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We have constructed deep neural networks, which can map fluctuating photo-electron spectra ob-
tained from noisy pulses to spectra from noise-free pulses. The network is trained on spectra from
noisy pulses in combination with random Hamilton matrices, representing systems which could ex-
ist but do not necessarily exist. In [Giri et al., Phys. Rev. Lett. 124 (2020) 113201] we performed
a purification of fluctuating spectra, that is mapping them to those from Fourier-limited Gaussian
pulses. Here, we investigate the performance of such neural-network-based maps for predicting spec-
tra of double pulses, pulses with a chirp and even partially-coherent pulses pulses from fluctuating
spectra generated by noisy pulses. Secondly, we demonstrate that along with a purification of a
fluctuating double-pulse spectrum, one can estimate the time-delay of the underlying double pulse,
an attractive feature for single-shot spectra from SASE FELs. We demonstrate our approach with
resonant two-photon ionization, a non-linear process, sensitive to details of the laser pulse.

I. INTRODUCTION

Machine learning (ML) has recently been applied not
only in physics [1–3], but more specifically also in strong-
field physics [4–6]. One of the most abundant topic
has been the reconstruction of the temporal shape of
an ultrashort laser pulse, aided by ML techniques [7–
9]. The most popular technique for this reconstruction
have been different variants of streaking techniques which
require normally considerable additional experimental ef-
fort, namely a Terahertz laser light source. With its help
one can generate a large amount of data — the streak-
ing traces — which can be processed with ML to extract
the attosecond pulse shape [7, 8]. However, also a direct
method from single-shot spectra has been introduced [9].

In a different vein, a trained neural network has been
proposed to represent a (semi-)classical path integral
for strong-field physics[10], replacing the need to explic-
itly calculate a large number of classical trajectories to
eventually determine the photo-ionization cross section,
which is, however, still an approximation as it is con-
structed semi-classically. To supply training data for a
network which can represent the full quantum path inte-
gral implies most likely a numerical effort that would be
higher than calculating observables directly.

In general, training of a deep neural network needs a
very large amount of non-trivial training data. To gener-
ate them experimentally requires substantial additional
effort (see the streaking example above). To obtain such
data without serious approximations within theory is of-
ten prohibitively expensive as in the second example.

Acknowledging this situation, we have invented an-
other approach: To calculate exactly and explicitly
(with the time-dependent Schrödinger equation) photo-
electron spectra with a large number of pulses and artifi-
cial systems, for which the calculation can be done very
quickly. In this way we are able to supply learning data
consisting of about 107 spectra. A network, trained with
these synthetic systems, is not only able to purify noisy

test spectra, unknown to the network but from the same
class of synthetic systems the training was performed
with. Also “real” spectra can be purified, which could
come from experiment, or for this work, from a realis-
tic full calculation with parameters for the helium atom.
Moreover, noise is in the context of machine learning
applied to non-linear photo-ionization helpful: Photo-
excitation and ionization processes are subject to strict
angular-momentum selection rules, thereby limiting the
coupling of light to matter. If a light pulse contains noise
and operates in a non-linear (at least two-photon absorp-
tion) regime it will couple to a much larger part of the
electron dynamics of the target. This helps to train the
mapping better and enlarges the pool of training spectra
naturally.

In general, all trained networks we will present map
one type of spectrum into another (desired) one for a
photo-ionization scenario of which only a few key ele-
ments need to be specified: The target system should
have an excited state around the photon energy ω∗ above
the ground state and intensities of the light pulse should
be such that two-photon processes dominate. It is not
necessary to know more about the target system as ide-
ally all target systems accessible by the light as specified
are covered by the learning space of the SHM. Therefore,
one can apply a trained network also to an experimental
spectrum from noisy pulses without detailed knowledge
of the target system.

Once the design for training such networks with syn-
thetic Hamilton matrices (SHMs) is set up, that is, the
spectra for learning have been computed, it is not diffi-
cult to construct other maps with new networks, as the
major effort is to supply the learning data which do not
have to be changed, while training new networks is com-
putationally relatively cheap. This allows us to provide
several mappings in the following to predict spectra for
ideal double, chirped and even highly structured partially
coherent pulses from noisy spectra. Finally, we will intro-
duce a network based mapping for a typical SASE FEL
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situation: There, single-shot noisy spectra are recorded
which depend on further, not explicitly known param-
eters, e.g., the geometrical orientation of the sample or
the time-delay of double pulses used. Considering the
latter situation, we reconstruct from noisy spectra simul-
taneously the noise-free spectra and the time-delay of the
double pulse. While we cannot do this with the accuracy
of the designated algorithms as described in the context
of streaking above, we do not need any additional infor-
mation but the spectrum itself.

