
Superposition for Full Higher-order Logic

Alexander Bentkamp1 , Jasmin Blanchette1,2,3 ,
Sophie Tourret2,3 , and Petar Vukmirović1

1 Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
{a.bentkamp,j.c.blanchette,p.vukmirovic}@vu.nl

2 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
sophie.tourret@inria.fr

3 Max-Planck-Institut für Informatik, Saarland Informatics Campus, Saarbrücken, Germany

Abstract. We recently designed two calculi as stepping stones towards super-
position for full higher-order logic: Boolean-free λ-superposition and superposi-
tion for first-order logic with interpreted Booleans. Stepping on these stones, we
finally reach a sound and refutationally complete calculus for higher-order logic
with polymorphism, extensionality, Hilbert choice, and Henkin semantics. In ad-
dition to the complexity of combining the calculus’s two predecessors, new chal-
lenges arise from the interplay between λ-terms and Booleans. Our implementa-
tion in Zipperposition outperforms all other higher-order theorem provers and is
on a par with an earlier, pragmatic prototype of Booleans in Zipperposition.

1 Introduction

Superposition is a leading calculus for first-order logic with equality. We have been
wondering for some years whether it would be possible to gracefully generalize it to
extensional higher-order logic and use it as the basis of a strong higher-order auto-
matic theorem prover. Towards this goal, we have, together with colleagues, designed
superposition-like calculi for three intermediate logics between first-order and higher-
order logic. Now we are finally ready to assemble a superposition calculus for full
higher-order logic. The filiation of our new calculus from Bachmair and Ganzinger’s
standard first-order superposition is as follows:

Standard superposition
Bachmair and Ganzinger [2] (Sup)

Superposition with←→ and delayed CNF
Ganzinger and Stuber [16] (←→Sup)

Superposition with Booleans
Nummelin et al. [23] (oSup)

Boolean-free λ-free superposition
Bentkamp et al. [7] (λfSup)

Boolean-free λ-superposition
Bentkamp et al. [6] (λSup)

Boolean λ-superposition
This paper (oλSup)

c© The Author(s) 2021
A. Platzer and G. Sutcliffe (Eds.): CADE 2021, LNAI 12699, pp. 396–412, 2021.
https://doi.org/10.1007/978-3-030-79876-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79876-5_23&domain=pdf
http://orcid.org/0000-0002-7158-3595
http://orcid.org/0000-0002-8367-0936
http://orcid.org/0000-0002-6070-796X
http://orcid.org/0000-0001-7049-6847

Superposition for Full Higher-order Logic 397

Our goal was to devise an efficient calculus for higher-order logic. To achieve it, we
pursued two objectives. First, the calculus should be refutationally complete. Second,
the calculus should coincide as much as possible with its predecessors oSup and λSup
on the respective fragments of higher-order logic (which in turn essentially coincide
with Sup on first-order logic). Achieving these objectives is the main contribution of
this paper. We made an effort to keep the calculus simple, but often the refutational
completeness proof forced our hand to add conditions or special cases.

Like oSup, our calculus oλSup operates on clauses that can contain Boolean sub-
terms, and it interleaves clausification with other inferences. Like λSup, oλSup eagerly
βη-normalizes terms, employs full higher-order unification, and relies on a fluid sub-
term superposition rule (FLUIDSUP) to simulate superposition inferences below applied
variables—i.e., terms of the form y t1 . . . tn for n≥ 1.

Because oSup contains several superposition-like inference rules for Boolean sub-
terms, our completeness proof requires dedicated fluid Boolean subterm hoisting rules
(FLUIDBOOLHOIST, FLUIDLOOBHOIST), which simulate Boolean inferences below
applied variables, in addition to FLUIDSUP, which simulates superposition inferences.

Due to restrictions related to the term order that parameterizes superposition, it is
difficult to handle variables bound by unclausified quantifiers if these variables occur
applied or in arguments of applied variables. We solve the issue by replacing such quan-
tified terms ∀y. t by equivalent terms (λy. t) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (λy.>>>>>>>>>>>>>>>>>>>>>>>>>) in a preprocessing step.

We implemented our calculus in the Zipperposition prover and evaluated it on TPTP
and Sledgehammer benchmarks. The new Zipperposition outperforms all other higher-
order provers and is on a par with an ad hoc implementation of Booleans in the same
prover by Vukmirović and Nummelin [30]. We refer to the technical report [8] for the
completeness proof and a more detailed account of the calculus and its evaluation.

2 Logic

Our logic is higher-order logic (simple type theory) with rank-1 polymorphism, Hilbert
choice, and functional and Boolean extensionality. Its syntax mostly follows Gordon
and Melham [17]. We use the notation ān or ā to stand for the tuple (a1, . . . ,an) where
n ≥ 0. Deviating from Gordon and Melham, type arguments are explicit, written as
c〈τ̄m〉 for a symbol c : Πᾱm. υ and types τ̄m. In the type signature Σty, we require the
presence of a nullary Boolean type constructor o and a binary function type constructor
→. In the term signature Σ, we require the presence of the logical symbols >>>>>>>>>>>>>>>>>>>>>>>>>, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬, ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧,
∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨,→→→→→→→→→→→→→→→→→→→→→→→→→, ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀, ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃, ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, and 6≈. The logical symbols are shown in bold to distinguish them from
the notation used for clauses below. Moreover, we require the presence of the Hilbert
choice operator ε ∈ Σ. Although ε is interpreted in our semantics, we do not consider
it a logical symbol. Our calculus will enforce the semantics of ε by an axiom, whereas
the semantics of the logical symbols will be enforced by inference rules. We write V for
the set of (term) variables. We use Henkin semantics, in the style of Fitting [15], with
respect to which we can prove our calculus refutationally complete. In summary, our
logic essentially coincides with the TPTP TH1 format [20].

We generally view terms modulo αβη-equivalence. When defining operations that
need to analyze the structure of terms, however, we use a custom normal form as the

398 A. Bentkamp et al.

default representative of a βη-equivalence class: The βηQη-normal form t↓βηQη
of a

term t is obtained by bringing the term into η-short β-normal form and finally apply-
ing the rewrite rule Q〈τ〉 s −�→Qη Q〈τ〉 (λx. s x) exhaustively whenever s is not a λ-
expression. Here and elsewhere, Q stands for either ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀ or ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃.

On top of the standard higher-order terms, we install a clausal structure that allows
us to formulate calculus rules in the style of first-order superposition. A literal s ≈̇ t is
an equation s≈ t or disequation s 6≈ t of terms s and t; both equations and disequations
are unordered pairs. A clause L1 ∨ ·· · ∨ Ln is a finite multiset of literals Lj. The empty
clause is written as ⊥. This clausal structure does not restrict the logic, because an
arbitrary term t of Boolean type can be written as the clause t ≈ >>>>>>>>>>>>>>>>>>>>>>>>>.

We considered excluding negative literals by encoding them as (s ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ t) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, fol-
lowing←→Sup [16]. However, this approach would make the conclusion of the equality
factoring rule (EFACT) too large for our purposes. Regardless, the simplification ma-
chinery will allow us to reduce negative literals t 6≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and t 6≈ >>>>>>>>>>>>>>>>>>>>>>>>> to t ≈ >>>>>>>>>>>>>>>>>>>>>>>>> and t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,
respectively, thereby eliminating redundant representations of nonequational literals.

