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We consider a hybrid system of matter and light as a sensing device and quantify the role of
cooperative effects. The latter generically enhance the precision with which modifications of the
effective light-matter coupling constant can be measured. In particular, considering a fundamental
model of N qubits coupled to a single electromagnetic mode, we show that the ultimate bound for the
precision shows double-Heisenberg scaling: ∆θ ∝ 1/(Nn), with N and n being the number of qubits
and photons, respectively. Moreover, even using classical states and measuring only one subsystem,
a Heisenberg-times-shot-noise scaling, i.e. 1/(N

√
n) or 1/(n

√
N), is reached. As an application, we

show that a Bose-Einstein condensate trapped in a double-well potential within an optical cavity
can detect the gravitational acceleration g with the relative precision of ∆g/g ' 10−9Hz−1/2. The
analytical approach presented in this study takes into account the leakage of photons through the
cavity mirrors, and allows to determine the sensitivity when g is inferred via measurements on atoms
or photons.

I. INTRODUCTION

The use of hybrid light-matter systems has a large po-
tential for the development of classical and quantum tech-
nologies. The idea of exploiting the best of both worlds
culminates in the concept of a quantum network [1–3],
where photons act as information carriers channeling be-
tween nodes, where the matter is used for information
storage and as source of the nonlinearities needed for in-
formation processing. These optical nonlinearities corre-
late matter with light, allowing to gain information and
even modify the former by measuring the latter. This
permits for instance to control the motion of mechanical
objects via light in optomechanical systems [4, 5], with
important consequences for interferometry of displace-
ment measurements [6–11].

For such schemes it is crucial to reach a strong light-
matter coupling, which can be achieved by employing
optical resonators. Among the most promising kinds
of matter, neutral atoms stand out due to the high
control achievable over internal and external degrees
of freedom [12–14]. For instance, atom-light coupling
can be exploited to efficiently create entanglement in
atomic ensembles [15–21], which constitutes an alter-
native route to the use of intrinsic atom-atom nonlin-
earities [22–32], with applications for quantum metrol-
ogy beating the shot-noise limit [33]. Hybrid devices
exploiting atom-light nonlinearities and cooperative ef-
fects for metrology and sensing include white-light in-
terferometers with anomalous dispersion [34, 35], super-
radiance [36] and superradiant lasers [37, 38], single-
atom cavity-QED platforms for nonclassical light [39],
quantum state-transfer protocols with information recy-
cling [40–43], optical magnetometers [44, 45] and their
nonlinear version [46]. In particular, in the field of in-
ertial sensing with atoms [47–49], the use of optical res-
onators has been shown to enhance the precision of a
Mach-Zehnder interferometer [50] and is for instance ex-
pected to improve the sensitivity of Bloch-oscillation-
based metrology [51, 52]. More recently, the supersolid

phase of ultracold bosons induced by the coupling to an
optical resonator has been predicted to allow for very
precise gravimetry [53, 54]. Recently, an optical cavity-
QED setting with strong cooperative atom-light interac-
tions has been used to create nonclassical states of light,
which allow for electric-field sensing beyond the standard
quantum limit [55]. Despite these various applications,
a systematic study of the performance of hybrid light-
matter systems is still lacking in the regime where coop-
erative effects are dominant.

In this work, we characterize the different working
regimes of a hybrid light-matter sensor aiming at mea-
suring modifications of the effective light-matter coupling
constant. We consider a minimal model for cooperative
effects, consisting of N qubits coupled to a single electro-
magnetic mode. This model allows for closed analytical
expressions for the measurement error, also called the
precision or the sensitivity. We find that the ultimate
bound for the error satisfies a double-Heisenberg scaling:
∆θ ∝ 1/(Nn), with both the number of qubits N and
of photons n. We also study the dependence on different
initial states (classical and non-classical) of the system,
as well as on different measurements. Even for classi-
cal states of qubits and photons, and by simply mea-
suring a qubit or a photon observable, the error scales
partially at the Heisenberg limit, i.e., ∆θ ∝ 1/(

√
Nn) or

∆θ ∝ 1/(N
√
n), respectively.

