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Abstract
In view of the growing complexity of modern software architectures, formal models are increasingly
used to understand why a system works the way it does, opposed to simply verifying that it behaves
as intended. This paper surveys approaches to formally explicate the observable behavior of reactive
systems. We describe how Halpern and Pearl’s notion of actual causation inspired verification-
oriented studies of cause-effect relationships in the evolution of a system. A second focus lies on
applications of the Shapley value to responsibility ascriptions, aimed to measure the influence of an
event on an observable effect. Finally, formal approaches to probabilistic causation are collected and
connected, and their relevance to the understanding of probabilistic systems is discussed.
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1 Introduction

Modern software systems are increasingly complex and even small changes to a system or its
environment may lead to unforeseen and disastrous behaviors. As software controls more
aspects of our lives everyday, it is desirable – and for widespread acceptance in societal
decisions, eventually inevitable – to have comprehensive and powerful techniques available to
understand what a system does.

The field of formal methods has developed a portfolio of tools that provide confidence in
the working of complex software systems. In formal methods, one builds a formal model of
a system and specifies its desired behavior in an appropriate (temporal) logical formalism.
Algorithmic techniques such as model checking [12, 31] can answer the question whether the
model satisfies the specification, or in other words, whether the system behaves as intended,
often in a “push button” way. Moreover, an important aspect of these algorithms is that they
can produce independently verifiable justifications of their outcome, such as counterexamples
or certificates to justify the violation or correctness of a property, respectively. Since the
earliest successes of model checking, the availability of counterexample traces was stated as a
major advantage for the method over deductive verification [30]. As model checkers became
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1:2 From Verification to Causality-Based Explications

more complex, concerns about their correct implementation led to research on producing
certificates for correctness. Examples are inductive invariants or derivations in a deductive
system [62, 64, 44, 70] that can be checked independently from the verification process.

While certificates and counterexample traces can provide a useful explication about the
behavior of a system, they only provide rudimentary understanding of why a system works
the way it does. In epistemic terms, the outcome of model checking applied to a system and
a specification provides knowledge that a system satisfies a specification or not in terms of an
assertion (whether the system satisfies the specification) and a justification (certificate or
counterexample) to increase the belief in the result. However, model checking usually does
not provide understanding on why a system behaves in a certain way. Such an understanding
can be obtained by causal links between possible events and their observed outcome.1

The need to better understand why a system is correct or incorrect has led to a broad
research program on models and reasoning methods that aim to provide such knowledge
of causes (see, e.g., [97, 98]). The goal of this survey is to summarize research on causal
reasoning in the field of verification and highlight the challenges that lie ahead.

The first step in understanding knowledge of causes is the mathematical formulation
and study of causality. Grasping the intuitive concept of cause-effect relationships in a
formal model has proved notoriously difficult. Centuries of philosophical reasoning on the
subject have distilled the counterfactuality principle [67, 68, 88] as a central feature of what
constitutes an actual cause: if the cause had not occurred, then the effect would not have
happened. While the counterfactuality principle was generally agreed upon, a rigorous
mathematical formulation was developed only recently, through the seminal work of Halpern
and Pearl and their coworkers [95, 45, 46, 55]. In a nutshell, they model causal systems using
structural equation models, and provide a set of axioms to characterize when an event is an
actual cause of another. We provide a summary of the foundations of causality and some of
their applications in verification in Section 2.

While causality is a qualitative concept, in that an event is an actual cause of another
or is not, more recent work considers quantitative measures of responsibility. Responsibility
measures the relative importance that an event had in causing another event. In other
words, the responsibility of an acting agent gauges what fraction of an observable effect
can be attributed to that agent’s behavior. Here, an agent could be, e.g., an individual, a
coalition, a software component, or device in a computer network. Chockler and Halpern
[23] define the degree of responsibility of an actual cause in the Halpern-Pearl sense based
on the cardinality of the smallest witness change that makes an event a cause of another.
A more recent strand for formalizing responsibility is based on the Shapley value [106].
In cooperative game theory, the Shapley value measures the influence of an agent on the
outcome jointly brought about by the agents and is classically used to find a fair division of
a cost or a surplus among them. The appeal of the Shapley value stems on the one hand
from its uniqueness with respect to a relatively simple set of axioms, and on the other hand
from its seemingly universal applicability. Research on employing Shapley-like values for the
explication of machine-learning predictions [117, 35, 91, 1, 110] and the behavior of formal
models [119, 11, 93, 10] is currently very active. A summary of applications of Shapley values
in the verification context is provided in Section 3.

1 Epistemologists since Gettier [47] will recognize that justified true belief does not constitute a compre-
hensive theory of knowledge. For the same reason, a theory of understanding as knowledge of causes is
a matter of vigorous debate, with Gettier-like counterexamples [52, 100, 101]. These subtle epistemic
issues are orthogonal to our work.
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From a systematic viewpoint, causality and responsibility can be understood in either a
backward or a forward manner [113]. In the backward or ex post setting, an effect has already
transpired, and the goal is to describe its causes and determine their relative influence in
producing the effect. The actual causation framework by Halpern and Pearl follows this
paradigm, and therefore also most approaches presented in Section 2. In the forward or ex
ante setting, a reasoning model includes possible contingencies and the goal is to characterize
the global power of agents and events in affecting the outcome. The forward responsibility
in game structures (see Section 3.1) and the importance value for temporal logics (see
Section 3.2) pursue this pattern. There are also attempts to express forward-looking causality
notions by structural equations in the context of accountability [73]. Seen from an operational
angle, the distinction between backward and forward notions loosely relates to when the
causal analysis is executed. Backward notions tend to be applicable at inspection time, e.g.,
to guide the debugging process in post mortem analyses. Forward notions are prone to be
used at design time of the system, laying out general phenomena of its inner workings.

