
Metamorphic Testing of Datalog Engines
Muhammad Numair Mansur

MPI-SWS, Germany

numair@mpi-sws.org

Maria Christakis

MPI-SWS, Germany

maria@mpi-sws.org

Valentin Wüstholz

ConsenSys, Germany

valentin.wustholz@consensys.net

ABSTRACT

Datalog is a popular query language with applications in several

domains. Like any complex piece of software, Datalog engines may

contain bugs. The most critical ones manifest as incorrect results

when evaluating queries—we refer to these as query bugs. Given the

wide applicability of the language, query bugsmay have detrimental

consequences, for instance, by compromising the soundness of a

program analysis that is implemented and formalized in Datalog.

In this paper, we present the first metamorphic-testing approach

for detecting query bugs in Datalog engines. We ran our tool on

three mature engines and found 13 previously unknown query bugs,

some of which are deep and revealed critical semantic issues.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

metamorphic testing, fuzzing, Datalog
ACM Reference Format:

Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz.
2021. Metamorphic Testing of Datalog Engines. In Proceedings of the 29th
ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE ’21), August 23–28, 2021,
Athens, Greece. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3468264.3468573

1 INTRODUCTION

Datalog [28] is a declarative, logic-based query language that is
syntactically a subset of Prolog. Datalog is expressive, yet concise,
and as a result, it is used as a domain-specific language in several
application domains, such as natural-language processing [50], bio-
informatics [38, 61], big-data analytics [29, 31], networking [46],
program analysis [11, 22, 26, 51, 74], robotics [53], generic graph
databases [64], and security [12, 13, 27, 69].

Query evaluation is performed by Datalog engines, prominent
examples of which include Soufflé [32], bddbddb [73], DDlog [59],
`Z [30], and LogicBlox [3]. However, as any complex piece of soft-
ware, Datalog engines may contain bugs, resulting in incorrect
query results. An incorrect result may manifest by including wrong
entries or by missing entries that should have been included. We

refer to such bugs as query bugs.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8562-6/21/08.
https://doi.org/10.1145/3468264.3468573

Depending on the application domain, query bugs may have

detrimental consequences. In particular, when a buggy Datalog

engine is used in program analysis, it could compromise soundness
of the verification process; in other words, it could cause an ana-

lyzer to verify incorrect software. As an example, imagine a static

analyzer that uses Datalog to implement a may-alias (or must-alias)

analysis. A query bug that results in computing fewer (or more)

aliases could lead to missing critical bugs in the analyzed software.

In this paper, we present the first automatic test-case generation

approach for detecting query bugs in Datalog engines. A major

challenge in finding such bugs is the lack of an oracle specifying
expected query results. This problem may be overcome with a tech-

nique known as differential testing [48]. Differential testing would

involve running multiple Datalog engines on a common set of pro-

grams and comparing their results for discrepancies. In our context,

this would be extremely difficult as there exists no unified stan-

dard for Datalog syntax; as a result, many different dialects have

emerged.

Our approach circumvents the lack of an oracle using an alter-

native technique, namely metamorphic testing [21]. It works by

transforming a Datalog program such that the new result has an

a-priori known relationship to the result of the original program.

Examples of such a relationship are that the new result should be

equivalent to the original, contained in the original, or containing

the original. To ensure that these oracles are known in advance,

we design metamorphic transformations based on database theory,

and in particular, formal properties of conjunctive queries.
Despite their simplicity, conjunctive queries constitute an im-

portant class of database queries due to their theoretical proper-

ties. Specifically, while many fundamental problems in query op-

timization and minimization are computationally hard—or even

undecidable—for general forms of queries, they are feasible for

conjunctive queries. An example of such a problem is query con-
tainment, which we discuss in Sect. 3. The key insight behind our

approach is to leverage properties of conjunctive queries to develop

metamorphic transformations for full-blown Datalog programs.

We implement our approach in a tool called queryFuzz, which
we use to test three mature Datalog engines. Not only did we find

previously unknown query bugs in all engines, but we also detected

81% of all reported query bugs since May 2020. Moreover, as we

describe in Sect. 7, some of these bugs were hidden deep in the

engine stack and revealed critical semantic issues.

Contributions. Our paper makes the following contributions:

(1) We present the first metamorphic-testing approach for de-

tecting query bugs in Datalog engines.

(2) We implement our approach in an open-source tool
1
, query-

Fuzz. We are already working closely with the developers

1
https://github.com/Practical-Formal-Methods/queryFuzz

639

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3468264.3468573
https://doi.org/10.1145/3468264.3468573
https://doi.org/10.1145/3468264.3468573
https://github.com/Practical-Formal-Methods/queryFuzz
https://creativecommons.org/licenses/by/4.0/

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz

1 // declarations

2 edge(X:number , Y:number).
3 reachable(X:number , Y:number).
4 .output reachable

5

6 // facts

7 edge (1,2).

8 edge (2,3).

9 edge (4,2).

10 edge (2,5).

11

12 // rules

13 reachable(X,Y) :- edge(X,Y).

14 reachable(X,Z) :- edge(X,Y), reachable(Y,Z).

Figure 1: A simple Datalog program.

of the mature Datalog engine Soufflé in order to integrate

queryFuzz in their development cycle.

(3) We evaluate the effectiveness of queryFuzz by testing three

popular Datalog engines. Our tool detected 13 previously

unknown query bugs in all three engines as well as many

other bugs as a by-product.

Outline. The next section gives an overview of our approach.

Sect. 3 provides background on properties of conjunctive queries,

Sect. 4 explains the technical details of our approach for these

queries, and Sect. 5 generalizes the approach to full-blown Datalog

programs. In Sect. 6, we describe the implementation of queryFuzz.
We present our experimental evaluation in Sect. 7, discuss related

work in Sect. 8, and conclude in Sect. 9.

2 OVERVIEW

Datalog is a logic programming language where programs comprise

a finite set of rules over relations. Input relations are given in the form
of facts; they are also commonly referred to as extensional database
(EDB) relations. Intensional database (IDB) relations are defined by

logic rules, and one of them is specified as output. Fig. 1 shows an
example of a simple Datalog program. The rules on lines 13 and 14

define IDB relation reachable , which is specified as output on

line 4 and computes the transitive closure of input relation edge .
Pictorially, edge represents the graph in Fig. 2a. There is an

edge from node 𝑥 to node 𝑦 if edge(𝑥 ,𝑦) is a fact. Execution of

this program is essentially a sequence of derivations, where each

step adds an edge tuple to the output relation until a fixed point is

reached. Fig. 2b shows the final tuples in reachable .
Approach. Using the above example as seed, we now give an

overview of our metamorphic-testing approach for Datalog engines.

Fig. 3 illustrates its main stages.

The first stage, Program Generation, generates a diverse set of
programs to be transformed. It takes as input a (possibly empty)

seed program, such as that of Fig. 1, and outputs a new program.

In case the seed is empty, the new program is randomly generated

based on a Datalog grammar. If the seed is not empty, this stage

automatically extends it with randomly generated IDB relations

using both existing and newly generated facts and rules (again

based on a grammar). This is essentially a generalization of the

above case where the seed is empty. One of the program relations

is then specified as output.

1

3

2

5

4

(a) Pictorial view

(1,2) ,(1,3) ,(1,5) ,(2,3)
(2,5) ,(4,2) ,(4,5) ,(4,3)

(b) Transitive closure

Figure 2: Pictorial view and transitive closure of edge .

The second stage, Program Transformation, applies metamorphic

transformations to the newly generated program (or directly to the

seed if the first stage is skipped). These transformations change

rules of the program such that—when computing its output using a

Datalog engine—the new result has an a-priori known relationship

to the old result. In particular, the new result may contain the

old one (as computed by program exp.dl in Fig. 3), it may be

equivalent to the old one (as computed by equ.dl), or it may be

contained in the old result (as computed by con.dl). For example,

a transformation in which the new result should be equivalent to

the old one is changing line 13 of Fig. 1 to the following:

reachable(X,Y) :- edge(X,Y), edge(W,Y).

As we will see in the next section, this change appears to be intro-

ducing a join, which however has no effect on the result. Another

transformation could be applied to line 14 as follows:

reachable(X,Z) :- edge(X,X), reachable(X,Z).

In this case, the new result should be contained in the old one—in

fact, the new result should be empty as there are no edges from a

node to itself.

Finally, the third stage, Bug Detection, uses these relationships be-
tween new and old results (shown in blue and yellow, respectively,

in Fig. 3) as oracles in order to detect query bugs in the underly-

ing Datalog engine. For instance, imagine that, after transforming

line 13 of Fig. 1 as described above, the Datalog engine returns all

but one of the tuples shown in Fig. 2b. Since this transformation

ensures that the new result is equivalent to the old one, a query

bug has been detected. Note that a query bug is also detected if the

old result is incorrect as long as the expected relationship to the

new result does not hold.

Query bugs. In the rest of this section, we present two query

bugs detected by queryFuzz in existing Datalog engines. We provide

a complete list of detected bugs and more details in Sect. 7.

Fig. 4 shows a program snippet that was generated by queryFuzz
in order to test `Z [30], the Datalog engine of the Z3 SMT solver [23]

supporting the bddbddb [73] dialect. Relation r (line 4) is defined

to compute all tuples in in2 whose second element is in in1 .
Tuple (25 ,10) is the only one that satisfies this definition. Output

relation out (line 5) obtains the first element of each tuple in r,
that is, it computes 25 . This is also the result that is returned by `Z.
Now, consider the following transformation applied by queryFuzz
to line 5:

out(F) :- r(F,C), r(F,A), r(F,B).