Finally, we consider a specific example where an atomic
Bose-Einstein condendsate (BEC) trapped in a double-
well potential is dispersively coupled to a single mode of
an optical cavity. The gravitational acceleration g mod-
ifies the effective atom-photon coupling and this effect is
amplified by the cooperative effects. We determine the
dynamics of the system and analytically calculate the
precision assuming that g is deduced either from the ho-
modyne detection of the mean of the quadrature of light
or from the mean imbalance between the atomic occupa-
tion of each well. We show that the relative error ∆g/g,
which scales inversely both with the numbers of atoms

and photons, can reach the level of 10−9Hz−1/2 with re-
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alistic parameters and classical states of matter and light,
also including the effect of photon loss. This precision is
comparable with the one predicted for a supersolid state
of atoms in cavities [54]. Our results can be easily ex-
tended to other input states, regimes of parameters or
estimation protocols.

The paper is organized as follows: In Section II we in-
troduce the model and derive the ultimate bounds for the
sensitivity, as well as specific bounds for certain types of
measurements and input states. In Section III we con-
sider a specific scheme where the electromagnetic field is
coherently driven and lossy and the qubits are prepared
in a Gaussian state. In Section IV we present application
of our model in gravity sensing and its possible precision
using coherent atomic states. We conclude in Section V.
Detailed analytical calculations are presented in the Ap-
pendix.

II. MODEL AND GENERAL PRECISION
BOUNDS

In order to demonstrate how cooperative effects can en-
hance the sensitivity of a hybrid light-matter sensor we
consider a minimal model describing N qubits all equally
coupled to a single mode of an electromagnetic field, cor-
responding to the following Hamiltonian (for the details
see Ref. [56] and Appendix A)

Ĥ = (−∆c + a1N)n̂+ η(â+ â†) + a2n̂Ĵx, (1)

where in the rotating frame ∆c is the characteristic fre-
quency of the electromagnetic mode which is coherently
driven with a strength η, n̂ = â†â is the number of

photons in the mode, and Ĵx = 1
2

∑N
i=1 σ̂

(i)
x is the x-

component of the collective spin operator (σ̂
(i)
x is the

x-axis Pauli matrix for the i-th qubit). The Hamilto-
nian (1) contains two types of light-matter coupling: a
static collective shift of the electromagnetic mode fre-
quency quantified by the coupling constant a1, and a
cavity-induced “quantized effective magnetic field” cou-
pled to the collective spin operator (or, equivalently, a
qubit-induced dynamical shift of the mode frequency)
with characteristic strength a2.

A. Ultimate bounds on the sensitivity

We now demonstrate that the system governed by the
Hamiltonian (1) can be employed as a sensor for the
estimation of a parameter θ entering the light-matter
coupling constants a1 and/or a2, with the best possible
precision showing the double-Heisenberg scaling ∆θ ∝
n−1N−1, where n = 〈n̂〉 is the number of photons.

To this end, we recall that according to the Cramer-
Rao lower bound [57], the sensitivity in estimating the

value of θ is bounded from below by

∆θ >
1√
FQ

. (2)

The FQ is the quantum Fisher information (QFI) [58]
given by

FQ =
∑
i,j

(λi − λj)2

λi + λj

∣∣∣〈i|ĥ |j〉∣∣∣2 , (3)

where |i〉’s and λ’s are the eigenvectors and the corre-
sponding eigenvalues of the density matrix, i.e., %̂ =∑
i λi |i〉〈i|. For pure states, when only one λ is non-zero,

this simplifies to

FQ = 4(〈ĥ2〉 − 〈ĥ〉2) ≡ 4〈(∆ĥ)2〉. (4)

The operator ĥ generates the transformation in the pa-

rameter space, namely ĥ = i(∂θÛ)Û†, where Û = e−iĤt

is the evolution operator determined by the Hamiltonian
from Eq. (1). It can be rewritten in a more useful form
(see Appendix B), namely

