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The prevalence of Parkinson’s disease (PD) increases with aging and both processes share similar cellular mech- 

anisms and alterations in the dopaminergic system. Yet it remains to be investigated whether aging can also 

demonstrate electrophysiological neuronal signatures typically associated with PD. Previous work has shown 

that phase-amplitude coupling (PAC) between the phase of beta oscillations and the amplitude of gamma oscilla- 

tions as well as beta bursts features can serve as electrophysiological biomarkers for PD. Here we hypothesize that 

these metrics are also present in apparently healthy elderly subjects. Using resting state multichannel EEG mea- 

surements, we show that PAC between beta oscillation and broadband gamma activity (50–150 Hz) is elevated 

in a group of elderly (59–77 years) compared to young volunteers (20–35 years) without PD. Importantly, the 

increase of PAC is statistically significant even after ruling out confounds relating to changes in spectral power 

and non-sinusoidal shape of beta oscillation. Moreover, a trend for a higher percentage of longer beta bursts ( > 

0.2 s) along with the increase in their incidence rate is also observed for elderly subjects. Using inverse modeling, 

we further show that elevated PAC and longer beta bursts are most pronounced in the sensorimotor areas. More- 

over, we show that PAC and longer beta bursts might reflect distinct mechanisms, since their spatial patterns 

only partially overlap and the correlation between them is weak. Taken together, our findings provide novel ev- 

idence that electrophysiological biomarkers of PD may already occur in apparently healthy elderly subjects. We 

hypothesize that PAC and beta bursts characteristics in aging might reflect a pre-clinical state of PD and suggest 

their predictive value to be tested in prospective longitudinal studies. 
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. Introduction 

Aging is associated with alterations in metabolism, neurotransmis-

ion, hormonal and immune dysregulation, and inflammation; thus

eading to diverse neurocognitive impairments ( Kim et al., 2017 ;

ibille, 2013 ; Zhuang et al., 2018 ). Healthy aging is accompanied by

he loss of dopaminergic (DA) neurons ( Rudow et al., 2008 ), and it is

ssumed that the clinical signs of Parkinson’s disease in humans ap-

ear when the DA in the substantia nigra pars compacta (SNc) are de-

enerated by up to 60% − 70% ( Cheng et al., 2010 ; Darden, 2007 ). Al-

hough elderly people often demonstrate mild parkinsonian signs in-

luding rigidity, bradykinesia, tremor and problems with gait balance

 Louis and Bennett, 2007 ), these signs do not meet the established clin-

cal criteria for Parkinson’s disease (PD) ( Marsili et al., 2018 ). Yet, ag-

ng is the single most significant factor influencing the clinical presence

nd progression of PD ( Hindle, 2010 ). A close association between ag-
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ng and PD is further supported by the findings in non-human primates

emonstrating that both processes have multiple similar biological fea-

ures and share the directionality of alterations in the nigrostriatal DA

ystem. This in turn leads to a hypothesis that aging is associated with

iological changes (particularly in dopamine system) creating vulnera-

le conditions potentially serving as a foundation for PD ( Collier et al.,

017 ). 

Given a close relationship between PD and aging, it is tempting to

peculate that this relation can also be reflected in electrophysiological

rain signals. Interestingly, using invasive and non-invasive electrophys-

ological methods, several signatures of PD have been identified. But,

o the best of our knowledge, it is not known whether similar changes

re also present in apparently healthy elderly subjects compared to

he young ones. The most pronounced electrophysiological signature

f PD is represented by abnormally elevated beta oscillatory activity in

he subthalamic nucleus (STN) ( Alexandre Eusebio and Brown, 2009 ;
ticle under the CC BY-NC-ND license 

https://doi.org/10.1016/j.neuroimage.2021.118512
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2021.118512&domain=pdf
mailto:juanlizhang@cbs.mpg.de
https://doi.org/10.1016/j.neuroimage.2021.118512
http://creativecommons.org/licenses/by-nc-nd/4.0/


J. Zhang, M.J. Idaji, A. Villringer et al. NeuroImage 243 (2021) 118512 

B  

e  

B  

i  

C  

(  

t  

2  

S  

(  

d  

2  

c  

N  

c  

o  

t  

c  

r  

p  

c  

e  

e  

c  

c  

m  

b  

t  

o  

t  

o  

M  

t  

t  

h  

a  

i  

2  

r  

p  

t  

c  

p

 

p  

t  

o  

t  

p  

m  

h  

2  

m

2

2

 

F  

s  

p  

a  

l  

(  

c  

s  

w  

o  

I  

f  

e  

w  

S  

S

 

o  

m  

t  

t  

m  

s  

l

2

 

i  

t  

i  

5  

b

2

2

 

E  

M  

l  

u  

M  

p  

l  

E  

E

I  

i  

p  

E  

l  

a  

t  

g  

4  

(

2

 

i  

l  

t  

p  

1

2

 

d  

t  

u  

a  

r  
rittain et al., 2014 ; Brown, 2003 ; Crowell et al., 2012 ; De Hemptinne

t al., 2015 ; Hammond et al., 2007 ; Kühn et al., 2009 ; Little and

rown, 2014 ; Oswal et al., 2013 ; Weinberger et al., 2006 ). Beta power

n the STN is correlated with bradykinesia (A. Eusebio et al., 2011 ;

hen et al., 2010 ; R. Levy et al., 2002 ) and is attenuated by levodopa

 Kühn et al., 2009 ; Weinberger et al., 2006 ) and by deep brain stimula-

ion (DBS) ( Müller and Robinson, 2018 ; Ray et al., 2008 ; Wingeier et al.,

006 ). Moreover, a higher incidence of longer beta bursts in the

TN has been shown to correlate positively with clinical impairment

 Tinkhauser et al., 2017a , 2017b ). At the level of the cortex, however,

ivergent studies demonstrated that either a decrease ( Stoffers et al.,

007 ; Whitmer et al., 2012 ) or an increase ( Melgari et al., 2014 ) in corti-

al beta power can occur during successful symptomatic therapy of PD.

otably, an alternative cortical biomarkers for PD is phase-amplitude

oupling (PAC) between the phase of beta oscillations and the amplitude

f broadband activity (also referred to here as “broadband gamma ”) ex-

ending from 50 to 200 Hz ( De Hemptinne et al., 2013 , 2015 ). Increased

ortical PAC observed in PD patients reflects a rather stereotypical neu-

onal recruitment pattern of sensorimotor areas and is hypothesized to

romote rigidity and akinesia —cardinal symptoms of PD. Moreover,

ortical beta-gamma PAC is considerably decreased during clinically

ffective DBS in the STN and by levodopa treatment ( De Hemptinne

t al., 2013 ; Swann et al., 2015 ). Non-invasive scalp-EEG analyses of

ortical beta-gamma PAC (A. M. Miller et al., 2019 ; Swann et al., 2015 )

onfirmed that PAC is indeed stronger in PD patients compared to age-

atched healthy subjects. With respect to beta burst dynamics, a study

y Tinkhauser et al. (2018) showed that longer beta bursts in the cor-

ex coincide with longer burst in the STN showing further that episodes

f elevated beta occur simultaneously in the basal ganglia and cortex

hus limiting information coding capacity and leading to deterioration

f movement performance. And more recently, a study using ECoG in

1 demonstrated a higher percentage of longer beta bursts in PD pa-

ients compared to the subjects without PD ( O’Keeffe et al., 2020 ). Taken

ogether, these cortical features, namely PAC and beta burst dynamics,

ave been consistently reported in PD. Whether the two PD biomarkers

re related to each other, so far, has been studied only in very few stud-

es which suggested a close relationship between the two ( Meidahl et al.,

019 ; O’Keeffe et al., 2020 ). However, none of them investigated their

elationship in a topographical manner. Yet, a different topographical

attern may indicate distinct underlined pathophysiology. Thus, inves-

igating the presence and relationship of such biomarkers using multi-

hannel EEG might aid to better understanding the associated neuro-

hysiological processes in PD and healthy aging. 