Finally, we consider causality in the setting of probabilistic models. Unlike the determin-
istic setting, mathematical notions of causality and responsibility are less understood. There
is widespread agreement in the philosophy literature that a quintessential characteristic
of causes in the probabilistic setting is the probability-raising property [111, 21, 107, 39]:
an occurrence of the cause should increase the probability of subsequently observing the
effect. Nevertheless, it has also been observed that simply taking probabilities often leads
to counterintuitive phenomena owing to mutual dependencies and latent correlations with
other events [104, 21, 107]. Section 4 discusses attempts to formulate probability-raising
approaches to causation for operational probabilistic models. These approaches tend to
produce forward notions since probabilities inherently refer to a collection of evolutions in
which an event happened. There are numerous philosophical accounts on actual probabilistic
causation [89, 84, 42]. In terms of formal models, Pearl’s early notion of actual causality in
terms of causal beams [96, 97] entailed probabilistic flavor, and the causal probabilistic logic
of [115, 14] describes a language for reasoning about probabilistic causation. Nonetheless, we
are aware of only a few works that study a probabilistic version of causality in operational
models (see, e.g., [75, 2, 37, 9]). Along these lines, we point out open directions for research
that focus on the operational point of view.

2 Counterfactual Notions of Causality

An important starting point for the study of causality in formal methods is the influential
work by Halpern and Pearl [58, 59, 60, 56, 57] on actual causality, henceforth abbreviated
HP causality. We provide a brief and informal overview of their definition.

Halpern and Pearl use structural equation systems as a modeling language for causal
models. A causal model relies on exogeneous variables U and endogeneous variables V ,
representing external or independent factors and internal factors, respectively. The value of
each endogeneous variable x ∈ V is specified by a deterministic function fx that may depend
on exogeneous variables and on endogeneous variables that are preceding x with respect to
a fixed order on V . Intuitively, a causal model can be thought of as an arithmetic circuit
whose primary inputs are the exogeneous variables and where some of whose internal nodes
are labeled by the endogeneous variables. The circuit then specifies the functions defining
the endogeneous variables as well as the dependencies between the variables.

ICALP 2021



1:4 From Verification to Causality-Based Explications

More formally, let M = (U, V, {fx}x∈V ) be a causal model. Given a formula φ over
the exogeneous and endogeneous variables (in some appropriate logic), and a context u⃗
that assigns values to all variables in U , the goal of actual causality is to state whether an
assignment of values X⃗ = x⃗ to a subset X ⊆ V is a cause of φ. Halpern and Pearl define
X⃗ = x⃗ to be a cause of a formula φ in (M, u⃗) if the following three axioms hold.
AC1 both the cause and the effect are true: the model (M, u⃗) satisfies X⃗ = x⃗ as well as φ,
AC2 the principle of counterfactual dependence (discussed below), and
AC3 causes are minimal: no partial assignment of X⃗ = x⃗ satisfies AC1 and AC2.

The key to AC2 is captured by the notion of interventions, describing a direct assignment
of values to some endogeneous variables while disregarding their defining functions. Formally,
[Y⃗ ← y⃗] stands for the intervention on variables Y ⊆ V by assigning them values y⃗ and
leaving all other values for variables V \ Y to follow from their defining functions. Then,
[Y⃗ ← y⃗]ψ describes the impact of an intervention on a formula ψ. An intervention thus can
represent a counterfactual: what if variables in Y took values y⃗ instead of their actual values?
Turning back to the definition of actual causes for φ, axiom AC2 now requires the existence
of an intervention [X⃗ ← x⃗′] on the variables in X such that the effect φ is not observable,
i.e., [X⃗ ← x⃗′]¬φ holds in (M, u⃗). The precise definition of AC2 is, however, more involved
and several variants exist for AC2 to account for different settings and applications.2

2.1 Instances of HP Causality in Verification
Principles of causality have been used, often implicitly, in formal verification for a long time.
An early example is program slicing (see, e.g., [61]) where by following program dependencies
one aims to identify approximations of an actual cause for reaching a program location.
Causality is also a key concept in error localization, the problem of reducing a counterexample
trace for ease of debugging [120, 13, 105, 53, 118, 72, 121]. A correspondence of causality in
counterexample traces to finding minimal UNSAT cores has been identified in [16]. Early and
influential work on causality in formal verification is exemplified by research on vacuity and
coverage. Vacuity [17, 81, 102] explicates whether a positive verification result originates from
an unintended trivial behavior. Coverage [65, 25, 27, 26] is dual to vacuity, and explicates
whether certain parts of the system were not relevant for the successful result. While for
determining vacuity one considers small changes to the specification and checks whether
these change the result, coverage is obtained by perturbations to the system rather than the
specification and is actually a particular instance of HP causality.

Temporal logics play a crucial role in the verification context to describe properties of
and requirements on the system. Common temporal logics are, e.g., computation tree logic
(CTL) [29] or linear temporal logic (LTL) [99]. In LTL, e.g., ¬E U C describes that an effect
E does not occur before a cause C and ♢E stands for the effect E to eventually occur.