The result of the new program should still be 25, but `Z returns

values 7–63 . We reported this bug on Z3’s GitHub issue tracker
2
,

and it was immediately confirmed and fixed. In fact, a Z3 developer

2
https://github.com/Z3Prover/z3/issues/4870

640

https://github.com/Z3Prover/z3/issues/4870

Metamorphic Testing of Datalog Engines ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Program
Generation

gen.dl

gen

exp.dl

equ.dl

exp

equ

⊇
gen

gen

≢
bug report

seed.dl

con.dl
con gen

⊆

Bug Detection

Program
Transformation

1 2

3

Figure 3: Overview of our approach.

1 in1 (49). in1 (10).

2 in2 (25 ,10). in2 (16 ,13). in2 (24 ,22).

3

4 r(V,M) :- in2(V,M), in1(M).

5 out(F) :- r(F,C).

Figure 4: Generated program snippet for testing `Z.

1 HqV(a) :- MZV(a,b), MZV(c,d).

2 gQk(jW) :- MZV(jW,jW).

3 QOq(aS,GF) :- MZV(GF,GF), gQk(M), HqV(aS), MZV(aS,M).

4 RwL(qr) :- QOq(u,qr), gQk(u), gQk(u).

5 out(jB,ym) :- gQk(h), RwL(ym), MZV(h,jB).

Figure 5: Generated program snippet for testing Soufflé.

commented: “These are good latent bugs. They exercise some edge
cases that slipped through the cracks until now.”

The code snippet in Fig. 5 was also generated by queryFuzz, this
time when testing the Soufflé Datalog engine [32]. Relation out is

the output relation of the program. When line 1 is changed to

Hqv(a) :- MZV(a,b).

the program result should remain the same. However, we found that

the result of the original program contained 240 entries, whereas

that of the transformed program contained 306. We reported this

query bug
3
, which was immediately fixed.

These types of bugs, detected by queryFuzz, are extremely dif-

ficult for unsuspecting users to notice and might compromise up-

stream applications that rely on a Datalog engine.

3 BACKGROUND

In this section, we review key concepts from database theory, and

in particular query optimization, that form the basis of our meta-

morphic transformations.

A database schema R is a set of relations 𝑅. The arity of a relation

is the number of attributes in the relation. For example, edge and

reachable in Fig. 1 are relations of arity 2. An attribute in a

relation can take values from a domain 𝐷 . Let 𝑅 be a relation of

arity 𝑚. A fact over 𝑅 is an expression of the form 𝑅(𝑎1, ..., 𝑎𝑚),
where 𝑎𝑖 ∈ 𝐷𝑖 for every 𝑖 = 1, . . . ,𝑚, e.g., edge (1,2) in Fig. 1.

An instance of relation 𝑅 is a finite set of facts over 𝑅. A database

3
https://github.com/souffle-lang/souffle/issues/1453

instance 𝐼 over a database schema R is a collection of relational

instances over the relations 𝑅 ∈ R.
A conjunctive query (CQ) is a single non-recursive function-

free Horn rule, e.g., every rule in Figs. 4 and 5 is a CQ. This is

the simplest type of query that can be expressed over a database

schema. Syntactically, a conjunctive query 𝑄 is an expression of

the form

𝑃 (®𝑈) ← 𝑅1 (®𝑈1), . . . , 𝑅𝑛 (®𝑈𝑛)
where ®𝑈 and ®𝑈𝑖 (1 ≤ 𝑖 ≤ 𝑛) are vectors of variables and constants.

Any variable appearing in ®𝑈 must also appear in some ®𝑈𝑖 . The ex-

pression to the left of← is the head of the query, and the expression

to the right is the body. Each 𝑅𝑖 (®𝑈𝑖) in the body of the query is a

subgoal, and 𝑅𝑖 ∈ R is a relation. Note that subgoals can refer to

the same relation. The set of answers for query 𝑄 w.r.t a database

instance 𝐼 is denoted by 𝑄 (𝐼). Given two syntactically different

CQs, we now define query equivalence and containment.

Definition 1 (Query Eqivalence). Two conjunctive queries
𝑄1 and𝑄2 are equivalent, denoted by𝑄1 ≡ 𝑄2, iff for every database
instance 𝐼 , we have 𝑄1 (𝐼) = 𝑄2 (𝐼).

Definition 2 (Query Containment). Conjunctive query 𝑄1 is
contained in conjunctive query 𝑄2, denoted by 𝑄1 ⊆ 𝑄2, iff for every
database instance 𝐼 , we have 𝑄1 (𝐼) ⊆ 𝑄2 (𝐼).

It is straightforward to see that if 𝑄1 ⊆ 𝑄2 and 𝑄2 ⊆ 𝑄1,

then 𝑄1 ≡ 𝑄2. A decidable procedure for checking query con-

tainment [19] involves determining whether there exists a so-called

containment mapping between two queries.

Definition 3 (Substitution). A substitution \ is a mapping
from a set of variables 𝑉 to a set of variables 𝑉 ′.

Definition 4 (Containment Mapping). A substitution \ is a
containment mapping from conjunctive query𝑄2 to conjunctive query
𝑄1, if 𝑄2 can be transformed by means of \ to become 𝑄1.

Formally, given two CQs

𝑃 (®𝑈) ← 𝑅1 (®𝑈1), . . . , 𝑅𝑛 (®𝑈𝑛) (𝑄1)
𝑃 ′(®𝑉) ← 𝑆1 (®𝑉1), . . . , 𝑆𝑚 (®𝑉𝑚) (𝑄2)

\ is a containment mapping from 𝑄2 to 𝑄1 if:

(1) \ (𝑃 ′(®𝑉)) = 𝑃 (®𝑈), and
(2) ∀𝑖 ∈ {1, . . . ,𝑚} · ∃ 𝑗 ∈ {1, . . . , 𝑛} · \ (𝑆𝑖 (®𝑉𝑖)) = 𝑅 𝑗 (®𝑈 𝑗).

641

https://github.com/souffle-lang/souffle/issues/1453

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz

W

X

Y

Z

X

Y

X

Y

W

Z

\

(a) Containment mapping \ from𝑄1 to𝑄2.

𝑄1 p(X) :- a(X,Y), a(Y,W), a(Z,W).

𝑄2 p(X) :- a(X,Y), a(Y,X).

𝑄1 p(X) :- a(X,Y), a(Y,W), a(Z,W).

\⊆

(b) Mapping of head and subgoals induced by \ .

Figure 6: Containment mapping \ from 𝑄1 to 𝑄2 induces a

mapping of subgoals. No mapping exists from 𝑄2 to 𝑄1.

In words, a containment mapping maps variables of𝑄2 to variables

of 𝑄1 such that

(1) the head of 𝑄2 becomes the head of 𝑄1, and

(2) each subgoal of 𝑄2 becomes some subgoal of 𝑄1.

Theorem 1. Let𝑄1 and𝑄2 be conjunctive queries.𝑄2 is contained
in 𝑄1 (𝑄2 ⊆ 𝑄1) iff there exists a containment mapping from 𝑄1 to
𝑄2.

As an example, consider the two CQs below (in Datalog syntax):

p(X) :- a(X,Y), a(Y,W), a(Z,W). // Q1

p(X) :- a(X,Y), a(Y,X). // Q2

𝑄2 is contained in𝑄1 (𝑄2 ⊆ 𝑄1) because there exists a containment

mapping \ from 𝑄1 to 𝑄2 (shown using solid arrows in Fig. 6a;

dotted arrows should be ignored for now). This is indeed a contain-

ment mapping because the head of 𝑄1 is the head of 𝑄2 and each

subgoal of 𝑄1 becomes a subgoal of 𝑄2 (shown using solid arrows

in Fig. 6b). On the other hand, 𝑄1 is not contained in 𝑄2 (𝑄1 ⊈ 𝑄2)

because there does not exist a containment mapping from 𝑄2 to

𝑄1, shown with dotted arrows in the figure. If X and Y are mapped

to themselves (see Fig. 6a), then the head and first subgoal of 𝑄2

become the head and first subgoal of 𝑄1, but the second subgoal of

𝑄2 cannot become any subgoal of𝑄1 (see Fig. 6b; red dotted arrows

denote invalid subgoal mappings).

4 METAMORPHIC TRANSFORMATIONS

Using the equivalence and containment properties of CQs, we now

present their metamorphic transformations. Note that, in this sec-

tion, we keep the presentation simple by describing a single trans-

formation to a single conjunctive query. In practice however, our

approach can perform sequences of transformations to multiple,

more general queries (see Sects. 4.4 and 5 for more details).

Since any conjunctive query may be expressed as a Datalog rule,

we refer to CQs as rules in the following. Our metamorphic rule

transformations are categorized into three types:

X

Y

X

Y

Z

X

Y

\ 𝜎

(a) Containmentmapping\ from𝑄 to𝑄′ andmap-

ping 𝜎 from𝑄′ to𝑄 .

𝑄 p(X) :- a(X,Y), a(Y,X).

𝑄 ′ p(X) :- a(X,Y), a(Y,X), a(Z,X).

𝑄 p(X) :- a(X,Y), a(Y,X).

\

𝜎

⊆
⊆

(b) Mapping of head and subgoals induced by \ and 𝜎 .

Figure 7: Example of AddEq transformation.

Addition (Add): Rule 𝑄 is transformed into Add(𝑄) = 𝑄 ′ by
adding a subgoal.

Modification (Mod): Rule 𝑄 is transformed into Mod(𝑄) =
𝑄 ′ by modifying a variable.

Removal (Rem): Rule 𝑄 is transformed into Rem(𝑄) = 𝑄 ′ by
removing a subgoal.