Given the above-mentioned association between aging and PD, in the

resent study, we tested the hypothesis that electrophysiological signa-

ures of PD at the cortical level, that is, PAC between the phase of beta

scillations and the amplitude of broadband gamma activity, as well as

he incidence of longer beta bursts, is more pronounced in elderly com-

ared to young subjects. Moreover, we expected that this effect would be

ost prominent in the sensorimotor areas of the cortex. We tested these

ypotheses using the recently acquired LEMON dataset ( Babayan et al.,

019 ) containing a large number of healthy young and old subjects with

ultichannel EEG. 

. Materials and methods 

.1. Subjects and task 

The recruitment of the participants was carried out in two steps.

irst, participants were pre-screened by telephone with a semi-

tructured interview. Before the study, further individual screening was

erformed by a study physician who assessed for exclusion criteria such

s diagnosis of hypertension, cardiovascular disease, history of neuro-

ogical disorder or psychiatric disease, history of malignant disease etc.

 Babayan et al., 2019 ). Participants were instructed to sit calmly and

omfortably in a chair and the recording was conducted in a sound-
2 
hielded room. The sessions consisted of 16 segments each lasting 60 s

ith each such segment related to interleaved eyes-closed (EC) or eyes-

pen (EO) condition. Therefore, each condition (EC or EO) lasted 8 min.

n this study, only the data during eyes closed periods were included for

urther analysis. We included all the elderly subjects and selected an

qually sized group of gender-matched young subjects. In total, there

ere 137 subjects: 71 young (age 20–35 years, mean age = 25.61,

D = 3.17, 24 females) and 66 old (age 59–77 years, mean age = 67.35,

D = 4.81, 31 females). 

The Alertness subtest of the Test of Attentional Performance (TAP;

rig. “Testbatterie zur Aufmerksamkeitsprüfung ”; version 2.3; Zimmer-

ann & Fimm, 2012) measures alertness and reaction speed. During this

est, a cross appears on a screen at randomly varying intervals to which

he subject should respond as quickly as possible by pressing a key. The

ean reaction time over the trials is derived as a measure of intrin-

ic alertness for each subject, i.e. higher reaction time scores indicate a

ower performance. 

.2. EEG recordings 

62-channel EEG was acquired with BrainAmp MR-plus amplifiers us-

ng ActiCAP electrodes (both Brain Products, Germany). Electrode mon-

age was based on the international standard 10–20 system with FCz be-

ng the reference during recording. Electrode impedance was kept below

k Ω. Recordings were digitized at a sampling frequency of 2500 Hz and

andpass filtered between 0.015 Hz and 1 kHz. 

.3. Data analysis 

.3.1. Data pre-processing 

In order to keep our data pre-processing comparable to previous

EG PD studies, we implemented it in an analogous manner to A. M.

iller et al. (2019) and Jackson et al. (2019) . EEG data were ana-

yzed with Matlab (The MathWorks Inc, Natick, Massachusetts, USA)

sing custom scripts and EEGLab toolbox (version 14.1.2; ( Delorme and

akeig, 2004 )) functions. At the first step, the data were down sam-

led to 512 Hz. A highpass filter at 1 Hz was then applied to remove

ow frequency drifts (two-way FIR filter, order = 1536, eegfilt.m from

EGLab). The continuous EEG data were then segmented into EC and

O conditions. Subsequently, independent component analysis (ICA –

nfomax algorithm implemented in EEGLab) was used to remove phys-

ological and non-physiological artifacts including cardiographic com-

onent, eye movements and blinks, muscle activity and line noise in the

C data. Next, the data were re-referenced to a common average. In the

ast stage, data were still examined visually for the presence of residual

rtifacts and segments contaminated by these events were marked and

hen excluded from the analysis. There was no difference between the

roups in the length of the data (on average 444.36 s for elderly and

55.22 s for younger groups, respectively) included for further analysis

Wilcoxon rank sum test, p = 0.2015). 

.3.2. Spectral analysis 

Power spectral density (PSD) was calculated using ‘ pwelch’ function

n MATLAB, with a Hamming window of 512 samples and a 50% over-

ap. The average PSD for beta band was obtained by averaging the spec-

ral density in the beta frequency range (13–30 Hz). Individual beta

eaks were detected using ‘ findpeaks ’ function in the frequency range

3–30 Hz. 

.3.3. Phase amplitude coupling (PAC) 

PAC was calculated using the Kullback-Leibler-based modulation in-

ex method ( Tort et al., 2008 ). Briefly, the modulation index (MI) quan-

ifies the degree of deviation of the phase-modulated amplitude from the

niform distribution. The distribution of the normalized instantaneous

mplitude envelope was computed for 18 phase bins, each covering 20

adians. A comparison of this distribution to the uniform distribution
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as quantified with the Kullback-Leibler distance measure. The com-

uted MI value is between 0 and 1 (0 for no coupling, and 1 for when

he phase of the slower oscillation and the amplitude of the faster os-

illation is fully coupled). MIs were calculated for phase-providing fre-

uency across the 4–50 Hz range using a sliding window with a step size

f 2 Hz and a bandwidth of 2 Hz, whilst the range for the amplitude-

roviding frequency varied from 4 to 170 Hz with a step size of 4 Hz.

ince PAC measures require the filter for the amplitude extraction from

aster frequency activity to have a bandwidth at least as great as the

ange of slower frequencies of interest, at each amplitude-providing fre-

uency, we used a filter with a bandwidth as wide as that of the center-

requency of the phase-providing oscillation. The phase of the lower fre-

uency and the amplitude of the higher frequency components were ob-

ained using Hilbert transform after bandpass filtering using a two-way

nite impulse response filter (FIR) (eegfilt.m with ‘ fir1 ’ parameters from

EGLab, with the order of three cycles of lower cutoff frequency). To ob-

ain meaningful values, we started the calculation between frequency

airs in which amplitude-providing frequency was always higher than

he phase-providing one. The MIs across all the possible frequency pairs

an be displayed as a phase-amplitude comodulogram. 

A PAC value was derived for each channel and each subject as

he mean of the MI values over the beta range (13–30 Hz) for phase-

roviding frequency and broadband gamma frequency range (50–

50 Hz) for the amplitude-providing frequency. This approach has also

een used in previous studies (A. M. Miller et al., 2019 ; Swann et al.,

015 ). 

.3.4. Non-sinusoidal waveform shape measure 

In order to rule out the possibility that the statistical PAC could

e due to the sharp edges of the waveforms ( Kramer et al., 2008 ),

on-sinusoidality of beta oscillation was quantified using sharpness and

teepness ratios. The method proposed by ( Cole et al., 2017 ) was used

or this purpose. Below we elaborate on these calculations. 

.3.4.1. Sharpness ratio. First, we bandpass filtered (13–30 Hz, eeg-

lt.m from EEGLab, order = 118) the raw time series to obtain beta

scillations, for which we then identified rising and falling zero-crossing

oints. Then, in the raw signal, indices of maximum and minimum volt-

ges between zero-crossings were found as the locations of peaks and

roughs. Peak (trough) sharpness was defined as the mean voltage dif-

erence between the peak (trough) and neighboring three time points,

hich are ∼6 ms before and after the peak (trough) ( Cole et al., 2017 ).

inally, the sharpness ratio was calculated as the absolute value of the

og-transform of the ratio of peak sharpness to trough sharpness. 

