log2 (Δ) bits. Choosing a value
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for Δ for which the solver can find a solution is highly constraint-

dependent and cannot be predicted up-front. We want to find a

tradeoff between a value Δ that is small enough to find one solution

of the test CSP, but not so small as to avoid creating a huge overhead

on the execution time (each time Δ is decreased, the solver has to

find a valid solution in a larger number of boxes).

We tackle this problem by an iterative loop, decreasing the value

of Δ starting from Δ𝑚𝑎𝑥 , which is set to the value of the bound of

the accuracy 𝜀. The search ends with Δ = Δ𝑚𝑖𝑛 , which is a user

parameter. In the worst case, the solver is called over and over again

but does not find any solution.

Test Input Selection. Magneto selects the test inputs and com-

putes the output domains with the procedure pick_test. The solver

returns a solution of R in the form of boxes, that is, intervals over

the inputs and output of the specification. All values in the input

intervals give an output which is compliant with the constraint

specification. Since test cases are composed of single-valued inputs,

Magneto must pick a single value for each input.

pick_test chooses the test inputs as the middle value of the

input intervals. To determine the valid, resp. invalid ranges, i.e.

the intervals of the output for which the verdict is OK, resp. KO,

pick_test evaluates the specification over the test input with in-

terval arithmetic (Section 4.3).

5.4 Limitations

Equivalent Mutants. When a mutant describes a behavior which

is equivalent to the solution set defined by the specification S, then
a discriminating point between S and the mutant cannot be found.

We call this mutant an equivalent mutant [47]. Similarly, if a mutant

has a solution set which is łtoo closež to the specification, meaning

that there exist no solution at the minimum width Δmin of the CSP

R, then Magneto cannot find a test case to distinguish the mutant

from the specification, and labels it as an equivalent mutant.

For example, if the specification constraint is 𝑐 : 𝑦 ∈ (𝑎 +
𝑏) (1 + 𝜀), the mutant generated from the variable mutation may

be: 𝑚 : 𝑦 ∈ (𝑏 + 𝑎) (1 + 𝜀). Since the test CSP cannot define ¬𝑚
with strict inequalities, the solver will try to find the solution

𝑦 = max ((𝑎 + 𝑏) · (1 + 𝜀) , (𝑎 + 𝑏) · (1 − 𝜀)). However this solution
set is represented by single values, generally non-representable in

finite precision, that do not fit into an interval of solutions. All the

constraint solver can do is compute all the boxes of minimum size

on the edge of the solution set of S.
Currently, Magneto simply stops the search for a solution and

leaves an error message for a tester to determine whether the mu-

tant is equivalent or not. In future work, equivalent mutants could

be detected automatically by rules over the mutations to unify CSP

problems in non-equivalent cases.

Testing Program Accuracy. Our precision mutation is able to

distinguish relatively large differences in errors between the spec-

ification and a mutant, such as when changing the relative error

𝜀 by an order of magnitude from 10−4 to 10−3. It is, however, not
able to distinguish arbitrary accuracy requirements.

For example, the specification

𝑦 =𝑥1 + 𝑥2 + 𝑥3, with
𝑥1 ∈ [1024, 2048], 𝑥2 ∈ [1, 2], 𝑥3 ∈ [−2048,−1024]

can only be implemented with a relative error of 10−7 in single

precision floating-point arithmetic if the equation is evaluated as

(𝑥1 +𝑥3) +𝑥2, but not as (𝑥1 +𝑥2) +𝑥32. The issue is that in order to

distinguish these two expressions, we would have to have knowl-

edge of the code and consider the precise floating-point precision

and its semantics that is being used. We note that there are static

analysis tools that can automatically bound roundoff errors for

floating-point expressions such as the above [20, 55]. For this work,

we settle on an implementation-independent approach, which is

able to catch ‘coarse’ precision errors, such as when the entire code

is using an incorrect precision.

6 IMPLEMENTATION

We have implemented the approach presented in Section 5 in the

prototype toolMagneto.Magneto is written in Julia [9, 10] (Magneto

needs at least Julia v1.4.2 (May 23, 2020)), which is a flexible dynamic

language suitable for scientific and numerical computing, with

performance comparable to those of traditional static languages.

Julia offers ease and expressiveness for high-end digital computing,

while ensuring reliable arithmetic using BigFloat (based on the

arbitrary-precision library MPFR [27]) and a package providing

interval arithmetic on Float64 and BigFloat.