We let CSU(s, t) denote an arbitrary (preferably, minimal) complete set of unifiers
for two terms s and t on the set of free variables of the clauses in which s and t occur.
To compute such sets, Huet-style preunification [18] is not sufficient, and we must re-
sort to a full unification procedure [19, 29]. To cope with the nontermination of such
procedures, we use dovetailing as described by Vukmirović et al. [28, Sect. 5].

Some of the rules in our calculus introduce Skolem symbols, representing objects
mandated by existential quantification. We assume that these symbols do not occur in
the input problem. More formally, given a problem over a term signature Σ, our calculus
operates on a Skolem-extended term signature Σsk that, in addition to all symbols from
Σ, inductively contains symbols skΠᾱ. ∀x̄.∃z. t z : Πᾱ. τ̄→ υ for all types υ, variables z : υ,
and terms t : υ→ o over Σsk, where ᾱ are the free type variables occurring in t and x̄ : τ̄
are the free term variables occurring in t, both in order of first occurrence.

3 The Calculus

The oλSup calculus closely resembles λSup, augmented with rules for Boolean reason-
ing that are inspired by oSup. As in λSup, superposition-like inferences are restricted
to certain first-order-like subterms, the green subterms, which we define inductively as
follows: Every term t is a green subterm of t, and for all symbols f ∈ Σ \ {∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀,∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃}, if t is
a green subterm of ui for some i, then t is a green subterm of f〈τ̄〉 ū. For example, the
green subterms of f (g (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p)) (∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉 (λx.q)) (y a) (λx.h b) are the term itself, g (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p), ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p,
p, ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉 (λx.q), y a, and λx.h b. We write s t to denote a term s with a green subterm t
and call the first-order-like context s a green context.

Following λSup, we call a term t fluid if (1) t↓βηQη
is of the form y ūn where n≥ 1,

or (2) t↓βηQη
is a λ-expression and there exists a substitution σ such that tσ↓βηQη

is
not a λ-expression (due to η-reduction). Intuitively, fluid terms are terms whose normal
form can change radically as a result of instantiation.

We define deeply occurring variables as in λSup, but exclude λ-expressions directly
below quantifiers: A variable occurs deeply in a clause C if it occurs inside an argument
of an applied variable or inside a λ-expression that is not directly below a quantifier.

399

Preprocessing. Our completeness theorem requires that quantified variables do not
appear in certain higher-order contexts. We use preprocessing to eliminate problematic
occurrences of quantifiers. The rewrite rules ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀≈ and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃≈, which we collectively denote
by Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, are defined as ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉 −�→∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀≈ λy. y ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (λx.>>>>>>>>>>>>>>>>>>>>>>>>>) and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈τ〉 −�→∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃≈ λy. y 6≈ (λx.⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) where
the rewritten occurrence of Q〈τ〉 is unapplied or has an argument of the form λx.v such
that x occurs as a nongreen subterm of v. If either of these rewrite rules can be applied
to a given term, the term is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible; otherwise, it is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal.

For example, the term λy.∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈ι→ ι〉(λx.g xy(zy)(f x)) is Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal. A term may be
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible because a quantifier appears unapplied (e.g., g∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈ι〉); a quantified variable
occurs applied (e.g., ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈ι→ ι〉 (λx. x a)); a quantified variable occurs inside a nested λ-
expression (e.g., ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉 (λx. f (λy. x))); or a quantified variable occurs in the argument
of a variable, either a free variable (e.g., ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉 (λx. z x)) or a variable bound above the
quantifier (e.g., λy.∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈ι〉 (λx. y x)).

A preprocessor Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normalizes the input problem. Although inferences may pro-
duce Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible clauses, we do not Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normalize during the derivation process it-
self. Instead, Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible ground instances of clauses will be considered redundant by
the redundancy criterion. Thus, clauses whose ground instances are all Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible
can be deleted. However, there are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-reducible clauses, such as x ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉 ≈ a, that nev-
ertheless have Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal ground instances. Such clauses must be kept because the
completeness proof relies on their Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal ground instances.

In principle, we could omit the side condition of the Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-rewrite rules and eliminate
all quantifiers. However, the calculus (especially, the redundancy criterion) performs
better with quantifiers than with λ-expressions, which is why we restrict Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normaliza-
tion as much as the completeness proof allows. Extending the preprocessing to elimi-
nate all Boolean terms as in Kotelnikov et al. [21] does not work for higher-order logic
because Boolean terms can contain variables bound by enclosing λ-expressions.

Term Order. The calculus is parameterized by a well-founded strict total order � on
ground terms satisfying these four criteria: (O1) compatibility with green contexts—
i.e., s′� s implies t s′ � t s ; (O2) green subterm property—i.e. t s � s where� is
the reflexive closure of �; (O3) u� ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ � >>>>>>>>>>>>>>>>>>>>>>>>> for all terms u /∈ {>>>>>>>>>>>>>>>>>>>>>>>>>,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}; (O4) Q〈τ〉 t � t u
for all types τ, terms t, and terms u such that Q〈τ〉 t and u are Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal and the only
Boolean green subterms of u are >>>>>>>>>>>>>>>>>>>>>>>>> and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. The restriction of (O4) to Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal terms
ensures that term orders fulfilling the requirements exist, but it forces us to preprocess
the input problem. We extend� to literals and clauses via the multiset extensions in the
standard way [2, Sect. 2.4].

For nonground terms,� is required to be a strict partial order such that t� s implies
tθ � sθ for all grounding substitutions θ. As in λSup, we also introduce a nonstrict
variant % for which we require that tθ � sθ for all grounding substitutions θ whenever
t % s, and similarly for literals and clauses.

To construct a concrete order fulfilling these requirements, we define an encoding
into untyped first-order terms, and compare these using a variant of the Knuth–Bendix
order. In a first step, denoted O, the encoding translates fluid terms t as fresh variables zt;
nonfluid λ-expressions λx :τ. u as lam(O(τ),O(u)); applied quantifiers Q〈τ〉(λx :τ. u) as
Q1(O(τ),O(u)); and other terms f〈τ̄〉 ūk as fk(O(τ̄),O(ūk)). Bound variables are encoded
as constants dbi corresponding to De Bruijn indices. In a second step, denoted P , the

Superposition for Full Higher-order Logic

400 A. Bentkamp et al.

encoding replaces Q1 by Q′1 and variables z by z′ whenever they occur below lam. For
example, ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉(λx.pyy(λu. f yy(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈ι〉(λv.u)))) is encoded as ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀1(ι,p3(y,y, lam(o, f3(y′,y′,
∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀′1(ι,db1))))). The first-order terms can then be compared using a transfinite Knuth–
Bendix order �kb [22]. Let the weight of ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀1 and ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃1 be ω, the weight of >>>>>>>>>>>>>>>>>>>>>>>>>0 and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0
be 1, and the weights of all other symbols be less than ω. Let the precedence > be
total and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0,>>>>>>>>>>>>>>>>>>>>>>>>>0 be the symbols of lowest precedence, with ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0 > >>>>>>>>>>>>>>>>>>>>>>>>>0. Then let t � s if
O(P (t))�kb O(P (s)) and t % s if O(P (t))�kb O(P (s)).

Selection Functions. The calculus is also parameterized by a literal selection function
and a Boolean subterm selection function. We define an element x of a multiset M to be
D-maximal for some relation D if for all y ∈ M with yD x, we have y = x. It is strictly
D-maximal if it is D-maximal and occurs only once in M.

The literal selection function HLitSel maps each clause to a subset of selected lit-
erals. A literal may not be selected if it is positive and neither side is ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Moreover, a
literal L y may not be selected if y ūn, with n≥ 1, is a �-maximal term of the clause.