Each of these transformation types may result in any of the

following three outcomes:
Expansion (Exp): Original rule𝑄 is contained in transformed

rule 𝑄 ′, i.e., 𝑄 ⊆ 𝑄 ′.
Equivalence (Eq): Original rule 𝑄 is equivalent to trans-

formed rule 𝑄 ′, i.e., 𝑄 ≡ 𝑄 ′.
Contraction (Con): Transformed rule𝑄 ′ is contained in orig-

inal rule 𝑄 , i.e., 𝑄 ′ ⊆ 𝑄 .

We refer to these outcomes as oracles.
Based on the above, a rule transformation combines a transfor-

mation type with an oracle. For instance, AddCon refers to adding

a subgoal to a rule 𝑄 such that the resulting rule 𝑄 ′ is contained in

𝑄 . Next, we describe these transformations in detail.

4.1 Add Transformations

The Add transformations add a subgoal 𝑅(𝑣1, . . . , 𝑣𝑛) to a rule 𝑄 ,

where 𝑣1, . . . , 𝑣𝑛 are variables—we ignore constants for simplicity.

AddExp. The AddExp transformation ensures that 𝑄 is con-

tained in the resulting rule𝑄 ′, i.e.,𝑄 ⊆ 𝑄 ′. However, note that it is
not possible to obtain a 𝑄 ′ such that 𝑄 ⊂ 𝑄 ′ by adding a subgoal.

The reason is that, when adding a subgoal to 𝑄 , there is always a
containment mapping from 𝑄 to 𝑄 ′, i.e., 𝑄 ′ ⊆ 𝑄 . This is because

the head of 𝑄 is the head of 𝑄 ′, and each subgoal of 𝑄 is in 𝑄 ′.
Consequently, even if there existed a containment mapping in the

desirable direction, i.e., 𝑄 ⊆ 𝑄 ′, then the two queries would be

equivalent, a case that is already covered by AddEq.

AddEq. Given that a containment mapping from 𝑄 to 𝑄 ′ al-
ways exists, the AddEq transformation guarantees that 𝑄 ≡ 𝑄 ′

by ensuring there also exists a containment mapping from 𝑄 ′ to 𝑄 .

Intuitively, AddEq adds a new subgoal to 𝑄 while avoiding intro-

ducing new joins among the existing subgoals, thus preserving the

original result. To ensure the existence of a containment mapping

642

Metamorphic Testing of Datalog Engines ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Algorithm 1: Add transformations

1 procedure AddEq(Q)
2 head, body← Q
3 g← RandSubgoal(body)
4 n← Arity(g)
5 m← RandIntRange(1, n)
6 for (i← 0, i < m, i++) do
7 j← RandIntRange(0, n − 1)
8 𝑔.args [j] ← FreshVar(𝑄)
9 return head ← body, g.
10 procedure AddCon(Q, relations)
11 g.rel← RandRelation(relations)
12 n← Arity(g)
13 vars← ExtractAllVars(Q)
14 for (i← 0, i < n, i++) do
15 g.args [i] ← RandVar(vars)
16 head, body← Q
17 if g ∈ body then

18 return none

19 return head ← body, g.

from 𝑄 ′ to 𝑄 when adding a subgoal 𝑅(𝑣1, . . . , 𝑣𝑛) to 𝑄 , relation 𝑅

must already exist in the body of 𝑄 .

Example. Fig. 7 shows an example of an AddEq transformation.

The new subgoal a(Z,X) (shown in green) maps to a(Y,X) when
respecting the containment mapping 𝜎 from 𝑄 ′ to 𝑄 . Although it

might appear that the new subgoal introduces a join, this join does

not restrict the original result (as computed by the original subgoals)

any further.

Algorithm. The algorithm performing this transformation is

shown in procedure AddEq of Alg. 1. First, we extract the head

and body of rule𝑄 (line 2). Then, a random subgoal 𝑔 and its arity 𝑛

are retrieved from body (lines 3–4). On lines 5–8, we replace each of

𝑚 variables in 𝑔 with a fresh variable, where𝑚 is a random number

from 1 to 𝑛. Each call to function FreshVar returns a new variable

that is not already present in 𝑄 . This guarantees that no new joins

are introduced. Subgoal 𝑔 is finally appended to body, and new rule

𝑄 ′ is returned (line 9). In the example of Fig. 7, we replace variable

Y in subgoal a(Y,X) of 𝑄 with fresh variable Z and append this

new subgoal to 𝑄 in order to generate 𝑄 ′.
AddCon. The AddCon transformation ensures that rule 𝑄 ′

is contained in original rule 𝑄 , i.e., 𝑄 ′ ⊆ 𝑄 . Intuitively, AddCon

adds a new subgoal to 𝑄 introducing new joins, thus potentially

contracting the original result. To differentiate this transformation

fromAddEq, we ensure that a containmentmapping does not exist

from 𝑄 ′ to 𝑄 , i.e., 𝑄 ⊈ 𝑄 ′. Note, however, that the absence of such
a mapping does not mean that 𝑄 ′ produces a strictly contracted

result. In other words, 𝑄 ′ ⊂ 𝑄 does not always hold; for example,

for an empty database instance, the result of 𝑄 ′ is still equivalent
to that of𝑄 . To ensure the absence of a containment mapping from

𝑄 ′ to 𝑄 when adding a subgoal 𝑅(𝑣1, . . . , 𝑣𝑛) to 𝑄 , relation 𝑅 must

either not already exist in the body of 𝑄 , or if it does, its variables

should prevent it from being mapped to any subgoal in 𝑄 .

Example. Fig. 8 shows an example of an AddCon transformation.

The new subgoal a(Y,Y) (shown in green) corresponds to relation

a, which already appears in the body of 𝑄 . Despite this, the new

𝑄 p(X) :- a(X,Y), a(Y,X).

𝑄 ′ p(X) :- a(X,Y), a(Y,X), a(Y,Y).

𝑄 p(X) :- a(X,Y), a(Y,X).

\⊆

Figure 8: Example of AddCon transformation.

X

Y

X

Y

W

Z

X

Y

𝜎

(a) Containment mapping 𝜎 from𝑄′ to𝑄 .

𝑄 p(X) :- a(X,Y), a(Y,X).

𝑄 ′ p(X) :- a(X,Y), a(Y,W).

𝑄 p(X) :- a(X,Y), a(Y,X).

𝜎⊆
(b) Mapping of head and subgoals induced by 𝜎 .

Figure 9: Example of ModExp transformation.

subgoal does not map to any subgoal in𝑄 since variable Y may not

be mapped to both X and Y.
Algorithm. The algorithm is shown in procedure AddCon of

Alg. 1. As a first step, we create a subgoal 𝑔 by randomly selecting

a relation from the set of all relations in the program (line 11). On

line 12, we retrieve its arity 𝑛. Then, all variables of query 𝑄 are

extracted in vars (line 13), and we initialize each argument of 𝑔

with a random variable from 𝑣𝑎𝑟𝑠 (lines 14–15). Using variables in

𝑄 for this initialization guarantees that new joins are introduced

unless 𝑔 already appears in body. If so, we discard it (lines 17–18),

otherwise, we append 𝑔 to body and return new rule 𝑄 ′ (line 19).
Note that, when none is returned, our implementation tries again.

In the example of Fig. 8, we select relation a, initialize its arguments

with variable Y, and append this new subgoal to 𝑄 .

4.2 Mod Transformations

The Mod transformations modify a rule 𝑄 by renaming a variable

appearing in its subgoals.

ModExp. Intuitively, this transformation expands the result of

𝑄 by renaming a variable in a way that removes existing joins. This

is achieved by creating a surjective containment mapping from 𝑄 ′

to 𝑄 , i.e., 𝑄 ⊆ 𝑄 ′. Note that the mapping may not be bijective as

this would makeModExp equivalent to ModEq.

Example. Fig. 9 shows an example of a ModExp transformation,

where variable X of subgoal a(Y,X) is renamed to W.
Algorithm. The algorithm for this transformation is shown in

procedure ModExp of Alg. 2. We first extract variables vars that
appear more than once in body of rule𝑄 (line 3). A random variable

𝑣 from vars is selected (line 4), and we replace a random occurrence

643

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz

Algorithm 2:Mod transformations

1 procedure ModExp(Q)
2 head, body← Q
3 vars← ExtractReusedVars(body)
4 v← RandVar(vars)
5 body′← ReplaceRandOccurrence(body, v, FreshVar(𝑄))
6 return head ← body′

7 procedure ModCon(Q)
8 vars← ExtractAllVars(Q)
9 if |vars | < 2 then

10 return none

11 v← RandVar(vars)
12 w← RandVar(vars \ {v })
13 Q′← ReplaceVar(Q, v,w)
14 return Q′

X

Y

X
X

Y

\

(a) Containment mapping \ from𝑄 to𝑄′.

𝑄 p(X) :- a(X,Y), a(Y,X).

𝑄 ′ p(X) :- a(X,X), a(X,X).

𝑄 p(X) :- a(X,Y), a(Y,X).

\⊆

(b) Mapping of head and subgoals induced by \ .

Figure 10: Example of ModCon transformation.

of 𝑣 in body with a fresh variable to get body′ (line 5). Replacing
an occurrence of a reused variable with a fresh one guarantees that

existing joins are removed. Finally, we return head ← body′ as
transformed rule 𝑄 ′ (line 6). In the example of Fig. 9, we choose

variable X, which appears twice in the body of 𝑄 , and replace its

second occurrence with fresh variable W.
ModEq. TheModEq transformation ensures that the result

of 𝑄 is equivalent to that of 𝑄 ′ by creating a bijective containment

mapping between the two rules. A way to guarantee the existence

of such a mapping is by replacing all occurrences of a variable in
𝑄 with those of a fresh variable. Note that this is a very simple

transformation, which we include here mainly for completeness.