From Coverage to HP Causality. Coverage itself is a concept with a manifold of incarnations
and we focus here on the formalization by [24], where the connection of coverage to HP
causality has been addressed. The operational model is provided by a Kripke structure
K, i.e., a finite directed graph over states labeled by atomic propositions. Further, we are
given an atomic proposition q and a specification ψ expressed in an appropriate (temporal)

2 Halpern and Pearl’s definition of causality underwent a considerable amount of development over the
past 20 years, primarily varying AC2. One usually distinguishes the original version [58], the updated
version [59, 60], and the modified version [56, 57] (alongside variations by other authors [54, 63]).
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logic over the set of atomic propositions such that K satisfies ψ. Then, a state s of K is
said to be q-covered if changing the truth value of q in s leads to a structure that does
not satisfy ψ. Considering the hypothetical mutant system in which q takes the opposite
value in s corresponds to a counterfactual notion from the causality literature. Yet, coverage
only allows simple counterfactuals containing individual changes to the system. As pointed
out in [24], it is for this reason that coverage at times fails to express deeper dependencies
involved in the satisfaction of ψ.

To define a cause in this setting, one can consider the following simple causal model: for
each state s, there is one endogeneous variable vs, which specifies whether the value of q in
s is swapped in contrast to the original structure K, or not. One first refers to a context
where all variables vs are set to false and then considers possible swap operations. From K

and ψ one can derive a Boolean function φ over the endogeneous variables V such that an
instantiation I : V → {true, false} satisfies φ if and only if swapping the truth value of q
exactly in states s with I(vs) = true leads to a structure satisfying ψ. Now s is a cause of ψ
with respect to q [24, Definition 3.2] if there exists a set of variables Y such that [Y ← true]φ
and [Y ∪ {vs} ← true]¬φ hold. In other words, s is a cause if there exists a set of states S′

(corresponding to variables Y ) such that swapping q in S′ leads to a structure satisfying ψ3,
but swapping the value of q in S′ and s gives a structure falsifying ψ. These two conditions
postulate precisely the axiom AC2, which takes a simpler form than usual thanks to the
lack of higher-order dependencies among the variables in this causal model. In the presented
causal model, axiom AC1 holds by the assumption that K satisfies ψ, and the minimality
axiom AC3 is trivially fulfilled as only single states are considered as potential causes.

While this causal model is very simple, in particular it does not include any dependencies
in between variables, the work in [24] shows that even such restricted models are useful.

Fault Localization. The causality interpretation of coverage presented above takes a forward-
looking perspective in that changes to the system are globally tested against the given
specification. In [16], a similar approach is applied to the backward-oriented setting of fault
localization, i.e., the problem of pointing out those parts of a (finite) counterexample trace π
that are most relevant for violation of a given linear-time specification φ. In this incarnation
of HP causality, the endogeneous variables V contain a variable v(s,q) for each pair consisting
of a state s and atomic proposition q of the Kripke structure. These variables can take
values {true, false} and the interpretation is exactly as before, namely v(s,q) = true means
that the truth value of q in state s is changed in contrast to the initial context. Moreover,
the axiom AC2 takes the same form as in the previous case. Specifically, it expresses that
there is a set of variables Y ⊆ V such that changing the truth value for the corresponding
state-proposition pairs lets π still violate φ, while additionally swapping q in s leads to π
satisfying φ (interpreted over a weak semantics of LTL on finite paths).

Counterfactual Reasoning for Configurable Systems. Nowadays, almost every practical
software system is configurable, let it be using #ifdef constraints or through features [5].
Features inherently have a designated meaning, usually expressed by their name, e.g., a
“verbose” feature indicates that the software will expose additional information during runtime.
Debugging configurable systems is challenging, as the number of possible systems suffers
from an exponential blowup in the number of features. While there are specifically tailored
methods for analyzing configurable systems [112], e.g., through model checking [32, 38],

3 The updated version of HP causality [59, 60] would require this condition also for all subsets of S′.

ICALP 2021



1:6 From Verification to Causality-Based Explications

research on identifying root causes in configurable systems on the abstraction level of features
is still in its infancy. Such a causal analysis can provide useful insights for debugging:
developers can focus on the parts implementing the features identified to be responsible
for the bug, and users can obtain suggestions to reconfigure the system to not expose the
bug. First ideas to explicate which feature activations and deactivations cause an effect in
configurable systems were described in [6]. There, the set of feature configurations with
observable effect is obtained by configurable systems analysis, e.g., through family-based
verification [32, 112, 38, 28]. Exploiting the Boolean case of HP causality [40, 69], those
partial feature configurations can be determined where the corresponding systems all show
the effect (see AC1), for which there is a reconfiguration that does not exhibit the effect
(AC2), and that are minimal (AC3).

2.2 Further Approaches Inspired by HP Causality
The work [34] presents a formal definition of actual causes in the setting of concurrent
interacting programs. Originating from logs written by the concurrent system, the goal is to
localize causes in those program actions that are most relevant for the violation of a desirable
property. The approach is investigated in detail for the prominent class of safety properties,
with a view towards legal accountability in security-critical systems.

In [78], a causality-based approach to explain timed diagnostic traces has been presented,
which are used as counterexamples for model-checking results in timed systems. Such traces
represent a set of violating executions and the goal of [78] is to compute the parts that can
be considered causal for violating the property.

A different definition inspired by HP causality was used in [86]. There, causes for
reachability properties are formulas of a temporal logic called event order logic, used to
describe temporal relations between events. Algorithms to compute causes in this sense were
also studied in [15, 77], and the approach was extended to handle general LTL formulas as
effects rather than just reachability in [20].