The Boolean subterm selection function HBoolSel maps each clause C to a subset
of selected subterms in C. Selected subterms must be green subterms of Boolean type.
Moreover, a subterm s must not be selected if s = >>>>>>>>>>>>>>>>>>>>>>>>>, if s = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, if s is a variable-headed
term, if s is at the topmost position on either side of a positive literal, or if s contains a
variable y as a green subterm, and y ūn, with n≥ 1, is a �-maximal term of the clause.

Eligibility. A literal L is (strictly) eligible w.r.t. a substitution σ in C if it is selected
in C or there are no selected literals and no selected Boolean subterms in C and Lσ is
(strictly) %-maximal in Cσ.

The eligible subterms of a clause C w.r.t. a substitution σ are inductively defined as
follows: Any selected subterm is eligible. If a literal L = s ≈̇ t with sσ 6- tσ is either
eligible and negative or strictly eligible and positive, then the subterm s is eligible. If a
subterm t is eligible and the head of t is not ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ or 6≈, all direct green subterms of t are
eligible. If a subterm t is eligible and t is of the form u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ v or u 6≈ v, then u is eligible if
uσ 6- vσ and v is eligible if uσ 6% vσ.

The Core Inference Rules. The calculus consists of the following core inference rules.
The first five rules stem from λSup, with minor adaptions concerning Booleans:

D︷ ︸︸ ︷
D′ ∨ t ≈ t′ C u

SUP
(D′ ∨C t′)σ

C︷ ︸︸ ︷
C′ ∨ u 6≈ u′

ERES
C′σ

C︷ ︸︸ ︷
C′ ∨ u′ ≈ v′ ∨ u≈ v

EFACT
(C′ ∨ v 6≈ v′ ∨ u≈ v′)σ

D︷ ︸︸ ︷
D′ ∨ t ≈ t′ C u

FLUIDSUP
(D′ ∨C z t′)σ

C︷ ︸︸ ︷
C′ ∨ s≈ s′

ARGCONG
C′σ ∨ sσ x̄n ≈ s′σ x̄n

SUP 1. u is not fluid; 2. u is not a variable deeply occurring in C; 3. if u is a variable y,
there must exist a grounding substitution θ such that tσθ � t′σθ and Cσθ ≺ C′′σθ,
where C′′ =C{y 7→ t′}; 4. σ ∈ CSU(t,u); 5. tσ 6- t′σ; 6. u is eligible in C w.r.t. σ;
7. Cσ 6- Dσ; 8. t ≈ t′ is strictly eligible in D w.r.t. σ; 9. tσ is not a fully applied
logical symbol; 10. if t′σ=⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, the subterm u is at the top level of a positive literal.

401

ERES 1. σ ∈ CSU(u,u′); 2. u 6≈ u′ is eligible in C w.r.t. σ.
EFACT 1. σ ∈ CSU(u,u′); 2. uσ 6- vσ; 3. (u≈ v)σ is %-maximal in Cσ; 4. uσ 6- vσ;

5. nothing is selected in C.
FLUIDSUP 1. u is a variable deeply occurring in C or u is fluid; 2. z is a fresh variable;

3. σ ∈ CSU(z t, u); 4. (z t′)σ 6= (z t)σ; 5.–10. as for SUP.
ARGCONG 1. n > 0; 2. σ is the most general type substitution that ensures well-

typedness of the conclusion for a given n; 3. x̄n is a tuple of distinct fresh variables;
4. the literal s≈ s′ is strictly eligible in C w.r.t. σ.

The following rules are concerned with Boolean reasoning and originate from oSup.
They have been adapted to support polymorphism and applied variables.

C u
BOOLHOIST

(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ u≈ >>>>>>>>>>>>>>>>>>>>>>>>>)σ
C u

EQHOIST
(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ x≈ y)σ

C u
NEQHOIST

(C >>>>>>>>>>>>>>>>>>>>>>>>> ∨ x≈ y)σ

C u
FORALLHOIST

(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ y x≈ >>>>>>>>>>>>>>>>>>>>>>>>>)σ
C u

EXISTSHOIST
(C >>>>>>>>>>>>>>>>>>>>>>>>> ∨ y x≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ

C︷ ︸︸ ︷
C′ ∨ s≈ s′

FALSEELIM
C′σ

C u
BOOLRW

C t′ σ

C u
FORALLRW

C y (skΠᾱ. ∀x̄.∃z.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬yσz〈ᾱ〉 x̄) σ

C u
EXISTSRW

C y (skΠᾱ. ∀x̄.∃z.yσz〈ᾱ〉 x̄) σ

BOOLHOIST 1. σ is a type unifier of the type of u with the Boolean type o (i.e., the
identity if u is Boolean or {α 7→ o} if u is of type α for some type variable α);
2. the head of u is neither a variable nor a logical symbol; 3. u is eligible in C;
4. the occurrence of u is not at the top level of a positive literal.

EQHOIST, NEQHOIST, FORALLHOIST, EXISTSHOIST 1. σ ∈ CSU(u, x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y), σ ∈
CSU(u, x 6≈ y), σ ∈ CSU(u, ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈α〉 y), or σ ∈ CSU(u, ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈α〉 y), respectively; 2. x,
y, and α are fresh variables; 3. u is eligible in C w.r.t. σ; 4. if the head of u is
a variable, it must be applied and the affected literal must be of the form u ≈ >>>>>>>>>>>>>>>>>>>>>>>>>,
u≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or u≈ v where v is a variable-headed term.

FALSEELIM 1. σ ∈ CSU(s≈ s′, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>>); 2. s≈ s′ is strictly eligible in C w.r.t. σ.
BOOLRW 1. σ ∈ CSU(t,u) and (t, t′) is one of the following pairs, where y is a fresh

variable: (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, >>>>>>>>>>>>>>>>>>>>>>>>>), (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬>>>>>>>>>>>>>>>>>>>>>>>>>, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥), (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥), (>>>>>>>>>>>>>>>>>>>>>>>>> ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥), (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ >>>>>>>>>>>>>>>>>>>>>>>>>, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥), (>>>>>>>>>>>>>>>>>>>>>>>>> ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ >>>>>>>>>>>>>>>>>>>>>>>>>, >>>>>>>>>>>>>>>>>>>>>>>>>),
(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥), (>>>>>>>>>>>>>>>>>>>>>>>>>∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, >>>>>>>>>>>>>>>>>>>>>>>>>), (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨>>>>>>>>>>>>>>>>>>>>>>>>>, >>>>>>>>>>>>>>>>>>>>>>>>>), (>>>>>>>>>>>>>>>>>>>>>>>>>∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨>>>>>>>>>>>>>>>>>>>>>>>>>, >>>>>>>>>>>>>>>>>>>>>>>>>), (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥→→→→→→→→→→→→→→→→→→→→→→→→→⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, >>>>>>>>>>>>>>>>>>>>>>>>>), (>>>>>>>>>>>>>>>>>>>>>>>>>→→→→→→→→→→→→→→→→→→→→→→→→→⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥), (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥→→→→→→→→→→→→→→→→→→→→→→→→→
>>>>>>>>>>>>>>>>>>>>>>>>>, >>>>>>>>>>>>>>>>>>>>>>>>>), (>>>>>>>>>>>>>>>>>>>>>>>>>→→→→→→→→→→→→→→→→→→→→→→→→→>>>>>>>>>>>>>>>>>>>>>>>>>, >>>>>>>>>>>>>>>>>>>>>>>>>), (y≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y, >>>>>>>>>>>>>>>>>>>>>>>>>), (y 6≈ y, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥); 2. u is not a variable; 3. u is eligible in
C w.r.t. σ; 4. if the head of u is a variable, it must be applied and the affected literal
must be of the form u≈ >>>>>>>>>>>>>>>>>>>>>>>>>, u≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or u≈ v where v is a variable-headed term.