Û(t) = D̂†(β̂)e−iω̂tâ
†âD̂(β̂)eiηtβ̂ , (5)

where β̂ = ηω̂−1 and ω̂ = −∆c + a1N + a2Ĵx, and

D̂(β̂) = eβ̂â
†−β̂†â is a generalization of the displacement

operator [59, 60]. With Eq. (5), the operator ĥ can be
evaluated explicitly (see Appendix C for details)

ĥ =
∂ω̂

∂θ

(
−i β̂

2

η
(â† − â) + t(â† + β̂)(â+ β̂)+

+i
β̂2

η

[
(â† + β̂)eitω̂ − (â+ β̂)e−itω̂

]
+ tβ̂2

)
. (6)

A large QFI and thereby a high sensitivity, is achieved

whenever ĥ scales strongly, i.e., at least linearly, with the
number of particles and the time t. This is the case for
the generator in Eq. (6), which contains terms scaling
linearly with the number of qubits and photons, as well

as with time t. To see it, we rewrite ĥ as

ĥ = t
∂ω̂

∂θ
â†â+ f̂(ω̂, η, â, â†; t), (7)

where the explicit form of f̂ can be read-out from Eq. (6).

In the absence of the drive, f̂ is zero. In such a case, for
a light-matter state

|ψ〉 =

∣∣−N2 〉+
∣∣N

2

〉
√

2
⊗ |n〉 , (8)

which is composed of a superposition of eigenstates of Ĵx
with the minimal and the maximal eigenvalues (N -qubit
cat state) and a photon Fock state, we obtain

FQ = t2a′22 n
2N2, (9)
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i.e., a Heisenberg scaling with both the number of qubits
and photons [61]. Here and below, primes denote the
derivatives of coefficients of the Hamiltonian (1) over the
parameter θ. The double-Heisenberg scaling of the QFI
in (9) is a consequence of cooperative effects: all the
qubits are subject to the same effective magnetic field
whose strength is proportional to the number of photons.

Cooperative effects are present and enhance the sen-
sitivity even without resorting to non-classical states of
light and entangled states of the qubits. Let us consider
the tensor product of a coherent state of light |α〉 and
a coherent state of qubits, i.e., a state where all qubits
point in the z direction:

|ψA〉 =

N
2∑

m=−N2

Cm |m〉 , Cm =
1

2
N
2

√(
N

N
2 ±m

)
, (10)

where the sign ± depends on the choice of the direction
along z and Cm’s are the coefficients of the state in the
basis of the eigenstates |m〉 of Ĵx. For this state we have

〈Ĵx〉 = 0 and 〈Ĵ2
x〉 = N

4 , thus

FQ = nt2
[
4ϕ′2 + (a′2)2N(n+ 1)

]
, (11)

where n = |α|2 and

ϕ = −∆c + a1N. (12)

Though the QFI from Eq. (11) is missing the double-
Heisenberg scaling of Eq. (9), it still shows a Heisenberg
scaling with the number of qubits (since ϕ scales with N)
together with shot-noise scaling with the number of pho-
tons, or vice versa. The fact that this happens also with-
out any quantum correlations tells us that the Heisenberg
scaling in this case is a classical cooperative effect where
the dynamics in the estimation-parameter space is accel-
erated by a factor proportional to the number of qubits
or photons. An equivalent mechanism enhances the sen-
sitivity of non-linear interferometers [46].

Finally, to go beyond the scaling N2n or Nn2 with ini-
tially uncorrelated pure states of matter and light, and
reach the double-Heisenberg scaling, when the QFI scales
as N2n2, the state requires to be at least entangled in
qubit or nonclassical in photonic degrees of freedom. In
the former case, the QFI contains the term 〈(∆Ĵx)〉n2,
which yields the desired precision if the variance of the
collective spin operator scales with N2. With the non-
classical photonic states, in the QFI the dominating term
is (a′1N + a′2〈Ĵx〉)2〈(∆n̂)2〉, which leads to very high pre-
cision if the variance of the photonic distribution scales
with n2.