ModCon. Analogously to the ModExp transformation, Mod-

Con renames a variable in𝑄 such that there exists a surjective (and

not bijective) containment mapping from 𝑄 to 𝑄 ′.
Example. Fig. 10 shows an example of aModCon transformation,

where all occurrences of variable Y are renamed to X.
Algorithm. The algorithm is shown in procedure ModCon of

Alg. 2. As a first step, we extract all variables vars in 𝑄 (line 8). If

there are fewer than two, we return none (lines 9–10). Otherwise,

two (different) variables 𝑣 and𝑤 are randomly selected from vars
(lines 11–12), and we replace all occurrences of 𝑣 in 𝑄 with 𝑤 to

get 𝑄 ′ (line 13). This ensures that new joins are introduced.

X

Y

Z

X

Y

Z

(a) No containment mapping from𝑄 to𝑄′.

𝑄 p(Z) :- t(Z), r(X,Y), r(Y,X).

𝑄 ′ p(Z) :- t(Z), r(Y,X).

(b) Dropped subgoal may not be mapped to any subgoal in𝑄′.

Figure 11: Example of RemExp transformation.

4.3 Rem Transformations

The Rem transformations remove a subgoal 𝑅(𝑣1, . . . , 𝑣𝑛) from a

rule 𝑄 . Analogously to the Add transformations, when removing

the subgoal, there is always a containment mapping 𝜎 from 𝑄 ′ to
𝑄 , i.e., 𝑄 ⊆ 𝑄 ′. This is because the head of 𝑄 ′ is the head of 𝑄 , and

each subgoal of 𝑄 ′ is in 𝑄 .

RemExp. This transformation checks the existence of a contain-

ment mapping from𝑄 to𝑄 ′. If such a mapping does not exist, then
𝑄 ′ ⊈ 𝑄 and 𝑄 ⊆ 𝑄 ′ (due to 𝜎), that is, the result of 𝑄 is expanded.

Note that, in general, the problem of checking query containment is

NP-complete. However, we can design a containment checker with

linear-time complexity because 𝑄 ′ is derived from 𝑄 by removing

one subgoal. Therefore, it is only necessary to check whether this

subgoal of 𝑄 may be mapped to any subgoal of 𝑄 ′.
Example. Consider the example in Fig. 11. Removing the second

subgoal of 𝑄 (shown in green) prevents the existence of a mapping

from 𝑄 to 𝑄 ′ since it would require each of the variables X and Y
of 𝑄 to be mapped to more than one variable of 𝑄 ′. Consequently,
this is a successful RemExp transformation.

Algorithm. The algorithm for this transformation is shown in

procedure RemExp of Alg. 3. First, we randomly select a subgoal 𝑔

from the body of 𝑄 (line 13) and remove it to get 𝑄 ′ (line 15). We

then check the existence of a containment mapping from 𝑄 to 𝑄 ′

(line 16). This is done by simply checking if the removed subgoal

𝑔 may be mapped to any subgoal in 𝑄 ′. If no such mapping exists,

then we return transformed rule 𝑄 ′, otherwise none .
The algorithm for checking the existence of a containment map-

ping from 𝑄 to 𝑄 ′, where 𝑄 ′ is derived from 𝑄 by removing a

subgoal 𝑔 is shown in procedure ExistsContainment of Alg. 3.

As a first step, we extract all variables vars in 𝑄 and vars′ in 𝑄 ′

(lines 2–3). We then compute the set of removed variables rmVars
(line 4). Function ReplaceWithWildcard (line 5) creates a pattern

expression 𝑝 from 𝑔 such that the first occurrence of each variable

in 𝑔 is replaced with a wildcard if the variable is also in rmVars.
Any subsequent occurrences of the same variable are replaced with

a back-reference to the first match; this ensures that equality con-

straints between variables are captured. In the example of Fig. 11,

rmVars is empty, so 𝑝 is 𝑔, that is, r(X,Y). If any 𝑔′ in the body of

𝑄 ′ matches this pattern, then 𝑔 may be mapped to a subgoal in 𝑄 ′

and a mapping exists (lines 7–9). Otherwise, a mapping does not

exist (line 10) as in Fig. 11.

644

Metamorphic Testing of Datalog Engines ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Algorithm 3: Rem transformations

1 procedure ExistsContainment(Q,Q′, g)
2 vars← ExtractAllVars(Q)
3 vars′← ExtractAllVars(Q′)
4 rmVars← vars \ vars′
5 p← ReplaceWithWildcard(g, rmVars)
6 head′, body′← Q′

7 for each g′ ∈ body′ do
8 if g′ matches p then

9 return true

10 return false

11 procedure RemExp(Q)
12 head, body← Q
13 g← RandSubgoal(body)
14 Q′.head ← head
15 Q′.body← body \ {g }
16 if ¬ ExistsContainment(Q,Q′, g) then
17 return𝑄′

18 return none

W

X

Y

Z

X

Y

Z

\

(a) Containment mapping \ from𝑄 to𝑄′.

𝑄 p(Z) :- t(Z), r(W,X), r(Y,X).

𝑄 ′ p(Z) :- t(Z), r(Y,X).

\⊆

(b) Mapping of head and subgoals induced by \ .

Figure 12: Example of RemEq transformation.

RemEq. If, after removing a subgoal of 𝑄 , a containment map-

ping \ from 𝑄 to 𝑄 ′ does exist, then we have a RemEq transfor-

mation because both 𝑄 ′ ⊆ 𝑄 and 𝑄 ⊆ 𝑄 ′ hold. The former holds

due to \ and the latter due to 𝜎 .

Example. Fig. 12 shows an example of a RemEq transformation.

Algorithm. This algorithm is analogous to the one for RemExp

(see Alg. 3). For this transformation however, we return 𝑄 ′ when a

containment mapping from𝑄 to𝑄 ′ does exist, i.e., ExistsContain-
ment on line 16 is not negated. In the example of Fig. 12, rmVars is
a singleton containing variable W, thus pattern 𝑝 on line 5 of Alg. 3

is r(*,X), where * is a wildcard. Subgoal r(Y,X) in𝑄 ′ matches

this pattern, and as a result, a mapping exists.

RemCon.Analogously toAddExp, this transformation can only

be the same as RemEq.

4.4 Transformation Sequences

Until now, we have focused on applying a single transformation to

a single rule, which is a conjunctive query. However, our approach

is also able to apply sequences of transformations to such a rule.

More specifically, a rule macro-transformation 𝑇 may be com-

posed of a sequence of micro-transformations [𝑡1, . . . , 𝑡𝑛] as the

ones that we described so far. However, every micro-transformation

𝑡𝑖 ∈ 𝑇 must preserve the intended oracle for the rule (i.e., Exp,

Eq, Con). In particular, for an expanding macro-transformation

𝑇Exp, in which 𝑄 ⊆ 𝑄 ′, the sequence of micro-transformations

may have oracles Eq or Exp, but not Con. Analogously, for a

contracting macro-transformation 𝑇Con, in which 𝑄 ′ ⊆ 𝑄 , the

micro-transformations may have oracles Eq or Con, but not Exp.

For an equivalent macro-transformation 𝑇Eq, in which 𝑄 ≡ 𝑄 ′, all
micro-transformations must also have Eq oracles.

In the following section, we generalize our approach from a

single conjunctive query to a Datalog program, containing rules

that are not necessarily CQs.

5 BEYOND CONJUNCTIVE QUERIES

Let us first show how the oracle of a rule (macro-)transformation

generalizes to any positive-Datalog program, i.e., any program with-

out negation. To do this, we need to explain monotonicity of con-

junctive queries. Intuitively, when addingmore entries to a database

instance, a monotonic query never produces a smaller result.

Definition 5 (Monotonicity). A conjunctive query 𝑄 over a
database schema R is monotonic iff, for every two instances 𝐼 and 𝐽

of R, it holds that 𝑄 (𝐼) ⊆ 𝑄 (𝐽) when 𝐼 ⊆ 𝐽 .

In a program 𝑃 , the output relation is called a Datalog query,𝑄𝑃 .

Suppose our approach transforms a rule 𝑄 in 𝑃 to get new rule 𝑄 ′,
and therefore, new program 𝑃 ′ and Datalog query 𝑄 ′

𝑃
. Now, the

same oracle that should hold between 𝑄 and 𝑄 ′ should also hold

between 𝑄𝑃 and 𝑄 ′
𝑃
. This is because, in positive Datalog, all rules

are monotonic. Therefore, due to the fixed-point computation, any

change in the result of𝑄 propagates monotonically to all rules that

(directly or transitively) depend on 𝑄 . Ultimately, this includes the

final Datalog query, and thus, the program result. Consequently,

we may “lift” our oracles from individual conjunctive queries to

full-blown positive-Datalog programs. Naturally, this also allows

us to transform more than one rule in a positive-Datalog program

as long as all transformations have the same intended oracle.

Let us now explain how our approach handles any Datalog pro-

gram (not only positive ones). Of course, the Eq oracle trivially

extends to any program. However, queryFuzz is able to accept any

Datalog program for all oracles: it enforces that all rules depending
on a transformed rule 𝑄 ′ are monotonic (e.g., they do not contain

any negated subgoals). Intuitively, should the result of a rule 𝑄 ′

“flow” into a non-monotonic rule, the effect on the program result

could be “flipped”, for instance, it could be contracted instead of

expanded. This is undesirable as it could lead to false positives.

To handle negation, existing Datalog engines impose a computa-

tion order on relations. More specifically, relations are assigned

to strata via a process known as stratification [4, 58]. Lower strata

are computed before higher ones during the fixed-point compu-

tation. Therefore, queryFuzz works on any Datalog program by

only transforming rules that are in a higher stratum than any rules

containing negation. As a consequence, no results of transformed

rules can “flow” into non-monotonic rules.