In [49, 50] the authors argue that the HP causality, which is propositional in nature, is
not the ideal starting point for a framework of causality in formal verification. They present a
formalism which is based on counterfactual reasoning, uses system traces as first-class objects
and is designed to work for compositional systems. In [51] the formalism is further generalized
by defining abstract counterfactual builders, which specify what alternative scenarios should
be considered for counterfactual reasoning. Further, [51] also considers hyperproperties
as specifications. While hyperproperties are useful to specifying system properties, it was
observed in [33] that they can also be used to formalize causality. Similar observations have
been made for probabilistic causation [2, 37].

3 Responsibility and Shapley-like Ascriptions

While the previous section defined and applied qualitative concepts of causation, this
section shifts the focus towards quantitative approaches of responsibility. Loosely speaking,
responsibility refers to a numerical value designed to measure how much weight an event
had in producing an effect, relative to concurring or competing events linked to the same
effect. There is widespread agreement that a necessary condition for assuming responsibility
is causal relevance of the event in question to the effect [41, 18]. As a consequence, the term
responsibility usually builds directly or indirectly on concepts of causality. While the specific
numerical value in a notion of responsibility may not have a semantic content, it can order
the events in terms of their causal relevance.
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Chockler and Halpern [23] introduced the notion of degree of responsibility, which is
attributed to actual causes in causal models of HP causality. This degree measures how
many changes to the evolution of events are necessary until counterfactual values for the
actual cause change the observable effect. In [24] this notion is combined with the study
of mutant coverage to build a degree of responsibility in CTL model checking assigned to
state-proposition pairs (see also Section 2.1).

The degree of responsibility measures the influence of an event by looking at how many
further counterfactual changes are (minimally) required to swap the effect, but is does not
take into account how many such minimal sets of changes exist. One can argue that a cause is
individually more influential if it admits many such sets since this means less dependencies on
other events. This rationale has generated an active strand in formalization of responsibility
based on the Shapley value [106]. The Shapley value is a central solution concept from
theoretical economics and was originally designed to find a fair distribution of a financial
surplus that was brought about cooperatively by a number of producers.

Formally, a cooperative game with n players is a mapping g : 2[n] → R such that g(∅) = 0,
where [n] = {1, . . . , n}. The value g(C) is meant to represent the surplus (or, depending on the
specific situation, the cost) that the coalition C ⊆ [n] can ensure upon acting collaboratively.
The Shapley value of player i is then defined as

Sh(i) = 1
n! ·

∑
π∈Sn

g(π≥i)− g(π≥i \ {i}) (1)

where Sn denotes the set of self-bijections [n]→ [n] and where π≥i = {j ∈ [n] | π(j) ≥ π(i)}
for a given π ∈ Sn. Intuitively, g(π≥i) − g(π≥i \ {i}) describes the marginal contribution
of player i to the coalition π≥i. The Shapley value takes the average of all such marginal
contributions. Thus, Sh(i) is a measure for the overall influence of player i in the game g.

The general setup of cooperative games as real-valued functions on the power set of
[n] makes the Shapley value amenable to measuring the influence of abstract players in
formalized situations of collaborative interaction. This rationale has recently been invoked
for the interpretation of machine learning models [117, 35, 91, 1, 110]. In this case, the
players are the input parameters to a machine learning model, and the Shapley value has
the goal to measure the influence of each parameter on the output of the model.

This section outlines three approaches that employ the Shapley value as a means to
distribute an overall effect into individual responsibilities. In Section 3.1 the general setting
of an extensive form game is chosen and responsibilities are attributed to its players with
respect to producing a certain outcome. Section 3.2 discusses a notion of importance of states
for the satisfaction of an LTL property in a Kripke structure. Section 3.3 finally presents
an extension of the Shapley value that can be used to define responsibilities in a setting of
continuously varying parameters.

3.1 Responsibility in Game Structures
As summarized in Section 2, causal models are by now a fundamental building block for
notions of actual causation in the verification domain. However, in complex scenarios that
involve cooperative interaction, non-cooperative competition, and imperfect information,
they fall short of modeling various natural features such as temporal sequentiality, knowledge,
and agency. The work [10] presents an approach to establish notions of responsibility in these
strategic settings by passing to extensive form games [116, 80]. These provide a popular
formalism for studying the dynamics that underlie strategic interaction in the presence of

ICALP 2021



1:8 From Verification to Causality-Based Explications

competing objectives. In a nutshell, an extensive form game is an explicit presentation of the
strategic scenario in terms of a tree structure whose edges describe the transitions between
states when actions are taken, certain states may be indistinguishable for the players given
their knowledge, and each path from the root to a leaf is associated with an outcome. Apart
from being a highly expressive model, a century of research on the subject has generated a
rich set of solution concepts on which a study of responsibility can build, primarily following
economic rationales.

In [10] three responsibility notions are defined with respect to an event E that is encoded
by a binary labelling on the leaves of the game tree, i.e., E took place on a play or not. All
three notions follow the common two-step process consisting of first defining (qualitatively)
what it means for a coalition C to be responsible and then extracting (quantitatively) an
individual responsibility value through an application of the Shapley value on coalition
responsibilities. That is, one takes the cooperative game g to take binary values {0, 1}
depending on whether or not a coalition is responsible. They also share the counterfactual
paradigm in that a necessary condition for being responsible for the occurrence of E is the
power to preclude E. While the notions can be ordered according to their logical strength,
they are perhaps best explained along two lines of distinction given by the temporal perspective
and epistemic state.