B. Bounds for specific measurements

Having found favorable scaling bounds for the sensitiv-
ity, one has to determine which estimation strategies—
that is, which measurement observables and data pro-
cessing protocols—allow to saturate those bounds.

In this section, we address this issue by considering the
case where the electromagnetic field is not driven. This
simpler case is generalized to the driven-dissipative case
in the next section. We specifically consider the bound
given by Eq. (11), which corresponds to the uncorrelated
light-matter input state of photonic coherent state |α〉
(with the mean number of photons n = α2) and the co-
herent state of qubits given in Eq. (10).

We first consider the case where the measurement is
performed on the qubits, specifically the z-component
of the collective spin operator. The simplest estimation
strategy is to deduce θ from the mean value of the mea-
surements of Ĵz. It gives the well-known error propaga-
tion formula for the sensitivity

∆2θ =
∆2Ĵz(
∂〈Ĵz〉
∂θ

)2 =
1

t2
1

N

1

n(n+ 1)

1

a′22
, (13)

where the last equality is evaluated at optimal times such
that a2t = k×2π, k ∈ N. (for the detailed derivation and
a general formula valid for all times, see Appendix D 1.)
This sensitivity, due to the missing ϕ′2 term, does not
reach the the bound from Eq. (11). We thus conclude
that, whenever the θ-dependence of a2 is stronger than
the one of ϕ, most of the information about the param-
eter is accessible only with the qubit subsystem. The
estimation from the measurement of Ĵz is sensitive only
to the dynamical qubit-induced phase shift of the mode
frequency.

Let us now instead consider the case where the mea-
surement is performed on the photons via the quadrature
operator [59, 60]

X̂φ =
1

2

(
âe−i

φ
2 + â†ei

φ
2

)
, (14)

where φ is a phase that can be adjusted to maximize the
signal. With help of Eq. (5) and a coherent state of light
at the input with η = 0, we obtain (see Appendix D 2 for
details)

∆2θ =
∆2X̂φ(
∂〈X̂φ〉
∂θ

)2 =
1

t2
1

4n

1

ϕ′2
, (15)

again at optimal times a2t = 2πk, k ∈ N and with φ cho-
sen such that sin2(ϕ+φ/2) = 1. We see that a measure-
ment performed on the photons saturates the bound (11)
if the contribution proportional to a2 can be neglected.
For these optimal times, the estimation of θ with the
measurement of quadrature is sensitive only to the static
collective shift of the cavity frequency but insensitive to
the dynamical shift.

Therefore, given a classical input state of light and
matter, by performing the measurement on the qubits
one can reach a sensitivity scaling at the Heisenberg limit
with the photon number and at the shot-noise limit with
the qubit number. If the measurement is performed on
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the photons, the Heisenberg scaling is achieved with re-
spect to the number of qubits instead. This can be un-
derstood by the following reasoning. The estimation by
measuring a subsystem is equivalent to averaging out over
the remaining parts of the whole system. Since the mea-
sured subsystem is described by a classical state, the pre-
cision cannot surpass the respective shot noise limit. The
coefficient in the precision, however, is enhanced due to
the collective effects inherent to the Hamiltonian from
Eq. (1).

III. IMPACT OF CAVITY PUMP AND LOSS

In this section, we consider a more realistic case where
the electromagnetic field is coherently driven, later ad-
dressing also the impact of the photon loss.

A. Lossless case

Starting from a vacuum state of the photons together
with all qubits pointing in the z direction, see Eq. (10),
the state at time t is described by the following density
matrix

%̂(t) =
∑
m,m′

CmCm′ |γm〉〈γm′ | ⊗ |m〉〈m′| × (16)

× eiη(βm−βm′ )te−i[β
2
m sin(ωmt)−β2

m′ sin(ωm′ t)],

where |γm〉 denotes a coherent state of light with the
amplitude γm = βm(e−iωmt − 1), with ωm = −∆c +
a1N + a2m and βm = η/ωm (see Appendix B).