The paper is organized as follows: In Sect. II we give
details on the representation of the noisy pulses, explain
how to construct the SHMs and describe our fast prop-
agation scheme to solve the electronic Schrödinger equa-
tion to obtain the photo-ionization spectra. Section III
details how the network is trained and set up, includ-
ing measures how to quantify errors in the reconstruc-
tion of spectra and a convenient way to parameterize
them. In Sect. IV we present the predictions of the photo-
ionization spectra for various pulse forms. Section V dis-
cusses the single-shot FEL scenario. The paper ends with
conclusions in Sect. VI.

II. PREREQUISITES

To determine the photo-ionization dynamics we need
two elements, the noisy pulses and an efficient way to
describe the electron dynamics. In the end we will spec-
ify the process we are interested in, namely two-photon
absorption.

A. Pulses

We distinguish between the “noisy pulses” which lead
to fluctuating spectra and the “reference pulses” for
which we want to predict spectra.

There are many different possibilities how to incorpo-
rate noise into a signal. We choose the partial-coherence
method [11, 12]. With this method one can create noisy
pulses whose average over an ensemble has a well-defined
pulse shape. As experimentally demonstrated [12] these
kind of pulses represent pulses from SASE FELs well. In
the following, we will use the pulse parameterisation

f(t) = N GT (t)Fτ (t) , (1a)

GT (t) = e−2ln2 t2/T 2

, Fτ (t) = F−1
[
eiφ(ω)F [e−t

2/τ2

cos(ω∗t)]
]
,

(1b)

where F and F−1 are the Fourier transform and its in-
verse, and ω∗ is the carrier frequency. Noise is intro-
duced through random spectral phases φ, uniformly dis-
tributed in the interval −π ≤ φ ≤ +π. The time scale of
the fluctuations is given by the coherence time τ , while
the Gaussian GT (t) limits the typical pulse duration to
T . Otherwise, the pulse duration could grow beyond all
limits due to the presence of random spectral phases.

A specific (deterministic) noise realization we will label
with φl(ω). If not stated otherwise, we use T = 3 fs and
τ = 0.5 fs in the following. In order to deal with com-
parable pulses, we use the normalisation constant N to
fix the pulse energy Ep, which would otherwise fluctuate
from realisation to realisation.

Any reasonable pulse can serve as a reference pulse,
for which the map created by the network can predict
the spectrum. Reasonable means in the present context
that the reference pulse’s frequency spectrum is covered
by the learning space of fluctuating spectra. The simplest
choice is the Gaussian GT (t) in (1) itself rendering the
prediction equivalent to removing the fluctuations from
the spectrum. Therefore, we call this type of map “purifi-
cation” [6]. In Sect. V we will purify fluctuating spectra
from double pulses.

B. Paradigmatic 1-dimensional strong-field
electron dynamics

Although the subsequent scheme to construct SHMs
is general, for the sake of clarity we will describe it for
the processes we will consider as an example, namely
two-photon absorption in a helium atom. Thereby, the
carrier frequency ω∗ of the laser is chosen to be quasi-
resonant with the transition energy to the first optically
allowed excited state.

A simple and convenient way to realize this concept
is to consider 1-dimensional dynamics with a soft-core
potential. The corresponding active one-electron Hamil-
tonian for helium is given by

H0 =
p̂2

2
+ V (x) =

1

2

(
i

d

dx

)2

− 1√
x2+a2

, (2)

with the soft-core parameter a = 1/
√

2 which gives a
ground-state energy E0 =−24.2 eV, close to the ioniza-
tion potential of real helium (24.6 eV). We represent the
Hamiltonian on a grid xj = j∆x, with ∆x = 0.067 a.u.
and xmax = 500 a.u. and determine by diagonalization

the eigenenergies H0|α〉 = |α〉 Ẽα from the ground state

up to Ẽα ≤ Emax ≈ 48 eV, resulting in 600 eigenstates.
With these eigenstates we calculate the matrix of the

time-dependent Hamiltonian H(t) = H0 + A(t)p̂ in ve-
locity gauge

H̃αβ(t) = Ẽα δαβ +A(t) Ṽαβ with Ṽαβ ≡
〈
α
∣∣i d

dx

∣∣β〉
(3)

with the vector potential A(t) = Af(t), A being the field
amplitude.