FORALLRW, EXISTSRW 1. σ ∈ CSU(∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈β〉y, u) and σ ∈ CSU(∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈β〉y, u), respectively,
where β is a fresh type variable, y is a fresh term variable, ᾱ are the free type vari-
ables and x̄ are the free term variables occurring in yσ in order of first occurrence;

Superposition for Full Higher-order Logic

402 A. Bentkamp et al.

2. u is not a variable; 3. u is eligible in C w.r.t. σ; 4. if the head of u is a variable, it
must be applied and the affected literal must be of the form u≈ >>>>>>>>>>>>>>>>>>>>>>>>>, u≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or u≈ v
where v is a variable-headed term; 5. for FORALLRW, the indicated occurrence of
u is not in a literal u≈ >>>>>>>>>>>>>>>>>>>>>>>>>, and for EXISTSRW, the indicated occurrence of u is not
in a literal u≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

Like SUP, also the Boolean rules must be simulated in fluid terms. The following
rules are Boolean counterparts of FLUIDSUP:

C u FLUID-
BOOLHOIST(C z⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ x≈ >>>>>>>>>>>>>>>>>>>>>>>>>)σ

C u FLUID-
LOOBHOIST(C z>>>>>>>>>>>>>>>>>>>>>>>>> ∨ x≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ

FLUIDBOOLHOIST 1. u is fluid; 2. z and x are fresh variables; 3. σ ∈ CSU(z x, u);
4. (z⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ 6= (z x)σ; 5. xσ 6= >>>>>>>>>>>>>>>>>>>>>>>>> and xσ 6= ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥; 6. u is eligible in C w.r.t. σ.

FLUIDLOOBHOIST Like the above but with ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ replaced by >>>>>>>>>>>>>>>>>>>>>>>>> in condition 4.

In addition to the inference rules, our calculus relies on two axioms, below. Ax-
iom (EXT), from λSup, embodies functional extensionality; the expression diff〈α,β〉
abbreviates skΠαβ. ∀z y.∃x. z x 6666666666666666666666666≈y x〈α,β〉. Axiom (CHOICE) characterizes the Hilbert choice
operator ε.

z (diff〈α,β〉 z y) 6≈ y (diff〈α,β〉 z y) ∨ z≈ y (EXT)
y x≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ y (ε〈α〉 y)≈ >>>>>>>>>>>>>>>>>>>>>>>>> (CHOICE)

Rationale for the Rules. Most of the calculus’s rules are adapted from its precursors.
SUP, ERES, and EFACT are already present in Sup, with slightly different side con-
ditions. Notably, as in λfSup and λSup, SUP inferences are required only into green
contexts. Other subterms are accessed indirectly via ARGCONG and (EXT).

The rules BOOLHOIST, EQHOIST, NEQHOIST, FORALLHOIST, EXISTSHOIST,
FALSEELIM, BOOLRW, FORALLRW, and EXISTSRW, concerned with Boolean rea-
soning, stem from oSup, which was inspired by ←→Sup. Except for BOOLHOIST and
FALSEELIM, these rules have a condition stating that “if the head of u is a variable, it
must be applied and the affected literal must be of the form u ≈ >>>>>>>>>>>>>>>>>>>>>>>>>, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or u ≈ v
where v is a variable-headed term.” The inferences at variable-headed terms permitted
by this condition are our form of primitive substitution [1,18], a mechanism that blindly
substitutes logical connectives and quantifiers for variables z with a Boolean result type.

Example 1. Our calculus can prove that Leibniz equality implies equality (i.e., if two
values behave the same for all predicates, they are equal) as follows:

a 6≈ b

z a≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ z b≈ >>>>>>>>>>>>>>>>>>>>>>>>>
EQHOIST

(x a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y a)≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ x b≈ y b
BOOLRW

>>>>>>>>>>>>>>>>>>>>>>>>> ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ w a b b≈ w b a b
FALSEELIM

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ w a b b≈ w b a b
FALSEELIM

w a b b≈ w b a b
SUP

a 6≈ a
ERES

⊥

403

The EQHOIST inference, applied on z b, illustrates how our calculus introduces logical
symbols without a dedicated primitive substitution rule. Although ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ does not appear in
the premise, we still need to apply EQHOIST on z b with CSU(z b, x0 ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y0) = {{z 7→
λv. x v ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y v, x0 7→ x b, y0 7→ y b}}. Other calculi [1, 9, 18, 26] would apply an explicit
primitive substitution rule instead, yielding essentially (xa≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ ya)≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥∨ (xb≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ yb)≈>>>>>>>>>>>>>>>>>>>>>>>>>.
However, in our approach this clause is subsumed and could be discarded immediately.
By hoisting the equality to the clausal level, we bypass the redundancy criterion.

Next, BOOLRW can be applied to x a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y a with CSU(x a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y a, y0 ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y0) = {{x 7→
λv.wavv, y 7→ λv.wvav, y0 7→waaa}}. The two FALSEELIM steps remove the⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥≈>>>>>>>>>>>>>>>>>>>>>>>>>
literals. Then SUP is applicable with the unifier {w 7→ λx1 x2 x3. x2} ∈ CSU(b, w a b b),
and ERES derives the contradiction.

Like in λSup, the FLUIDSUP rule is responsible for simulating superposition in-
ferences below applied variables, other fluid terms, and deeply occurring variables.
Complementarily, FLUIDBOOLHOIST and FLUIDLOOBHOIST simulate the various
Boolean inference rules below fluid terms. Initially, we considered adding a fluid ver-
sion of each rule that operates on Boolean subterms, but we discovered that FLUID-
BOOLHOIST and FLUIDLOOBHOIST suffice to achieve refutational completeness.

Example 2. The clause set consisting of h (y b) 6≈ h (g⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ∨ h (y a) 6≈ h (g>>>>>>>>>>>>>>>>>>>>>>>>>) and a 6≈ b
highlights the need for FLUIDBOOLHOIST and its companion. The set is unsatisfi-
able because the instantiation {y 7→ λx.g (x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a)} produces the clause h (g (b ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a)) 6≈
h (g⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ∨ h (g (a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ a)) 6≈ h (g>>>>>>>>>>>>>>>>>>>>>>>>>), which is unsatisfiable in conjunction with a 6≈ b.

