
Paracosm: A Test Framework for Autonomous
Driving Simulations

Rupak Majumdar1 , Aman Mathur1 �, Marcus Pirron1 , Laura
Stegner2 , and Damien Zufferey1

1 MPI-SWS, Kaiserslautern, Germany {rupak, mathur, mpirron,

zufferey}@mpi-sws.org
2 University of Wisconsin, Madison, USA stegner@wisc.edu

Abstract. Systematic testing of autonomous vehicles operating in com-
plex real-world scenarios is a difficult and expensive problem. We present
Paracosm, a framework for writing systematic test scenarios for au-
tonomous driving simulations. Paracosm allows users to programmati-
cally describe complex driving situations with specific features, e.g., road
layouts and environmental conditions, as well as reactive temporal be-
haviors of other cars and pedestrians. A systematic exploration of the
state space, both for visual features and for reactive interactions with
the environment is made possible. We define a notion of test coverage
for parameter configurations based on combinatorial testing and low dis-
persion sequences. Using fuzzing on parameter configurations, our auto-
matic test generator can maximize coverage of various behaviors and find
problematic cases. Through empirical evaluations, we demonstrate the
capabilities of Paracosm in programmatically modeling parameterized
test environments, and in finding problematic scenarios.

Keywords: Autonomous driving · Testing · Reactive programming.

1 Introduction

Building autonomous driving systems requires complex and intricate engineering
effort. At the same time, ensuring their reliability and safety is an extremely
difficult task. There are serious public safety and trust concerns [63], aggravated
by recent accidents involving autonomous cars [48]. Software in such vehicles
combine well-defined tasks such as trajectory planning, steering, acceleration
and braking, with underspecified tasks such as building a semantic model of
the environment from raw sensor data and making decisions using this model.
Unfortunately, these underspecified tasks are critical to the safe operation of
autonomous vehicles. Therefore, testing in large varieties of realistic scenarios is
the only way to build confidence in the correctness of the overall system.

Running real tests is a necessary, but slow and costly process. It is diffi-
cult to reproduce corner cases due to infrastructure and safety issues; one can
neither run over pedestrians to demonstrate a failing test case, nor wait for
specific weather and road conditions. Therefore, the automotive industry tests

c© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 172–195, 2021.
https://doi.org/10.1007/978-3-030-71500-7 9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_9&domain=pdf
http://orcid.org/0000-0003-2136-0542
http://orcid.org/0000-0003-2405-0435
http://orcid.org/0000-0002-6501-728X
http://orcid.org/0000-0003-4496-0727
http://orcid.org/0000-0002-3197-8736
https://doi.org/10.1007/978-3-030-71500-7 9

Paracosm: A Test Framework for Autonomous Driving Simulations 173

System
Under
Test

(SUT)

Paracosm program

Collision
Monitor

Simulation

Controller

Visual model Physical model

Test Vehicle

... ...

World

Behavior

Visual model Physical model

Pedestrian

Road
Segment

Test Input
Generator

...

Fig. 1: A Paracosm program consists of parameterized reactive components
such as the test vehicle, the environment, road networks, other actors and their
behaviors, and monitors. The test input generation scheme guarantees good
coverage over the parameter space. The test scenario depicted here shows a test
vehicle stopping for a jaywalking pedestrian.

autonomous systems in virtual simulation environments [21, 26, 53, 61, 68, 72].
Simulation reduces the cost per test, and more importantly, gives precise control
over all aspects of the environment, so as to test corner cases.

A major limitation of current tools is the lack of customizability: they either
provide a GUI-based interface to design an environment piece-by-piece, or focus
on bespoke pre-made environments. This makes the setup of varied scenarios
difficult and time consuming. Though exploiting parametricity in simulation is
useful and effective [10,23,31,67], the cost of environment setup, and navigating
large parameter spaces, is quite high [31]. Prior works have used bespoke en-
vironments with limited parametricity. More recently, programmatic interfaces
have been proposed [27] to make such test procedures more systematic. However,
the simulated environments are largely still fixed, with no dynamic behavior.

In this work, we present Paracosm, a programmatic interface that enables
the design of parameterized environments and test cases. Test parameters control
the environment and the behaviors of the actors involved. Paracosm supports
various test input generation strategies, and we provide a notion of coverage for
these. Rather than computing coverage over intrinsic properties of the system
under test (which is not yet understood for neural networks [39]), our coverage
criteria is over the space of test parameters. Figure 1 depicts the various parts
of a Paracosm test. A Paracosm program represents a family of tests, where
each instantiation of the program’s parameters is a concrete test case.

Paracosm is based on a synchronous reactive programming model [13, 35,
40,70]. Components, such as road segments or cars, receive streams of inputs and
produce streams of outputs over time. In addition, components have graphical
assets to describe their appearance for an underlying visual rendering engine and
physical properties for an underlying physics simulator. For example, a vehicle
in Paracosm not only has code that reads in sensor feeds and outputs steering
angle or braking, but also has a textured mesh representing its shape, position

174 R. Majumdar et al.

and orientation in 3D space, and a physics model for its dynamical behavior. A
Paracosm configuration consists of a composition of several components. Us-
ing a set of system-defined components (road segments, cars, pedestrians, etc.)
combined using expressive operations from the underlying reactive programming
model, users can set up complex temporally varying driving scenarios. For ex-
ample, one can build an urban road network with intersections, pedestrians and
vehicular traffic, and parameterize both, environment conditions (lighting, fog),
and behaviors (when a pedestrian crosses a street).

Streams in the world description can be left “open” and, during testing,
Paracosm automatically generates sequences of values for these streams. We use
a coverage strategy based on k-wise combinatorial coverage [14, 38] for discrete
variables and dispersion for continuous variables. Intuitively, k-wise coverage
ensures that, for a programmer-specified parameter k, all possible combinations
of values of any k discrete parameters are covered by tests. Low dispersion [57]
ensures that there are no “large empty holes” left in the continuous parameter
space. Paracosm uses an automatic test generation strategy that offers high
coverage based on random sampling over discrete parameters and deterministic
quasi-Monte Carlo methods for continuous parameters [49,57].

Like many of the projects referenced before, our implementation performs
simulations inside a game engine. However, Paracosm configurations can also
be output to the OpenDRIVE format [7] for use with other simulators, which is
more in-line with the current industry standard. We demonstrate through various
case studies how Paracosm can be an effective testing framework for both
qualitative properties (crash) and quantitative properties (distance maintained
while following a car, or image misclassification).

Our main contributions are the following: (I) We present a programmable
and expressive framework for programmatically modeling complex and parame-
terized scenarios to test autonomous driving systems. Using Paracosm one can
specify the environment’s layout, behaviors of actors, and expose parameters
to a systematic testing infrastructure. (II) We define a notion of test coverage
based on combinatorial k-wise coverage in discrete space and low dispersion in
continuous space. We show a test generation strategy based on fuzzing that the-
oretically guarantees good coverage. (III) We demonstrate empirically that our
system is able to express complex scenarios and automatically test autonomous
driving agents and find incorrect behaviors or degraded performance.

2 Paracosm through Examples

We now provide a walkthrough of Paracosm through a testing example. Sup-
pose we have an autonomous vehicle to test. Its implementation is wrapped into
a parameterized class:

AutonomousVehicle(start , model , controller) {

void run (...) { ... } }

where the model ranges over possible car models (appearance, physics), and the
controller implements an autonomous controller. The goal is to test this class in

Paracosm: A Test Framework for Autonomous Driving Simulations 175

many different driving scenarios, including different road networks, weather and
light conditions, and other car and pedestrian traffic. We show how Paracosm
enables writing such tests as well as generate test inputs automatically.

A test configuration consists of a composition of reactive objects. The follow-
ing is an outline of a test configuration in Paracosm, in which the autonomous
vehicle drives on a road with a pedestrian wanting to cross. We have simplified
the API syntax for the sake of clarity and omit the enclosing Test class. In the
code segments, we use ‘:’ for named arguments.