C. Synthetic Hamilton Matrices (SHMs)

Since we want to train our network such that it recog-
nizes almost arbitrary systems, which only need to have a
(quasi-)resonant transition energy for the first absorbed
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photon, we create SHMs by randomly changing energies
Eα and matrix elements Vαβ about the 1-dimensional
example system defined in Eqs. (2) and (3) through the
variation of four parameters in

Eα = 3[ξ1−γ]Ẽα for Ẽα<0, α>0, (4a)

V0α = 3ξ2 Ṽ0α for Ẽα<0, (4b)

Vαβ = 3ξ3 Ṽαβ for Ẽα<0, Ẽβ>0, (4c)

Vαβ = 3ξ4 Ṽαβ for Ẽα>0, Ẽβ>0 . (4d)

Here, ξi=1...4 = [−1,+1] are four uniform random num-
bers which lead to a large variety of artifical systems with
different bound-state energies (4a) and couplings between
ground and bound states (4b), as well as between bound
and free states (4c) and among free states (4d), respec-
tively. Finally, with the parameter γ the condition of res-
onant first-photon absorption can be met. In the present
case the energy difference between ground and the ex-
cited state is equal to the central laser frequency ω∗, i. e.,
E1−E0 = ω∗ if γ = 0.891 and ξ1 = 0. Note, that γ
does normally not hamper the application to experimen-
tal situations, as one typically knows the binding energy
and the central photon frequency. Finally, we construct
SHM Hαβ(t) inserting Eα, and Vαβ into Eq. 3.

The idea of SHM is an essential part of our approach
which serves two purposes: (i) it allows us to supply
a sufficient number of theoretical learning data for the
network and (ii) it represents a large variety of systems
which could exist in nature but not necessarily do so. The
SHM should be “dense enough” in the parameter space
such that always the Hamilton matrix of a real system
one is interested in can be interpolated between SHMs, as
interpolation capability is a strength of neural networks
(in contrast to extrapolation). Of course, one can for-
mulate more sophisticated SHMs with more parameters,
but for the present case the four random parameters are
sufficient.

Yet, we need to overcome one final obstacle, and that
is the calculation of the spectra based on the SHMs. To
obtain those spectra for arbitrary pulse forms A(t) re-
quires to solve the time-dependent Schrödinger equation
(TDSE) which in turn implies that we need an extremely
fast propagation scheme to be able to solve of the order
of 107 TDSEs in a reasonable time.

D. Fast solution of the TDSE with SHMs

To achieve high propagation efficiency we make use of
the fact that the Hamilton matrix (3) depends explic-
itly on time only through the vector potential A = A(t).
Hence, instead of discretizing the time equidistantly, we
discretize the vector potential Amin ≤ A ≤ Amax in jmax

in steps Aj = j δA with δA = (Amax −Amin)/(jmax − 1).
With the time-independent Hamiltonian Hj = H0 +

Aj p̂ we can construct a short-time propagator which is
valid over a time span δtj short enough such that a fixed

Aj is a reasonable approximation. Therefore, the unitary
short-time propagator can be obtained by direct integra-
tion,

U j = e−iHjδtj . (5)

The full propagator U(tf , ti) =
∏
k U

jk , is now sim-
ply a concatenation of the short-time propagators over
respective time spans δtk (with k = 1, . . . , kmax) over
which the discretised Aj hold, where δt1 = t1 − ti and
δtkmax

= tf − tkmax−1.
To make efficient use of the SHMs, it is imperative

that we use the matrix elements from (4) as they do not
require explicit integration over wave functions. Hence,
we diagonalise 〈α|Hj |β〉 = Eα δαβ + j δAVαβ in the ba-
sis of H0 to give its eigenenergies Ejγ and eigenfunctions

φjγ =
∑
αW

j
γαφα leading to the short-time propagator

U jαβ =
∑
γ

W j
αγe−iEjγ δtjW j

γβ (6)

for fixed vector potential Aj .
Note, that over the entire pulse A(t) certain Aj may

occur more than once with different time intervals over
which they are valid (if the local derivative dA(t)/dt|Aj
is large, the time interval will be small and vice versa).

Therefore it is worthwhile to compute the U jαβ before-
hand and keep them stored. They can be used for all
pulses (the fluctuating ones as well as the reference one)
for a Hamilton matrix specified by the elements (4). Fur-
thermore, we do not calculate the full matrix of the prop-
agator which would involve many matrix products. It is
sufficient to propagate the vector |0〉 of the initial state
(the ground state of the system) which requires only the
computation of matrix-vector products. Only in this way
we were able to calculate millions of spectra, necessary
to train the network.

III. TRAINING THE NETWORK

Through training with fluctuating spectra from the
SHMs, the deep neural network encodes the dynamics
of two-photon absorption spectra with the central pho-
ton frequency ω∗ for all target systems covered by the
SHMs. If the network “sees” during training a specific
class of spectra much more often than representatives of
other classes, it will be biased towards those often found
spectra once trained. Hence, we have to fill the learning
space of spectra (available for training, validating and
testing the network) as homogeneously as possible.