The input constraints S are given to Magneto as a structure

consisting of

• constants, specified using BigFloat,

• variables, with their domain given intervals with BigFloat

bounds

• the constraint equation as an abstract syntax tree over con-

stants, variables, unary operations and binary operations.

The output of Magneto consists of a Float64 assignment for the

input variables (the test input), together with three BigFloat in-

tervals for the output variable (for the valid and invalid verdicts).

Magneto supports the operations: +,−,×, /,√, min, max, log, exp,

sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh.

6.1 Modifications to Realpaver

The solver used with Magneto is Realpaver [32, 33], version 0.4

(2004). Realpaver is a constraint solver on discrete or continuous

variables represented by intervals. This software allows for the

modeling and solving of non-linear systems by computing reliable

approximations of all the solutions. The constraints are sets of

equations or inequalities on integer and real variables. The input

parameters of Realpaver are the minimum box width Δ as the

parameter 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and the maximum number of boxes the solver

will try to solve as the parameter 𝑛𝑢𝑚𝑏𝑒𝑟 .

By default, Realpaver computes the whole solution set of a

CSP, that is all inner and outer boxes. In Magneto, we are only

looking for the first inner box.We thus modified the search.c source

file of Realpaver such that the software stops after returning the

first inner box that the solver finds. This is crucial for Magneto’s

2The reason is that 𝑥1 + 𝑥3 does not incur a roundoff error because 𝑥1 and 𝑥3 have
the same exponent; this is known as the Sterbenz Lemma.
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Table 2: Summary of evaluation statistics

Magneto BB

# mut. # ops time (s) # tests adeq. # tests adeq.

min 44.0 2.0 4.0 1.0 0.69 1.0 0.69

max 1,283.0 63.0 1,083.4 9.0 1.0 8.0 1.0

mean 179.2 8.1 76.9 3.6 0.88 2.9 0.85

median 120.0 5.0 19.8 3.0 0.91 3.0 0.88

performance, since the resolution of a CSP over 100000 boxes can

be very time consumming when the accuracy of the specification

is high (around 10−5). With that modification, the executions of

Realpaver do not require any aditional time for non relevant boxes.

We use a single constraint solver with Magneto, but note that the

interface is modular and it is thus straight-forward to integrate a

different constraint solver, which may have a different performance

tradeoff.

7 EXPERIMENTAL EVALUATION

In this section, we evaluate Magneto’s efficiency and ability to

generate adequate tests and compare it to random testing.

7.1 Setup

We conducted our experiments on an Intel Xeon E7-8857 v2 server

with 4×12 cores, 3GHz clock speed and with 303GB of RAM (though

Magneto does not need 300GB RAM to run), running 64bit Debian

8.3.0-6. MPFR was at version 4.0.2, based on GMP 6.1.2. All timings

are wall-clock times.

Benchmarks. To the best of our knowledge, no public standard

benchmark set of functional specifications for numerical software

exists; usually such specifications are used for commercial propri-

etary safety critical software. We converted 69 benchmarks from

the FPBench [19] benchmark suite to our constraint specification

format. FPBench is a standard benchmark set collected from evalu-

ations of existing static and dynamic floating-point analysis tools.

Benchmarks consist mostly of straight-line (often nonlinear) arith-

metic expressions with transcendental function calls that appear in

scientific computing and embedded system domains.

For our evaluation, we select those 69 benchmarks that do not

feature logical preconditions and loops. Most benchmarks come

with interval bounds on inputs, which we use as input domains.

The benchmarks do not come, however, with accuracy bounds on

the results. For simplicity, we set the uniform accuracy requirement

to 10−10 for all benchmarks. This accuracy bound is chosen such

that it allows for a double-precision floating-point implementation

of the specification, but not a single-precision one, in general.3 All

of our benchmarks are available at on GitHub4.

Mutants. On average, we generate 179 mutants per benchmark,

with a minimum of 44 and a maximum of 1283 mutants. When

generating mutants, we avoid generating equivalent mutants that

can be straight-forwardly identified with syntactic checks. Table 2

shows the min, max, mean and median of the number of mutants

3The machine epsilon for single and double precision is 5.96e-08 and 1.11e-16, resp.
4https://github.com/clothildejeangoudoux/Magneto

0.70 0.75 0.80 0.85 0.90 0.95 1.00

adequacy Magneto

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ad
eq
u
ac
y
B
B

Figure 4: Adequacy of Magneto and random testing

generated, as well as the number of arithmetic and transcendental

operations in the specification expressions.