1 // Test parameters

2 light = VarInterval (0.2, 1.0) // value in [0.2, 1.0]

3 nlanes = VarEnum ({2 ,4 ,6}) // value is 2, 4 or 6

4 // Description of environment

5 w = World(light:light , fog:0)

6 // Create a road segment

7 r = StraightRoadSegment(len:100, nlanes:nlanes)

8 // The autonomous vehicle controlled by the SUT

9 v = AutonomousVehicle(start :..., model :..., controller :...)

10 // Some other actor(s)

11 p = Pedestrian(start:.., model :..., ...)

12 // Monitor to check some property

13 c = CollisionMonitor(v)

14 // Place elements in the world

15 run_test(env: {w, r, v, p}, test_params: {light , nlanes},

monitors: {c}, iterations: 100)

An instantiation of the reactive objects in the test configuration gives a scene—
all the visual elements present in the simulated world. A test case provides
concrete inputs to each “open” input stream in a scene. A test case determines
how the scene evolves over time: how the cars and pedestrians move and how
environment conditions change. We go through each part of the test configuration
in detail below.

Reactive Objects. The core abstraction of Paracosm is a reactive object. Reac-
tive objects capture geometric and graphical features of a physical object, as well
as their behavior over time. The behavioral interface for each reactive object has
a set of input streams and a set of output streams. The evolution of the world is
computed in steps of fixed duration which corresponds to events in a predefined
tick stream. For streams that correspond to physical quantities updated by the
physics simulator, such as position and speeds of cars, etc., appropriate events
are generated by the underlying physics simulator.

Input streams provide input values from the environment over time; output
streams represent output values computed by the object. The object’s construc-
tor sets up the internal state of the object. An object is updated by event
triggered computations. Paracosm provides a set of assets as base classes.
Autonomous driving systems naturally fit reactive programming models. They
consume sensor input streams and produce actuator streams for the vehicle
model. We differentiate between static environment reactive objects (subclassing

176 R. Majumdar et al.

2 4

.2 .9

nlanes

light

camera

Fig. 2: Reactive streams represented by a marble diagram. A change in the value
of test parameters nlanes or light changes the environment, and triggers a
change in the corresponding sensor (output) stream camera.

Geometric) and dynamic actor reactive objects (subclassing Physical). Environ-
ment reactive objects represent “static” components of the world, such as road
segments, intersections, buildings or trees, and a special component called the
world. Actor reactive objects represent components with “dynamic” behavior:
vehicles or pedestrians. The world object is used to model features of the world
such as lighting or weather conditions. Reactive objects can be composed to gen-
erate complex assemblies from simple objects. The composition process can be
used to connect static components structurally–such as two road segments con-
necting at an intersection. Composition also connects the behavior of an object
to another by binding output streams to input streams. At run time, the values
on that input stream of the second object are obtained from the output values of
the first. Composition must respect geometric properties—the runtime system
ensures that a composition maintains invariants such as no intersection of geo-
metric components. We now describe the main features in Paracosm, centered
around the test configuration above.

Test Parameters. Using test variables, we can have general, but constrained
streams of values passed into objects [59]. Our automatic test generator can
then pick values for these variables, thereby leading to different test cases (see
Figure 2). There are two types of parameters: continuous (VarInterval) and dis-
crete (VarEnum). In the example presented, light (light intensity) is a continuous
test parameter and nlanes (number of lanes) is discrete.

World. The World is a pre-defined reactive object in Paracosm with a visual
representation responsible for atmospheric conditions like the light intensity,
direction and color, fog density, etc. The code segment

w = World(light:light , fog:0)

parameterizes the world using a test variable for light and sets the fog density
to a constant (0).

Road Segments. In our example, StraightRoadSegment was parameterized with
the number of lanes. In general, Paracosm provides the ability to build com-
plex road networks by connecting primitives of individual road segments and
intersections. (A detailed example is presented in our Technical Report [43].)

Paracosm: A Test Framework for Autonomous Driving Simulations 177

It may seem surprising that we model static scene components such as roads
as reactive objects. This serves two purposes. First, we can treat the number of
lanes in a road segment as a constant input stream that is set by the test case,
allowing parameterized test cases. Second, certain features of static objects can
also change over time. For example, the coefficient of friction on a road segment
may depend on the weather condition, which can be a function of time.

Autonomous Vehicles & System Under Test (SUT). AutonomousVehicle, as well
as other actors, extends the Physical class (which in turn subclasses Geometric).
This means that these objects have a visual as well as a physical model. The
visual model is essentially a textured 3D mesh. The physical model contains
properties such as mass, moments of inertia of separate bodies in the vehicle,
joints, etc. This is used by the physics simulator to compute the vehicle’s motion
in response to external forces and control input. In the following code segment,
we instantiate and place our test vehicle on the road:

v = AutonomousVehicle(start:r.onLane(1, 0.1), model:

CarAsset (...) , controller:MyController (...))

The start parameter “places” the vehicle in the world (in relative coordinates).
The model parameter provides the implementation of the geometric and physical
model of the vehicle. The controller parameter implements the autonomous
controller under test. The internals of the controller implementation are not
important; what is important is its interface (sensor inputs and the actuator
outputs). These determine the input and output streams that are passed to the
controller during simulation. For example, a typical controller can take sensor
streams such as image streams from a camera as input and produce throttle and
steering angles as outputs. The Paracosm framework “wires” these streams
appropriately. For example, the rendering engine determines the camera images
based on the geometry of the scene and the position of the camera and the
controller outputs are fed to the physics engine to determine the updated scene.
Though simpler systems like openpilot [15] use only a dashboard-mounted
camera, autonomous vehicles can, in general, mix cameras at various mount
points, LiDARs, radars, and GPS. Paracosm can emulate many common types
of sensors which produce streams of data. It is also possible to integrate new
sensors, which are not supported out-of-the-box, by implementing them using
the game engine’s API.

Other Actors. A test often involves many actors such as pedestrians, and other
(non-test) vehicles. Apart from the standard geometric (optionally physical)
properties, these can also have some pre-programmed behavior. Behaviors can
either be only dependent on the starting position (say, a car driving straight
on the same lane), or be dynamic and reactive, depending on test parameters
and behaviors of other actors. In general, the reactive nature of objects enables
complex scenarios to be built. For example, here, we specify a simple behavior of
a pedestrian crossing a road.The pedestrian starts crossing the road when a car
is a certain distance away. In the code segments below, we use ‘_’ as shorthand
for a lamdba expression, i.e., “f(_)” is the same as “x => f(x)”.

178 R. Majumdar et al.

Pedestrian(value start , value target , carPos , value dist ,

value speed) extends Geometric {

... // Initialization

// Generate an event when the car gets close

trigger = carPos.Filter(abs(_ - start) < dist)

// target location reached

done = pos.Filter(_ == target)

// Walk to the target after trigger fires

tick.SkipUntil(trigger).TakeUntil(done).foreach(... /*

walk with given speed */)

}

Monitors and Test Oracles. Paracosm provides an API to provide qualitative
and quantitative temporal specifications. For instance, in the following example,
we check that there is no collision and ensure that the collision was not trivially
avoided because our vehicle did not move at all.

// no collision

CollisionMonitor(AutonomousVehicle v) extends Monitor {

assert(v.collider.IsEmpty ()) }

// cannot trivially pass the test by staying put

DistanceMonitor(AutonomousVehicle v, value minD) extends

Monitor {

pOld = v.pos.Take (1).Concat(v.pos)

D = v.pos.Zip(pOld).Map(abs(_ - _)).Sum()

assert(D >= minD)

}

The ability to write monitors which read streams of system-generated events
provides an expressive framework to write temporal properties, something that
has been identified as a major limitation of prior tools [31]. Monitors for metric
and signal temporal logic specifications can be encoded in the usual way [18,33].