A. Generating spectra

Synthetic Hamilton matrices which nearly satisfy the
resonance condition, i. e., ξ1 = 0 in Eq. (4), are partic-
ularly sensitive to the pulse shape and therefore gener-
ate more structured and diverse spectra through nonlin-
ear processes, here resonant two-photon ionization, than
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SHMs with ξ1 6= 0. To sample the space of input spectra
as homogeneously as possible, 50% of the spectra come
from SHMs with ξ1 ≈ 0 and the other 50% spectra are
from SHMs with uniform ξ1, randomly selected in the
range [−1,+1]. After training on these spectra the net-
work is not biased for ξ1 around zero but works equally
well for all ξ1 in the specified range.

We calculate nmat = 40, 000 reference spectra from the
same number of SHMs. For each reference spectrum, we
calculate npul = 200 spectra (“fluctuating spectra”) from
noisy pulses obtained with the partial-coherence method
[11] using a different noise realization for each SHM. Since
solving the TDSE for a single spectrum takes only a
few seconds thanks to the highly-optimized propagation
scheme outlined in section II D, this procedure can be
executed despite the need to solve about 107 TDSEs.

For each SHM, we average over all fluctuating spectra
P k(E) = 1

npul

∑
l Pkl(E) instead of using the individual

fluctuating spectra Pkl(E) computed from Hkl(t), where
k labels the Hamilton matrix and l the noisy pulse. We
normalize all averaged fluctuating and reference spectra,
i. e.,

∫
dE P (E) = 1.

The resulting set of 40, 000 averaged fluctuating spec-
tra constitutes a major part of the learning space to train
the networks in section 4 for the prediction of spectra
from different pulse shapes.

B. Parameterization of spectra and cost functions

For efficient representation we parameterize each spec-
trum P k(E) in a basis of harmonic oscillator eigenfunc-
tions {χκ},

P k(E) =
∣∣∣ nbas∑
κ=1

C
κ

kχκ−1(E)
∣∣∣2 , (7)

with the vector C≡{C1 . . . Cnbas
} of coefficients. A basis

size of nbas = 100 is required for the averaged fluctuating
spectra, while for the noise-free spectra nbas = 60 is suf-
ficient.

The network maps the coefficients of the fluctuating
spectra to those of the predicted underlying noise-free
spectrum, {Ck} → {Ck}. Goal of the training is to min-
imize the difference between the predicted vector Ck for
the noise-free spectrum and Cref

k of the expected refer-
ence spectrum. The coefficients allow us to define a dif-
ference familiar from vector spaces as

δΩ ≡
1

nΩ

nΩ∑
k=1

[
Ck −Cref

k

]2
, (8a)

which we use for the cost function in the network train-
ing. As a measure for the difference of two (normalized)
spectra i and j we define their “distance”

Dij =

∫
dE
∣∣Pi(E)− Pj(E)

∣∣ (8b)

FIG. 1. Sketch of training and use of a deep neural network
with synthetic Hamilton matrices and noisy spectra.

and the average mutual distance

DΩ =
2

nΩ(nΩ−1)

∑
i>j

Dij (8c)

within a set of nΩ spectra. With

εΩ ≡
1

nΩ

nΩ∑
k=1

Dk,kref
, (8d)

one can quantify the error in terms of the distance (8b) of
the spectrum k from the reference spectrum kref , where
ε ≤ 2. The label Ω stands for the set of data the er-
ror is calculated for and can assume the values “train”,
“val”, or “test” for training, validation or test data, re-
spectively.

C. The training setup

The full set of learning data contains nmat = 40,000
pairs of spectra. Each pair consists of an averaged noisy
spectrum with its respective reference spectrum for the
same SHM. The full learning data set with nmat pairs
is split into training (80 %), validation (10 %) and test
(10 %) data, respectively. Training corresponds math-
ematically to minimizing the cost function (8a) with
Ω = train. Figure 1 provides a sketch of what goes into
training and prediction.

Implemented with the deep-learning library Keras
[13], a fully connected feed-forward artificial neural net-
work is used to establish the mapping. It contains 5 layers
with 60 neurons on each and was trained at a learning
rate of 0.001 with 100 epochs, a batch size of 200 and a
learning patience of 25. Each hidden layer neuron con-
tains ReLU activation function[14]. The Adam optimizer
[15] is used to minimize the cost function (8a). The train-
ing success is quantified with the error functions (8a) and
(8d), which both decay logarithmically with the size of
the learning data, typical for deep learning [16, 17].
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IV. PREDICTION OF SPECTRA FOR
DIFFERENT PULSE SHAPES