Note that many Datalog dialects support rules with more expres-

sive language features, such as comparison operators, aggregate

functions, disjunctions, and recursion. While our transformations

target the restricted subset of pure conjunctive queries (see Sect. 3),

645

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz

they may also be applied to more expressive dialects as long as the

monotonicity constraints described above are maintained. In fact,

our implementation does handle such dialects.

Based on the above, in the rest of this section, we present another

transformation in queryFuzz, which is specific to Datalog programs

(unlike the transformations in Sect. 4, which target CQs in general).

5.1 Neg Transformation

A Neg transformation changes a program 𝑃 into an equivalent but

further stratified program 𝑃 ′ by introducing a double negation in

a rule 𝑄 . In particular, introducing a negation causes the Datalog

engine to split a stratum in two. When this negation is double, we

guarantee the Eq oracle (i.e., the transformation is NegEq).

We introduce so-called safe negations, i.e., every variable in a

negated subgoal must also appear in a positive subgoal. (Unsafe

rules are traditionally not allowed in Datalog as they do not restrict

all variables to finite domains.) As an example, consider:

p(X,Y) :- a(X,Y), b(Y,Z), c(Z). // Q

NegEq selects a subgoal 𝑔 in 𝑄 , say c(Z), and replaces it with

a new negated subgoal, say !neg(Z). Relation neg is defined to

have the same body as 𝑄 but with a negated 𝑔, thus introducing a

double negation:

neg(Z) :- a(X,Y), b(Y,Z), !c(Z).

p(X,Y) :- a(X,Y), b(Y,Z), !neg(Z). // Q'

One can easily see that queries 𝑄 and 𝑄 ′ are equivalent when

thinking about the transformation logically: a ∧ b ∧¬ neg ≡ a ∧
b ∧ (¬ a ∨¬ b ∨ c) ≡ a ∧ b ∧ c. Such a transformation partitions

the original stratum of relation p into two, where the stratum of

p is strictly greater than that of c. Note that Datalog traditionally
disallows Neg transformations when 𝑔 (in this case c) has a cyclic
dependency on the head of 𝑄 (in this case p), which would require

them to be defined in the same stratum.

6 IMPLEMENTATION

We implemented queryFuzz in a total of 5,300 lines of Python.

It currently supports three Datalog dialects, namely Soufflé [32],

bddbddb [73] (used by `Z), and DDlog [59]. In the rest of this

section, we discuss how we implement the bug-detection stage of

our approach.

Bug detection. During bug detection, queryFuzz compares the

result of a program (gen in Fig. 3) with that of its transforma-

tion (exp , equ , or con in the figure). However, a program result

could potentially contain millions of entries. This is especially true

for randomly generated programs. To efficiently check an oracle,

queryFuzz uses Datalog rules that decide result containment.

For instance, the rules that check Eq oracles are the following:

equ1(Z) :- gen(Z), !equ(Z).

equ2(Z) :- equ(Z), !gen(Z).

The first rule checks whether gen ⊆ equ and the second whether

equ ⊆ gen . A bug is detected if the result of either equ1 or equ2
is non-empty.

Table 1: Query bugs detected by queryFuzz.

Bug Datalog Metamorphic Bug

ID Engine Transformations Status

1 Soufflé Add fixed

2 Soufflé Rem, Rem, Rem,Mod fixed

3 Soufflé Mod, Add, Add confirmed

4 Soufflé Neg fixed

5 Soufflé Mod, Add, Add confirmed

6 Soufflé Mod, Add,Mod, Rem confirmed

7 Soufflé Rem,Mod, Add confirmed

8 Soufflé Add, Add,Mod confirmed

9 `Z Add, Mod, Add fixed

10 `Z Add, Add, Add,Mod fixed

11 `Z Add,Mod fixed

12 `Z Mod, Add confirmed

13 DDlog Add, Add, Add confirmed

7 EXPERIMENTAL EVALUATION

In this section, we address the following research questions:

RQ1: How effective is queryFuzz in detecting previously un-

known query bugs in Datalog engines?

RQ2: Is the number of detected bugs significant?

RQ3: How deep are the detected bugs?

RQ4: What are characteristics of the detected bugs?

RQ5: How efficient is queryFuzz?

7.1 Experimental Setup

We tested Soufflé, `Z, and DDlog, three popular and mature Datalog

engines that are publicly available on GitHub. We completed the

development of the first version of queryFuzz, with a subset of

the metamorphic transformations and limited support for different

language features, in May 2020, and initially focused on testing

Soufflé. We only added support for the dialects of `Z and DDlog in

late Dec 2020 to evaluate the generality of our transformations.

To avoid burdening developers and reporting duplicate issues,

we only filed reports for bugs that were clearly different than the

ones we had already reported until these were fixed. Of course,

this hinders bug reporting, but it was greatly appreciated by the

developers. In fact, we are now closely working with the Soufflé

team on integrating queryFuzz in their development cycle.

7.2 Experimental Results

We now discuss our experimental results for each of the above

research questions.

RQ1: Query bugs. Tab. 1 shows the list of unique query bugs

detected by queryFuzz in the Datalog engines we tested. Note that

we confirmed bug uniqueness with the engine developers them-

selves. The first column of the table assigns an identifier to each

bug; all identifiers link to the corresponding bug reports on the

GitHub issue tracker of each engine. The second column of the

table shows the engine in which the bug was found, the third the

sequence of metamorphic transformations that revealed the bug,

and the last column shows the current status of the bug (i.e., open,

confirmed, or fixed).

646

https://github.com/souffle-lang/souffle/issues/1453
https://github.com/souffle-lang/souffle/issues/1463
https://github.com/souffle-lang/souffle/issues/1467
https://github.com/souffle-lang/souffle/issues/1679
https://github.com/souffle-lang/souffle/issues/1732
https://github.com/souffle-lang/souffle/issues/1738
https://github.com/souffle-lang/souffle/issues/1740
https://github.com/souffle-lang/souffle/issues/1848
https://github.com/Z3Prover/z3/issues/4844
https://github.com/Z3Prover/z3/issues/4870
https://github.com/Z3Prover/z3/issues/4879
https://github.com/Z3Prover/z3/issues/4893
https://github.com/vmware/differential-datalog/issues/878

Metamorphic Testing of Datalog Engines ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 2: By-product bugs detected by queryFuzz.

Bug Datalog

Bug Type

Bug

ID Engine Status

14 Soufflé floating-point exception confirmed

15 Soufflé aborted evaluation fixed

16 Soufflé segmentation fault fixed

17 Soufflé segmentation fault fixed

18 Soufflé segmentation fault fixed

19 Soufflé segmentation fault fixed

20 Soufflé segmentation fault confirmed

21 Soufflé assertion failure fixed

22 Soufflé assertion failure fixed

23 Soufflé assertion failure confirmed

24 Soufflé assertion failure confirmed

25 Soufflé assertion failure open

26 Soufflé compiler error fixed

27 `Z performance bug fixed

Overall, queryFuzz detected 13 previously unknown query bugs

in all three engines. All bugs have been confirmed by the devel-

opers, and 6 have already been fixed. Bugs 3 and 5 are labeled as

questions on the issue tracker even though developers have con-

firmed them. The reason is that they reveal a deep semantic issue

in logic programming that cannot be easily addressed (see RQ4). As

shown in the third column of the table, each of our metamorphic

transformations (i.e., Add,Mod, Rem, and Neg) contributed to de-

tecting at least one query bug. Moreover, the fact that each tested

engine implements its own Datalog dialect speaks to the general-

ity of these transformations. Note, however, that our public bug

reports do not all show the applied transformations as we tried to

localize issues as much as possible and aid developers in debugging;

our tool repository
4
contains instructions on how to reproduce all

bug-revealing transformations.

In addition to query bugs, queryFuzz also detected several crash

bugs as a by-product; they are shown in Tab. 2. Even though such

bugs are less critical, they expose robustness issues, and developers

were still interested in them. In fact, a developer of Soufflé said:

“Bug reports like this are definitely welcome, especially because they
might also point to other potential issues in our setup. [These issues]
have already been super useful.”

In general, we found many more bugs in Soufflé in comparison

to the other engines. However, this does not necessarily mean that

Soufflé is more buggy. A reason is that we tested it for a longer pe-

riod of time (see Sect. 7.1). Another reason is that the Z3 developers

currently have very limited bandwidth to devote to `Z as they are

working on a new core SMT engine—we, therefore, decided against

filing more bugs for the time being. In addition, DDlog is quite slow

as it compiles every input program into a Rust project; this also

slows down the testing process (see RQ5).

RQ2: Significance of bug numbers. To evaluate the signifi-

cance of our bug-finding results, we compare the number of query

bugs detected by queryFuzz to the total number of such bugs re-

ported from May 1, 2020 to Feb 15, 2021. For this research question,

we consider all three engines, and we collect the total number of

4
https://github.com/Practical-Formal-Methods/queryFuzz

0 10 20 30 40 50

Crash bugs

Query bugs

Number of reported bugs

queryFuzz others

14

13

27

3

Figure 13: All bugs reported in the three Datalog engines

from May 1, 2020 to Feb 15, 2021.

Table 3: Categorization of Soufflé bugs into the components

in which they were found.

Soufflé

Bug IDs

Component

AstGen A, E

AstOpt 1, 2, 3, 4, 5, 15, 17, 20, 21, 25, B, C, D

AstRam 8, 22, 23, 24

RamOpt 19

IntSyn 6, 7, 14, 26

Infra 16, 18

reported bugs from their GitHub issue trackers. We inspect issues

since May 1, 2020 because this is when we started testing Soufflé.