3 Systematic Testing of Paracosm Worlds

3.1 Test Inputs and Coverage

Worlds in Paracosm directly describe a parameterized family of tests. The
testing framework allows users to specify various strategies to generate input
streams for both, static, and dynamic reactive objects in the world.

Test Cases. A test of duration T executes a configuration of reactive objects
by providing inputs to every open input stream in the configuration for T ticks.
The inputs for each stream must satisfy const parameters and respect the range
constraints from VarInterval and VarEnum. The runtime system manages the
scheduling of inputs and pushing input streams to the reactive objects. Let In
denote the set of all input streams, and In = InD ∪ InC denote the partition of In
into discrete streams and continuous streams respectively. Discrete streams take

Paracosm: A Test Framework for Autonomous Driving Simulations 179

their value over a finite, discrete range; for example, the color of a car, the number
of lanes on a road segment, or the position of the next pedestrian (left/right) are
discrete streams. Continuous streams take their values in a continuous (bounded)
interval. For example, the fog density or the speed of a vehicle are examples of
continuous streams.

Coverage. In the setting of autonomous vehicle testing, one often wants to
explore the state space of a parameterized world to check “how well” an au-
tonomous vehicle works under various situations, both qualitatively and quan-
titatively. Thus, we now introduce a notion of coverage. Instead of structural
coverage criteria such as line or branch coverage, our goal is to cover the pa-
rameter space. In the following, for simplicity of notation, we assume that all
discrete streams take values from {0, 1}, and all continuous streams take values
in the real interval [0, 1]. Any input stream over bounded intervals—discrete or
continuous—can be encoded into such streams. For discrete streams, there are
finitely many tests, since each co-ordinate is Boolean and there is a fixed num-
ber of co-ordinates. One can define the coverage as the fraction of the number
of vectors tested to the total number of vectors. Unfortunately, the total num-
ber of vectors is very high: if each stream is constant, then there are already
2n tests for n streams. Instead, we consider the notion of k-wise testing from
combinatorial testing [38]. In k-wise testing, we fix a parameter k, and ask that
every interaction between every k elements is tested. Let us be more precise.
Suppose that a test vector has N co-ordinates, where each co-ordinate can get
the value 0 or 1. A set of tests A is a k-wise covering family if for every subset
{i1, i2, . . . , ik} ⊆ {1, . . . , N} of co-ordinates and every vector v ∈ {0, 1}k, there
is a test t ∈ A whose restriction to the i1, . . . , ik is precisely v.

For continuous streams, the situation is more complex: since any continuous
interval has infinitely many points, each corresponding to a different test case,
we cannot directly define coverage as a ratio (the denominator will be infinite).
Instead, we define coverage using the notion of dispersion [49, 57]. Intuitively,
dispersion measures the largest empty space left by a set of tests. We assume a
(continuous) test is a vector in [0, 1]N : each entry is picked from the interval [0, 1]
and there are N co-ordinates. Dispersion over [0, 1]N can be defined relative to
sets of neighborhoods, such as N -dimensional balls or axis-parallel rectangles.
Let us define B to be the family of N -dimensional axis-parallel rectangles in
[0, 1]N , our results also hold for other notions of neighborhoods such as balls
or ellipsoids. For a neighborhood B ∈ B, let vol(B) denote the volume of B.
Given a set A ⊆ [0, 1]N of tests, we define the dispersion as the largest volume
neighborhood in B without any test:

dispersion(A) = sup {vol(B) | B ∈ B and A ∩B = ∅}

A lower dispersion means better coverage.
Let us summarize. Suppose that a test vector consists of ND discrete co-

ordinates and NC continuous co-ordinates; that is, a test is a vector (tD, tC) in

{0, 1}ND × [0, 1]NC . We say a set of tests A is (k, ε)-covering if

180 R. Majumdar et al.

1. for each set of k co-ordinates {i1, . . . , ik} ⊆ {1, . . . , ND} and each vector

v ∈ {0, 1}k, there is a test (tD, tC) ∈ {0, 1}ND × [0, 1]NC such that the
restriction of tD to the co-ordinates i1, . . . , ik is v; and

2. for each (tD, tC) ∈ A, the set {tC | (tD, tC) ∈ A} has dispersion at most ε.

3.2 Test Generation

The goal of our default test generator is to maximize (k, ε) for programmer-
specified number of test iterations or ticks.

k-Wise Covering Family. One can use explicit construction results from combi-
natorial testing to generate k-wise covering families [14]. However, a simple way
to generate such families with high probability is random testing. The proof is by
the probabilistic method [4] (see also [44]). Let A be a set of 2k(k logN − log δ)

uniformly randomly generated {0, 1}N vectors. Then A is a k-wise covering fam-
ily with probability at least 1 − δ.

Low Dispersion Sequences. It is tempting to think that uniformly generating
vectors from [0, 1]N would similarly give low dispersion sequences. Indeed, as
the number of tests goes to infinity, the set of randomly generated tests has
dispersion 0 almost surely. However, when we fix the number of tests, it is well
known that uniform random sampling can lead to high dispersion [49,57]; in fact,
one can show that the dispersion of n uniformly randomly generated tests grows
asymptotically as O((log log n/n)

1
2) almost surely. Our test generation strategy

is based on deterministic quasi-Monte Carlo sequences, which have much better
dispersion properties, asymptotically of the order of O(1/n), than the dispersion
behavior of uniformly random tests. There are many different algorithms for
generating quasi-Monte Carlo sequences deterministically (see, e.g., [49,57]). We
use Halton sequences. For a given ε, we need to generate O(1ε) inputs via Halton
sampling. In Section 4.2, we compare uniform random and Halton sampling.

Cost Functions and Local Search. In many situations, testers want to optimize
parameter values for a specific function. A simple example of this is finding
higher-speed collisions, which intuitively, can be found in the vicinity of test pa-
rameters that already result in high-speed collisions. Another, slightly different
case is (greybox) fuzzing [5, 55], for example, finding new collisions using small
mutations on parameter values that result in the vehicle narrowly avoiding a col-
lision. Our test generator supports such quantitative objectives and local search.
A quantitative monitor evaluates a cost function on a run of a test case. Our test
generation tool generates an initial, randomly chosen, set of test inputs. Then,
it considers the scores returned by the Monitor on these samples, and performs
a local search on samples with the highest/lowest scores to find local optima of
the cost function.

Paracosm: A Test Framework for Autonomous Driving Simulations 181

4 Implementation and Tests

4.1 Runtime System and Implementation

Paracosm uses the Unity game engine [69] to render visuals, do runtime checks
and simulate physics (via PhysX [16]). Reactive objects are built on top of UniRx
[36], an implementation of the popular Reactive Extensions framework [56]. The
game engine manages geometric transformations of 3D objects and offers easy
to use abstractions for generating realistic simulations. Encoding behaviors and
monitors, management of 3D geometry and dynamic checks are implemented
using the game engine interface. The project code is available at: https://gitlab.
mpi-sws.org/mathur/paracosm.

A simulation in Paracosm proceeds as follows. A test configuration is spec-
ified as a subclass of the EnvironmentProgramBaseClass.Tests are run by invoking
the run_test method, which receives as input the reactive objects that should
be instantiated in the world as well as additional parameters relating to the test.
The run_test method runs the tests by first initializing and placing the reactive
objects in the scene using their 3D mesh (if they have one) and then invoking a
reactive engine to start the simulation. The system under test is run in a sepa-
rate process and connects to the simulation. The simulation then proceeds until
the simulation completion criteria is met (a time-out or some monitor event).