The literal selection function can select either literal in the first clause. ERES is
applicable in either case, but the unifiers {y 7→ λx.g⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥} and {y 7→ λx.g>>>>>>>>>>>>>>>>>>>>>>>>>} do not lead
to a contradiction. Instead, we need to apply FLUIDBOOLHOIST if the first literal is
selected or FLUIDLOOBHOIST if the second literal is selected. In the first case, the
derivation is as follows:

a 6≈ b

h (y b) 6≈ h (g⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ∨ h (y a) 6≈ h (g>>>>>>>>>>>>>>>>>>>>>>>>>)
FLUIDBOOLHOIST

h (z′ b⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) 6≈ h (g⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ∨ h (z′ a (x′a)) 6≈ h (g>>>>>>>>>>>>>>>>>>>>>>>>>) ∨ x′ b≈ >>>>>>>>>>>>>>>>>>>>>>>>>
ERES

h (g (x′ a)) 6≈ h (g>>>>>>>>>>>>>>>>>>>>>>>>>) ∨ x′ b≈ >>>>>>>>>>>>>>>>>>>>>>>>>
EQHOIST

h (g (x′′ a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ x′′′ a)) 6≈ h (g>>>>>>>>>>>>>>>>>>>>>>>>>) ∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ x′′ b≈ x′′′ b
SUP

h (g (a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ x′′′ a)) 6≈ h (g>>>>>>>>>>>>>>>>>>>>>>>>>) ∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ a 6≈ x′′′ b
BOOLRW

h (g>>>>>>>>>>>>>>>>>>>>>>>>>) 6≈ h (g>>>>>>>>>>>>>>>>>>>>>>>>>) ∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ a 6≈ a
ERES

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ a 6≈ a
ERES

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ >>>>>>>>>>>>>>>>>>>>>>>>>
FALSEELIM

⊥

The FLUIDBOOLHOIST inference uses the unifier {y 7→ λu.z′ u(x′ u), z 7→ λu.z′bu,
x 7→ x′b} ∈CSU(z x, yb). We apply ERES to the first literal of the resulting clause, with
unifier {z′ 7→ λuv. g v} ∈ CSU(h (z′ b⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥), h (g⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)). Next, we apply EQHOIST with the
unifier {x′ 7→ λu. x′′ u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ x′′′ u, w 7→ x′′ b, w′ 7→ x′′′ b} ∈ CSU(x′ b, w ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ w′) to the literal

Superposition for Full Higher-order Logic

404 A. Bentkamp et al.

created by FLUIDBOOLHOIST, effectively performing a primitive substitution. The re-
sulting clause can superpose into a 6≈ b with the unifier {x′′ 7→ λu. u} ∈ CSU(x′′ b, b).
The two sides of the interpreted equality in the first literal can then be unified, allowing
us to apply BOOLRW with the unifier {y 7→ a, x′′′ 7→ λu. a} ∈ CSU(y ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ y, a ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ x′′′ b).
Finally, applying ERES twice and FALSEELIM once yields the empty clause.

Remarkably, none of the provers that participated in the CASC-J10 competition can
solve this two-clause problem within a minute. Satallax finds a proof after 72 s and
LEO-II after over 7 minutes. Our new Zipperposition implementation solves it in 3 s.

The Redundancy Criterion. In first-order superposition, a clause is considered re-
dundant if all its ground instances are entailed by ≺-smaller ground instances of other
clauses. In essence, this will also be our definition, but we will use a different notion of
ground instances and a different notion of entailment.

Given a clause C, let its ground instances G(C) be the set of all clauses of the form
Cθ for some substitution θ such that Cθ is ground and Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal, and for all variables x
occurring in C, the only Boolean green subterms of xθ are>>>>>>>>>>>>>>>>>>>>>>>>> and⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. The rationale of this
definition is to ensure that ground instances of the conclusion of FORALLHOIST, EX-
ISTSHOIST, FORALLRW, and EXISTSRW inferences are smaller than the correspond-
ing instances of their premise by property (O4).

The redundancy criterion’s notion of entailment is defined via an encoding into a
weaker logic, following λfSup and λSup. In this paper, the weaker logic is ground first-
order logic with interpreted Booleans—the ground fragment of the logic of oSup. Its
signature (Σty,ΣGF) is derived from our higher-order signature (Σty,Σ) as follows. The
type constructors Σty are the same in both signatures, but → is an uninterpreted type
constructor in first-order logic. For each ground instance f〈ῡ〉 : τ1→ ·· · → τn→ τ of a
symbol f ∈ Σ, we introduce a first-order symbol f ῡj ∈ ΣGF with argument types τ̄j and
result type τj+1→ ··· → τn→ τ, for each j. Moreover, for each ground term λx. t, we
introduce a symbol lamλx. t ∈ ΣGF of the same type. The symbols ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥0, >>>>>>>>>>>>>>>>>>>>>>>>>0, ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬1, ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧2, ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨2,
→→→→→→→→→→→→→→→→→→→→→→→→→2, ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ2, and 6≈τ2 are identified with the corresponding first-order logical symbols.

We define an encoding F of Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal ground higher-order terms into this ground
first-order logic recursively as follows: F (∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀〈τ〉(λx. t)) = ∀x.F (t) and F (∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃〈τ〉(λx. t)) =
∃x.F (t) for applied quantifiers; F (λx. t) = lamλx. t for λ-expressions; and F (f〈ῡ〉 s̄j) =
f ῡj (F (s̄j)) for other terms. For quantified variables, we define F (x) = x. Here, Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-
normality is crucial to ensure that bound variables do not occur applied or within λ-
expressions. The definition of green subterms is devised such that green subterms cor-
respond to first-order subterms via the encoding F , with the exception of first-order
subterms below quantifiers. The encoding F is extended to clauses by mapping each
literal and each side of a literal individually. From the entailment relation |= for the
ground first-order logic, we derive an entailment relation |=F on Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal ground
higher-order clauses by defining M |=F N if F (M) |= F (N). This relation is weaker
than standard higher-order entailment; for example, {f ≈ g} 6|=F {f a ≈ g a} (because
of the subscripts added by F) and {p (λx.>>>>>>>>>>>>>>>>>>>>>>>>>)} 6|=F {p (λx.¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)} (because of the lam
symbols used by F).

Using |=F , we define a clause C to be redundant w.r.t. a clause set N if for every
D∈G(C), we have {E ∈G(N) | E ≺ D} |=F D or there exists a clause C′ ∈ N such that
C AC′ and D ∈G(C′). The tiebreaker A can be an arbitrary well-founded partial order

405

on clauses; in practice, we use a well-founded restriction of the ill-founded strict sub-
sumption relation [6, Sect. 3.4]. We denote the set of redundant clauses w.r.t. a clause set
N by RedC(N). Note that |=F is weak enough to ensure that the ARGCONG inference
rule and axiom (EXT) are not immediately redundant and can fulfill their purpose.

For first-order superposition, an inference is considered redundant if for each of
its ground instances, a premise is redundant or the conclusion is entailed by clauses
smaller than the main premise. For most inference rules, our definition follows this idea,
using |=F for entailment; other rules need nonstandard notions of ground instances and
redundancy. The definition of inference redundancy presented below is simpler than the
more sophisticated notion in our technical report. Nonetheless, the redundant inferences
below are a strict subset of the redundant inferences of our report and thus completeness
also holds using the notion below. For the few prover optimizations based on inference
redundancy that we know about (e.g., simultaneous superposition [4]), the following
criterion suffices.

For SUP, ERES, EFACT, BOOLHOIST, FALSEELIM, EQHOIST, NEQHOIST, and
BOOLRW, we define ground instances as usual: Ground instances are all inferences
obtained by applying a grounding substitution to premises and conclusion such that the
result adheres to the conditions of the given rule w.r.t. selection functions that select lit-
erals and subterms as in the original premise. For FLUIDSUP and FLUIDBOOLHOIST,
we define ground instances in the same way except that we require that ground in-
stances adhere to the conditions of SUP or BOOLHOIST, respectively. For FORALLRW,
EXISTSRW, FORALLHOIST, EXISTSHOIST, which do not have ground instances in the
sense above, we define a ground instance as any inference that is obtained by applying
the unifier σ to the premise and then applying a grounding substitution to premise and
conclusion, regardless of whether the resulting inference is an inference of our calculus.