The results are shown in Fig. 13. In the considered time period, a

total of 16 query bugs were reported in the three Datalog engines we

tested, and queryFuzz detected 13 of them (81%). This ratio, though

very high, is not surprising since query bugs are very hard to detect

without an oracle. In the same time period, 41 crash bugs were

reported, and queryFuzz detected 14 of them (34%) as a by-product.

RQ3: Bug depth. To understand the depth of the detected bugs,

we analyzed all Soufflé bugs together with the engine developers.

In general, they revealed issues across the stack.

The Soufflé engine essentially consists of the following compo-

nents, from front- to back-end: (1) AstGen for parsing and abstract-

syntax-tree (AST) generation, (2) AstOpt for AST analysis and

optimization, (3) AstRam for translation from AST to relational-

algebra machine (RAM), (4) RamOpt for RAM optimization, and

(5) IntSyn for interpretation or synthesis. The interpreter evaluates

its RAM input, whereas the synthesizer translates RAM into C++

code, which is then compiled and executed.

Tab. 3 categorizes all Soufflé bugs into the engine component

in which they were found—ignore bugs A, B, C, D, and E for now.

Note that no bugs were found in AstGen and that we include a row

Infra, referring to infrastructure bugs, e.g., in utilities, that could

affect the entire stack. As shown in the table, queryFuzz detected
bugs in all components except AstGen, which is the most shallow.

We compare the depth of these bugs with that of bugs detected

using of-the-shelf fuzzers and reported from May 1, 2020 to Feb

15, 2020. There were 6 such bugs, 3 of which were detected with

Radamsa [1] and the other 3 with AFL [2]. One of the Radamsa

bugs
5
was not confirmed by the developers, who labeled it as ‘wont-

fix’. The other 5 bugs are shown in Tab. 3 as A, B, C, D, and E. They

revealed issues in the AstGen and AstOpt components of Souf-

flé, which are at the top of the stack—for instance, bugs A and E

crash the engine during, or even before, parsing. The reason why

5
https://github.com/souffle-lang/souffle/issues/1757

647

https://github.com/souffle-lang/souffle/issues/1477
https://github.com/souffle-lang/souffle/issues/1770
https://github.com/souffle-lang/souffle/issues/1731
https://github.com/souffle-lang/souffle/issues/1745
https://github.com/souffle-lang/souffle/issues/1774
https://github.com/souffle-lang/souffle/issues/1790
https://github.com/souffle-lang/souffle/issues/1818
https://github.com/souffle-lang/souffle/issues/1744
https://github.com/souffle-lang/souffle/issues/1769
https://github.com/souffle-lang/souffle/issues/1796
https://github.com/souffle-lang/souffle/issues/1817
https://github.com/souffle-lang/souffle/issues/1832
https://github.com/souffle-lang/souffle/issues/1858
https://github.com/Z3Prover/z3/issues/4874
https://github.com/souffle-lang/souffle/issues/1467
https://github.com/souffle-lang/souffle/issues/1732
https://github.com/Practical-Formal-Methods/queryFuzz
https://github.com/souffle-lang/souffle/issues/1756
https://github.com/souffle-lang/souffle/issues/1777
https://github.com/souffle-lang/souffle/issues/1453
https://github.com/souffle-lang/souffle/issues/1463
https://github.com/souffle-lang/souffle/issues/1467
https://github.com/souffle-lang/souffle/issues/1679
https://github.com/souffle-lang/souffle/issues/1732
https://github.com/souffle-lang/souffle/issues/1770
https://github.com/souffle-lang/souffle/issues/1745
https://github.com/souffle-lang/souffle/issues/1818
https://github.com/souffle-lang/souffle/issues/1744
https://github.com/souffle-lang/souffle/issues/1832
https://github.com/souffle-lang/souffle/issues/1758
https://github.com/souffle-lang/souffle/issues/1775
https://github.com/souffle-lang/souffle/issues/1776
https://github.com/souffle-lang/souffle/issues/1848
https://github.com/souffle-lang/souffle/issues/1769
https://github.com/souffle-lang/souffle/issues/1796
https://github.com/souffle-lang/souffle/issues/1817
https://github.com/souffle-lang/souffle/issues/1790
https://github.com/souffle-lang/souffle/issues/1738
https://github.com/souffle-lang/souffle/issues/1740
https://github.com/souffle-lang/souffle/issues/1477
https://github.com/souffle-lang/souffle/issues/1858
https://github.com/souffle-lang/souffle/issues/1731
https://github.com/souffle-lang/souffle/issues/1774
https://github.com/souffle-lang/souffle/issues/1756
https://github.com/souffle-lang/souffle/issues/1758
https://github.com/souffle-lang/souffle/issues/1775
https://github.com/souffle-lang/souffle/issues/1776
https://github.com/souffle-lang/souffle/issues/1777
https://github.com/souffle-lang/souffle/issues/1756
https://github.com/souffle-lang/souffle/issues/1758
https://github.com/souffle-lang/souffle/issues/1775
https://github.com/souffle-lang/souffle/issues/1776
https://github.com/souffle-lang/souffle/issues/1777
https://github.com/souffle-lang/souffle/issues/1756
https://github.com/souffle-lang/souffle/issues/1777
https://github.com/souffle-lang/souffle/issues/1757

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz

1 PQRI(v) :- Z(v), Z(nbj).

2 PLEY(o) :- PQRI(x), Z(o), Z(x).

3 NFUV(q) :- Z(fym), PLEY(q).

4 OUT(t) :- NFUV(ssz), PLEY(arv), PLEY(t).

Figure 14: Generated program snippet for testing DDlog.

queryFuzz bugs are much deeper is that it generates valid Datalog

programs and its oracle-driven transformations are more likely to

reveal semantic issues. Note that we do not further compare our

approach with other off-the-shelf fuzzers as they are not able to

detect query bugs due to lack of oracles.

RQ4: Bug characteristics. To demonstrate the nature of the

detected bugs, we now provide a few interesting bug samples.

Bug 1was found in Soufflé’sAstOpt component, and specifically,

in the minimization pass that simplifies the program by removing

equivalent rules and subgoals. This pass missed a corner case for

singleton relations, i.e., with arity 1. The program and transfor-

mation that revealed this bug are discussed in Sect. 2 (see Fig. 5).

Bug 4 was detected in the same component, but in its magic-set

transformation [4, 5, 7, 58], which aims to derive only those facts

that are relevant for the program’s Datalog query. Our approach

revealed this bug using a Neg transformation. The rule in which

the negation was introduced depended on another rule containing

a comparison operator, which in turn caused a mislabeling of re-

lations as positive. Naturally, correct positive labeling is essential

to the stratification process. Bug 2 revealed another issue in the

magic-set transformation. In general, developers mentioned that

implementing optimization passes on the AST is quite complex for

a feature-rich Datalog dialect. They also expressed the need for

verifying the correctness of such passes, as done by Bégay et al. [8].
According to developers, bugs 3 and 5 reveal an important se-

mantic issue in logic programming. There is no clear execution

order of instructions, which may result in numerical-stability is-

sues in the presence of floating-point numbers. For these bugs to

be fixed, the developers would have to build symbolic machinery

that dictates the order of optimizations and instructions such that

numerical stability is maximized. However, this is an open research

problem, which is why these bugs were labeled as questions.

Bug 7 was detected in Soufflé’s IntSyn component, at the very

bottom of the stack. According to the developers, the problem lies

in a data-structure representation for relations, namely brie [33],

which does not properly implement element insertion and count.

This bug existed at least since an old release of Soufflé (of 1.5 years

ago). A developer commented about this bug: “I don’t know how it
could have been missed until now, but that’s the first time I’ve seen
anyone point this out.” Bug 6 revealed a different issue with the

same data structure; in this case, the computation of lower and

upper bound values of its elements was incorrect.

Bug 8 was found in the AstRam component of Soufflé. Our trans-

formation caused a silent internal failure in this component, which

manifested itself with an incorrect result. A developer commented:

“Well spotted! Great work!”
Bug 13, was detected in DDlog after randomly generating the

program in Fig. 14 and then adding two subgoals to rule PLEY :

PLEY(o) :- PQRI(x), Z(o), Z(x), PQRI(z), PQRI(x).

The original program repeatedly computes Cartesian products of

the different relations and generates a non-empty result. However,

after the above transformation, which should preserve the original

result, the new program generates an empty result. This is because

DDlog stores all intermediate relations as multi-sets, where the

multiplicity of each element is the number of times it was derived.

Currently, multiplicities are stored as 32-bit integers to reduce the

memory footprint of the program, and the above transformation

caused an integer overflow, manifesting itself as an empty result.

This bug was confirmed by the developers, who are considering

several solutions to the problem, such as using 64-bit integers to

storemultiplicities, internally convertingmulti-sets to sets using the

distinct operator in Rust, or statically analyzing the program

to estimate the number of derivations.

RQ5: Performance. Regarding the performance of queryFuzz,
it expectedly varies significantly depending on the tested Datalog

engine. On average, Soufflé requires 0.078 seconds to run a test (12.9

tests per second) in interpreter mode and 12 seconds in synthesizer

mode, DDlog needs 1.2 minutes per test, and `Z 0.1 seconds (10

tests per second). On average, the first stage of queryFuzz gener-
ates 47.6 programs per second, and the second stage performs 303

transformations per second. As shown from these numbers, the

performance bottleneck are the engines themselves.

7.3 Threats to Validity

We identified two threats to the validity of our experiments.

Selection of seeds. Our approach may use seeds as input, and

its effectiveness in bug finding could depend on their selection.

However, we used non-empty seeds only when testing Soufflé, and

we selected all of its semantically valid regression tests
6
. Our seed

selection is, therefore, sufficiently broad to mitigate this threat.