Output to Standardized Testing Formats. There have been recent efforts to cre-
ate standardized descriptions of tests in the automotive industry. The most
relevant formats are OpenDRIVE [7] and OpenSCENARIO (only recently
finalized) [8]. OpenDRIVE describes road structures, and OpenSCENARIO
describes actors and their behavior. Paracosm currently supports outputs to
OpenDRIVE. Due to the static nature of the specification format, a different
file is generated for each test iteration/configuration.

4.2 Evaluation

We evaluate Paracosm with respect to the following research questions (RQs):
RQ 1: Does Paracosm’s programmatic interface enable the easy design of test
environments and worlds?
RQ 2: Do the test input generation strategies discussed in Section 3 effectively
explore the parameter space?
RQ 3: Can Paracosm help uncover poor performance or bad behavior of the
SUT in common autonomous driving tasks?

Methodology. To answer RQ 1, we develop three independent environments rich
with visual features and other actors, and use the variety generated with just a
few lines of code as a proxy for ease of design. To answer RQ 2, we use coverage
maximizing strategies for test inputs to all the three environments/case studies.
We also use and evaluate cost functions and local search based methods. To
answer RQ 3, we test various neural network based systems and demonstrate

https://gitlab.mpi-sws.org/mathur/paracosm
https://gitlab.mpi-sws.org/mathur/paracosm

182 R. Majumdar et al.

Table 1: An overview of our case studies. Note that even though the Adaptive
Cruise Control study has 2 discrete parameters, we calculate k-wise coverage for
3 as the 2 parameters require 3 bits for representation.

Road segmentation Jaywalking pedestrian Adaptive Cruise Con-
trol

SUT VGGNet CNN [62] NVIDIA CNN [12] NVIDIA CNN [12]
Training 191 images 403 image & car con-

trol samples
1034 image & car con-
trol samples

Test
params

3 discrete 2 continuous 3 continuous & 2 dis-
crete

Test iters 100 100, 15s timeout 100, 15s timeout
Monitor Ground truth Scored Collision Collision & Distance
Coverage k = 3 with probabil-

ity ∼ 1
ε = 0.041 ε = 0.043, k = 3 with

probability ∼ 1

(a) A good test with all parameter val-
ues same as the training set (true positive:
89%, false positive: 0%).

(b) A bad test with all parameter values
different from the training set (true posi-
tive: 9%, false positive: 1%).

Fig. 3: Example results from the road segmentation case study. Pixels with a
green mask are segmented by the SUT as a road.

how Paracosm can help uncover problematic scenarios. A summary of the case
studies presented here is available in Table 1. In our Technical Report [43], we
present more case studies, specifically experiments on many pre-trained neu-
ral networks, busy urban environments and studies exploiting specific testing
features of Paracosm.

4.3 Case Studies

Road segmentation Using Paracosm’s programmatic interface, we design a long
road segment with several vehicles. The vehicular behavior is to drive on their
respective lanes with a fixed maximum velocity. The test parameters are the
number of lanes ({2, 4}), number of cars in the environment ({0, 5}) and light
conditions ({Noon, Evening}). Noon lighting is much brighter than the evening.
The direction of lighting is also the opposite. We test a deep CNN called VGGNet
[62], that is known to perform well on several image segmentation benchmarks.
The task is road segmentation, i.e., given a camera image, identifying which
pixels correspond to the road. The network is trained on 191 dashcam images

Paracosm: A Test Framework for Autonomous Driving Simulations 183

Table 2: Summary of results of the road segmentation case study. Each combi-
nation of parameter values is presented separately, with the parameter values
used for training in bold. We report the SUT’s average true positive rate (% of
pixels corresponding to the road that are correctly classified) and false positive
rate (% of pixels that are not road, but incorrectly classified as road).

lanes # cars Lighting # test iters True positive (%) False positive (%)

2 5 Noon 12 70% 5.1%
2 5 Evening 14 53.4% 22.4%
2 0 Evening 12 51.4% 18.9%
2 0 Noon 12 71.3% 6%
4 5 Evening 10 60.4% 7.1%
4 5 Noon 16 68.5% 20.2%
4 0 Evening 13 51.5% 7.1%
4 0 Noon 11 83.3% 21%

Table 3: Results for the jaywalking pedestrian case study.

Testing strategy Dispersion (ε) % fail Max. collision

Random 0.092 7% 10.5 m/s
Halton 0.041 10% 11.3 m/s
Random+opt/collision 0.109 13% 11.1 m/s
Halton+opt/collision 0.043 20% 11.9 m/s
Random+opt/almost failing 0.126 13% 10.5 m/s
Halton+opt/almost failing 0.043 13% 11.4 m/s

captured in the test environment with fixed parameters (2 lanes, 5 cars, and
Noon lighting), recorded at the rate of one image every 1/10th second, while
manually driving the vehicle around (using a keyboard). We test on 100 images
generated using Paracosm’s default test generation strategy (uniform random
sampling for discrete parameters). Table 2 summarizes the test results. Tests with
parameter values far away from the training set are observed to not perform so
well. As depicted in Figure 3, this happens because varying test parameters can
drastically change the scene.

Jaywalking pedestrian. We now test over the environment presented in Section 2.
The environment consists of a straight road segment and a pedestrian. The
pedestrian’s behavior is to cross the road at a specific walking speed when the au-
tonomous vehicle is a specific distance away. The walking speed of the pedestrian
and the distance of the autonomous vehicle when the pedestrian starts crossing
the road are test parameters. The SUT is a CNN based on NVIDIA’s behav-
ioral cloning framework [12]. It takes camera images as input, and produces the
relevant steering angle or throttle control as output. The SUT is trained on 403
samples obtained by driving the vehicle manually and recording the camera and
corresponding control data. The training environment has pedestrians crossing

184 R. Majumdar et al.

the road at various time delays, but always at a fixed walking speed (1 m/s). In
order to evaluate RQ 2 completely, we evaluate the default coverage maximizing
sampling approach, as well as explore two quantitative objectives: first, maxi-
mizing the collision speed, and second, finding new failing cases around samples
that almost fail. For the default approach, the CollisionMonitor as presented
in Section 2 is used. For the first quantitative objective, this CollisionMonitor’s
code is prepended with the following calculation:

// Score is speed of car at time of collision

coll_speed = v.speed.CombineLatest(v.collider , (s,c) => s)

.First()

The score coll_speed is used by the test generator for optimization. For the sec-
ond quantitative objective, the CollisionMonitor is modified to give high scores
to tests where the distance between the autonomous vehicle and pedestrian is
very small:

CollisionMonitor(AutonomousVehicle v, Pedestrian p)

extends Monitor {

minDist = v.pos.Zip(p.pos).Map (1/ abs(_-_)).Min()

coll_score = v.collider.Map(0)

// Score is either 0 (collision) or 1/ minDist

score = coll_score.DefaultIfEmpty(minDist)

assert(v.collider.IsEmpty ())

}

We evaluate the following test input generation strategies: (i) Random sam-
pling (ii) Halton sampling, (iii) Random or Halton sampling with local search
for the two quantitative objectives. We run 100 iterations of each strategy with
a 15 second timeout. For random or Halton sampling, we sample 100 times. For
the quantitative objectives, we first generate 85 random or Halton samples, then
choose the top 5 scores, and finally run 3 simulated annealing iterations on each
of these 5 configurations. Table 3 presents results from the various test input gen-
eration strategies. Clearly, Halton sampling offers the lowest dispersion (highest
coverage) over the parameter space. This can also be visually confirmed from
the plot of test parameters (Figure 4). There are no big gaps in the parameter
space. Moreover, we find that test strategies optimizing for the first objective
are successful in finding more collisions with higher speeds. As these techniques
perform simulated annealing repetitions on top of already failing tests, they also
find more failing tests overall. Finally, test strategies using the second objective
are also successful in finding more (newer) failure cases than simple Random or
Halton sampling.