For all rules except FLUIDLOOBHOIST and ARGCONG, we define an inference to
be redundant w.r.t. a clause set N if for each ground instance ι, a premise of ι is re-
dundant w.r.t. G(N) or the conclusion of ι is entailed w.r.t. |=F by clauses from G(N)
that are smaller than the main (i.e., rightmost) premise of ι. For the rules FLUIDLOOB-
HOIST and ARGCONG, as well as axioms (EXT) and (CHOICE)—viewed as premise-
less inferences—we define an inference to be redundant w.r.t. a clause set N if all
ground instances of its conclusion are contained in G(N) or redundant w.r.t. G(N).
We denote the set of redundant inferences w.r.t. N by RedI(N).

Simplification Rules. Our redundancy criterion is strong enough to support counter-
parts of most simplification rules implemented in Schulz’s first-order E [25, Sect. 2.3.1
and 2.3.2]. Deletion of duplicated literals, deletion of resolved literals, syntactic tau-
tology deletion, negative simplify-reflect, and clause subsumption adhere to our re-
dundancy criterion. Positive simplify-reflect, equality subsumption, and rewriting (de-
modulation) of positive and negative literals are supported if they are applied on green
subterms or on other subterms that are encoded into first-order subterms by G and F .
Semantic tautology deletion can be applied as well, using |=F ; moreover, for positive
literals, the rewriting clause must be smaller than the rewritten clause.

Under some circumstances, inference rules can be applied as simplifications. The
FALSEELIM and BOOLRW rules can be applied as a simplification if σ is the identity.
If the head of u is ∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀∀, FORALLHOIST and FORALLRW can both be applied and, together,

Superposition for Full Higher-order Logic

406 A. Bentkamp et al.

serve as one simplification rule. The same holds for EXISTSHOIST and EXISTSRW if
the head of u is ∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃∃. For all of these rules, the eligibility conditions can be ignored.

Clausification. Like oSup, our calculus does not require the input problem to be clausi-
fied during the preprocessing, and it supports higher-order analogues of the three inpro-
cessing clausification methods introduced by Nummelin et al. Inner delayed clausi-
fication relies on our core calculus rules to destruct logical symbols. Outer delayed
clausification adds the following clausification rules to the calculus:

s≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨C
POSOUTERCLAUS

oc(s,C)

s≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨C
NEGOUTERCLAUS

oc(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬s,C)

s≈ t ∨C
EQOUTERCLAUS

s≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ t ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨C s≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨C

s 6≈ t ∨C
NEQOUTERCLAUS

s≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨C s≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ t ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨C

The double bars identify simplification rules (i.e., the conclusions make the premise
redundant and can replace it). The first two rules require that s has a logical symbol
as its head, whereas the last two require that s and t are Boolean terms other than >>>>>>>>>>>>>>>>>>>>>>>>>
and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. The function oc distributes the logical symbols over the clause C—e.g., oc(s→→→→→→→→→→→→→→→→→→→→→→→→→
t, C) = {s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ t ≈ >>>>>>>>>>>>>>>>>>>>>>>>> ∨ C}, and oc(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬(s∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ t), C) = {s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ C, t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ C}. It is
easy to check that our redundancy criterion allows us to replace the premise of the
OUTERCLAUS rules with their conclusion. Nonetheless, we apply EQOUTERCLAUS
and NEQOUTERCLAUS as inferences because the premises might be useful in their
original form.

Besides the two delayed clausification methods, a third inprocessing clausification
method is immediate clausification. This clausifies the input problem’s outer Boolean
structure in one swoop, resulting in a set of higher-order clauses. If unclausified Boolean
terms rise to the top during saturation, the same algorithm is run to clausify them.

Unlike delayed clausification, immediate clausification is a black box and is un-
aware of the proof state other than the Boolean term it is applied to. Delayed clausifica-
tion, on the other hand, clausifies the term step by step, allowing us to interleave clausifi-
cation with the strong simplification machinery of superposition provers. It is especially
powerful in higher-order contexts: Examples such as ypq 6≈ (p∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ q) can be refuted di-
rectly by equality resolution, rather than via more explosive rules on the clausified form.

4 Refutational Completeness

Our calculus is dynamically refutationally complete for problems in Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal form.
The full proof can be found in our technical report [8].

Theorem 3 (Dynamic refutational completeness). Let (Ni)i be a derivation—i.e.,
Ni\Ni+1⊆RedC(Ni+1) for all i. Let N0 be Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal and such that N0 |=⊥. Moreover,
assume that (Ni)i is fair—i.e., all inferences from clauses in the limit inferior

⋃
i
⋂

j≥i Nj
are contained in

⋃
i RedI(Ni). Then we have ⊥ ∈ Ni for some i.

407

Following the completeness proof of λSup, our proof is structured in three levels of
logics. For each, we define a calculus and show that it is refutationally complete: ground
monomorphic first-order logic with an interpreted Boolean type (GF); the Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal
ground fragment of higher-order logic (GH); and higher-order logic (H).

The logic of the GF level is the ground fragment of oSup’s logic. The GF calculus
is a ground version of oSup, which Nummelin et al. showed refutationally complete. It
consists of ground first-order equivalents of our rules, excluding ARGCONG, FLUID-
BOOLHOIST, and FLUIDLOOBHOIST, which are specific to higher-order logic. The
counterparts to FORALLHOIST and EXISTSHOIST enumerate ground terms instead of
producing free variables, to stay within the ground fragment. For compatibility with the
nonground level, the conclusions of FORALLRW and EXISTSRW cannot contain con-
crete Skolem functions. Instead, the GF calculus is parameterized by a witness function
that can assign an arbitrary term to each occurrence of a quantifier in a clause. This wit-
ness function is used to retrieve the Skolem terms in the GF equivalents of FORALLRW
and EXISTSRW.

On the next level, the GH calculus includes inference rules isomorphic to the GF
rules, transferred to higher-order logic via F −1. Moreover, it contains an ARGCONG
variant that enumerates ground terms instead of introducing fresh variables, as well as
rules enumerating ground instances of axioms (EXT) and (CHOICE). We prove refu-
tational completeness of the GH calculus by constructing a higher-order interpretation
based on the model constructed for the completeness proof of the GF level. This proof
step is analogous to the corresponding step in λSup’s proof, but we must also consider
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normality and the logical symbols.

To lift completeness to the H level, we use the saturation framework of Waldmann et
al. [31]. The main proof obligation it leaves us to show is that nonredundant GH infer-
ences can be lifted to corresponding nonground H inferences. For this lifting, we must
choose a suitable GH witness function and appropriate GH selection functions for liter-
als and Boolean subterms, given a saturated clause set at the H level and the H selection
functions. Then the saturation framework guarantees static refutational completeness
w.r.t. Herbrand entailment, which is the entailment relation induced by the grounding
function G . We then show that this implies dynamic refutational completeness w.r.t. |=
for Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normal initial clause sets.

5 Implementation

We implemented our calculus in the Zipperposition prover [14], whose OCaml source
code makes it convenient to prototype calculus extensions. Except for the presence
of axioms (EXT) and (CHOICE), the new code gracefully extends Zipperposition’s
implementation of oSup in the sense that oλSup coincides with oSup on first-order
problems. The same cannot be said w.r.t. λSup on Boolean-free problems because of
the FLUIDBOOLHOIST and FLUIDLOOBHOIST rules, which are triggered by any ap-
plied variable. From the implementation of λSup, we inherit the given clause proce-
dure, which supports infinitely branching inferences, as well as calculus extensions and
heuristics [28]. From the implementation of oSup, we inherit the simplification rule
BOOLSIMP, a mainstay of our Boolean simplification machinery.