.3.4.2. Steepness ratio. The rise steepness was defined as the largest

oltage rise between two subsequent data points (first derivative) in

he time period between a trough and the peak after it. In the same

anner, the decay steepness was calculated as the largest voltage drop

etween a peak and the trough following it. Similarly, steepness ratio

as calculated as the absolute value of the log-transform of the ratio of

ise steepness to decay steepness. 

.3.5. Beta bursts definition and characteristics 

We referred to the methods proposed by Tinkhauser et al.

2017a) and Tinkhauser et al. (2017b) to estimate beta burst dynamics.

irst, we identified the mean beta peak frequency for each individual by

veraging the peak frequencies over the channels. Then we detected the

eta bursts in a frequency range of ± 5 Hz around the individual beta

eak frequency ( ∼15–25 Hz). Raw signal was bandpass filtered, and

he amplitude envelope of the filtered data was extracted using Hilbert

ransform. A beta burst was defined as the time interval where the am-

litude exceeds a certain threshold and stays above threshold for more

han 100 ms (at least two cycles). We explored the region-specific dif-

erences of bursts characteristics with the threshold fixed at the 65th

ercentile of the amplitude. Moreover, to investigate the impact of the
3 
urst thresholds, we included the analysis for a wide range of thresholds

percentiles 50, 55, 60, 65, 70, 75, 80, 85, and 90). 

The histogram of the burst duration for each channel was investi-

ated by binning the duration of the beta bursts into nine windows,

amely 0.1–0.2 s, 0.2–0.3 s, 0.3–0.4 s, 0.4–0.5 s, 0.5–0.6 s, 0.6–0.7 s,

.7–0.8 s, 0.8–0.9 s, and > 0.9 s. Since total burst duration varies across

hannels and subjects, the histogram was normalized by the total num-

er of beta bursts. Another feature of bursts, that is, incidence rate, was

efined as the number of bursts per time unit (bursts/(second)). For the

nalysis across different threshold percentiles, we focused on two key

eatures, namely mean burst duration and mean burst amplitude across

ll beta bursts. 

.3.6. Source space analysis 

For the localization of neuronal sources we applied inverse model-

ng to project the EEG sensor recordings to cortical source level. After

he EEG was preprocessed, EEG sensor signals were bandpass filtered

ithin the frequency range of interest (eegfilt.m from EEGLab). We used

he eLORETA algorithm (exact low resolution brain electromagnetic to-

ography, as implemented in the M/EEG Toolbox of Hamburg (METH,

ttps://www.nitrc.org/projects/meth/ ) ( Haufe and Ewald, 2016 )) for

nverse modeling and the New York head model with approximately

000 vertices ( Huang et al., 2016 ) to acquire the leadfield matrix. The

ortical vertices were grouped into 96 regions of interest (ROIs) based on

arvard-Oxford atlas ( Desikan et al., 2006 ). The time series estimated

or each vertex was used for further analysis. 

Specifically, for the PAC and beta band power analysis, we first es-

imated the metrics based on the time series from each vertex. Sub-

equently, we averaged the values across all the vertices within each

OI. To calculate PAC in a uniform way, we obtained the source re-

onstructed signal from beta band (13–30 Hz) and broadband gamma

50–150 Hz) to estimate the phase for lower frequency and amplitude

or higher frequency components for each vertex, respectively. Then MI

alues were estimated for each vertex and further for each ROI from

ach subject. Beta power values were computed analogously by averag-

ng PSD values over beta frequency range (13–30 Hz) for each vertex.

hen, the ROI-based power value was estimated by averaging over the

ertices within each ROI. 

With respect to beta burst dynamics, we bandpass filtered data using

he approach presented above for the sensor level (see Section 2.3.5 .)

nd then projected the bandpass filtered sensor data to the cortical

ources. Afterwards, singular value decomposition (SVD) was applied

o the signals within each ROI in order to extract a representative ROI-

ased signal. Using SVD of the time series of all vertices within each ROI,

he dominant time course of each ROI was extracted by preserving the

rst dominant SVD component. Thus, the 61-channel sensor level sig-

al was transformed to 96-ROI signal at source level. Further analysis

emained the same as for the sensor level. 

.3.7. Statistical tests 

Statistical comparisons across groups were performed using a non-

arametric Wilcoxon rank sum test between the old and young groups.

o correct for multiple comparisons, false discovery rate (FDR) method

as used according to Benjamini and Hochberg (1995) when multiple

lectrodes in sensor space, ROIs in source space, frequency bins and

urst window bins were compared. 

For the MI-comodulogram comparison between two groups at a

ingle channel (C3), we performed frequency-frequency space cluster-

ased permutation procedure by using the ‘Monte Carlo’ method, as im-

lemented in FieldTrip ( Oostenveld et al., 2011 ). In brief, with 2000 per-

utations across the randomly shuffled labels for old and young groups,

ne can create the distribution of cluster statistics under the null hypoth-

sis that there is no significant cluster. For each randomization, cluster

evel statistics (taking the sum of t values of all the frequency pair points

ithin each cluster) were computed and the largest cluster statistic was

https://www.nitrc.org/projects/meth/
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Fig. 1. Schematic illustration of the waveform 

shape estimation. Peaks and troughs in the raw 

signal that lie between the adjacent zero cross- 

ings identified from filtered beta band signal 

are color coded ∗ : orange for peaks and purple 

for troughs. The light green area marks the rise 

period between a trough and subsequent peak 

to determine the rise steepness. Dark green area 

indicates the decay area where the decay steep- 

ness was estimated. 
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ntered into the null distribution. Finally, the observed cluster in the em-

irical data was compared against the null distribution, and a p value

elow 0.05 (two tailed) was considered significant. 

A correlation between different measures was performed using

pearman’ approach. For the topographical correlation pattern, corre-

ation strength was calculated for each channel or each ROI across the

ubjects, and then FDR was applied to correct for multiple comparisons

cross the channel/source space. The final correlation pattern was dis-

layed as a head topography or on a standard reconstructed cortical

urface model. 

. Results 

.1. PAC between beta band and broadband gamma activity is elevated 

ith aging 

.1.1. PAC is elevated in sensorimotor areas in the elderly 

To test the hypothesis that in the sensorimotor areas of the cortex

AC is elevated in the elderly, we first analyzed MI values from one

f the electrodes typically attributed to the sensorimotor cortex (C3)

 Swann et al., 2015 ). Fig. 2 A shows mean comodulograms of MI at elec-

rode C3 for each group. A prominent coupling can be observed between

he phase of beta to low gamma and the amplitude of 50–150 Hz fre-

uency range in the elderly (left panel) compared to the young group

right panel). Using cluster analysis, we examined the MI comodulo-

rams for significant differences between the two groups. Fig. 2 B shows

 significant beta-gamma coupling group difference at electrode C3. The

utlined cluster indicates a significant difference of PAC between the

eta phase (13–30 Hz) and broadband gamma (50–150 Hz) frequency

ange, as well as PAC between low gamma phase frequency (30–50 Hz)

nd broadband gamma amplitude frequency. Further, we investigated at

hich phase providing frequencies the average PAC between the gamma

mplitude and the phase from examined frequency differs between the

wo groups. This was done by computing PAC for the amplitude from

0 to 150 Hz for each phase-providing frequency window from 4 to

0 Hz (2 Hz width). The panel C of Fig. 2 depicts a significant PAC dif-

erence profile occurring starting from around 12 Hz extending up to

ow gamma range( ∗ p < 0.05, after FDR). Boxplots for PAC values from

Is averaged over 13–30 Hz for beta phase and 50–150 Hz for broad-

and gamma amplitude are presented in Fig. 2 D. Although there was a

onsiderable overlap between PAC values in two groups, the statistical

nalysis confirmed that the elderly group was characterized by signif-

cantly elevated PAC between beta oscillation and broadband gamma

ctivity ( ∗ p = 0.0147). Finally, we used normalized amplitude of broad-

and gamma (50–150 Hz) sorted according to the phase bins from beta

and (see Section 2.3.3 .) in order to see how it is modulated by the

hase of beta oscillations (13–30 Hz). The upper panel E in Fig. 2 shows

he mean of the normalized amplitude distribution at C3 in each group.

enerally, broadband gamma amplitude is largely coupled to non-peak
4 
hase of the beta oscillations by showing a strongest amplitude after

not at) 𝜋/2 radian in both groups. In addition, one can see elderly sub-

ects showed a higher degree of modulation compared to young sub-

ects. Circular bar plot in the bottom further confirms there is a certain

ge-dependent phase specificity: beta phase predominantly distributed

ithin pi/6 ∼ 2 ∗ pi/3 when the highest amplitude occurred for both age

roups. 