Moreover, queryFuzz does not require non-empty seeds as, in their

absence, it generates random Datalog programs (see Sect. 2). In fact,

7 of the detected bugs were found using non-empty seeds.

Selection of Datalog engines. The detected bugs also depend

on our selection of Datalog engines. However, we chose three ma-

ture engines, which even support different dialects, to mitigate this

threat and demonstrate the generality of our approach.

8 RELATEDWORK

In this paper, we present the first testing approach for detecting

query bugs in Datalog engines. It uses metamorphic testing to solve

the common problem of finding a suitable oracle [6] taking inspira-

tion from query optimization in database theory. Of course, query

optimization has been studied in other domains as well, such as in

Datalog or Prolog (e.g., [25, 54, 60, 72]). However, optimization tar-

gets a goal different than ours, that of finding an equivalent query

that performs faster. In contrast, queryFuzz tests Datalog engines
by exploring a state space of queries that are not necessarily equiv-

alent, let alone more optimal. In the following, we focus on testing

work from related areas, such as database systems, compilers, and

program analyzers.

Metamorphic testing.Metamorphic testing [21] is an effective

technique to test software systems without user-provided oracles.

6
We selected all tests in the ‘evaluation’, ‘example’, and ‘semantic’ folders under

https://github.com/souffle-lang/souffle/tree/master/tests.

648

https://github.com/souffle-lang/souffle/issues/1453
https://github.com/souffle-lang/souffle/issues/1679
https://github.com/souffle-lang/souffle/issues/1463
https://github.com/souffle-lang/souffle/issues/1467
https://github.com/souffle-lang/souffle/issues/1732
https://github.com/souffle-lang/souffle/issues/1740
https://github.com/souffle-lang/souffle/issues/1738
https://github.com/souffle-lang/souffle/issues/1848
https://github.com/vmware/differential-datalog/issues/878
https://github.com/souffle-lang/souffle/tree/master/tests

Metamorphic Testing of Datalog Engines ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

It works by mutating test cases via metamorphic relations that

allow inferring the expected output of the mutated test cases. Over

the years, it has been used to test a variety of systems, from web

services [18], over compilers [41], to machine-learning applica-

tions [77]. Segura et al. [62] conducted a comprehensive survey on

metamorphic testing in different domains.

Testing database systems. Database-management systems lie

at the heart of most large-scale software applications today. Ensur-

ing their correctness and robustness is of critical importance and

has been a focus of many researchers and practitioners for decades.

In 1998, Slutz [65] proposed a technique, based on differential

testing, to detect bugs in database systems. Another approach—also

based on differential testing—was used by Jinho et al. to detect

performance bugs [34]. Jepsen [39], developed by Kingsbury, is

a practical tool for detecting safety bugs in distributed database

systems; these can occur due to asynchronous interactions between

components, data loss due to networking issues, node failures, etc.

Recently, Rigger and Su proposed a series of testing techniques [55–

57], which they implemented in a tool called SQLancer. Their tool

detected hundreds of bugs in various relational database systems.

Fuzzing is also applied to detect crashes and other robustness

issues in database systems. For instance, SQLsmith [63] is a popu-

lar SQL-query generator that has detected hundreds of crashes in

widely used database systems. Other query-generation approaches

include ones relying on constraint solvers [14, 36, 37, 49, 52, 71],

symbolic execution [10, 45], and reverse query processing [9].

Testing compilers. Compiler testing is another important and

active research area [20, 43, 66, 78]. Le et al. proposed ametamorphic-

testing technique [41], known as equivalence modulo inputs (EMI),

which mutates a seed program to generate equivalent programs.

The technique and its extensions [42, 67, 80] have detected hun-

dreds of bugs in GCC and Clang. A related approach was also used

to test graphics shader compilers [24, 43]. Livinskii et al. recently
developed a technique for generating expressive programs without

undefined behavior to test C and C++ compilers [44]. The programs

are then compiled using different compilers, and their outputs are

compared to detect bugs.

Testing program analyzers.Work on detecting bugs—in par-

ticular soundness bugs—in implementations of program-analysis

techniques [17] has received significant attention in recent years.

Various different approaches have been proposed to test a wide

range of analysis techniques, such as model checking [79], abstract

interpretation [40], symbolic execution [35], or dataflow analy-

sis [68], as well as their underlying components, such as abstract

domains [16] or constraint solvers [15, 47, 70, 75, 76].

9 CONCLUSION

We have presented the first approach for metamorphic testing of

Datalog engines. Our tool, queryFuzz, detected 13 previously un-

known query bugs in three different engines. Query bugs are critical

since, unlike crashes, they typically remain undetected. Given that

Datalog is frequently used to formalize and implement security

analyses or verification tools, such bugs can be catastrophic. As a

result, we received overwhelmingly positive reactions from engine

developers about the bugs we reported, several of which revealed

deep—sometimes even fundamental—issues.

ACKNOWLEDGMENTS

We thank the reviewers for their constructive feedback. We are

grateful to the Datalog-engine developers for their valuable help

and feedback, and especially to Bernhard Scholz and the Soufflé

team. This work was supported by DFG grant 389792660 as part of

TRR 248 (see https://perspicuous-computing.science).

REFERENCES

[1] [n.d.]. Radamsa. https://gitlab.com/akihe/radamsa.

[2] [n.d.]. Technical “Whitepaper” for AFL. http://lcamtuf.coredump.cx/afl/

technical_details.txt.

[3] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. 2015. Design and

Implementation of the LogicBlox System. In SIGMOD. ACM, 1371–1382.

[4] Isaac Balbin, Graeme S. Port, Kotagiri Ramamohanarao, and Krishnamurthy

Meenakshi. 1991. Efficient Bottom-Up Computation of Queries on Stratified

Databases. JLP 11 (1991), 295–344. Issue 3&4.

[5] François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. 1986.

Magic Sets and Other Strange Ways to Implement Logic Programs. In PODS.
ACM, 1–15.

[6] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.

2015. The Oracle Problem in Software Testing: A Survey. TSE 41 (2015), 507–525.

Issue 5.

[7] Catriel Beeri and Raghu Ramakrishnan. 1991. On the Power of Magic. JLP 10

(1991), 255–299. Issue 3&4.

[8] Pierre-Léo Bégay, Pierre Crégut, and Jean-François Monin. 2021. Developing and

Certifying Datalog Optimizations in Coq/MathComp. In CPP. ACM, 163–177.

[9] Carsten Binnig, Donald Kossmann, and Eric Lo. 2007. Reverse Query Processing.

In ICDE. IEEE Computer Society, 506–515.

[10] Carsten Binnig, Donald Kossmann, Eric Lo, and M. Tamer Özsu. 2007. QAGen:

Generating Query-Aware Test Databases. In SIGMOD. ACM, 341–352.

[11] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specifica-

tion of Sophisticated Points-To Analyses. In OOPSLA. ACM, 243–262.

[12] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, François Gauthier, Vincent

Gramoli, Ralph Holz, and Bernhard Scholz. 2018. Vandal: A Scalable Security

Analysis Framework for Smart Contracts. CoRR abs/1809.03981 (2018).

[13] Neville Brent, Lexiand Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis

Smaragdakis. 2020. Ethainter: A Smart Contract Security Analyzer for Composite

Vulnerabilities. In PLDI. ACM, 454–469.

[14] Nicolas Bruno, Surajit Chaudhuri, and Dilys Thomas. 2006. Generating Queries

with Cardinality Constraints for DBMS Testing. TKDE 18 (2006), 1721–1725.

Issue 12.

[15] Alexandra Bugariu and Peter Müller. 2020. Automatically Testing String Solvers.

In ICSE. ACM, 1459–1470.

[16] Alexandra Bugariu, Valentin Wüstholz, Maria Christakis, and Peter Müller. 2018.

Automatically Testing Implementations of Numerical Abstract Domains. In ASE.
ACM, 768–778.

[17] Cristian Cadar and Alastair F. Donaldson. 2016. Analysing the Program Analyser.

In ICSE. ACM, 765–768.

[18] W. K. Chan, S. C. Cheung, and Karl R. P. H. Leung. 2005. Towards a Metamorphic

Testing Methodology for Service-Oriented Software Applications. In QSIC. IEEE
Computer Society, 470–476.

[19] Ashok K. Chandra and Philip M. Merlin. 1977. Optimal Implementation of

Conjunctive Queries in Relational Data Bases. In STOC. ACM, 77–90.

[20] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan

Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. Comput. Surv. 53 (2020),
4:1–4:36. Issue 1.

[21] Tsong Yueh Chen, S. C. Cheung, and Siu-Ming Yiu. 1998. Metamorphic Testing: A
New Approach for Generating Next Test Cases. Technical Report HKUST–CS98–01.
HKUST.

[22] Oege deMoor, Damien Sereni, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgustinov,

Torbjörn Ekman, Neil Ongkingco, and Julian Tibble. 2007. .QL: Object-Oriented

Queries Made Easy. In GTTSE (LNCS, Vol. 5235). Springer, 78–133.
[23] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In

TACAS (LNCS, Vol. 4963). Springer, 337–340.
[24] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017.

Automated Testing of Graphics Shader Compilers. PACMPL 1 (2017), 93:1–93:29.

Issue OOPSLA.

[25] Markian M. Gooley and Benjamin W. Wah. 1988. Efficient Reordering of Prolog

Programs. In ICDE. IEEE Computer Society, 110–117.

[26] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Ry-

balchenko. 2012. Synthesizing Software Verifiers from Proof Rules. In PLDI.
ACM, 405–416.

649

https://perspicuous-computing.science
https://gitlab.com/akihe/radamsa
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz

[27] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz,

and Yannis Smaragdakis. 2018. MadMax: Surviving Out-of-Gas Conditions in

Ethereum Smart Contracts. PACMPL 2 (2018), 116:1–116:27. Issue OOPSLA.