The state of the light, tracing out the subspace of
qubits, is a mixture of coherent states

%̂L(t) = Tr [%̂(t)]A =
∑
m

C2
m |γm〉〈γm| . (17)

We note that the average number of photons is given by

n = 〈n̂〉 = Tr [n̂%̂L(t)] =
∑
m

C2
m|γm|2. (18)

Depending on the relative strength of the parameters en-
tering the Hamiltonian and the properties of the state of
the system, we can specify two different limits: coherent
and incoherent regime. Below, we address these in more
details.

1. Coherent regime

For small times, the impact of the dynamical phase
shift on the dynamics is negligible. In such a case, ωm is
independent of the state of the matter and is given only
by the static shift of the cavity frequency, i.e., ωm ≈

ϕ., see Eq. (12). The requirement is that the following
condition

| −∆c + a1N | � |a2|m (19)

is satisfied for all m that significantly contribute to the
state in Eq. (16).

The state remains in this coherent regime, as long as
the time t is sufficiently short so that the amplitude Cm
with maximal m’s that significantly contribute to the
state, i.e., with m = ±

√
N , has approximately the same

phase. This is true up to t ' τc = 2√
N |a2|

. Within this

time-frame we have γm ' γ = η
ϕ (e−iϕt− 1) for all m and

the sum Eq. (17) can be explicitly calculated, giving a
pure coherent state of light %̂L(t) ' |γ〉〈γ|. Consequently,
the number of photons oscillates as

〈n̂〉 ' |γ|2 = 2n̄ sin2

(
ϕt

2

)
(20)

where n̄ = 2 η
2

ϕ2 is the number of photons averaged over

one oscillation period. When the time t exceeds τc,
contributions to Eq. (18) oscillate out-of-phase, giving
〈n̂〉 ' n̄. Time-oscillations of the mean photon number
emerge again when t ' τr = π

a2
, giving a pattern of col-

lapses and revivals, in analogy to the dynamics of a two-
level atom within the Jaynes–Cummings model, driven
by a monochromatic coherent state of light [59, 60].

We now focus on this oscillatory regime and calculate
the sensitivity using the estimation strategies discussed
in Section II B. Let us first consider the measurement of
the light quadrature, for which the sensitivity, calculated
again with the error propagation formula reads

∆2θ =
〈(∆X̂φ)2〉(
∂〈X̂φ〉
∂θ

)2 '
1

t2
1

2n̄

1

ϕ′2
(21)

with the phase chosen such that φ+2ϕt = (2k+1)π, k ∈
N (see Appendix E for details). We used Eq. (17) to get

〈X̂φ〉 = Re
[
γe−i

φ
2

]
, 〈(∆X̂φ)2〉 ≡ 〈X̂2

φ〉 − 〈X̂φ〉2 =
1

4
,

(22)

where Re [·] stands for the real part. We see that in the
driven case, the measurement of the quadrature in the
coherent oscillatory regime gives the same sensitivity as
predicted by using an input coherent photon state with
amplitude set by η/ϕ. Here, since ωm ≈ ϕ, the dynamical
frequency shift does not significantly modify the state,
and the information about the parameter is encoded in
the static shift of the cavity frequency.

We now turn to the measurement of the qubits Ĵz. We
use the Heisenberg equations of motion for the collective
spin operators

∂tĴz/y(t) = −i[Ĵz/y(t), Ĥ] = ±a2Ĵy/z(t)n̂(t). (23)
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In the oscillatory regime, when light is in a pure coherent
state, we approximately replace n̂(t) with the average

number of photons, i.e. ∂tĴz/y(t) ' ±a2Ĵy/z(t)|γ|2. This

gives Ĵz(t) = Ĵz cos(χ) + Ĵy sin(χ), with

χ ≡ a2

∫ t

0

dτ |γ|2 = n̄(1− sinc(ϕt))a2t. (24)