Although we have found that the amplitude from broadband gamma

ange is coupled to the phase of beta and low gamma bands, further

ests revealed that low-gamma phase driven PAC could be, to a very

arge extent, accounted for by simultaneous phase-phase coupling. This

n turn indicates that low-gamma modulated PAC is likely to be driven

y the sharpness of the low-gamma band waveform which is proba-

ly due to residuals of muscle activity (see supplemental analysis 1.1.).

hese results further justified our focus on beta-gamma PAC, which has

reviously been shown to be exaggerated in PD ( de Hemptinne et al.,

013 ; Swann et al., 2015 ; Jackson et al., 2019 ; A. M. Miller et al., 2019 ).

.1.2. PAC difference topography in aging demonstrates a left-hemisphere 

ominant pattern 

To investigate the spatial pattern of PAC difference, we calcu-

ated the PAC values across all channels and performed comparisons

Wilcoxon rank sum test) between the two age groups using FDR-

orrection. Fig. 3 A depicts the scalp topography of the difference be-

ween the two age groups. The comparison was conducted for the PAC

alues which were derived by averaging MI values over the beta range

13–30 Hz) for phase frequency and broadband gamma range (50–

50 Hz) for amplitude frequency. Electrode labels are present only for

he significant differences ( p < 0.05, FDR corrected). The pattern has

eft-hemisphere dominant distribution over the centro-temporal areas

nd also extends to frontal areas. Moreover, we demonstrated the statis-

ical PAC values using surrogate procedure are significant over sensori-

otor areas within each group and the difference pattern based on the

tatistical PAC value are well overlapping with Fig. 3 A obtained from

aw PAC values (see details in Figure S7 in the supplemental material).

t source space, we calculated the PAC value for each ROI and each sub-

ect (see Section 2.3.6 .) and performed the comparison (Wilcoxon rank

um test) between groups (old vs. young) for all ROIs. Fig. 3 B shows

hat PAC values are significantly increased in the elderly group. This

esult confirms the pattern which demonstrates left hemisphere domi-

ance in PAC differences, with the most profound difference being local-

zed in the left pre- and post-central gyri (extending to superior frontal

nd supramarginal gyri). Additionally, to rule out possible confounders

hich might contribute to age-related statistical PAC differences, we

erformed additional analyses on the power and non-sinusoidal wave-

orm shape of beta oscillations (see supplemental analyses 1 and 2).

hese analyses confirmed further that the beta phase driven PAC differ-

nce between the two age groups is not likely to be driven by either beta

and power or non-sinusoidality of beta waveform, although waveform
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Fig. 2. PAC between beta, low-gamma band oscillations and broadband gamma activity is increased in the old compared to the young group at electrode C3. A. Mean 

comodulograms of modulation index across subjects in each group. Color bar indicates the PAC strength. B. The dashed black line shows the identified significant 

MI cluster of the difference-comodulogram (cluster-based permutation test, p = 0.01). Color bar represents the statistical value. C. Red and black lines show the 

mean of MI values across old and young subjects, respectively, within each phase-frequency window (estimated from broadband gamma amplitude frequency range 

(50–150 Hz)). Gray shaded areas show the phase frequencies which are coupled significantly stronger to the broadband gamma activity in elderly compared to young 

subjects. This is after FDR correction for multiple comparisons (across all the analyzed phase frequencies, ∗ p < 0.05). D. Boxplots of the averaged MI values over 

13–30 Hz for beta phase and 50–150 Hz for broadband gamma amplitude for each age group. There is a significant difference between old and young groups (old 

vs. young) (two tailed Wilcoxon rank sum test, ∗ p = 0.0147) although one can also observe a considerable overlap between PAC values belonging to both groups. 

E. The upper panel shows the mean of the normalized broadband gamma amplitude according to the beta phase (from − 𝜋 to 𝜋). Red and black lines represent the 

mean of the normalized amplitude for the elderly and young group, respectively. Shaded areas indicate the standard error of the mean (SEM) across subjects within 

a group. Circular bar plot in the bottom shows the distribution of preferred beta phase at which the maximal coupling occurred across the subjects within the elderly 

(in red) and the young group (in gray). Beta phase predominantly distributed within pi/6 ∼ 2 ∗ pi/3 when the highest amplitude occurred for both age groups. 

Fig. 3. Spatial topography of PAC difference 

between the two age groups (old vs. young). 

PAC values were calculated by averaging over 

beta range (13–30 Hz) for phase frequency and 

broadband gamma (50–150 Hz) range for am- 

plitude frequency. A. Statistical comparisons 

(Wilcoxon rank sum test) were performed be- 

tween the two age groups (old vs. young). The 

electrodes with labels show significant differ- 

ences after FDR correction across all channels. 

B. Spatial difference pattern of PAC calculated 

in source space between the two age groups af- 

ter FDR correction across ROIs. The topogra- 

phy demonstrated that the most significant dif- 

ference occurred in the left precentral gyrus. 

Color bar indicates the test statistic. Positive 

values indicate stronger PAC values in the el- 

derly group. 
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f the oscillation could represent another neural signatures characteriz-

ng aging (see supplemental discussion 1.). 

.1.3. Behavioral relevance of PAC shows differential pattern within two 

ge groups 

PAC has been shown to be associated closely to the severity of move-

ent dysfunction in patients with PD. We were also interested to test
 h  

5 
ow PAC could relate to movement performance. However, in this open

ataset, movement task was not specifically designed. Yet, to a certain

egree a motor readiness can be assessed with the TAP-alertness task.

his task measures cognitive alertness (alertness of Test of Attentional

erformance, Zimmermann et al., 2012) which is an objective marker

f the ability to maintain an alert state of response readiness, and it

as been shown to decline with age ( McAvinue et al., 2012 ). Here, the
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Fig. 4. Correlation between PAC and reaction time in subgroups with increasing age onset. A. Correlation between PAC and TAP-alertness reaction time in young 

group. X axis represents the age onset for which the subjects were included from for the subgroup. For instance, for the young subjects with age older than 26 (but 

still younger than 35), there is a negative but non-significant correlation between PAC and reaction time (Rho = − 0.2106, p = 0.2320). The red dashed line shows 

the regression line for the correlation coefficients. The histogram shows the distribution of the slopes from permuted data (1000 times) while the vertical red line 

indicates the value where the observed actual slope (slope = 0.0135, p = 0.3260) is situated. B. The same analysis for the elderly group. There is a tendency for 

increasing correlation strengths with the age from which the subgroup starts. The red dashed line shows the regression line for the correlation coefficients within 

each subgroup while including older subjects from 59 years to 74 years old. The histogram shows the distribution of the slopes from randomized data (1000 times) 

while the vertical red line indicates where the regression slope obtained by the unpermuted data (slope = 0.0364, p = 0.0320) stands. P value is thus a fraction of 

slopes which are larger than the value corresponding to the red line. 
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ean reaction time for each subject was utilized to quantify the alert-

ess where lower scores indicate better performance. To obtain a reli-

ble measure of PAC from the sensorimotor areas for each subject, we

ook the mean of PAC values from left and right precentral gyri. First,

e performed correlation analysis between PAC and the reaction time

ithin each age group, and no significant results were observed either

n the elderly group (Rho = 0.0542, p = 0.6654), or in the young group

Rho = − 0.0524, p = 0.6645). We hypothesized that this might be due to

he fact that the included elderly subjects were generally rather healthy

due to very strict exclusion criteria) and if we narrow down the ag-

ng group, the relationship probably would be more obvious. To test

his hypothesis, we performed correlation analyses on the subgroups

n which the inclusion criteria of age onset were increased stepwise,

oth for elderly and younger groups. In Fig. 4 A, the strengths of cor-

elations with increasing age onsets from 20 to 30 years in the young

roup are shown; all the correlations were not significant (sample size

 = 7). Fig. 4 B demonstrates the results of the same analysis for the el-

erly group (59 to 74 years old, sample size > = 8). We observed a trend

or increased correlation strengths with increasing age. 