Adaptive Cruise Control. We now create and test in an environment with our
test vehicle following a car (lead car) on the same lane. The lead car’s behav-
ior is programmed to drive on the same lane as the test vehicle, with a certain
maximum speed. This is a very typical driving scenario that engineers test their
implementations on. We use 5 test parameters: the initial lead of the lead car to

Paracosm: A Test Framework for Autonomous Driving Simulations 185

(a) Random sampling (no
opt.)

(b) Random + opt. / max-
imizing collision.

(c) Random + opt. / al-
most failing.

(d) Halton sampling (no
opt.)

(e) Halton + opt. / maxi-
mizing collision.

(f) Halton + opt. / almost
failing.

Fig. 4: A comparison of the various test generation strategies for the jaywalking
pedestrian case study. The X-axis is the walking speed of the pedestrian (2 to
10 m/s). The Y-axis is the distance from the car when the pedestrian starts
crossing (30 to 60 m). Passing tests are labelled with a green dot. Failing tests
(tests with a collision) are marked with a red cross.

the test vehicle ([8m, 40m]), the lead car’s maximum speed ([3m/s, 8m/s]), den-
sity of fog3 in the environment ([0, 1]), number of lanes on the road ({2, 4}), and
color of the lead car ({Black, Red, Y ello, Blue}). We use both, CollisionMonitor
4 and DistanceMonitor, as presented in Section 2. A test passes if there is no
collision and the autonomous vehicle moves atleast 5 m during the simulation
duration (15 s).

We use Paracosm’s default test generation strategy, i.e., Halton sampling
for continuous parameters and Random sampling for discrete parameters (no
optimization or fuzzing). The SUT is the same CNN as in the previous case
study. It is trained on 1034 training samples, which are obtained by manually
driving behind a red lead car on the same lane of a 2-lane road with the same
maximum velocity (5.5 m/s) and no fog.

The results of this case study are presented in Table 4. Looking at the dis-
crete parameters, the number of lanes does not seem to contribute towards a risk
of collision. Surprisingly, though the training only involves a Red lead car, the
results appear to be the best for a Blue lead car. Moving on to the continuous

3 0 denotes no fog and 1 denotes very dense fog (exponential squared scale).
4 the monitor additionally calculates the mean distance of the test vehicle to the lead
car during the test, which is used for later analysis.

186 R. Majumdar et al.

(a) Initial offset (X-axis)
vs. max. speed (Y-axis).

(b) Initial offset (X-axis)
vs. fog density (Y-axis).

(c) Max. speed (X-axis) vs.
fog density (Y-axis).

Fig. 5: Continuous test parameters of the Adaptive Cruise Control study plotted
against each other: the initial offset of the lead car (8 to 40 m), the lead car’s
maximum speed (3 to 8 m/s) and the fog density (0 to 1). Green dots, red crosses,
and blue triangles denote passing tests, collisions, and inactivity respectively.

Table 4: Parameterized test on Adaptive Cruise Control, separated for each value
of discrete parameters, and low and high values of continuous parameters. A test
passes if there are no collisions and no inactivity (the overall distance moved by
the test vehicle is more than 5 m. The average offset (in m) maintained by the
test vehicle to the lead car (for passing tests) is also presented.

Discrete parameters Continuous parameters

Num. lanes Lead car color Initial offset (m) Speed (m/s) Fog density

2 4 Black Red Yellow Blue < 24 ≥ 24 < 5.5 ≥ 5.5 < 0.5 ≥ 0.5

Test iters 54 46 24 22 27 27 51 49 52 48 51 49
Collisions 7 7 3 3 6 2 6 8 8 6 12 0
Inactivity 12 4 4 4 6 2 9 7 9 7 1 15
Offset (m) 42.4 43.4 46.5 48.1 39.6 39.1 33.7 52.7 38.4 47.4 36.5 49.8

parameters, the fog density appears to have the most significant impact on test
failures (collision or vehicle inactivity). In the presence of dense fog, the SUT
behaves pessimistically and does not accelerate much (thereby causing a failure
due to inactivity). These are all interesting and useful metrics about the perfor-
mance of our SUT. Plots of the results projected on to continuous parameters
are presented in Figure 5.

4.4 Results and Analysis

We now summarize the results of our evaluation with respect to our RQs:
RQ 1: All the three case studies involve varied, rich and dynamic environments.
They are representative of tests engineers would typically want to do, and we
parameterize many different aspects of the world and the dynamic behavior of its
components. These designs are at most 70 lines of code. This provides confidence
in Paracosm’s ability of providing an easy interface for the design of realistic
test environments.
RQ 2: Our default test generation strategies are found to be quite effective at
exploring the parameter space systematically, eliminating large unexplored gaps,

Paracosm: A Test Framework for Autonomous Driving Simulations 187

and at the same time, successfully identifying problematic cases in all the three
case studies. The jaywalking pedestrian study demonstrates that optimization
and local search are possible on top of these strategies, and are quite effective
in finding the relevant scenarios. The adaptive cruise control study tests over 5
parameters, which is more than most related works, and even guarantees good
coverage of this parameter space. Therefore, it is amply clear that Paracosm’s
test input generation methods are useful and effective.
RQ 3: The road segmentation case study uses a well-performing neural network
for object segmentation, and we are able to detect degraded performance for
automatically generated test inputs. Whereas this study focuses on static image
classification, the next two, i.e., the jaywalking pedestrian and the adaptive
cruise control study uncover poor performance on simulated driving, using a
popular neural network architecture for self driving cars. Therefore, we can safely
conclude that Paracosm can find bugs in various different kinds of systems
related to autonomous driving.

4.5 Threats to Validity

The internal validity of our experiments depends on having implemented our
system correctly and, more importantly, trained and used the neural networks
considered in the case studies correctly. For training the networks, we followed
the available documentation and inspected our examples to ensure that we use
an appropriate training procedure. We watched some test runs and replays of
tests we did not understand. Furthermore, our implementation logs events and
we also capture images, which allow us to check a large number of tests.

In terms of threats to external validity, the biggest challenge in this project
has been finding systems that we can easily train and test in complex driving
scenarios. Publicly available systems have limited capabilities and tend to be
brittle. Many networks trained on real world data do not work well in simulation.
We therefore re-train these networks in simulation. An alternative is to run
fewer tests, but use more expensive and visually realistic simulations. Our test
generation strategy maximizes coverage, even when only a few test iterations
can be performed due to high simulation cost.

5 Related Work

Traditionally, test-driven software development paradigms [9] have advocated
testing and mocking frameworks to test software early and often. Mocking frame-
works and mock objects [42,47] allow programmers to test a piece of code against
an API specification. Typically, mock objects are stubs providing outputs to ex-
plicitly provided lists of inputs of simple types, with little functionality of the
actual code. Thus, they fall short of providing a rich environment for autonomous
driving. Paracosm can be seen as a mocking framework for reactive, physical
systems embedded in the 3D world. Our notion of constraining streams is in-
spired by work on declarative mocking [59].

188 R. Majumdar et al.

Testing Cyber-Physical Systems. There is a large body of work on automated
test generation tools for cyber-physical systems through heuristic search of a
high-dimensional continuous state space. While much of this work has focused
on low-level controller interfaces [6,17,19,20,25,60] rather than the system level,
specification and test generation techniques arising from this work—for exam-
ple, the use of metric and signal temporal logics or search heuristics—can be
adapted to our setting. More recently, test generation tools have started target-
ing autonomous systems under a simulation-based semantic testing framework
similar to ours. In most of these works, visual scenarios are either fixed by
hand [1, 2, 10, 22, 27, 29, 66, 67], or are constrained due to the model or coverage
criteria [3, 45, 50]. These analyses are shown to be preferable to the application
of random noise on the input vector. Additionally, a simulation-based approach
filters benign misclassifications from misclassifications that actually lead to bad
or dangerous behavior. Our work extends this line of work and provides an ex-
pressive language to design parameterized environments and tests. AsFault [29]
uses random search and mutation for procedural generation of road networks for
testing. AC3R [28] reconstructs test cases from accident reports.