The error propagation formula then yields

∆2θ =
∆2Ĵz(t)(
∂θ〈Ĵz(t)〉

)2 =
1

(χ′)2

1

N
' 1

t2
1

N

1

n̄2

1

a′22
, (25)

if |a2a′2
ϕ′

ϕ | � 1 and sinc(ϕt)� 1. Note that, although the

oscillations of the photonic dynamics revive periodically,
the mean-field approximation used above can be safely
applied only once. This is because in the long collapse pe-
riods, though the dynamics of the photonic population is
virtually frozen, the atomic operators undergo a complex
dynamics, setting an unknown initial condition for the
solution in the next oscillatory regime. Also for this es-
timation strategy, within the coherent oscillatory regime
the sensitivity coincides with the one predicted with the
proper input coherent state with sufficiently large num-
ber of photons.

For times larger than τc, the photonic dynamics is
frozen so we do not expect the t−2 scaling of the sen-
sitivity encountered in the oscillatory case (see Eq. (21)).
Indeed, the mean quadrature and its variance are now

〈X̂φ〉 = −
√
n̄

2
cos

(
φ

2

)
, 〈(∆X̂φ)2〉 =

1

4
(n̄+ 1). (26)

thus

∆2θ ' 1

2n̄

ϕ2

ϕ′2
, (27)

when n̄ � 1. Here, the inverse scaling with time as
well as with the number of qubits is lost, due to pres-
ence of ϕ2 in the numerator. For the case where the
measurement is performed on the qubits, an analytical
calculation similar to that presented in Eqs (23)-(25) is
not possible after τc, as light is not in a pure coherent
state anymore. Therefore, we must rely on the numerical
exact diagonalization of the Hamiltonian (1) which gives
a sensitivity which is orders of magnitude smaller than
in the oscillatory regime.

2. Incoherent regime

When the impact of the dynamical phase shift due to
the presence of qubits cannot be neglected, the state of
the photons cannot be described by a single coherent
state. In such a case, when the condition in Eq. (19) is
not satisfied, the replacement of the mixture in Eq. (17)
with a pure coherent state is not justified at all times, and

Figure 1. Photons. The average value of the quadrature X̂φ
for φ = 0 (top) and inverse of the error propagation formula
(bottom) for quadrature as a function of time t. Black points
represent results of numerical calculations, while red solid line
stands for the analytic solution. The parameters are: N = 20,
a1 = −0.5, a2 = −0.2, ∆c = −1, a′1 = a′2 = 1, η = 8 and κ =
0.3, while the initial state consists of a vacuum state of the
photons together with all qubits pointing in the z direction.

the mean number of photons is given with the general
formula from Eq. (18). The first two moments of the
quadrature are now

〈X̂φ〉 =
∑
m

C2
mRe

[
γme

−iφ2
]
, (28a)

〈X̂2
φ〉 =

∑
m

C2
mRe

[
γme

−iφ2
]2

+
1

4
. (28b)

Although one has to resort to numerical simulations in
this general case, we show that in presence of the photon
loss, the sensitivity (21) can be still determined even in
the incoherent regime.

B. Impact of photon losses

In this section we include the possibility for photons to
be lost from the electromagnetic mode at a rate κ. The
dynamics of the system is then described by the following
quantum master equation [62] for the density matrix of



6

Figure 2. Qubits. The average value of the operator Ĵz (top)
and inverse of the error propagation formula (bottom) for

Ĵz as a function of time t. Black points represent results
of numerical calculations, while red solid line stands for the
analytic solution valid when t < τc = 2.24. Parameters used
for calculations are the same as in Fig. 1.

the system:

d

dt
%̂ = − i

~
[Ĥ, %̂] + κ

(
â%̂â† − 1

2
{â†â, %̂}

)
. (29)

To proceed, we again distinguish separate the coherent
and the incoherent dynamics regime, according to the
condition from Eq. (19).