To rule out the possibility that the observed tendency may result

rom a sub-sampling procedure itself (with age onset increasing, less

amples are available), we further performed a permutation procedure

o test the significance of the trend in correlation between PAC and re-

ction time in elderly participants. In brief, we randomized the elderly

ubjects and then performed all the steps as described above for the ex-

erimental data. Then, a linear regression line was fitted to the correla-

ion coefficients and the slope of a linear regression was taken to build

he null distribution. In total, the randomization was performed 1000

imes, and a final p value was obtained for the observed regression slope

ompared to the null distribution obtained by permutations. As shown

n the histograms of Fig. 4 , the vertical red lines indicate the value of the
 0  

6 
egression line for the younger group (slope = 0.0135, p = 0.3260) and

he older group (slope = 0.0364, p = 0.0320), respectively. This demon-

trates that the observed tendency to increase the positive association

etween PAC and reaction time occurred only for the group of elderly

ubjects while we controlled for the possible biasing effects associated

ith the sub-sampling procedure. 

.2. Properties of beta bursts are altered with aging 

.2.1. Aging is accompanied by a higher percentage of long burst events 

Fig. 5 A illustrates the change of relative percentage distribution of

urst durations for two age groups with the 65th percentile threshold

t representative channel CP3 (see Section 2.3.5 .). Statistics (Wilcoxon

ank sum test) showed that compared to the young group, elderly sub-

ects showed a tendency for bursts with longer duration windows (0.2–

.5 s). The percentage of shorter beta bursts (0.1–0.2 s) was higher in

oung compared to elderly subjects ( ∗ p = 0.0122, after FDR). In con-

rast, across the nine burst duration windows, the percentage of rela-

ively longer bursts in a given interval (0.2–03 s, 0.3–0.4 s, 0.4–0.5 s)

as higher in the elderly group ( ∗ p = 0.0132, ∗ p = 0.0132, ∗ p = 0.0184,

espectively, FDR corrected) compared to the young group. However,

or the longer bursts lasting more than 0.5 s we did not observe any

ifference between the groups. Moreover, the relative number of the

ursts in intervals ( > 0.5 s) was much smaller compared to bursts last-

ng less than 0.5 s. These results showed that in the resting state EEG

f the aged brain, beta rhythm commonly appears with a duration of

round 2–6 cycles, with a few portions of bursts lasting ∼10 cycles and

arely with a longer duration time ( > 10 cycles). In order to investigate

 spatial pattern of this effect, we categorized the windows into two

ategories, namely short windows (0.1–0.2 s) and long windows (0.2–

.5 s). Next, we compared the percentages of bursts with long windows
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Fig. 5. Changes in burst duration distribution. 

A. The relative number of bursts in each bin is 

given as a percentage of the total number of 

bursts. The bar graph shows the mean of each 

age group across burst events with different bin 

duration at representative electrode CP3. For 

both groups, with increasing burst duration the 

percentage of bursts decreases. Elderly subjects 

had a lower percentage of short bursts (burst 

window: 0.1–0.2 s) ( ∗ p = 0.0122, after FDR) 

and larger percentage of long bursts (burst win- 

dow: 0.2–0.3, 0.3–0.4,0.4–0.5 s) ( ∗ p = 0.0132, 

0.0132, 0.0184, respectively, after FDR) com- 

pared to young subjects. B. Scalp topography 

of differences (old vs. young) in percentages of 

long burst (0.2–0.5 s). Labeled electrodes are 

those showing significantly higher percentage 

of long bursts in elderly than in young subjects 

after FDR correction ( p < 0.05). C. Spatial dif- 

ference pattern in the percentage of long bursts 

(old vs. young) in source level. Positive values 

indicate larger values in the group with elderly 

subjects. 
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etween the two groups for all channels. In Fig. 5 B, we plotted the to-

ographical pattern of the difference in relative number of beta bursts

ith long duration between two age groups. The cortical areas demon-

trating strongest age-related beta burst differences are clustered over

ilateral frontal and centro-parietal sites. Additionally, the analysis in

ource space further located the spatial difference pattern mostly in the

ilateral sensorimotor cortices ( Fig. 5 C). To demonstrate how overall

ifferences in burst duration and amplitude between two groups con-

erge across various threshold percentiles for definition of beta burst

vent, we analyzed these two key parameters across a family of nine

hresholds from the 50th to 90th percentiles (see supplemental analysis

 and Figure S5). The analysis showed that generally the elderly subjects

ave longer beta burst events together with higher amplitude, regard-

ess of the threshold definition. Additionally, we obtained similar results

or this part of analysis with a different threshold for burst definition,

.e., 70th percentile (see Figure S8 in supplemental material). 

.2.2. Incidence rate of bursts with long duration is increased in elderly 

ubjects 

In addition, we investigated how often beta bursts occur with a given

uration window. Burst incidence rate was calculated as the number

f beta bursts per second. We compared the burst incidence rate for

ll windows across all channels. We found that there is no difference

n incidence rate for shorter windows (0.1–0.2 s) between two groups,

hereas for the longer windows (0.2–0.3 s, 0.3–0.4 s, 0.4–0.5 s) the inci-

ence rates showed an increase in a region specific pattern in the elderly

ompared to the young group. The result for each window is shown in

ig. 6 A. Specifically, for bursts with a duration 0.2–0.3 s, the frequency

f bursts increased with most prominent changes occurring in fronto-

entral regions. The regions showing significant differences were more

ocally clustered for longer bursts ( > 0.3 s). For the relatively longer 0.4–

.5 s window, the prominent difference was present in a small cluster of

egions over centro-parietal sites. Furthermore, Fig. 6 B shows a spatial

ifference pattern in source space. Burst incidence rate was averaged

ver all the bursts with long duration windows (0.2–0.5 s) and com-

ared across all brain areas between the two groups (old vs. young).

he pattern showed significant differences after FDR correction. With

his analysis we further confirmed that the elderly subjects, compared

o young subjects, were indeed characterized by more frequent long

eta burst events, which occurred in multiple cortical regions but most
7 
rominently in bilaterally pre- and post-central gyri. To show the distri-

ution of the incidence of bursts for all channels and subjects in differ-

nt groups regardless of window duration, we additionally obtained the

ean burst incidence for each channel by averaging the burst incidence

ate across the three above-mentioned windows, and then plotted a cor-

esponding normalized histogram (see Fig. 6 C). A trend was observed

or the higher incidence rate in the elderly group in comparison to the

oung subjects. 