To address problems of high time and infrastructure cost of testing au-
tonomous systems, several simulators have been developed. The most popular
is Gazebo [26] for the ROS [54] robotics framework. It offers a modular and
extensible architecture, however falls behind on visual realism and complexity of
environments that can be generated with it. To counter this, game engines are
used. Popular examples are TORCS [72], CARLA [21], and AirSim [61] Mod-
ern game engines support creation of realistic urban environments. Though they
enable visually realistic simulations, and enable detection of infractions such as
collisions, the environments themselves are difficult to design. Designing a cus-
tom environment involves manual placement of road segments, buildings, and
actors (as well as their properties). Performing many systematic tests is there-
fore time-consuming and difficult. While these systems and Paracosm share
the same aims and much of the same infrastructure, Paracosm focuses on pro-
cedural design and systematic testing, backed by a relevant coverage criteria.

Adversarial Testing. Adversarial examples for neural networks [32,64] introduce
perturbations to inputs that cause a classifier to classify “perceptually identical”
inputs differently. Much work has focused on finding adversarial examples in the
context of autonomous driving as well as on training a network to be robust to
perturbations [11,30,46,51,71]. Tools such asDeepXplore [52],DeepTest [65],
DeepGauge [41], and SADL [37] define a notion of coverage for neural networks
based on the number of neurons activated during tests compared against the
total number of neurons in the network and activation during training. However,
these techniques focus mostly on individual classification tasks and apply 2D
transformations on images. In comparison, we consider the closed-loop behavior
of the system and our parameters directly change the world rather than apply
transformations post facto. We can observe, over time, that certain vehicles are
not detected, which is more useful to testers than a single misclassification [31].
Furthermore, it is already known that structural coverage criteria may not be an

Paracosm: A Test Framework for Autonomous Driving Simulations 189

effective strategy for finding errors in classification [39]. We use coverage metrics
on the test space, rather than the structure of the neural network. Alternately,
there are recent techniques to verify controllers implemented as neural networks
through constraint solving or abstract interpretation [24, 30, 34, 58, 71]. While
these tools do not focus on the problem of autonomous driving, their underlying
techniques can be combined in the test generation phase for Paracosm.

6 Future Work and Conclusion

Deploying autonomous systems like self-driving cars in urban environments raises
several safety challenges. The complex software stack processes sensor data,
builds a semantic model of the surrounding world, makes decisions, plans tra-
jectories, and controls the car. The end-to-end testing of such systems requires
the creation and simulation of whole worlds, with different tests representing dif-
ferent world and parameter configurations. Paracosm tackles these problems
by (i) enabling procedural construction of diverse scenarios, with precise control
over elements like road layout, physical and visual properties of objects, and
behaviors of actors in the system, and (ii) using quasi-random testing to obtain
good coverage over large parameter spaces.

In our evaluation, we show that Paracosm enables easy design of environ-
mnents and automated testing of autonomous agents implemented using neural
networks. While finding errors in sensing can be done with only a few static im-
ages, we show that Paracosm also enables the creation of longer test scenarios
which exercise the controller’s feedback on the environment. Our case studies
focused on qualitative state space exploration. In future work, we shall perform
quantitative statistical analysis to understand the sensitivity of autonomous ve-
hicle behavior on individual parameters.

In the future, we plan to extend Paracosm’s testing infrastructure to also aid
in the training of deep neural networks that require large amounts of high quality
training data. For instance, we show that small variations in the environment
result in widely different results for road segmentation. Generating data is a
time consuming and expensive task. Paracosm can easily generate labelled
data for static images. For driving scenarios, we can record a user manually
driving in a parameterized Paracosm environment and augment this data by
varying parameters that should not impact the car’s behavior. For instance, we
can vary the color of other cars, positions of pedestrians who are not crossing,
or even the light conditions and sensor properties (within reasonable limits).

Acknowledgements This research was funded in part by the Deutsche
Forschungsgemeinschaft project 389792660-TRR 248 and by the European
Research Council under the Grant Agreement 610150 (ERC Synergy Grant
ImPACT).

190 R. Majumdar et al.

References

1. Abbas, H., O’Kelly, M., Rodionova, A., Mangharam, R.: Safe at any speed: A
simulation-based test harness for autonomous vehicles. In: 7th Workshop on De-
sign, Modeling and Evaluation of Cyber Physical Systems (CyPhy17) (October
2017)

2. Abdessalem, R.B., Nejati, S., Briand, L.C., Stifter, T.: Testing vision-
based control systems using learnable evolutionary algorithms. In: Pro-
ceedings of the 40th International Conference on Software Engineering. p.
1016–1026. ICSE ’18, Association for Computing Machinery, New York, NY,
USA (2018). https://doi.org/10.1145/3180155.3180160, https://doi.org/10.1145/
3180155.3180160

3. Alexander, R., Hawkins, H., Rae, A.: Situation coverage – a coverage criterion for
testing autonomous robots (02 2015)

4. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience series in
discrete mathematics and optimization, Wiley (2004)

5. American Fuzzy Loop: Technical “whitepaper” for afl-fuzz, http://lcamtuf.
coredump.cx/afl/technical details.txt, accessed: 2019-08-23

6. Annpureddy, Y., Liu, C., Fainekos, G.E., Sankaranarayanan, S.: S-TaLiRo: A tool
for temporal logic falsification for hybrid systems. In: TACAS 11. Lecture Notes
in Computer Science, vol. 6605, pp. 254–257. Springer (2011)

7. Association for Advancement of international Standardization of Automation and
Measuring Systems (ASAM): Opendrive (2018), http://www.opendrive.org/index.
html, accessed: 2019-08-21

8. Association for Advancement of international Standardization of Automation and
Measuring Systems (ASAM): Openscenario (2018), http://www.opendrive.org/
index.html, accessed: 2019-08-21

9. Beck, K.L.: Test Driven Development: By Example. Addison-Wesley Professional
(2002)

10. Ben Abdessalem, R., Nejati, S., Briand, L.C., Stifter, T.: Testing advanced driver
assistance systems using multi-objective search and neural networks. In: Proceed-
ings of the 31st IEEE/ACM International Conference on Automated Software En-
gineering (ASE). pp. 63–74 (2016)

11. Bhagoji, A.N., He, W., Li, B., Song, D.: Exploring the space of black-box attacks
on deep neural networks. CoRR abs/1712.09491 (2017), http://arxiv.org/abs/
1712.09491

12. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

13. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: A declarative language
for programming synchronous systems. In: Conference Record of the Fourteenth
Annual ACM Symposium on Principles of Programming Languages, Munich, Ger-
many, January 21-23, 1987. pp. 178–188 (1987)

14. Colbourn, C.J.: Combinatorial aspects of covering arrays. Le Matematiche 59(1,2),
125–172 (2004), https://lematematiche.dmi.unict.it/index.php/lematematiche/
article/view/166

15. comma.ai: openpilot: open source driving agent (2016), https://github.com/
commaai/openpilot, accessed: 2018-11-13

16. Coporation, N.: Physx (2008), https://developer.nvidia.com/
gameworks-physx-overview, accessed: 2018-11-13

https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1145/3180155.3180160
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://www.opendrive.org/index.html
http://www.opendrive.org/index.html
http://www.opendrive.org/index.html
http://www.opendrive.org/index.html
http://arxiv.org/abs/1712.09491
http://arxiv.org/abs/1712.09491
https://lematematiche.dmi.unict.it/index.php/lematematiche/article/view/166
https://lematematiche.dmi.unict.it/index.php/lematematiche/article/view/166
https://github.com/commaai/openpilot
https://github.com/commaai/openpilot
https://developer.nvidia.com/gameworks-physx-overview
https://developer.nvidia.com/gameworks-physx-overview