1. Coherent regime

In the coherent regime, when t . τc, we model the
photon dynamics by effectively including the loss term
in the equation for the coherent amplitude, i.e., ∂tγ =(
−iϕ− κ

2

)
γ−iη. With the solution of the photonic state,

which is given by

γ =
η

ϕ− iκ2
(
e−iϕt−

κ
2 t − 1

)
, (30)

we determine the mean and the variance of the quadra-
ture by inserting γ from Eq. (30) into Eq. (22). In the
short-time limit κt� 1, we obtain the following sensitiv-

ity:

∆2θ ' 1

2n̄κ(ϕ′t)2

ϕ2 + κ2

4

ϕ2
, (31)

where n̄κ = 2 η2

ϕ2+κ2

4

is the time-averaged number of pho-

tons. In the opposite limit, when κt� 1, but still t . τc,
we have γ ' − η

ϕ−iκ2
. This gives the sensitivity from the

mean quadrature:

∆2θ =
1

n̄κϕ′2
(ϕ2 + κ2

4 )3

(ϕ2 − κ2

4 )2
. (32)

Similarly to Eq. (27), the presence of ϕ2 in the numerator
neutralizes the scaling of ϕ′2 with the number of qubits
and thus the collective effect is absent.

Adapting the approach from Eqs. (23)–(25) to the pres-
ence of photon loss, we determine the sensitivity from the
measurement of Ĵz(t), see Eq. (24):

χ =
1

2
a2n̄κ

[
t+

1− e−κt
κ

− 1

ϕ2 + κ2

4

× (33)

×
(
κ− e−κt2 κ cos(ϕt) + 2e−

κt
2 ϕ sin(ϕt)

)]
.

When κt� 1, the error propagation formula reproduces
Eq. (25) with n̄ replaced by n̄κ, namely

∆2θ ' 1

t2
1

N

1

n̄2
κ

1

a′22
. (34)

In the limit κt→∞, we obtain the sensitivity

∆2θ ' 1

t2
1

N

1

n̄2
κ

1

(
a′2
2 −

ϕϕ′

ϕ2+κ2

4

)2
. (35)

The solutions presented here are compared with numer-
ical calculations on Figs. 1 and 2. To illustrate the use-
fulness of the formulas we derived, we take a vacuum
state of the photons together with N = 20 qubits point-
ing in the z direction, a1 = −0.5, a2 = −0.2, ∆c = −1,
a′1 = a′2 = 1, η = 8 and κ = 0.3, so that both oscilla-
tions and collapse are visible. In this case the important
time scale is given by τc = 2.24. Estimation from the
mean quadrature agrees perfectly with analytical expres-
sion presented in this section, recovering both collapse
and revival. On the other hand, the estimation from the
qubits deviates once the initial oscillations are repressed,
which is when t > τc.

The results of Eqs. (31) and (35), show that the collec-
tive scalings of the sensitivity with the number of photons
and qubits can be retained in the presence of losses for
both estimation strategies.
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2. Incoherent regime

We now turn to the incoherent regime where the con-
dition (19) does not hold. In this case, we solve the same
equation for the coherent amplitude γm as above, this
time in each subspace of fixed m. We obtain

γm =
η

ωm − iκ2
(
e−iωmt−κt − 1

)
. (36)

Although an analytical expression for the sensitivity is
not available in general, a closed formula for ∆θ from the
quadrature measurement can be found in some regimes,
which provides insight into the scalings.

First, taking the limit of large times κt � 1 and as-
suming that κ can be neglected in comparison to ωm
for all m, we get γm = −η/ωm. We can now calculate
the mean number of photons using Eq. (18), and sim-
ilarly the two lowest moments of the quadrature with
Eqs. (28), yielding 〈X̂φ〉 = − cos (φ/2)

∑
m C

2
mη/ωm and

〈X̂2
φ〉 = 1/4+cos2 (φ/2) 〈n̂〉. Now, if 〈n̂〉 � 1 and ωm � η

for those m’s where Cm are significantly non-zero, we
have 〈X̂φ〉 � 〈n̂〉 and 〈X̂2

φ〉 ' cos2 (φ/2) 〈n̂〉, and thus

∆2X̂ ' cos2 (φ/2) 〈n̂〉. The error propagation formula
then yields the shot-noise scaling with the photon num-
ber and the enhanced scaling with the number of qubits:

∆2θ =
〈n̂〉(∑

m C
2
m

η
ω2
m
ω′m

)2 ≈
η2

N2a′21 〈n̂〉
, (37)

where in the last step we approximated: ω′m = a′1N −
a′2m ≈ a′1N .