The temporal perspective can be either forward-looking or backward-looking [113]. For
forward-looking notions one attains a prospective, ex ante viewpoint that studies the preclusive
power for the game as a whole. The forward-looking notion put forth in [10] is called forward
responsibility and requires the coalition to possess a strategy that globally avoids E. In
contrast, backward-looking notions consider a specific play from a retrospective, ex post
viewpoint and study who was responsible for E as the play evolved.

Depending on how the epistemic state is taken into account, [10] distinguishes strategic
backward responsibility and causal backward responsibility. In order for a coalition to be
strategically backward responsible, it must have had the power to avoid E at some point on
the play and it must have been aware of this fact given its epistemic knowledge. In situations
of imperfect information, this latter condition is crucial for arriving at a responsibility-as-
capacity notion [113] in a strategic sense that goes beyond a mere counterfactuality check:
when one does not know all relevant information, one can even bring about E inadvertently
or unintendedly. Causal backward responsibility essentially drops the latter requirement in
that the coalition is able to avoid E from some point on, everything else held fixed. This
corresponds to the responsibility-as-cause from the classification presented in [113].

There is a translation of a causal model into an extensive form game under which causal
backward responsibility corresponds exactly to but-for causes [10]. It can therefore happen
that a player is causally backward responsible without belonging to an actual cause in
the HP causality sense [59] and, therefore, with degree of responsibility 0 in the sense of
[23]. In the prototypical example in which Suzy and Billy both throw rocks at a bottle
and Suzy’s stone hits first, Billy’s degree of responsibility is 0, while both are attributed
causal backward responsibility 1/2. Since both players acted in exactly the same way based
on the same information, there is reason to favor the latter symmetric notion, and avoid
actual causation en route to accurately model intuitive responsibility concepts. A detailed
comparison to causal models, other notions of responsibility in strategic games of imperfect
information [119], and proof-theoretic approaches to formalize responsibility [19, 94] is given
in [10].
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3.2 The Importance Value for Temporal Logics
The paradigm of passing from binary coalitional responsibilities to quantitative individual
responsibilities by virtue of the Shapley value is also applied in [93] to model check Kripke
structures against temporal logic specifications. The resulting notion is called the importance
value and measures the influence of a state in a system for the satisfaction of a given specific-
ation. Intuitively, a state is important in this framework if the way that the nondeterministic
choices of the state are resolved has a large impact on whether the given specification is met.

Formally, let K be a Kripke structure with states S and a dedicated initial state, and φ

be an LTL formula. Then one defines the cooperative game g : 2S → {0, 1} using an induced
two-player game as follows. For a set of states C ⊆ S we let GC be the two-player game over
the arena K where player SAT controls the states in C, player UNSAT controls the states in
S\C and the winning condition is φ. Then, g(C) = 1 if player SAT wins GC, and g(C) = 0
otherwise. With this definition, the importance value I(s) of a state s ∈ S with respect to
K and φ is defined to be the Shapley value of player s in g (see Equation (1)). The notion
can be straightforwardly extended to define the importance of a set of states Pi ⊆ S, where
S = P1 ∪̇ . . . ∪̇ Pn is a given partition of the state space. This generalization is intended to
take an existing compositional structure of the system appropriately into account.

The work [93] studies the associated computational problems of deciding whether I(s) > 0
(called the usefulness problem) and deciding whether I(s) > η for a rational threshold η. The
intrinsic complexity of solving two-player LTL-games (the decision problem is 2EXPTIME-
complete) carries over to these problems. This computational intractability of the importance
value motivates further studying the complexity when restricted to fragments of LTL, and
tight complexity results were shown in [93] for a wide range of specifications.

In [93], the presented framework is also applied to CTL model checking of modal transition
systems (MTS) [85]. MTSs have two levels of nondeterminism: the standard nondeterminism
of the underlying graph and additionally a choice on which of the transitions in a state
are actually included in the system. The latter kind of nondeterminism is used to design a
two-player game where one player tries to satisfy the CTL specification and the other player
tries to violate it. However, since the semantics of CTL relies on infinite trees and the order
in which the branches are evolving has a strong impact on which player wins, there does not
appear to be a natural candidate game that proceeds in a turn-by-turn fashion. Hence [93]
considers one-shot games in which the players commit to a valid set of transitions in the
states under their control once at the beginning of their play. This determines once more a
binary cooperative game g that induces importance values in the same way as for LTL.

There is a straightforward generalization of the importance value to a 2 1
2 -player game G

in which the actions taken by the players are associated with probability distributions over
the states. In this formalism, the players each make non-deterministic choices among its
available actions, but the actual successor state then depends on a random choice according
to the associated distribution. Given an LTL specification, the goal of SAT is to maximize the
probability that the resulting path satisfies the specification, while UNSAT tries to minimize it.
These 2 1

2 -player games are determined in a quantitative sense [92]: the maximal probability
that can be enforced by SAT against all strategies of UNSAT is 1 minus the minimal probability
that can be enforced by UNSAT against all strategies of SAT. This probability is called the
value val(G) of the game (see also the survey [22]). Let S = SSAT ∪̇ SUNSAT be the partition of
the states of G into those under control of SAT and UNSAT, respectively. For a subset C ⊆ SSAT

the value g(C) is then defined as val(GC), where GC is the 2 1
2 -player game obtained from G

by putting the states in S\C under the control of player UNSAT. Taking Shapley values as
above then induces the importance value of a state in SSAT.
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3.3 Attributing Responsibility in Continuous Models
The Shapley value [106] is an inherently discrete solution concept. On the other hand,
realistic formal models of reactive systems often entail continuous features such as timing
[4, 36, 90], physical phenomena [3, 108], or parametric dependencies [71, 48, 79]. Notions of
responsibility for these models therefore tend to require new mathematical approaches if the
continuous nature is to be taken into account appropriately.