Superposition for Full Higher-order Logic

408 A. Bentkamp et al.

As in the implementation of λSup, we approximate fluid terms as terms that are ei-
ther nonground λ-expressions or terms of the form x s̄n with n > 0. Two slight, acciden-
tal discrepancies are that we also count variable occurrences below quantifiers as deep
and perform EFACT inferences even if the maximal literal is selected. Since we expect
FLUIDBOOLHOIST and FLUIDLOOBHOIST to be highly explosive, we penalize them
and all of their offspring. In addition to various λSup extensions [6, Sect. 5], we also
use all the rules for Boolean reasoning described by Vukmirović and Nummelin [30]
except for the BOOLEF rules.

6 Evaluation

We evaluate the calculus implementation in Zipperposition and compare it with other
higher-order provers. Our experiments were performed on StarExec Miami servers
equipped with Intel Xeon E5-2620 v4 CPUs clocked at 2.10 GHz. We used all 2606
TH0 theorems from the TPTP 7.3.0 library [27] and 1253 “Judgment Day” problems
[12] generated using Sledgehammer (SH) [24] as our benchmark set. An archive con-
taining the benchmarks and the raw evaluation results is publicly available [5].

Calculus Evaluation. In this first part, we evaluate selected parameters of Zipperposi-
tion by varying only the studied parameter in a fixed well-performing configuration.
This base configuration disables axioms (CHOICE) and (EXT) and the FLUID- rules. It
uses the unification procedure of Vukmirović et al. [29] in its complete variant—i.e.,
the variant that produces a complete set of unifiers. It uses none of the early Boolean
rules described by Vukmirović and Nummelin [30]. The preprocessor Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ is disabled
as well. All of the completeness-preserving simplification rules listed in Sect. 3 are en-
abled. The configuration uses immediate clausification. We set the CPU time limit to
30 s in all three experiments.

In the first experiment, we assess the overhead incurred by the FLUID- rules. These
rules unify with a term whose head is a fresh variable. Thus, we expected that they
needed to be tightly controlled to achieve good performance. To test our hypothesis,
we simultaneously modified the parameters of these three rules. In Figure 1, the off
mode simply disables the rules, the pragmatic mode uses a terminating incomplete uni-
fication algorithm (the pragmatic variant of Vukmirović et al. [29]), and the complete
mode uses a complete unification algorithm. The results show that disabling FLUID-
rules altogether achieves the best performance. However, on TPTP problems, complete
finds 35 proofs not found by off, and pragmatic finds 22 proofs not found by off. On
Sledgehammer benchmarks, this effect is much weaker, likely because the Sledgeham-
mer benchmarks require less higher-order reasoning: complete finds only one new proof
over off, and pragmatic finds only four.

In the second experiment, we explore the clausification methods introduced at the
end of Sect. 3: inner delayed clausification, outer delayed clausification, and immediate
clausification. The modes inner and outer employ oSup’s RENAME rule, which renames
Boolean terms headed by logical symbols using a Tseitin-like transformation if they
occur at least four times in the proof state. Vukmirović and Nummelin [30] observed
that outer clausification can greatly help prove higher-order problems, and we expected

409

off pragmatic complete

TPTP 1642 1591 1619
SH 467 431 437

Fig. 1. Evaluation of FLUID- rules

inner outer immediate

TPTP 1323 1670 1642
SH 406 470 467

Fig. 2. Evaluation of clausification method

off p = 64 p = 16 p = 4 p = 1

TPTP 1642 1617 1613 1615 1594
SH 467 458 458 459 445

Fig. 3. Evaluation of axiom (CHOICE)

TPTP ofSH SH

CVC4 1.8 1796 680 619
Leo-III 1.5.2 2104 681 621
Vampire 4.5 2131 692 681
Satallax 3.5 2162 573 587
Zip (CASC-J10) 2301 734 736
New Zip 2320 724 720

Fig. 4. Evaluation of all competitive higher-
order provers

it to perform well for our calculus, too. The results are shown in Figure 2. The results
confirm our hypothesis: The outer mode outperforms immediate on both TPTP and
Sledgehammer benchmarks. The inner mode performs worst, but on Sledgehammer
benchmarks, it proves 17 problems beyond the reach of the other two. Interestingly,
several of these problems contain axioms of the form φ→→→→→→→→→→→→→→→→→→→→→→→→→ ψ, and applying superposition
and demodulation to these axioms is preferable to clausifying them.

In the third experiment, we investigate the effect of axiom (CHOICE), which is nec-
essary to achieve refutational completeness. To evaluate (CHOICE), we either disabled it
in a configuration labeled off or set the axiom’s penalty p to different values. In Zipper-
position, penalties are propagated through inference and simplification rules and are
used to increase the heuristic weight of clauses, postponing the selection of penalized
clauses. The results are shown in Figure 3. As expected, disabling (CHOICE), or at least
penalizing it heavily, improves performance. Yet enabling (CHOICE) can be crucial: For
19 TPTP problems, the proofs are found when (CHOICE) is enabled and p = 4, but not
when the rule is disabled. On Sledgehammer problems, this effect is weaker, with only
two new problems proved for p = 4.

Prover Comparison. In this second part, we compare Zipperposition’s performance
with other higher-order provers. Like at CASC-J10, the wall-clock time limit was 120 s,
the CPU time limit was 960 s, and the provers were run on StarExec Miami. We used
the following versions of all systems that took part in the THF division: CVC4 1.8 [3],
Leo-III 1.5.2 [26], Satallax 3.5 [13], and Vampire 4.5 [11]. The developers of Vampire
have informed us that its higher-order schedule is optimized for running on a single
core. As a result, the prover suffers some degradation of performance when running on
multiple cores. We evaluate both the version of Zipperposition that took part in CASC-
J10 (Zip) and the updated version of Zipperposition that supports our new calculus (New
Zip). Zip’s portfolio of prover configurations is based on λSup and techniques described
by Vukmirović and Nummelin [30]. New Zip’s portfolio is specially designed for our

Superposition for Full Higher-order Logic

410 A. Bentkamp et al.

new calculus and optimized for TPTP problems. To assess the performance of Boolean
reasoning, we used Sledgehammer benchmarks generated both with native Booleans
(SH) and with an encoding into Boolean-free higher-order logic (ofSH). For technical
reasons, the encoding also performs λ-lifting, but this minor transformation should have
little impact on results [6, Sect. 7].

The results are shown in Figure 4. The two versions of Zipperposition are ahead
of all other provers on both benchmark sets. This shows that, with thorough parameter
tuning, higher-order superposition outperforms tableaux, which had been the state of
the art in higher-order reasoning for a decade. The updated version of New Zip beats
Zip on TPTP problems but lags behind Zip on Sledgehammer benchmarks as we have
yet to further explore more general heuristics that work well with our new calculus. The
Sledgehammer benchmarks fail to demonstrate the superiority of native Booleans rea-
soning compared with an encoding, and in fact CVC4 and Leo-III perform dramatically
better on the encoded Boolean problems, suggesting that there is room for tuning.

7 Conclusion

We have created a superposition calculus for higher-order logic that is refutationally
complete. Most of the key ideas have been developed in previous work by us and col-
leagues, but combining them in the right way has been challenging. A key idea was to
Q≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈-normalize away inconvenient terms.