Baseline. In the absence of an available existing tool for mutation

testing of numerical specifications with interval constraints, we

compare Magneto’s test generation against a random, blackbox,

testing baseline, as as described in Section 4.3. We denote this

baseline as ‘BB’.

The performance of random testing clearly depends on the time

limit used for generating new tests. To allow for a reasonably fair

comparison, we first run Magneto and measure its execution time.

We then run random testing with a time limit set to Magneto’s time,

i.e. a different time limit for each benchmark. We limit Magneto’s

execution time by setting a timeout of 10s on each CSP call.

7.2 Results

Adequacy. We compare the adequacy scores of Magneto and

black-box testing (BB) in Figure 4. When a dot is below the gray

line, Magneto’s adequacy score was higher than blackbox’s for a

given benchmark. If the dot is on the line, the adequacy is equal.

Table 2 furthermore provides the minimum, maximum, mean and

median adequacy scores.

Overall, we observe that Magneto outperforms BB over our

benchmark set. Magneto always kills at least as many mutants

as random testing, and for 65% of the benchmarks, Magneto has a

higher mutation score than BB. This is also reflected in the higher

average and median adequacy scores.

When the adequacy score of BB is lower thanMagneto’s, random

testing failed to kill mutants which could only be killed with low

probability inputs. When Magneto does not kill a mutant, it may

be because the timeout was too small or because the mutant was

equivalent. Wemanually checked the remaining live mutants; about

half of them were indeed equivalent mutants (that could not be

easily syntactically identified), whereas for the other half the time

limit or precision of the CSP solver was not sufficient.

Nevertheless, our evaluation shows that Magneto is able to gen-

erate overall adequate test sets.
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Table 3: Total number of mutants per mutation type over all

the benchmarks

type # mutants # killed BB # killed Magneto

accuracy 544 422 498

bounds 270 122 196

constant 240 227 228

variable 404 402 402

unary 938 783 795

binary 2427 2401 2404

add 7035 5996 6306

del 245 244 244

Types of Mutants Killed. Table 3 shows the total number of mu-

tants generated per category over the entire benchmark set, as well

as the number of mutants killed by Magneto and random testing.

For every mutation category, the test sets generated by Magneto

kill more mutants than BB, which is consistent with the adequacy

scores. Magneto was particularly better in killing accuracy (78% vs

92%) and bounds (45% vs 73%) and add (85% vs 90%) mutants. Those

mutants represent a small fraction of the total number of mutants,

so the overall adequacy difference may look small, but generating

adequate tests to kill them takes most of the computation effort.

Examples. We discuss three benchmarks in more detail. nonlin1

(𝑦 = 𝑧/(𝑧 + 𝑐)) is a small benchmark with 2 operations and 65 mu-

tants. Both Magneto and BB perform badly (adequacy score of 0.69),

because the input is defined over a large floating-point domain that

is divided by almost itself (which is numerically instable). Hence

BB has low chances to find tests producing a clear KO verdict for

some mutants, and Magneto’s CSP solver times out.

doppler2 (𝑦 = ((−𝑡1) ∗𝑣)/((𝑡1+𝑢) ∗ (𝑡1+𝑢))with 𝑡1 = 1657/5+
3/5 ∗𝑇 ) is a medium sized benchmark with 259 mutants. Magneto

scored 0.98 while BB’s adequacy was 0.89. BB could not kill bounds

and some addmutants, while Magneto generated only one adequate

test that killed 98% of the mutants in 44 seconds. The 4 addmutants

that Magneto could not kill were equivalent mutants.

Finally, i6 (𝑦 = sin (𝑥1 + 𝑥2)) is small benchmark with 75 mu-

tants. Magneto scored 0.97 while BB’s adequacy was only 0.74. Here,

BB could not kill the accuracy and boundsmutants, while Magneto

generated only one adequate test that killed 97% of the mutants in

only 8 seconds.

Runtime. Figure 5 shows Magneto’s runtime. The average run-

time of Magneto over all benchmarks is 77 seconds, over only the 7

most complex ones the average runtime is higher at 200 seconds. In

70% of the cases, Magneto’s runtime is lower than 50 seconds. The

slowest execution rounds up to 18 minutes (not shown in Figure 5

for readability reasons), while the fastest one took 4 seconds.