To assess the quality of the mapping achieved with
the trained networks on the basis of the SHM learning
data, we will discuss scenarios with three different ref-
erence pulses for which we predict spectra: (i) double
pulses with different time delays Td and peak amplitude
ratios A1 : A2, (ii) chirped pulses with chirp parameter
β, and (iii) partially coherent reference pulses with differ-
ent coherence times τ according to (1). We have used the
network setup for all three scenarios as described in the
previous section with the same set of fluctuating spec-
tra for training but paired for each SHM with reference
spectra which differ corresponding to the above reference
pulses. The fluctuating spectra used as input of the net-
work have been generated with the pulses from (1) with
a pulse length of T = 3 fs, a coherence time of τ = 0.5 fs,
central photon frequency of ω∗ = 21 eV and intensities
between 8 × 1015 W fs/cm2 and 8 × 1016 W fs/cm2. For
further reference and to give an overview how successfully
the trained networks can predict spectra for the different
pulse shapes from the fluctuating spectra, we show to
begin with in Fig. 2 the absolute distance errors (ε ≤ 2)
of all predicted spectra. Note that for double pulses, the
error decreases with increasing time-delay which is prob-
ably to be expected since it is easier to identify the time
delay if it is larger. The smallest one Td = 4 fs basi-
cally corresponds to a single pulse (recall that the width
of each individual pulse is T = 3 fs). Interestingly, the
sensitivity to the amplitude ratios of the double pulses is
even larger than to the time delay: The spectrum from a
1st pulse which is is stronger than the 2nd one is easier
to predict than vice versa with pulses of equal strength
taking the middle position in terms of the error.

The strongest sensitivity occurs for spectra from
chirped pulses where the ones with the most positive
chirp (β = +3) are twice as difficult to predict than
ones with β = −3. We will come back to this point
later. Finally, it is surprising that a spectrum from a
partially-coherent pulse, which is naturally very “busy”,
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FIG. 2. Absolute distance error εtest (8d) of the different
predicted spectra for test data: double pulses with time delay
Td and amplitude ratios A1 : A2 as indicated, chirped pules
with chirp parameter β, and partially coherent pulses with
coherence time τ .

can be identified and therefore predicted from the (aver-
aged) fluctuating spectra, even if the coherence time is
shorter than that of the noise (τ = 0.5 fs) with similar
accuracy as for longer coherence times of the reference
spectrum. We will discuss the spectra from the different
pulse forms now in detail.

A. Prediction of spectra from double pulses

The reference pulse is here given by

fd(t) = Nd

[
A1GT (t+Td/2) +A2GT (t−Td/2)

]
cos(ω∗t),

(9)
where Td is the delay between the maxima of the two
pulses with shape GT from (1b) and respective ampli-
tudes Ai. The normalization constant Nd is used in the
same manner as in Eq. (1).

Figure 3 shows predicted spectra for exemplary double
pulses with pulse shapes indicated in gray. Comparison
of black and blue curves also helps to develop a sense
for what the quantitative distance errors in Fig. 2 mean
for the quality of the predictions. The generally good
agreement proves that the training of the network was
successful and has generated an accurate map.

However, the test data, although not used for train-
ing, belong to the same class of SHM used for training.
A more realistic test is the prediction of a 3D helium
spectrum as shown in Fig. 3 (middle), as this is simi-
lar to predicting spectra from experimental fluctuating
pulses. In general, the prediction works very well, as one
can see — only small details of the spectral structures are
sometimes not resolved. This is remarkable, as the shapes
of the spectra from the same reference pulses are quite
different for the 1D system used for training and the 3D
helium (compare the individual equivalent panels of the
left and middle Fig. 3). This confirms the transferability
of the network and underlines its interpolation capability.

Predictions become worse for increasing pulse energy
as shown in the right part of Fig. 3. This is also true for
the test data (not shown) but to a slightly lesser extent.
While features are still reproduced, the predicted spectra
are in general slightly too wide compared to the reference
spectra.

B. Prediction of spectra from chirped pulses

The chirped reference pulses are parameterised by β
and read

fβ(t) = NβGβ(t) cos
(
ϕβ(t)

)
, (10a)

ϕβ(t) = ω∗t+
2 ln 2

β + 1/β

t2

T 2
, Tβ =

√
1 + β2 T , (10b)

with the Gaussian from (1b) and T = 3 fs. Again we
normalize the pulse energy, here by means of Nβ , as be-
fore in Eqs. (1) and (9). The predicted spectra are shown
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are 1:2, 1:1, and 2:1, respectively, see (9). left matrix: Prediction for a SHM from test data. The SHM is chosen such
that Ep ≈ 3.84×1016 W fs/cm2 and each prediction returns an absolute distance (numbers in the panels) Dkkref , cf. Eq. 8b,
within the range of 30%. . . 70% in the error distribution. middle matrix: Prediction of noisy 3D helium spectra (composed
of the sum of the two relevant angular-momentum channels s and d) through the trained network for pulses of pulse energy
Ep = 1.6×1016 W fs/cm2. right matrix: Same as middle matrix but for an energy of Ep = 6.4×1016 W fs/cm2.