The continuous scenario seen from an economic angle generalizes (discrete) cooperative
games: rather than just participating in a coalition, the n players of a game each pick a value
vi from a continuous domain Di ⊆ R including 0 and the (generalized) game then determines
a collective surplus or cost based on this input. This is formally described by a continuously
differentiable function g : D1 × . . .×Dn → R such that g(0, . . . , 0) = 0. Economists usually
take the domains to be of the form Di = [0,mi) for some maximal input mi ∈ R, and further
assume g to be non-decreasing with non-negative range. The Aumann-Shapley value [7] is a
generalization of the Shapley value designed to provide a solution to the question how the
value g(v1, . . . , vn) should be “fairly” distributed among the players. It is one instance of
what is called a cost-sharing scheme and admits an axiomatization in the spirit of its discrete
predecessor [43, 110].

Inspired by this model, the work [11] presents an approach to measure the relative
importance of the parameters on the behavior of parametric Markov chains for a wide range
of properties, including ω-regular specifications, specifications in probabilistic CTL, and on
expected rewards. Here, a parametric Markov chain is a directed graph where each edge is
assigned a probability that may depend on a set of parameters such that for each instantiation
of the parameters the probabilities outgoing from a state sum up to 1. A parametric Markov
chain instantiated with fixed values for the parameters then coincides with a discrete-time
Markov chain (DTMC). For this purpose the aforementioned assumptions on g must be
relaxed: the continuously differentiable function g : D → R has arbitrary domain D ⊆ Rn

and is not subject to monotonicity and non-negativity restrictions. This also means that the
canonical baseline value 0 for vi is not always available anymore. The responsibility problem
in this generalized setting then reads as follows: given g and two parameter choices v, v′ ∈ D,
how responsible is the i-th parameter for the observable change g(v′)− g(v)? In this slightly
generalized form, the Aumann-Shapley value of the i-th parameter is defined as

ASi(g, v, v′) = (v′
i − vi) ·

∫ 1

0
∂ig (v + α(v′ − v)) dα. (2)

The integrand involves the i-th partial derivative of g and intuitively measures the marginal
contribution of the i-th parameter at the points lying between v and v′. The integral then
takes the average of these contributions along the straight line from v to v′. While taking the
straight line is desirable in an economic context to meet the average cost for homogeneous
goods axiom [43], this axiom is often void of meaning when applied to formal systems. When
one replaces the straight line in Equation (2) with an arbitrary (monotonic) path from v

to v′, then one speaks of path attribution schemes [109]. Of course, taking different paths
induces different attributions, and which ones should be considered worthwhile depends on
the specific scenario. This could for instance be due to potential restrictions on the way
that changes on the parameters can be implemented in practice. The work [11] applies
these path attribution schemes to the function induced by ω-regular or probabilistic CTL
specifications on a parametric Markov chain. The set of axioms presented there is adjusted
to this particular situation and justifies why one can conceive the value ASi(g, v, v′) as the
fraction of the observable effect g(v′)− g(v) that is produced by the i-th parameter.
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It is noteworthy, however, that the approach put forth in [11] is by no means specific
to the context of parametric Markov chains. Any scenario in which continuously varying
parameters determine a value can in principle be handled similarly. Of course, which path
attribution schemes should be regarded as meaningful needs to be checked case-by-case,
and corresponding axiomatizations should be chosen with care. But it is no accident that
the main decidability result in [11] is formulated in terms of path attribution schemes on
functions in n independent variables – a generality that makes the approach potentially
applicable for a range of similar problems.

4 Probabilistic Causation

As seen in the preceding sections, notions of causality and responsibility have been widely
explored in the non-probabilistic setting. In contrast, there have been far less attempts at
defining a suitable notion of causes for probabilistic operational systems such as Markov chains.
However, probabilistic theories of causation have been considered in various philosophical
accounts [111, 21, 107, 39]. One central idea behind these theories is the probability-raising
principle, which goes back to Reichenbach [103, 104]. It states that causes should raise the
probability of their effects. After observing a cause C, the probability of an effect E is
higher than after observing that the cause has not occurred. Formulated with conditional
probabilities, this can be written as

Pr(E | C) > Pr(E | ¬C), or equivalently Pr(E | C) > Pr(E).

For the conditional probabilities to be well-defined, it is necessary that Pr(C) > 0 and
Pr(¬C) > 0. Later on, we will make sure that the events conditioned on have positive
probability. Note that if Pr(C) > 0 and Pr(E | C) > Pr(E), it already follows that
Pr(¬C) > 0. Defining p def= Pr(C), the equivalence of the two inequalities follows from the
equation Pr(E) = p · Pr(E | C) + (1− p) · Pr(E | ¬C), which implies

Pr(E | C)− Pr(E) = (1− p)(Pr(E | C)− Pr(E | ¬C)).