Most of the runtime of Magneto is spent on CSP solving. We

observed that the solver usually returns an output almost imme-

diately. This is, however, not the case for the equivalent mutants

detection problem. In order to tag a mutant as equivalent, Magneto

has to repeatedly call the CSP solver with decreasing values of Δ,
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Figure 5: Magneto’s runtime on different benchmarks

until Δ𝑚𝑖𝑛 is reached. In that case, either RealPaver does not find

any solution or reach a timeout of 10 seconds.

We conclude from our experiments that Magneto is globally

reliable with the currently implemented mutations. It makes it

possible to generate relevant tests in a reasonable time (less than

two minutes on average), and produces test sets that are more

adequate to the specification than random testing.

8 RELATED WORK

Metamorphic testing is a property-based software testing used to

determine reliable test oracles [14] by using constraint logic pro-

gramming to generate a model of the program [30]. New test cases

aiming at uncovering specific errors are generated by injecting

faults. Magneto differs from metamorphic testing in two aspects.

First, by generating the model from the code, metamorphic testing

may introduce complexity by focusing on how the result is com-

puted rather than the functionality the result should implement.

Secondly, Magneto takes into account the accuracy of the spec-

ification as part of the test oracle. Hence when computing with

floating-point numbers, the slight but acceptable variation in the

test results must be compared to a heuristic test oracle [46, 54]. The

complexity of the search space and the lack of reliable accuracy con-

straints prevent us from using metamorphic testing over numerical

specification.

Model-Based Testing refers to a range of testing methods, from

test oracle generation, to reliable test evaluation, for all types of

programs [34, 57]. Each technique is inherently tied to the cho-

sen model. Popular in industry for critical software development,

SCADE [58] and Matlab/Simulink [53] use model-checking [26] ap-

proaches to generate tests. The problemwith using those techniques

with certified software is that the code is automatically generated

from those models. Tests generated from these models cannot be

used in the avionics software certification process according to the

DO-178C standard [52].

Mutation testing has been applied to both program source code

and specification. For the latter, the faults are injected into the

program specification while never looking at the program source

code. Mutation testing over formal specifications has been studied

for predicate calculus [12], calculus specification [5] and algebraic

specification [59]. However, none of those types of formal speci-

fication allow the user to specify the behavior of approximations

of numerical systems. A numerical test generation technique over

𝑛-dimensional polynomial models [40] shows that it is significantly
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faster at killing mutants than iterative random testing. This work,

however, does not tackle nonlinear models.

Equivalent mutant detection [44] can be tackled using an co-

evolutionary approach [4], or constraint representation of the pro-

gram and the mutants [47]. Constraint solving over polynomial

systems [35] could resolve this, but they do not support transcen-

dental functions.

Higher order mutation testing [36] has been studied as a way

to find subtle faults that classical mutation testing can scarcely

emulate. Higher order mutations are useful to capture more faults

with fewer mutants, in an effort to reduce the computation cost

of mutation testing techniques. In [48], the authors show in their

experiments that using second order mutants reduces the test effort

by 50% on programs using integers.

Static analyses which compute guaranteed upper bounds on

floating-point roundoff errors [20, 22, 31, 39, 43, 55] are comple-

mentary to our approach in that they analyze the actual finite

precision implementation. They, in general, over-approximate the

true errors by about an order of magnitude, for expressions similar

in size to our benchmarks.

Constraint programming has also been studied for the verifica-

tion of floating-point programs [3]. Here, constraint programming

represents a model of the code, which is used either to verify prop-

erties on the code [51], or to generate test cases inside suspicious

intervals [18]. For the latter technique, user program annotations

link the constraints and the suspicious program executions. We

solve similar problems without looking at the code.

Testing techniques targeting floating-point arithmetic use, for in-

stance, black-box techniques and a shadow execution with a higher

precision version of the code to find inputs that cause large round-

off errors [8, 15, 62]. Recent white-box testing approaches have

focused on detecting overflows [28] or large roundoff errors [63],

using mathematical optimization and condition numbers, respec-

tively. Symbolic execution [7, 38] has also been used to find bugs

and overflows in floating-point code. While these techniques are

useful for debugging the accuracy of the code, they are not applica-

ble to check its compliance with a specification.

9 CONCLUSION

We have shown how to systematically generate tests from numeri-

cal specifications with accuracy requirements using interval con-

straint programming. Our approach outperforms a random testing

baseline and produces adequate test sets, catching many common

programming bugs. An interesting perspective for future work is

to improve the detection of equivalent mutants and to take into

account a high-level semantics of floating-point arithmetic, in order

to kill more mutants.
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