.3. Relationship between PAC and beta burst dynamics 

Finally, to investigate whether PAC and bursts characteristics relate

o the same neuro-physiological mechanism, we investigated a correla-

ion between them topographically within each age group (PAC versus

ercentage of beta bursts with specific intervals showing the largest dif-

erences between the groups (short window of 0.1–0.2 s and mean of

ong windows of 0.2–0.5 s)), results are shown in Fig. 7 . Spearman’s

orrelations were performed for all channels and across all the subjects

or young and old group, respectively. For the young group, there was no

ignificant relationship between PAC and percentage of short bursts or

ong bursts. As shown in Fig. 7 , the percentage of bursts with short (0.1–

.2 s, Fig. 7 A) and long durations (0.2–0.5 s, Fig. 7 B), were significantly

elated to PAC values only in a small cluster of electrodes primarily lo-

ated in right frontal area in the elderly group. Specifically, PAC was

ositively correlated with the percentage of short bursts ( Fig. 7 A), and

he opposite was observed for long bursts ( Fig. 7 B). Spatial correlation

aps were distinct from those corresponding to PAC differences ( Fig. 3 )

nd beta burst differences ( Fig. 5 ), thus suggesting that the PAC and beta

ursts are likely to reflect distinct processes in healthy aging. In order to

urther localize the source of correlation map that we observed in sensor

pace, we performed correlation analysis similarly on metrics estimated

rom the signal reconstructed in the source space. Specifically, for each

OI, PAC and burst percentage (short and longer bursts) was estimated

nd then correlation analysis was performed across the subjects within

he elderly group for all the ROIs. Before applying FDR correction, for

he short bursts (0.1–0.2 s), strongest positive relations were observed

n bilateral cingulate gyri, and left occipital pole. And analogously the

trongest negative correlations were present in the bilateral cingulate

yri, left superior frontal gyrus and right insula cortex between longer

urst (0.2–0.5 s) and PAC. After applying correction for multiple com-
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Fig. 6. Changes in incidence rate of longer du- 

ration windows (0.2–0.5 s) (old vs. young). 

A. Spatial topography of the difference in inci- 

dence rates of bursts with different durations. 

Electrodes with labels showed significant dif- 

ference between the two groups (old vs. young) 

after FDR correction ( p < 0.05). For bursts 

with a duration of 0.2–0.3 s, a significant in- 

crease was observed in many scalp sites but 

most prominently in fronto-central regions. For 

bursts with a duration between 0.4 and 0.5 s, 

the most prominent differences were found in 

centro-parietal areas. B. Spatial difference pat- 

tern (old vs. young) in burst incidence rate of 

long beta bursts (0.2–0.5 s) in source level. C. 

Normalized histogram of mean incidence rates 

of longer bursts (0.2–0.5 s) across all channels 

and subjects for the old (in red) and young (in 

black) group. Each count represents one chan- 

nel from one subject. Color bar indicates the 

test statistic. Positive values indicate stronger 

bursting incidence in the elderly subjects. 
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arisons, none of the significance remained. The lack of significant re-

ations between these two measures estimated in the source space may

urther support the idea that these two parameters might reflect differ-

nt aspects of healthy aging. 

. Discussion 

Despite previous clinical evidence in support of a close association

etween aging and PD, electrophysiological neuronal correlates of such

n association have been rather elusive. Here, we showed that the elec-

rophysiological biomarkers recently discovered for PD, are also present

n apparently healthy elderly subjects. Specifically, we found the ele-

ated PAC and more frequent beta bursts with longer duration being

ronounced in the elderly group compared to the young one. Impor-

antly, such differences were particularly manifested in sensorimotor

reas. Furthermore, we found only a weak correlation between PAC
8 
nd beta bursts metrics, suggesting that these phenomena may reflect

ifferent aspects of healthy aging. Overall, our findings indicate that

lectrophysiological alterations detected in PD already exist in the ap-

arently healthy aging brain and their further amplification may even-

ually manifest in clinical symptoms typically found in fully developed

D. 

.1. Topography of PAC changes in the healthy aging brain 

PAC has been increasingly suggested to be a biomarker for pathol-

gy in PD, being a proxy for the locking of local spiking activity to

eta oscillation within and across the basal ganglia-cortical network

 De Hemptinne et al., 2015 ; Malekmohammadi et al., 2018 ; Swann et al.,

015 ; Weinberger et al., 2006 ). Although we were initially interested in

esting the assumption that during apparently healthy aging an increase

n PAC between beta band (13–30 Hz) and broadband gamma activity
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Fig. 7. Correlation maps between PAC values and percentage of burst with short 

and long durations. A. Correlation map between PAC and percentage of short 

bursts (0.1–0.2 s) within elderly group. B. Correlation between PAC values and 

long bursts (0.2–0.5 s) across all subjects within elderly group. The significance 

is indicated after applying FDR-correction across multiple comparisons for all 

the channels. 
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50–150 Hz) could be observed over the sensorimotor cortex, as it has

een repeatedly indicated in previous PD studies using ECoG or EEG

A. M. Miller et al., 2019 ; De Hemptinne et al., 2013 ; Jackson et al.,

019 ; Swann et al., 2015 ), we nonetheless investigated changes in

AC over the whole cortex. Given a premise that PAC in elderly sub-

ects can resemble behavior of PAC in patients with PD, our results

onfirmed previous findings showing that PAC is primarily increased

ver the sensorimotor areas. This is in agreement with previous stud-

es showing age-related alterations in cortical motor areas ( Haug and

ggers, 1991 ; Ward and Frackowiak, 2003 ), as well as changes in the

unctioning of these areas ( C. Clark and L. Taylor, 2012 ; Fathi et al.,

010 ; Heuninckx et al., 2005 ; Michely et al., 2018 ; Rowe et al., 2006 ).

n addition, we also observed stronger differences over the left hemi-

phere. Such hemispheric asymmetry in PAC might relate to the stronger

opaminergic defect in the dominant compared to the non-dominant

emispheres defined by a subject’s dominant hand, one of the major

actors causing PD symptoms to emerge more often on the dominant

and-side ( Shi et al., 2014 ). In our dataset, the majority of subjects are

ight-handed (129 out of 137). 

Cortical broadband gamma is thought to reflect asynchronous spik-

ng activity (K. J. Miller et al., 2009 ; Manning et al., 2009 ). Therefore,

levated coupling of beta and broadband gamma activity can represent

 higher synchronization of local spiking activity to the phase of beta

scillation. Excessive PAC in the aging brain may reflect a physiological

tate in which the cortex is restricted to more rigid activity patterns,

endering it less able to respond dynamically to signals from higher or-

er cortical regions. Such dynamic inflexibility is in line with previous

tudies, showing that aging is accompanied by decreased neuronal com-

lexity estimated with fractal dimension using resting state measures

f neuronal activity ( Zappasodi et al., 2015 ). In addition, fMRI studies

ave also shown a lower level of spontaneous BOLD signal variability

another frequently used measure of neuronal complexity) in older sub-

ects ( Grady and Garrett, 2014 ; Kumral et al., 2020 ; Nomi et al., 2017 ).

.2. Cortical beta bursts in the healthy aging brain 

Beta oscillations are associated with prefrontal working mem-

ry ( Lundqvist et al., 2011 , 2018 ), stopping action and thought

 Michelmann et al., 2016 ; Wessel and Aron, 2017 ), and most widely

to sensorimotor function ( Baker, 2007 ; Espenhahn et al., 2019 ;

eingold et al., 2015 ; Gehringer et al., 2018 ; Pfurtscheller et al., 1996 ;

ollok et al., 2014 ). Age-related increase in beta band power over the

ilateral sensorimotor cortices has been reported in previous studies
9 
 Heinrichs-Graham and Wilson, 2016 ), consistent with that which we

bserved in our study (see supplemental analysis 1.2 and Figure S2). As

eta power has been linked to the level of inhibitory GABAergic neural

ransmission, age related increase of beta power at baseline may suggest

ncreased intracortical GABAergic inhibition ( Rossiter et al., 2014 ). 