in Fig. 4. They do not exhibit detailed structure, mostly
a single peak with different form of the shoulders and
reconstruction seems to work well with the exception of
large positive chirp, where the position of the spectral
peak is systematically red shifted in the predicted spec-
trum consistent with the largest error (see Fig. 2) the
positively chirped spectra have.
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pulses (10). The reference 3D helium spectra are shown in
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C. Prediction of spectra from partially-coherent
pulses

We finally will predict spectra from pulses which are
themselves “noisy”, i.e., partially coherent and generated
according to (1) but for different coherence times τ , typ-
ical for SASE FELs. The motivation for such reference

spectra was to see where the prediction breaks down
since we had the expectation that, at least for spectra
from pulses with coherence times much shorter than the
ones used for the learning space of fluctuating spectra,
the trained network would loose its predictive capability,
even more so as the spectra have quite detailed features,
see Fig. 5. However, to our surprise this is not the case,
as also revealed by the errors given in Fig. 2.
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D. Prediction errors for different pulse shapes

Now, we are in the position to understand details of the
distance errors εtest in Fig. 2 for reference spectra from
different pulse shapes. As one can see from Fig. 6 as a
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FIG. 6. Properties of test reference spectra for the pulses
from Fig. 2. Average ionization yield Pion (blue, right axis)
and average mutual distance Dtest (red, left axis).

rule of thumb, the smaller the ionization probability Pion,
the smaller is the diversity of spectra the pulses gener-
ate including reference spectra. All spectra in this section
have been analyzed with networks trained with a learning
data set of the same size and a common set of input av-
eraged fluctuating spectra. Therefore, one would expect
that the average mutual distance DΩ, defined in Eq. (8c),
of reference spectra is larger for a more extended space
of highly diverse spectra as compared to a smaller space
of less diverse spectra. This is indeed the case as Dtest

shown with red points in Fig. 6 reveal: They follow the
trend of Pion for the test data. Since it is more difficult
for the network to interpolate if the available reference
spectra are more distant, one would expect larger errors
which explains the trend of the distance errors in Fig. 2.
In particular striking is the change for chirped pulses[18]:
negative chirp produces small Pion and in turn a moder-
ate diversity of spectra with relatively small Dtest and
therefore also the smallest εtest. For positive chirp, the
exact opposite holds. One cannot expect that ionization
yield, distance of spectra and errors are directly propor-
tional, as the physical process leading from the pulses to
the spectra is still non-linear. For instance, long time-
delays in double pulses give rise to more diverse spec-
tra than short time-delays. Moreover, the εtest are for
predictions from noisy spectra. Yet, the causal chain of
Pion → Dtest → εtest holds.

This section has shown that the trained networks can
predict spectra from widely varying pulse forms well. The
effort one has to invest into the deep neural networks for
the prediction of the spectra depends on the diversity of
spectra a certain pulse form is capable to generate.

V. SINGLE-SHOT NOISY DOUBLE PULSES:
SIMULTANEOUS PURIFICATION OF SPECTRA

AND RECONSTRUCTION OF TIME-DELAY

The analysis of the previous section has prepared us for
the final goal of this work, namely purifying the spectra
while simultaneously extracting the correct time-delay
from spectra recorded with noisy double pulses which
have an unknown time-delay within a certain interval.
This scenario is motivated by SASE XFEL pulses[19],

where the pulse is split by a chicane for the relativistic
electron bunch which creates the light pulse, or by situ-
ations where an XFEL pulse and a time-delayed strong
laser pulse are used together whereby the delay between
the two pulses is characterized by a jitter from shot to
shot.

We model fluctuating double pulses with noise-free
double pulses and admixture of noisy double pulses,

fdq(t) = Ndq[GT (t+Td/2)+GT (t−Td/2)][cos(ω∗t)+qFτ (t)],
(11)

where q = 0.32, τ = 0.3 fs, GT and Fτ are from (1) and
the time-delays Td vary between 2 fs and 14 fs. Hence,
for this task we have to create a new learning space of
fluctuating spectra as input for the network based on
fluctuating double pulses. And again, the normalization
factor Ndq ensures the required pulse energy.