The probability-raising principle alone, however, cannot distinguish between cause and
effect as it holds if and only if Pr(C | E) > Pr(C | ¬E) as well. For this reason, additional
conditions have to be imposed for causal reasoning. One key condition is temporal priority,
which prescribes that a cause has to occur before the effect.

This section formalizes both the probability-raising principle as well as the requirement
of temporal priority for probabilistic operational models. We draw connections between
different ideas from the literature to provide an overview over basic probabilistic notions
of causality in the context of formal verification. For this, we assume to have given a
DTMC M with a probability distribution over initial states. This way, the sets Πφ of paths
starting in initial states and fulfilling an LTL property φ are measurable [114] and have a
well-defined probability value PrM(Πφ), which we also denote by PrM(φ). Applying the
probability-raising principle and expressing the temporal priority using LTL leads to the
following first definition of causality in DTMCs for reachability properties.

▶ Definition 1 (reachability-cause). Let M be a DTMC with state space S and let C,E ⊆ S
be two disjoint sets of states. Then C is a reachability-cause of E if PrM(¬E U C) > 0 and

PrM(♢E | ¬E U C) > PrM(♢E). (3)
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Note that Equation (3) implies that PrM
(
¬(¬E U C)

)
> 0. This ensures that also

PrM
(
♢E | ¬(¬E U C)

)
is well-defined and so Equation (3) is equivalent to PrM(♢E |

¬E U C) > PrM
(
♢E | ¬(¬E U C)

)
. If there are no paths first reaching the effect E and

afterwards the cause C, e.g., because the states in the effect E are absorbing, Equation (3)
simplifies to PrM(♢E | ♢C) > PrM(♢E).

In this treatment of reachability properties, a cause C specifies the set of finite executions
ending in C that cause the subsequent extension to an infinite execution to satisfy ♢E.
This idea can be lifted to the treatment of causes of arbitrary events in M specified by a
measurable set of infinite paths L ⊆ Sω. A cause is then a set of finite paths Γ ⊆ S+. Besides
the probability-raising property, the temporal priority condition needs to be included. For
path properties this needs extra consideration. While for a cause Γ ⊆ S+ it is clear that the
cause is observed once a finite path in Γ is generated in a DTMC, this is not the case for the
effect L ⊆ Sω as it consists of infinite executions. However, it seems natural to say that the
effect occurred on a finite path δ whenever PrM(L | δ) = 1, i.e., if a generated finite path
ensures that almost all infinite extensions belong to L. Here, we used δ to also denote the
event of all infinite paths having δ as a prefix. Analogously, for a set of finite paths Γ, we
denote by Γ also the event of all infinite paths with a prefix in Γ. Consequently, ¬Γ denotes
the event of all infinite paths that have no prefix in Γ. The discussed treatment of temporal
priority is now used in the following definition of a cause in a DTMC.

▶ Definition 2 (global PR-cause). Let M be a DTMC with state space S, let Γ ⊆ S+ be a
non-empty set of finite paths, and let L ⊆ Sω be a measurable set of paths. Then, Γ is a
global probability-raising cause (global PR-cause) for L if the following two conditions hold:
PAC1: PrM(L | Γ) > PrM(L), and
PAC2: for all γ ∈ Γ, no proper prefix γ′ of γ satisfies PrM(L | γ′) = 1.
As Γ is a set of finite paths in M, the cylinder set spanned by each γ′ ∈ Γ has positive
probability. So, the conditional probabilities PrM(L | Γ) and PrM(L | γ′) in Definition 2
are well-defined.

Axiom PAC1 expresses the probability-raising principle. It implies that PrM(¬Γ) > 0. As
this ensures that all necessary conditional probabilities are well-defined, PAC1 is equivalent
to the probability-raising condition PrM(L | Γ) > PrM(L | ¬Γ). Axiom PAC2 captures that
the effect must not occur before the cause.

The requirement on the cause in the provided definition is of global nature: the cause Γ
as a whole has to guarantee the probability-raising property with respect to the effect. Single
elements γ ∈ Γ, however, do not necessarily guarantee that the probability of the effect has
been raised. Furthermore, under mild assumptions, the definition subsumes the treatment of
reachability properties above:

▶ Proposition 3. LetM be a DTMC with state space S and let C,E ⊆ S be disjoint. Assume
that no state in s ∈ S \ E satisfies PrM,s(♢E) = 1. Then the following are equivalent:
1. C is a reachability-cause for E.
2. The set Γ of finite paths in (S \ (C ∪E))∗C is a global PR-cause for the set L of paths

satisfying ♢E.
In the proposition above, PrM,s denotes the probability measure induced byM with assuming
s as the unique initial state. A related notion of causality based on probability-raising in
DTMCs has been introduced by Kleinberg et al. in a series of papers [75, 76, 74, 66, 122].
Here, probabilistic CTL is used to describe the cause C and the effect E via state formulas.
We can describe both events also directly as sets of states in the DTMC by considering
exactly those states that fulfil the corresponding probabilistic CTL formula. For reachability
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properties, the set C is then said to be a cause of E if PrM,c(♢E) > PrM(♢E) for all c ∈ C.
So, the requirement for this notion of causality is local: reaching any state c ∈ C has to
ensure that the probability of reaching E afterwards is raised. In case C = {c} is a singleton
disjoint from E, this notion agrees with Definition 1.