Beta activity is characterized by short-lived burst events

 Feingold et al., 2015 ; Murthy and Fetz, 1992 ; Sherman et al.,

016 ), instead of a continuous oscillatory pattern. Importantly, beta

ursts have been investigated in the STN in PD studies which showed

onger burst duration and increase of incidence rate in OFF compared

o ON levodopa state ( Tinkhauser et al., 2017b ). Moreover, movement-

ssociated reduced incidence rate and amplitude of bursts contributed

o the pathological decrease of movement velocity ( Lofredi et al.,

019 ) in PD patients. These distinct functional roles of transient beta

vents indicate the importance of episodic nature of beta bursts in

exible coordination of responses in tasks. In our study we extended

revious findings to spontaneous resting state brain activity measured

rom scalp EEG, confirming the transient nature of cortical beta

vents. Furthermore, we demonstrated an age-related increase in the

uration and occurrence of beta bursts in a region-specific pattern.

uch re-distribution of burst duration to longer windows together

ith an increased occurrence of longer bursts may compromise the

exible coordination of brain dynamics, especially in motor processing,

eflected in a central motor clustered spatial pattern. 

The mechanistic origin of neocortical beta burst events was inves-

igated in detail in the work of ( Sherman et al., 2016 ). Their simula-

ion results have shown that beta events could emerge from nearly syn-

hronous bursts of excitatory synaptic drive targeting proximal and dis-

al dendrites of pyramidal neurons in the cortex. Additionally, they sug-

ested that the ventral medial/pallidal thalamus was particularly well

uited for this distal drive. Importantly, the ventromedial (VM)/pallidal

halamus project dominantly and diffusely to the supragranular layers

n the sensory and motor cortex as well as the prefrontal cortex, which

s quite consistent with the spatial distribution in beta burst duration

hanges observed in our study (see Fig. 5 B). This might lead to the

ssumption that thalamo-cortical loops of motor related pathway are

 fundamental component in generation and age-related alteration in

ortical beta burst dynamics. More frequent and longer beta bursts are

robably due to the increased drive from the thalamus, which has been

hown to be affected by age through complex changes in macrostruc-

ure, microstructure and neural connectivity ( Fama and Sullivan, 2015 ).

eanwhile, cortical beta bursts could also be generated independently

n the STN-Gpe (external globus pallidus) network within the basal gan-

lia ( Kumar et al., 2011 ) and propagate via thalamo-cortical loops to

he cortex ( McFarland and Haber, 2002 ). 

In fact, a very recent study revealed a possible mechanism of prop-

gation of beta bursts within the cortical-basal ganglia circuit in PD

 Cagnan et al., 2019 ). The authors showed an association between cor-

ical and basal ganglia beta bursts, when especially longer cortical beta

ursts were associated with longer periods of increased beta amplitude

n GPe following the burst onset. This is in line with a previous study

howing that cortical beta changes preceded changes in sub-cortical re-

ions, suggesting an important role for cortical feedback in maintain-

ng pathological basal ganglia oscillations ( De Hemptinne et al., 2013 ).

dditionally, it has also been reported that the effective STN-DBS treat-

ent not only modulates the local STN beta oscillations, but also atten-

ates the coherence between motor cortices and the STN ( Oswal et al.,

016 ). These findings suggest that pathological coupling across nodes

cortical and sub-cortical) in the basal ganglia-thalamo-cortical (BGTC)

etwork might play an important role in motor function impairment.

oreover, in the present study, we showed that cortical sensorimotor

eta dynamics were also modulated due to physiological aging. This in

urn indicates that cortical beta dynamics might serve as a proxy for the

oordination of structures within the motor related network and under-

ie physiological and pathological changes. 
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.3. Relationship between different measures of PAC and beta burst in 

ealthy aging 

Both PAC and beta bursts in the STN have previously been linked

o symptom severity in PD. Dopamine replacement in PD patients sup-

resses both burst length ( Cagnan et al., 2015 ; Tinkhauser et al., 2017b )

nd PAC ( López-Azcárate et al., 2010 ; van Wijk et al., 2016 ). However,

ow these two different phenomena relate to each other remains rather

lusive. To our best knowledge, one recent paper studied PAC during pe-

iods of beta bursting using macro and micro electrode recordings in the

TN in PD patients ( Meidahl et al., 2019 ). The authors provide converg-

ng evidence demonstrating that the coupling of spiking to the network

eta oscillations is significantly higher during beta bursts and increases

rogressively with beta burst duration. Therefore, the authors suggested

hat PAC and beta bursts might reflect similar neurophysiology due to

xcessive synchronization. More recently, one study using ECOG at M1

emonstrated PAC was more pronounced during periods of beta burst

han non-bursts in PD, but without showing significant difference be-

ween PD and non-PD groups during bursts ( O’Keeffe et al., 2020 ). In

ur resting EEG study, we also showed significantly elevated PAC and

rolonged beta bursts with more frequent occurrence in healthy elderly

ompared to young subjects. We acknowledge that higher PAC is very

ikely to occur during episodes of beta bursts since a higher signal-to-

oise ratio may play a critical role, which is, nevertheless, challenging to

isentangle. However, by investigating an association between PAC and

eta bursts features within each age group in a topographical manner

ith multichannel EEG, we found no spatial overlap between them, ex-

ept for the focally distributing right frontal region (AF4, AF8, F2, F4)

nd several other isolated channels in the elderly group. In addition,

y localizing the signal in the source space none of the cortical regions

howed a significant correlation. We therefore suggest that in healthy

ging, at the level of cortex PAC and beta burst dynamics may reflect

ather different neurophysiological processes. 

.4. PD: accelerated aging phenomenon? 

Aging and PD related brain alterations share similarities (G.

evy, 2007 ; Pang et al., 2019 ; Reeve et al., 2014 ). They can be man-

fested at the level of cellular mechanisms where dopamine cellular risk

actors accumulate with age in a pattern which mimics the pattern of

opamine degeneration in PD based on the evidence from studies of

on-human primates ( Collier et al., 2011 ). Moreover, the evidence from

idbrain dopamine neurons of aging non-human primates further sup-

orted that the view that age-related changes in the dopamine system

pproach the biological threshold for parkinsonism ( Collier et al., 2017 ).

Zeighami et al. (2019) used a data driven approach to investigate

natomical brain signatures of PD. In their first identified latent vari-

ble, age was the strongest contributor to brain atrophy. Further, in a

ongitudinal study, they showed that both healthy aging and PD were as-

ociated with cortical thinning over a one-year period, but with a more

rominent alteration in PD patients than in healthy controls ( Yau et al.,

018 ). This again demonstrates a similar directionality of alteration in

ging and PD in terms of cortical anatomy. Age remains the largest risk

actor for many diseases and in our study we showed that it can also

e associated with electrophysiological biomarkers of PD. Importantly,

ur results demonstrated that not in all elderly subjects we observed in-

reased PAC and longer beta bursts, which in turn indicates that other

actors such as genes, life style, environment and other factors shape the

orresponding neuronal processes and account for the individual varia-

ions. 