Paracosm: A Test Framework for Autonomous Driving Simulations 191

17. Deshmukh, J., Jin, X., Kapinski, J., Maler, O.: Stochastic local search for falsifi-
cation of hybrid systems. In: ATVA. pp. 500–517. Springer (2015)

18. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Ro-
bust online monitoring of signal temporal logic. Formal Methods in System Design
51(1), 5–30 (2017). https://doi.org/10.1007/s10703-017-0286-7, https://doi.org/
10.1007/s10703-017-0286-7

19. Deshmukh, J.V., Horvat, M., Jin, X., Majumdar, R., Prabhu, V.S.: Testing cyber-
physical systems through bayesian optimization. ACM Trans. Embedded Com-
put. Syst. 16(5), 170:1–170:18 (2017). https://doi.org/10.1145/3126521, https:
//doi.org/10.1145/3126521

20. Donzé, A.: Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid
Systems, pp. 167–170. Springer (2010)

21. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning. pp. 1–16 (2017)

22. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. In: NASA Formal Methods - 9th Inter-
national Symposium, NFM 2017. Lecture Notes in Computer Science, vol. 10227,
pp. 357–372. Springer (2017)

23. Dreossi, T., Jha, S., Seshia, S.A.: Semantic adversarial deep learning 10981, 3–
26 (2018). https://doi.org/10.1007/978-3-319-96145-3 1, https://doi.org/10.1007/
978-3-319-96145-3 1

24. Dutta, S., Chen, X., Jha, S., Sankaranarayanan, S., Tiwari, A.: Sherlock - A tool for
verification of neural network feedback systems: demo abstract. In: Ozay, N., Prab-
hakar, P. (eds.) Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada, April
16-18, 2019. pp. 262–263. ACM (2019). https://doi.org/10.1145/3302504.3313351,
https://doi.org/10.1145/3302504.3313351

25. Fainekos, G.: Automotive control design bug-finding with the S-TaLiRo tool. In:
ACC 2015. p. 4096 (2015)

26. Foundation, O.S.R.: Vehicle simulation in gazebo, http://gazebosim.org/blog/
vehicle%20simulation, accessed: 2019-08-23

27. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Se-
shia, S.A.: Scenic: A language for scenario specification and scene generation.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. pp. 63–78. PLDI 2019, ACM, New York,
NY, USA (2019). https://doi.org/10.1145/3314221.3314633, http://doi.acm.org/
10.1145/3314221.3314633

28. Gambi, A., Huynh, T., Fraser, G.: Generating effective test cases for self-
driving cars from police reports. In: Dumas, M., Pfahl, D., Apel, S., Russo, A.
(eds.) Proceedings of the ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019. pp. 257–267.
ACM (2019). https://doi.org/10.1145/3338906.3338942, https://doi.org/10.1145/
3338906.3338942

29. Gambi, A., Müller, M., Fraser, G.: Automatically testing self-driving cars with
search-based procedural content generation. In: Zhang, D., Møller, A. (eds.) Pro-
ceedings of the 28th ACM SIGSOFT International Symposium on Software Test-
ing and Analysis, ISSTA 2019, Beijing, China, July 15-19, 2019. pp. 318–328.
ACM (2019). https://doi.org/10.1145/3293882.3330566, https://doi.org/10.1145/
3293882.3330566

https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1145/3126521
https://doi.org/10.1145/3126521
https://doi.org/10.1145/3126521
https://doi.org/10.1007/978-3-319-96145-3_1
https://doi.org/10.1007/978-3-319-96145-3_1
https://doi.org/10.1007/978-3-319-96145-3_1
https://doi.org/10.1145/3302504.3313351
https://doi.org/10.1145/3302504.3313351
http://gazebosim.org/blog/vehicle%20simulation
http://gazebosim.org/blog/vehicle%20simulation
https://doi.org/10.1145/3314221.3314633
http://doi.acm.org/10.1145/3314221.3314633
http://doi.acm.org/10.1145/3314221.3314633
https://doi.org/10.1145/3338906.3338942
https://doi.org/10.1145/3338906.3338942
https://doi.org/10.1145/3338906.3338942
https://doi.org/10.1145/3293882.3330566
https://doi.org/10.1145/3293882.3330566
https://doi.org/10.1145/3293882.3330566

192 R. Majumdar et al.

30. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy, S&P 2018. pp.
3–18. IEEE (2018)

31. Gladisch, C., Heinz, T., Heinzemann, C., Oehlerking, J., von Vietinghoff, A.,
Pfitzer, T.: Experience paper: Search-based testing in automated driving control
applications. In: Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). pp. 26–37 (2019)

32. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. CoRR abs/1412.6572 (2014), http://arxiv.org/abs/1412.6572

33. Ho, H., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic. In:
Runtime Verification RV 2014. Lecture Notes in Computer Science, vol. 8734, pp.
178–192. Springer (2014)

34. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 10426, pp. 3–29.
Springer (2017). https://doi.org/10.1007/978-3-319-63387-9 1, https://doi.org/10.
1007/978-3-319-63387-9 1

35. Hudak, P., Courtney, A., Nilsson, H., Peterson, J.: Arrows, robots, and
functional reactive programming. In: Advanced Functional Programming, 4th
International School, AFP 2002, Oxford, UK, August 19-24, 2002, Re-
vised Lectures. Lecture Notes in Computer Science, vol. 2638, pp. 159–187.
Springer (2002). https://doi.org/10.1007/978-3-540-44833-4 6, https://doi.org/10.
1007/978-3-540-44833-4 6

36. Kawai, Y.: Unirx: Reactive extensions for unity (2014), https://github.com/
neuecc/UniRx, accessed: 2018-11-13

37. Kim, J., Feldt, R., Yoo, S.: Guiding deep learning system testing using sur-
prise adequacy. In: Proceedings of the 41st International Conference on Soft-
ware Engineering. pp. 1039–1049. ICSE ’19, IEEE Press, Piscataway, NJ, USA
(2019). https://doi.org/10.1109/ICSE.2019.00108, https://doi.org/10.1109/ICSE.
2019.00108

38. Kuhn, D.R., Kacker, R.N., Lei, Y.: Combinatorial testing. In: Laplante, P.A. (ed.)
Encyclopedia of Software Engineering, pp. 1–12. CRC Press (Nov 2010)

39. Li, Z., Ma, X., Xu, C., Cao, C.: Structural coverage criteria for neural networks
could be misleading. In: Sarma, A., Murta, L. (eds.) Proceedings of the 41st Inter-
national Conference on Software Engineering: New Ideas and Emerging Results,
ICSE (NIER) 2019, Montreal, QC, Canada, May 29-31, 2019. pp. 89–92. IEEE /
ACM (2019), https://dl.acm.org/citation.cfm?id=3339171

40. Liberty, J., Betts, P.: Programming Reactive Extensions and LINQ. Apress (2011)

41. Ma, L., Juefei-Xu, F., Zhang, F., Sun, J., Xue, M., Li, B., Chen, C., Su, T., Li, L.,
Liu, Y., Zhao, J., Wang, Y.: Deepgauge: Multi-granularity testing criteria for deep
learning systems. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. pp. 120–131. ASE 2018, ACM, New York,
NY, USA (2018). https://doi.org/10.1145/3238147.3238202, http://doi.acm.org/
10.1145/3238147.3238202

42. Mackinnon, T., Freeman, S., Craig, P.: Endo-testing: Unit testing with mock ob-
jects. In: eXtreme Programming and Flexible Processes in Software Engineering -
XP2000 (2000)

http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-540-44833-4_6
https://doi.org/10.1007/978-3-540-44833-4_6
https://doi.org/10.1007/978-3-540-44833-4_6
https://github.com/neuecc/UniRx
https://github.com/neuecc/UniRx
https://doi.org/10.1109/ICSE.2019.00108
https://doi.org/10.1109/ICSE.2019.00108
https://doi.org/10.1109/ICSE.2019.00108
https://dl.acm.org/citation.cfm?id=3339171
https://doi.org/10.1145/3238147.3238202
http://doi.acm.org/10.1145/3238147.3238202
http://doi.acm.org/10.1145/3238147.3238202