Adapting PAC1 to sets of paths and including the temporal priority requirement that the
effect does not occur before the cause (PAC2 as before), we obtain the following definition of
causality:

▶ Definition 4 (local PR-cause). Let M be a DTMC with state space S, Γ ⊆ S+ a set of
finite paths, and let L ⊆ Sω be a measurable set of paths. Then Γ is a local probability-raising
cause (local PR-cause) for L if
PAC1loc: for all γ ∈ Γ we have PrM(L | γ) > PrM(L), and
PAC2: for all γ ∈ Γ no proper prefix γ′ of γ satisfies PrM(L | γ′) = 1.

Axiom PAC1loc can be seen as the local version of PAC1. Clearly, PAC1loc implies PAC1.
Furthermore, PAC1loc implies that PrM(¬γ) > 0 for all γ ∈ Γ. Hence, we could equivalently
reformulate PAC1loc as PrM(L | γ) > PrM(L | ¬γ) for all γ ∈ Γ.

The work by Kleinberg et al. proceeds relative to an explicit probability value p > PrM(L)
such that PrM(L | γ) ⩾ p for all γ in a cause Γ. The higher this value p lies above PrM(L),
the greater is the amount by which all elements of Γ are guaranteed to raise the probability
of the effect L.

Such a reference to a specific threshold value p has also been incorporated into a notion
of p-causes in [9]. Motivated by monitoring applications (see, e.g., [87]), the underlying idea
is that notions of causality could be used to foresee undesirable behavior. If a cause for
an erroneous execution is observed, countermeasures can be taken before the error actually
occurs. Here it is particularly useful to specify a sensitivity p that expresses how likely an
error is after observing the cause. In addition, the occurrence of an erroneous execution
should not stay undetected. Therefore, an additional condition is imposed on p-causes:
almost all executions that exhibit the error should have a prefix in the cause. Together with
the temporal priority of the cause (PAC2) as before, these requirements lead to the following
definition:

▶ Definition 5 (p-cause). Let M be a DTMC with state space S and p ∈ (0, 1]. A non-empty
set Γ ⊆ S+ is a p-cause for a measurable set L ⊆ Sω if
PAC1p: for all γ ∈ Γ we have PrM,s0(L | γ) ⩾ p,
PAC2: for all γ ∈ Γ no proper prefix γ′ of γ satisfies PrM(L | γ′) = 1, and
PAC3: PrM(Γ | L) = 1.

Besides the practicality in monitoring applications, condition PAC3 also adds the coun-
terfactual idea to the definition. Since almost all executions in L have a prefix in Γ, the
effect occurs with probability 0 if the cause was not observed. Condition PAC1p is a third
variant of the probability-raising requirement that compares the probability of the effect
after observing an element of the cause to a specific threshold value p rather than the overall
probability PrM(L). In case p > PrM(L), this variant implies PAC1 and PAC1loc.

For ω-regular L there always exist p-causes for any p ∈ (0, 1]. The reason is that then
almost all paths in L have a prefix π with PrM(L | π) = 1. Choosing the shortest of such
prefixes in accordance with condition PAC2 yields a 1-cause and hence a p-cause for any p.
For p < 1, there are multiple p-causes in general. In [9], the problem to find cost-optimal
p-causes with respect to a variety of cost measures is addressed.

The relationship between the different notions of causes is summarized in the following
proposition. It is a direct consequence of the implications between the axioms used in the
definitions that have been discussed so far.
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▶ Proposition 6. Let M be a DTMC with state space S, Γ ⊆ S+, and let L ⊆ Sω be a
measurable set of paths. Then the following statements hold:
1. If Γ is a p-cause for L for some p > PrM(L), then Γ is also a local PR-cause for L.
2. If Γ is a local PR-cause for L, then Γ is also a global PR-cause for L.
3. If Γ is a singleton, then Γ is a local PR-cause for L iff Γ is a global PR-cause for L.

The probabilistic notions of causality discussed in this section naturally constitute forward-
looking notions: the probability-raising principle inherently addresses the behavior of a system
across multiple executions, and causes are prone to exhibiting a predictive character. These
notions can be useful in inferring causal dependencies in data series [75, 74, 66] and predicting
undesirable behavior of reactive systems through runtime monitoring [9]. Nevertheless, as
far as formal probabilistic models are concerned, a comprehensive study of cause-effect
relationships is still at the beginning.

5 Concluding Remarks

This article gave an overview of recent trends in causality-based reasoning in the verification
context. The focus of this article was on concepts that aim to explicate why a system exhibits
a specific observable behavior and to which degree individual agents of a system can be
held responsible for it. For non-probabilistic formal models, concepts of causation have been
introduced in multiple facets and examined for manifold applications. To increase the power
of causal inferences, a more systematic study relating forward and backward notions of
causality would be highly beneficial.

Compared to the non-probabilistic setting, research on probabilistic causation in stochastic
operational models is still in its infancy. While the techniques presented here are limited to
purely probabilistic models (Markov chains), an examination of causality in probabilistic
models with nondeterminism (Markov decision processes) is largely open. A first step in this
direction is a formalization of action causes as a hyperproperty in Markov decision processes
[37]. Another important future direction is to reason about cause-effect relationships in
hidden Markovian models where states (and events) are not fully observable.

Another research strand not covered in this article are causality-based verification tech-
niques (see, e.g., [82, 83]) that rely on the successive identification of cause-effect relationships
between events to generate a causality-based proof for the satisfaction or violation of a system
property. Along these lines, the work [8] presents a causality-based technique for solving
symbolically expressed, infinite-state two-player reachability games. Applying this paradigm
also in a probabilistic setting is a promising direction of study.
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