Unlike earlier refutationally complete calculi for full higher-order logic based on
resolution or paramodulation, our calculus employs a term order, which restricts the
proof search, and a redundancy criterion, which can be used to add various simplifica-
tion rules while keeping refutational completeness. These two mechanisms are undoubt-
edly major factors in the success of first-order superposition, and it is very fortunate that
we could incorporate both in a higher-order calculus. An alternative calculus with the
same two mechanisms could be achieved by combining oSup with Bhayat and Reger’s
combinatory superposition [10]. The article on λSup [6, Sect. 8] discusses related work
in more detail.

The evaluation results show that our calculus is an excellent basis for higher-order
theorem proving. In future work, we want to experiment further with the different pa-
rameters of the calculus (for example, with Boolean subterm selection heuristics) and
implement it in a state-of-the-art prover such as E.

Acknowledgment. Uwe Waldmann provided advice and carefully checked the com-
pleteness proof. Visa Nummelin led the design of the oSup calculus. Simon Cruanes
helped us with the implementation. Martin Desharnais generated the Sledgehammer
benchmarks. Christoph Benzmüller, Ahmed Bhayat, Mathias Fleury, Herman Geuvers,
Giles Reger, Alexander Steen, Mark Summerfield, Geoff Sutcliffe, and the anonymous
reviewers helped us in various ways. We thank them all.

Bentkamp, Blanchette, and Vukmirović’s research has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No. 713999, Matryoshka). Blanchette’s re-
search has received funding from the Netherlands Organization for Scientific Research
(NWO) under the Vidi program (project No. 016.Vidi.189.037, Lean Forward).

411

References

[1] Andrews, P.B.: On connections and higher-order logic. J. Autom. Reason. 5(3), 257–291
(1989)

[2] Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and
simplification. J. Log. Comput. 4(3), 217–247 (1994)

[3] Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T., Reynolds,
A., Tinelli, C.: CVC4. In: CAV. LNCS, vol. 6806, pp. 171–177. Springer (2011)

[4] Benanav, D.: Simultaneous paramodulation. In: Stickel, M.E. (ed.) CADE-10. LNCS,
vol. 449, pp. 442–455. Springer (1990)

[5] Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P.: Superposition for full higher-
order logic (supplementary material), https://doi.org/10.5281/zenodo.4534759

[6] Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P., Waldmann, U.: Superposition
with lambdas, accepted in J. Autom. Reason. Preprint at https://arxiv.org/abs/2102.00453v1
(2021)

[7] Bentkamp, A., Blanchette, J.C., Cruanes, S., Waldmann, U.: Superposition for lambda-free
higher-order logic. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS,
vol. 10900, pp. 28–46. Springer (2018)

[8] Bentkamp, A., Blanchette, J.C., Tourret, S., Vukmirović, P.: Superposition for full higher-
order logic (technical report). Technical report (2021), https://matryoshka-project.github.
io/pubs/hosup_report.pdf

[9] Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II—A cooperative automatic
theorem prover for higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNCS, vol. 5195, pp. 162–170. Springer (2008)

[10] Bhayat, A., Reger, G.: Set of support for higher-order reasoning. In: Konev, B., Urban, J.,
Rümmer, P. (eds.) PAAR-2018. CEUR Workshop Proceedings, vol. 2162, pp. 2–16. CEUR-
WS.org (2018)

[11] Bhayat, A., Reger, G.: A combinator-based superposition calculus for higher-order logic.
In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020, Part I. LNCS, vol. 12166, pp.
278–296. Springer (2020)

[12] Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: Giesl, J., Hähnle, R. (eds.)
IJCAR 2010. LNCS, vol. 6173, pp. 107–121. Springer (2010)

[13] Brown, C.E.: Satallax: An automatic higher-order prover. In: Gramlich, B., Miller, D., Sat-
tler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117. Springer (2012)

[14] Cruanes, S.: Extending Superposition with Integer Arithmetic, Structural Induction, and
Beyond. Ph.D. thesis, École polytechnique (2015)

[15] Fitting, M.: Types, Tableaus, and Gödel’s God. Kluwer (2002)
[16] Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed clause

normal form transformation. Information and Computation 199(1–2), 3–23 (2005)
[17] Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environ-

ment for Higher Order Logic. Cambridge University Press (1993)
[18] Huet, G.P.: A mechanization of type theory. In: Nilsson, N.J. (ed.) IJCAI-73. pp. 139–146.

William Kaufmann (1973)
[19] Jensen, D.C., Pietrzykowski, T.: Mechanizing ω-order type theory through unification.

Theor. Comput. Sci. 3(2), 123–171 (1976)
[20] Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: The TPTP typed higher-order form with rank-1

polymorphism. In: Fontaine, P., Schulz, S., Urban, J. (eds.) PAAR-2016. CEUR Workshop
Proceedings, vol. 1635, pp. 41–55. CEUR-WS.org (2016)

[21] Kotelnikov, E., Kovács, L., Suda, M., Voronkov, A.: A clausal normal form translation for
FOOL. In: Benzmüller, C., Sutcliffe, G., Rojas, R. (eds.) GCAI 2016. EPiC, vol. 41, pp.
53–71. EasyChair (2016)

Superposition for Full Higher-order Logic

https://doi.org/10.5281/zenodo.4534759
https://arxiv.org/abs/2102.00453v1
https://matryoshka-project.github.io/pubs/hosup_report.pdf
https://matryoshka-project.github.io/pubs/hosup_report.pdf

412 A. Bentkamp et al.

[22] Ludwig, M., Waldmann, U.: An extension of the Knuth-Bendix ordering with LPO-like
properties. In: Dershowitz, N., Voronkov, A. (eds.) LPAR-14. LNCS, vol. 4790, pp. 348–
362. Springer (2007)

[23] Nummelin, V., Bentkamp, A., Tourret, S., Vukmirović, P.: Superposition with first-class
Booleans and inprocessing clausification. In: Platzer, A., Sutcliffe, G. (eds.) CADE-28.
LNCS, Springer (2021)

[24] Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practi-
cal link between automatic and interactive theorem provers. In: Sutcliffe, G., Schulz, S.,
Ternovska, E. (eds.) IWIL-2010. EPiC, vol. 2, pp. 1–11. EasyChair (2012)

[25] Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2-3), 111–126 (2002)
[26] Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D., Schulz, S.,

Sebastiani, R. (eds.) IJCAR 2018. LNCS, vol. 10900, pp. 108–116. Springer (2018)
[27] Sutcliffe, G.: The TPTP problem library and associated infrastructure—from CNF to TH0,

TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)
[28] Vukmirović, P., Bentkamp, A., Blanchette, J., Cruanes, S., Nummelin, V., Tourret, S.: Mak-

ing higher-order superposition work. In: Platzer, A., Sutcliffe, G. (eds.) CADE-28. LNCS,
Springer (2021)

[29] Vukmirović, P., Bentkamp, A., Nummelin, V.: Efficient full higher-order unification. In:
Ariola, Z.M. (ed.) FSCD 2020. LIPIcs, vol. 167, pp. 5:1–5:17. Schloss Dagstuhl—Leibniz-
Zentrum für Informatik (2020)

[30] Vukmirović, P., Nummelin, V.: Boolean reasoning in a higher-order superposition prover.
In: PAAR-2020. CEUR Workshop Proceedings, vol. 2752, pp. 148–166. CEUR-WS.org
(2020)

[31] Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A comprehensive framework for
saturation theorem proving. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020,
Part I. LNCS, vol. 12166, pp. 316–334. Springer (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Superposition for Full Higher-order Logic
	1 Introduction
	2 Logic
	3 The Calculus
	4 Refutational Completeness
	5 Implementation
	6 Evaluation
	7 Conclusion
	Acknowledgment
	References