Since so far we have not extracted the time-delay of
the pulses from the spectra, we verify in section V A, that
it is possible to identify the time-delay of double pulses
from noise-free spectra generated by those pulses. In sec-
tion V B we will address fluctuating spectra. We first
determine the pulses’ time-delay Td encoded in single-
shot spectra generated with noisy double pulses. Subse-
quently, we average the single-shot spectra with identi-
fied Td over small intervals of time-delay (1fs) and pu-
rify these averaged spectra. Recall, that purifying means
that we remove the fluctuations from spectra by predict-
ing the spectra generated from the respective noise-free
pulse forms, in the present case from the noise-free double
pulses.

A. Extraction of time-delay from spectra
generated with double pulses

Here, we aim at constructing a network-based map
to extract the time-delays Td of double pulses from the
(noise-free) spectra the pulses fd0 from (11) generate. To
this end we have generated a learning data set of spec-
tra from 20,000 SHMs, each paired with a single double
pulse fd0(t) with delays between 2 and 14 fs. The learn-
ing data is distributed into training, validation and test
data as before (see Sect. III C), and the network is also
that of Sect. III C, but the number of neurons on each
layer is 50, the learning rate is 0.008 and the number of
epochs is 200.

Figure 7 shows the training success with the SHMs as
well as the transfer of the network to unknown 3D he-
lium spectra. The trained network reproduces well the
delays (results scatter along the ideal red line with an
error give in the inset). For short Td the results de-
viate from the ideal line since the individual pulses in
the double pulse have a width of T = 3 fs which limits
the resolution towards small time-delays. Results for the
reconstructed time-delay for full 3D helium spectra are
given for Td of 4, 8, and 12 fs, respectively, and demon-
strate the transferability of the network. The upper row



8

2 4 6 8 10 12 14
reference T ref

d  [fs]

2

4

6

8

10

12

14

pr
ed

ic
tio

n 
T

p
re

d
d

 [f
s]

-30 -15 0 15 30
error (%)

0

4

8

co
un

ts

×10−2

0
15
30

yi
el

d 
p
(E

)

10 16 22

4 fs

10 16 22
energy E [eV]

8 fs

10 16 22

12 fs

FIG. 7. Predicted time-delays against reference time-
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represents error free prediction. The trained network is trans-
ferred to the 3D helium spectra for three time delays: 4 fs, 8 fs,
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and double pulse shapes sketched. The upper inset gives the
corresponding photoelectron spectra.

shows the corresponding 3D helium spectra. Given the
similarity of these spectra for different time-delays it is
remarkable that the trained network can reliably extract
the time-delays. We may conclude that we can map out
the delay of the pulse from the spectrum it has produced
with the help of the trained network.

B. Purification of single-shot spectra and
simultaneous extraction of the time-delay of the

generating double pulse

Finally, we analyze noisy single-shot spectra with the
goal to purify them as in Sect. IV and to extract the time
delay of the generating double pulse as in Sect. V A si-
multaneously. In order to have a reasonable statistics for
the map and also for having reasonably different spec-
tra for different time delays, we reconstruct from each
noisy single-shot spectrum (all for the same SHM) the
time-delay but average the spectra afterwards over small
intervals (1 fs) of time-delays. Subsequently, the aver-
aged spectra are passed through another trained net-
work to purify them. The result is shown in Fig. 8. The
scattered points are reconstructed time-delays coloured
with the reference time-delays. The monotonous change
in colors demonstrates that the reconstruction of time-
delays for the test data has been successful. The spectra
within 1 fs intervals of reconstructed time-delays are av-
eraged and subsequently purified. They are shown on

the right in red along with reference spectra (black), av-
eraged over the same interval of time-delays. The gen-
erally good agreement demonstrates that reconstruction
of time-delays and purification of the single-shot spectra
is possible without additional information but the single-
shot spectra.
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FIG. 8. Simultaneous reconstruction of time-delay and pu-
rification of noisy spectra for a single Hamilton matrix taken
from test data. Single-shot fluctuating spectra for random
time-delays are passed through a network to reconstruct the
underlying time delays which are shown as scattered points
where the color represents the reference time-delay. We con-
sider 12 intervals of time delay in the range 2–14 fs with in-
terval length of 1 fs. All single-shot spectra which fall into
on interval of time-delay are averaged. The averaged spectra
are passed through an another network which maps averaged
noisy spectra to purified ones. The predicted purified spectra
(red) are compared to reference spectra (black).

The last step is to proof that the reconstruction and
purification can be transferred to spectra unknown to the
networks. To this end we take noisy single-shot spectra of
3D helium with three well-defined time-delays and pass
them through the trained network for reconstruction of
the time-delay. The scattered points in Fig. 9 show the
reconstructed time-delays. We average the corresponding
spectra over 1 fs about the three peak time-delays in the
scattered points and pass the averaged spectra through
the purification network to arrive at the three spectra on
the right in red. They agree well with the correspond-
ing reference spectra, averaged over the same intervals of
time-delay (black). Hence, the trained networks should
be able to reconstruct the time-delay and purify the cor-
responding fluctuating experimental spectra as they are
produced by SASE FELs.