Further, to address to what degree our estimated effects in healthy

ging relate to the previously reported PD biomarkers, we compared

hem in rather a qualitative manner since factors such as the record-

ng setup, data length and signal-processing steps could result in a

ifferent scale of the estimated metrics. With respect to the spectral

nd spatial overlap of PAC in healthy aging and PD, we refer here to
10 
hree previous studies in PD in which spatial distributions were pro-

ided offering a chance to have a general comparison. In the studies by

wann et al. (2015) and A. M. Miller et al. (2019) , one could see a promi-

ent PAC region over beta and further lower gamma phase frequency

anges (their Fig. 2 A) and a slightly prominent cluster region over beta

hase frequency (their Fig. 2 A) in the PD Off-medication group, respec-

ively. In a very recent paper, the authors also showed a pronounced

AC pattern over beta phase frequency in patients with PD compared

o healthy controls (see their Fig. 2 B) ( Gong et al., 2021 ). However,

ince in all these studies there was no cluster-based permutation test

r demonstration to which phase frequency the amplitude from broad-

and gamma was phase locked to, we may only draw the conclusion

hat the beta band phase modulating PAC in the current study, to a

arge extent, overlaps with the frequency range presented in previous

tudies. Regarding the spatial distribution, from the Fig. 5 B from the

rst study ( Swann et al., 2015 ) and Fig. 3 B from the second one (A. M.

iller et al., 2019 ), together with what has been observed in the current

tudy ( Fig. 3 A), one can see that the left central regions are consistently

ound in all three studies. In addition, in the study Gong et al. (2021) the

uthors averaged the data from the two hemispheres and the area with

he largest differences was localized mainly in the sensorimotor re-

ion (premotor cortex (PMC) and primary motor cortex (M1)). Com-

aring the beta burst properties to that in the study by Tinkhauser et al.

2017b) , we found that although in healthy aging a relatively larger per-

entage of longer bursts was observed, there was no difference in terms

f the very long bursts, for instance bursts longer than 0.5 s. The other

ifference is that in the LFP of STN in PD during off medication, the

ercentage of bursts longer than 900 ms is abnormally high. The mean

f the burst duration in PD off medication is thus higher than what we

bserved in healthy aging subjects and after the medication the mean

uration dropped to less than 0.3 s which is comparable to the results

rom the healthy elderly participants in our study. In a recently pub-

ished study using ECoG over motor cortices, the authors showed that

n the motor cortex of patients with PD, a relative increase of beta burst

uration was demonstrated in comparison to the patients with essential

remor ( O’Keeffe et al., 2020 ). Comparing our results to their Fig. 2 B, we

ote that the mean duration of beta bursts in PD (around 0.2 s) is indeed

ore comparable to that from healthy elderly in the current study. Im-

ortantly, our findings regarding the burst features were well localized

n the bilateral motor cortices (pre- and post- central gyri, see Fig. 5 C

nd Fig. 6 B). In conclusion, PAC features obtained in the present study

argely overlap in frequency and spatial content in both aging and PD

rocesses. Moreover, the effect of beta burst dynamics in healthy aging

hows the same direction with that of PD during off state compared to

he state after effective therapy (DBS or medication) or to the patients

ith essential tremor (instead of comparing to healthy controls), and it

s commonly reported in the cortical motor region. 

.5. Potential non-invasive electrophysiological biomarker for detection of 

arkinsonian state 

Early diagnosis of potential PD development is crucial for effective

linical intervention. Here, we provide evidence that the altered PAC

nd beta bursts are associated with aging in a manner similar to PD.

oreover, we conducted a correlation analysis between PAC and beta

ursts across the whole scalp and cortical areas, and did not find a strong

elationship between them. Therefore, we suggest that a combination of

hese two different metrics may lead to a more comprehensive estima-

ion of age-related changes in the brain potentially culminating in the

evelopment of clinical symptoms typical for PD. 

We have linked apparently healthy aging and PD by investigat-

ng electrophysiological signatures in a cross-sectional way. These non-

nvasive metrics might be helpful in estimating a proximity of neu-

onal dynamics relating to parkinsonian state. A recent study exam-

ned changes in cortical PAC in a progressive model of parkinsonism

 Devergnas et al., 2019 ). Although the authors reported that cortical
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AC only reached significance when the animals became fully parkin-

onian, their results showed a trend towards increased PAC in parallel

ith the development of parkinsonism. In the present study, although

e did not find differences in TAP reaction times in elderly participants

ith high and low PAC values, a future prospective study may identify

hat participants with particularly strong PAC are more likely to develop

arkinsonian symptoms. In this study, we observed in the elderly group,

hat there was a trend of increasing correspondence between PAC and

ge-related behavioral reaction times. Importantly, this relationship was

ot present in the young group. This may provide a hint regarding the

unctional relevance of the PAC increase in healthy aging, which might

e related to a reduced readiness of the motor system to be engaged in

he production of movements. Although we regard this as an interest-

ng finding, we refrain from drawing a strong conclusion from it since

hese behavioral data are not a straightforward measure of movement

erformance. 

Clearly, an objective set of criteria is needed to define a threshold

or normal or abnormal brain aging. For this purpose, we suggest that

ongitudinal studies in which motor performance is specifically mea-

ured to be an indicative of potential parkinsonian state, measuring EEG

ver a long period, for instance 5–20 years, starting already in the mid-

le age could provide additional information on the progression of PAC

nd beta burst dynamics in relation to possible development of parkinso-

ian symptoms. By combining both approaches, we may better identify a

urning-point indicating a disruption of apparently healthy aging course,

otentially relating to pathological aging process. Finally, applying in-

erventions, such as medication or early non-invasive brain stimulation

uring sleep ( Romanella et al., 2020 ), before healthy aging switches to

 pathological trajectory might slow down or even restore pathological

eural alterations relating to the development of PD. 

. Limitations 

The first limitation of the study is that it was not based on the direct

omparison of the EEG parameters obtained in cohorts of patients with

D and healthy subjects with aging. Besides, a comparison to the previ-

us literature quantitatively is difficult since those studies have differ-

nt settings such as cap electrodes density, postural condition, recording

ime length etc. Yet our main idea related to the effect of aging on EEG

haracteristics typically associated with PD. Certainly for further appli-

ability of our findings to PD, patients should be recruited. 

Furthermore, although we have performed a careful cleaning of the

ata based on ICA and removal of noisy segment via visual inspection,

ome residual artifacts might still be present. This is especially relevant

or high gamma activity which lies in the frequency range of artifactual

uscle activity. However, our source analysis has shown that the main

ifferences in PAC between two groups of participants were over sen-

orimotor areas rather than over the temporal areas where one would

xpect the largest contribution from scalp muscles. Additionally, we pro-

ide further extensive discussion on the relevance of muscle activity for

AC effect (see supplemental discussion 2.). We would also like to note

hat due to the limitations of non-invasive recordings, we can’t rule out

ompletely the effect of residual muscle activity on the generation of

AC. Future studies, utilizing direct invasive measurement of cortical

ctivity, should be more informative about such influence. 

In our study, we applied standard head modeling and ROIs based

nalysis in the source space. More precise estimates could be obtained

f the analysis is performed with individual head models. Yet, in our

tudy we used a relatively large number of ROIs which at least partially

egates a lack of spatial accuracy. 

onclusion 

In this study, using resting state EEG, we found that apparently

ealthy aging is associated with the cortical neuronal signatures resem-

ling those typically found in patients with PD. The differences in PAC
11 
nd in the burst characteristics of beta oscillations between elderly and

oung subjects exhibited distinct spatial patterns with a considerable

resence over sensorimotor areas of the cortex. Aging related changes

n PAC and beta burst dynamics share the directionality with that char-

cterizing PD. Such a similarity may suggest that the electrophysiologi-

al signatures typically found in PD might already be detectable in the

pparently healthy aging brain. Consequently we assume that further

xaggeration of such neuronal changes may eventually result in the de-

elopment of motor abnormalities typical for PD. Furthermore, once

stablished and validated in other studies, the investigated metrics may

ave potential to serve as the biomarkers for the early detection of the

radually developing neuronal changes characterizing pre-parkinsonian

tate. Finally, our findings highlight the importance of adequate control

or aging effects in PD studies via the inclusion of both patients and

ealthy controls. 
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