[28] Sergio Greco and Cristian Molinaro. 2015. Datalog and Logic Databases. Morgan

& Claypool.

[29] Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu,

Paraschos Koutris, Dominik Moritz, Jennifer Ortiz, Vaspol Ruamviboonsuk,

Jingjing Wang, Andrew Whitaker, Shengliang Xu, Magdalena Balazinska, Bill

Howe, and Dan Suciu. 2014. Demonstration of the Myria Big Data Management

Service. In SIGMOD. ACM, 881–884.

[30] Krystof Hoder, Nikolaj Bjørner, and Leonardo de Moura. 2011. `Z—An Efficient

Engine for Fixed Points with Constraints. In CAV (LNCS, Vol. 6806). Springer,
457–462.

[31] Seo Jiwon, Guo Stephen, and Lam Monica S. 2013. SociaLite: Datalog Extensions

for Efficient Social Network Analysis. In ICDE. IEEE Computer Society, 278–289.

[32] Herbert Jordan, Bernhard Scholz, and Pavle Subotic. 2016. Soufflé: On Synthesis

of Program Analyzers. In CAV (LNCS, Vol. 9780). Springer, 422–430.
[33] Herbert Jordan, Pavle Subotic, David Zhao, and Bernhard Scholz. 2019. Brie: A

Specialized Trie for Concurrent Datalog. In PPoPP. ACM, 31–40.

[34] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woon-Hak Kang. 2019.

APOLLO: Automatic Detection and Diagnosis of Performance Regressions in

Database Systems. VLDB 13 (2019), 57–70. Issue 1.

[35] Timotej Kapus and Cristian Cadar. 2017. Automatic Testing of Symbolic Execution

Engines via Program Generation and Differential Testing. In ASE. IEEE Computer

Society, 590–600.

[36] Shadi Abdul Khalek, Bassem Elkarablieh, Yai O. Laleye, and Sarfraz Khurshid.

2008. Query-Aware Test Generation Using a Relational Constraint Solver. In ASE.
IEEE Computer Society, 238–247.

[37] Shadi Abdul Khalek and Sarfraz Khurshid. 2010. Automated SQL Query Genera-

tion for Systematic Testing of Database Engines. In ASE. ACM, 329–332.

[38] Ross D. King. 2004. Applying Inductive Logic Programming to Predicting Gene

Function. AI Mag. 25 (2004), 57–68. Issue 1.
[39] Kyle Kingsbury. [n.d.]. Jepsen. https://jepsen.io.

[40] Christian Klinger, Maria Christakis, and Valentin Wüstholz. 2019. Differentially

Testing Soundness and Precision of Program Analyzers. In ISSTA. ACM, 239–250.

[41] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via Equiv-

alence Modulo Inputs. In PLDI. ACM, 216–226.

[42] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Compiler Bugs via

Guided Stochastic Program Mutation. In OOPSLA. ACM, 386–399.

[43] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.

2015. Many-Core Compiler Fuzzing. In PLDI. ACM, 65–76.

[44] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random Testing

for C and C++ Compilers with YARPGen. PACMPL 4 (2020), 196:1–196:25. Issue

OOPSLA.

[45] Eric Lo, Carsten Binnig, Donald Kossmann, M. Tamer Özsu, and Wing-Kai Hon.

2010. A Framework for Testing DBMS Features. VLDB 19 (2010), 203–230. Issue

2.

[46] Boon Thau Loo, Tyson Condie, Minos N. Garofalakis, David E. Gay, Joseph M.

Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion

Stoica. 2009. Declarative Networking. CACM 52 (2009), 87–95. Issue 11.

[47] Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz, and Fuyuan

Zhang. 2020. Detecting Critical Bugs in SMT Solvers Using Blackbox Mutational

Fuzzing. In ESEC/FSE. ACM, 701–712.

[48] William M. McKeeman. 1998. Differential Testing for Software. Digital Technical
Journal 10 (1998), 100–107. Issue 1.

[49] Chaitanya Mishra, Nick Koudas, and Calisto Zuzarte. 2008. Generating Targeted

Queries for Database Testing. In SIGMOD. ACM, 499–510.

[50] Raymond J. Mooney. 1996. Inductive Logic Programming for Natural Language

Processing. In ILP (LNCS, Vol. 1314). Springer, 3–22.
[51] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective Static Race Detection

for Java. In PLDI. ACM, 308–319.

[52] Meikel Poess and John M. Stephens. 2004. Generating Thousand Benchmark

Queries in Seconds. In VLDB. Morgan Kaufmann, 1045–1053.

[53] David Poole. 1995. Logic Programming for Robot Control. In IJCAI. Morgan

Kaufmann, 150–157.

[54] Raghu Ramakrishnan, Catriel Beeri, and Ravi Krishnamurthy. 1988. Optimizing

Existential Datalog Queries. In PODS. ACM, 89–102.

[55] Manuel Rigger and Zhendong Su. 2020. Detecting Optimization Bugs in Database

Engines via Non-Optimizing Reference Engine Construction. In ESEC/FSE. ACM,

1140–1152.

[56] Manuel Rigger and Zhendong Su. 2020. Finding Bugs in Database Systems via

Query Partitioning. PACMPL 4 (2020), 211:1–211:30. Issue OOPSLA.

[57] Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted

Query Synthesis. In OSDI. USENIX, 667–682.
[58] Kenneth A. Ross. 1990. Modular Stratification and Magic Sets for Datalog Pro-

grams with Negation. In PODS. ACM, 161–171.

[59] Leonid Ryzhyk and Mihai Budiu. 2019. Differential Datalog. In Datalog (CEUR,
Vol. 2368). CEUR-WS.org, 56–67.

[60] Yehoshua Sagiv. 1988. Optimizing Datalog Programs. In Foundations of Deductive
Databases and Logic Programming. Morgan Kaufmann, 659–698.

[61] José Carlos Almeida Santos, Houssam Nassif, David Page, Stephen H. Muggleton,

and Michael J. E. Sternberg. 2012. Automated Identification of Protein-Ligand

Interaction Features Using Inductive Logic Programming: A Hexose Binding

Case Study. BMC Bioinform. 13 (2012), 162.
[62] Sergio Segura, Gordon Fraser, Ana B. Sánchez, and Antonio Ruiz Cortés. 2016. A

Survey on Metamorphic Testing. TSE 42 (2016), 805–824. Issue 9.

[63] Andreas Seltenreich. [n.d.]. SQLsmith. https://github.com/anse1/sqlsmith.

[64] Alexander Shkapsky, Kai Zeng, and Carlo Zaniolo. 2013. Graph Queries in a

Next-Generation Datalog System. VLDB 6 (2013), 1258–1261. Issue 12.

[65] Donald R. Slutz. 1998. Massive Stochastic Testing of SQL. In VLDB. Morgan

Kaufmann, 618–622.

[66] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding and Analyzing Compiler

Warning Defects. In ICSE. ACM, 203–213.

[67] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding Compiler Bugs via Live

Code Mutation. In OOPSLA. ACM, 849–863.

[68] Jubi Taneja, Zhengyang Liu, and John Regehr. 2020. Testing Static Analyses for

Precision and Soundness. In CGO. ACM, 81–93.

[69] Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais,

Florian Bünzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis

of Smart Contracts. In CCS. ACM, 67–82.

[70] Muhammad Usman, Wenxi Wang, and Sarfraz Khurshid. 2020. TestMC: Test-

ing Model Counters Using Differential and Metamorphic Testing. In ASE. IEEE
Computer Society, 709–721.

[71] Manasi Vartak, Venkatesh Raghavan, and Elke A. Rundensteiner. 2010. QRelX:

Generating Meaningful Queries that Provide Cardinality Assurance. In SIGMOD.
ACM, 1215–1218.

[72] Jian Wang, Jungsoon P. Yoo, and Thomas J. Cheatham. 1993. Efficient Reordering

of C-PROLOG. In Conference on Computer Science. ACM, 151–155.

[73] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. 2005. Using

Datalog with Binary Decision Diagrams for Program Analysis. In APLAS (LNCS,
Vol. 3780). Springer, 97–118.

[74] John Whaley and Monica S. Lam. 2004. Cloning-Based Context-Sensitive Pointer

Alias Analysis Using Binary Decision Diagrams. In PLDI. ACM, 131–144.

[75] Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. On the Unusual Ef-

fectiveness of Type-Aware Operator Mutations for Testing SMT Solvers. PACMPL
4 (2020), 193:1–193:25. Issue OOPSLA.

[76] Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. Validating SMT

Solvers via Semantic Fusion. In PLDI. ACM, 718–730.

[77] Xiaoyuan Xie, JoshuaWing Kei Ho, Christian Murphy, Gail E. Kaiser, Baowen Xu,

and Tsong Yueh Chen. 2009. Application of Metamorphic Testing to Supervised

Classifiers. In QSIC. IEEE Computer Society, 135–144.

[78] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Under-

standing Bugs in C Compilers. In PLDI. ACM, 283–294.

[79] Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu, and Zhendong

Su. 2019. Finding and Understanding Bugs in Software Model Checkers. In

ESEC/FSE. ACM, 763–773.

[80] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal Program Enu-

meration for Rigorous Compiler Testing. In PLDI. ACM, 347–361.

650

https://jepsen.io
https://github.com/anse1/sqlsmith

	Abstract
	1 Introduction
	2 Overview
	3 Background
	4 Metamorphic Transformations
	4.1 Add Transformations
	4.2 Mod Transformations
	4.3 Rem Transformations
	4.4 Transformation Sequences

	5 Beyond Conjunctive Queries
	5.1 Neg Transformation

	6 Implementation
	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Experimental Results
	7.3 Threats to Validity

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