VI. CONCLUSIONS

To summarize, we have devised a strategy to create
maps through deep neural networks between fluctuating
nonlinear photo-ionization spectra and noise-free spec-
tra and between fluctuating single-shot spectra and pulse
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FIG. 9. Same as Fig. 8 but for 3D helium for which the net-
work was not trained. The distribution of predicted time-
delays shows three main peaks at 4, 8, 12 fs. The single-shot
spectra are averaged over all spectra with time-delays in an
interval of 1 fs about the three peaks. The averaged spectra
are passed through the trained network to obtain the corre-
sponding purified spectra shown on the right (red). The three
averaged reference spectra (black) are obtained in the same
way.

properties. A crucial part of this strategy is the formula-
tion of synthetic Hamilton matrices which describe arti-
ficial systems, similar to ones existing in reality. We use
the SHM to generate a sufficient amount of spectra for
training the network. In a first application [6] we purified

fluctuating spectra as typically produced by SASE FELs
through a neural-network-based map.

Here, we have taken this mapping capability to a
new level by predicting from fluctuating spectra — which
should come ultimately from experiment — the spec-
tra which would be obtained with specific noise-free
pulses, namely double pulses, chirped pulses and chaotic
(partially-coherent) pulses. While generally the predic-
tion works as well as the purification (prediction) for sim-
ple Gaussian pulses before, the error analysis has revealed
interesting differences for the different pulse shapes.

In a second application we have constructed a neural-
network-based map which can extract the time-delay of
double pulses from fluctuating single-shot spectra gen-
erated by those noisy double pulses. Finally, we could
demonstrate that suitably trained networks can achieve
both, purification and extraction of the time-delay, from
fluctuating single-shot spectra as typically produced by
SASE FELs. Clearly, neural networks open promising
new ways to analyze in particular noisy data with a po-
tential which has been by far not exhausted.
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J. Ullrich, O. Herrwerth, M. F. Kling, X.-J. Liu, K. Mo-
tomura, H. Fukuzawa, A. Yamada, K. Ueda, K. L.
Ishikawa, K. Nagaya, H. Iwayama, A. Sugishima, Y. Mi-
zoguchi, S. Yase, M. Yao, N. Saito, A. Belkacem,
M. Nagasono, A. Higashiya, M. Yabashi, T. Ishikawa,
H. Ohashi, H. Kimura and T. Togashi, Opt. Express,
2011, 19, 21698.

[13] F. Chollet, Keras: The Python deep learning library,
https://keras.io, 2015.

[14] B. Hanin, Mathematics, 2019, 7, 992.
[15] D. P. Kingma and J. L. Ba, arXiv:1412.6980 [cs], 2017.
[16] S.-i. Amari, N. Fujita and S. Shinomoto, Neural Comput.,

1992, 4, 605.

https://keras.io


10

[17] J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun,
H. Kianinejad, M. M. A. Patwary, Y. Yang and Y. Zhou,
arXiv:1712.00409 [cs, stat], 2017.

[18] U. Saalmann, S. K. Giri and J. M. Rost, Phys. Rev. Lett.,
2018, 121, 153203.

[19] A. Marinelli, D. Ratner, A. A. Lutman, J. Turner,
J. Welch, F.-J. Decker, H. Loos, C. Behrens, S. Gile-
vich, A. A. Miahnahri, S. Vetter, T. J. Maxwell, Y. Ding,
R. Coffee, S. Wakatsuki and Z. Huang, Nat. Commun.,
2015, 6, 6369.


	Perspectives for analyzing non-linear photo ionization spectra with deep neural networks trained with synthetic Hamilton matrices
	Abstract
	I Introduction
	II Prerequisites
	A Pulses
	B Paradigmatic 1-dimensional strong-field electron dynamics
	C Synthetic Hamilton Matrices (SHMs)
	D Fast solution of the TDSE with SHMs

	III Training the network
	A Generating spectra
	B Parameterization of spectra and cost functions
	C The training setup

	IV Prediction of spectra for different pulse shapes
	A Prediction of spectra from double pulses
	B Prediction of spectra from chirped pulses
	C Prediction of spectra from partially-coherent pulses
	D Prediction errors for different pulse shapes

	V Single-shot noisy double pulses: Simultaneous purification of spectra and reconstruction of time-delay
	A Extraction of time-delay from spectra generated with double pulses
	B Purification of single-shot spectra and simultaneous extraction of the time-delay of the generating double pulse

	VI Conclusions
	 Acknowledgements
	 References