Paracosm: A Test Framework for Autonomous Driving Simulations 193

43. Majumdar, R., Mathur, A.S., Pirron, M., Stegner, L., Zufferey, D.: Para-
cosm: A language and tool for testing autonomous driving systems. CoRR
abs/1902.01084 (2019), http://arxiv.org/abs/1902.01084

44. Majumdar, R., Niksic, F.: Why is random testing effective for partition tolerance
bugs? PACMPL 2(POPL), 46:1–46:24 (2018)

45. Majzik, I., Semeráth, O., Hajdu, C., Marussy, K., Szatmári, Z., Micskei, Z., Vörös,
A., Babikian, A.A., Varró, D.: Towards system-level testing with coverage guar-
antees for autonomous vehicles. In: 2019 ACM/IEEE 22nd International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS). pp. 89–94
(2019). https://doi.org/10.1109/MODELS.2019.00-12

46. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation
for provably robust neural networks. In: International Conference on Ma-
chine Learning (ICML) (2018), https://www.icml.cc/Conferences/2018/Schedule?
showEvent=2477

47. Mockito: Tasty mocking framework for unit tests in java, http://site.mockito.org,
accessed: 2019-08-23

48. National Transportation Safety Board: Collision between vehicle controlled by
developmental automated driving system and pedestrian, tempe, arizona, march
18, 2018. Highway Accident Report NTSB/HAR-19/03, National Transportation
Safety Board (November 2019)

49. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods.
SIAM (1992)

50. O’Kelly, M., Sinha, A., Namkoong, H., Tedrake, R., Duchi, J.C.: Scalable end-
to-end autonomous vehicle testing via rare-event simulation. Advances in Neural
Information Processing Systems 31, 9827–9838 (2018)

51. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Prac-
tical black-box attacks against machine learning. In: Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security - ASIA CCS 17.
ACM (2017). https://doi.org/10.1145/3052973.3053009, https://doi.org/10.1145/
3052973.3053009

52. Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: Automated whitebox test-
ing of deep learning systems. In: Proceedings of the 26th Symposium on Op-
erating Systems Principles, Shanghai, China, October 28-31, 2017. pp. 1–18.
ACM (2017). https://doi.org/10.1145/3132747.3132785, https://doi.org/10.1145/
3132747.3132785

53. Pomerleau, D.: ALVINN: An autonomous land vehicle in a neural network. In:
NIPS 88: Neural Information Processing Systems (1988)

54. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.: Ros: an open-source robot operating system. In: ICRA workshop on open
source software (2009)

55. Rawat, S., Jain, V., Kumar, A.J.S., Cojocar, L., Giuffrida, C., Bos, H.: Vuzzer:
Application-aware evolutionary fuzzing. In: NDSS (2017)

56. ReactiveX: Reactivex, http://reactivex.io/, accessed: 2019-08-23
57. Rote, G., Tichy, R.: Quasi-Monte-Carlo methods and the dispersion of point se-

quences. Mathematical and Computer Modelling 23, 9–23 (1996)
58. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neu-

ral networks with provable guarantees. In: Lang, J. (ed.) Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden. pp. 2651–2659. ijcai.org (2018).
https://doi.org/10.24963/ijcai.2018/368, https://doi.org/10.24963/ijcai.2018/368

http://arxiv.org/abs/1902.01084
https://doi.org/10.1109/MODELS.2019.00-12
https://www.icml.cc/Conferences/2018/Schedule?showEvent=2477
https://www.icml.cc/Conferences/2018/Schedule?showEvent=2477
http://site.mockito.org
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
http://reactivex.io/
https://doi.org/10.24963/ijcai.2018/368
https://doi.org/10.24963/ijcai.2018/368

194 R. Majumdar et al.

59. Samimi, H., Hicks, R., Fogel, A., Millstein, T.: Declarative mocking. In: ISSTA
2013. pp. 246–256. ACM (2013)

60. Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: HSCC 12. pp. 125–134. ACM (2012)

61. Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim: High-fidelity visual and physical
simulation for autonomous vehicles. In: Field and Service Robotics (2017), https:
//arxiv.org/abs/1705.05065

62. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

63. Stewart, L., Musa, M., Croce, N.: Look no hands: self-driving vehi-
cles’ public trust problem (2019), https://www.weforum.org/agenda/2019/08/
self-driving-vehicles-public-trust/, accessed: 2021-01-18

64. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. CoRR abs/1312.6199 (2013)

65. Tian, Y., Pei, K., Jana, S., Ray, B.: Deeptest: Automated testing of deep-neural-
network-driven autonomous cars. In: Proceedings of the 40th International Con-
ference on Software Engineering. pp. 303–314. ACM (2018)

66. Tuncali, C.E., Fainekos, G., Prokhorov, D., Ito, H., Kapinski, J.: Requirements-
driven test generation for autonomous vehicles with machine learning components.
arXiv preprint arXiv:1908.01094 (2019)

67. Tuncali, C.E., Fainekos, G.E., Ito, H., Kapinski, J.: Sim-atav: Simulation-based
adversarial testing framework for autonomous vehicles. In: Proceedings of the
21st International Conference on Hybrid Systems: Computation and Control
(part of CPS Week), HSCC 2018, Porto, Portugal, April 11-13, 2018. pp. 283–
284. ACM (2018). https://doi.org/10.1145/3178126.3187004, http://doi.acm.org/
10.1145/3178126.3187004

68. Udacity: Self-driving car simulator, https://github.com/udacity/
self-driving-car-sim, accessed: 2019-08-23

69. Unity3D: Unity game engine, https://unity3d.com/, accessed: 2019-08-23
70. Wan, Z., Hudak, P.: Functional reactive programming from first principles. In:

Proceedings of the 2000 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Vancouver, Britith Columbia, Canada, June
18-21, 2000. pp. 242–252. ACM (2000). https://doi.org/10.1145/349299.349331,
https://doi.org/10.1145/349299.349331

71. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety test-
ing of deep neural networks. In: Beyer, D., Huisman, M. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems - 24th International Con-
ference, TACAS 2018, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20,
2018, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10805, pp.
408–426. Springer (2018). https://doi.org/10.1007/978-3-319-89960-2 22, https:
//doi.org/10.1007/978-3-319-89960-2 22

72. Wymann, B., Espié, E., Guionneau, C., Dimitrakakis, C., Coulom, R., Sumner, A.:
TORCS, The Open Racing Car Simulator. http://www.torcs.org (2014)

https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/1705.05065
https://www.weforum.org/agenda/2019/08/self-driving-vehicles-public-trust/
https://www.weforum.org/agenda/2019/08/self-driving-vehicles-public-trust/
https://doi.org/10.1145/3178126.3187004
http://doi.acm.org/10.1145/3178126.3187004
http://doi.acm.org/10.1145/3178126.3187004
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://unity3d.com/
https://doi.org/10.1145/349299.349331
https://doi.org/10.1145/349299.349331
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/978-3-319-89960-2_22

Paracosm: A Test Framework for Autonomous Driving Simulations 195

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Paracosm: A Test Framework for Autonomous Driving Simulations
	1 Introduction
	2 Paracosm through Examples
	3 Systematic Testing of Paracosm Worlds
	3.1 Test Inputs and Coverage
	3.2 Test Generation

	4 Implementation and Tests
	4.1 Runtime System and Implementation
	4.2 Evaluation
	4.3 Case Studies
	4.4 Results and Analysis
	4.5 Threats to Validity

	5 Related Work
	6 Future Work and Conclusion
	Acknowledgements
	References