In the next section, we use our results to calculate the
sensitivity of the estimation of the gravitational acceler-
ation in a realistic setting.

IV. APPLICATION TO GRAVIMETRY

Here we offer a concrete example where the coopera-
tive enhancement of the sensitivity can be exploited to
measure precisely a fundamental constant in a realistic
experimental setup.

Specifically, we consider an optical cavity with reso-
nance frequency ωc, driven by a laser with a strength η
and frequency ωl, far detuned from an electronic transi-
tion of atoms (with resonance frequency ωa), i.e., ∆a =
ωl − ωa is by far the largest scale, so that the excited
state can be adiabatically eliminated. The atoms are
assumed to form a BEC trapped in a double-well po-
tential. We consider the configuration show in Fig. 3
where the standing wave of the cavity modifies the tun-
neling barrier between the two wells (the classical dy-
namics of such system has been studied in [56]). The
Hamiltonian of the system can be mapped to our model
Hamiltonian (1) (see Appendix A), where the character-
istic photon frequency becomes the cavity detuning from
the laser: ω0 → ∆c = ωl − ωc. The qubit collective

Trapping 
light

Trapping 
light

Atom 
imaging

Cavity 
pump Homodyne 

detection

y
z

g || x

Figure 3. The scheme of a hybrid light-matter system used
as a gravitational sensor. The standing wave (yellow beam)
of the cavity formed between two mirrors (gray) modifies the
tunneling barrier between the two wells (blue) formed by the
trapping light (blue arrows). The cavity is driven by an ex-
ternal laser (see the main text in Sec. IV), and the outgoing
light can be analyzed in a homodyne detector. Alternatively,
the atoms can be monitored by an auxiliary laser (red arrow).

spin operators are expressed in terms of the bosonic op-

erators b̂1,2 annihilating an atom in the potential well

1, 2: Ĵx = 1
2 (b̂†1b̂2 + b̂1b̂

†
2), Ĵy = 1

2i (b̂
†
1b̂2 − b̂1b̂

†
2), and

Ĵz = 1
2 (b̂†1b̂1 − b̂†2b̂2), together with N̂ = b̂†1b̂1 + b̂†2b̂2. The

coefficients a1 and a2 of our Hamiltonian (1), which in
this example quantify the ac-Stark shift and the cavity
assisted tunneling constant, respectively, are expressed
in terms of the overlap integrals [56]

Iij =
~U0(1 + e−k

2l2H )

2Lπσ
√
l2H + σ2

∫
dxw∗i (x)wj(x)e−x

2/σ2

, (38)

through a1 = I11 + I22 and a2 = I12 + I21. Here L
is the cavity length, w1(x) and w2(x) are the Wannier-
like atomic wave-functions centered around the two min-
ima of the double-well potential, lH is the characteris-
tic length of the strong harmonic confinement, k is the
wavevector of the cavity light, σ is the cavity beam waist,

U0 =
Ω2
R

∆a
is the dispersive shift of the cavity frequency per

atom, and ΩR is cavity-mode Rabi frequency quantifying
the light-matter coupling.

We want to propose this hybrid light-matter system as
a precise gravitational sensor exploiting the cooperative
effects. The linear gravitational potential Vgrav(x) = gx,
see Fig. 3, acts by shifting the double-well potential with
respect to the cavity axis. This has a two-fold impact
on the system. First, it modifies the Hamiltonian pa-
rameters through the integrals from Eq. (38) by shifting

the gaussian beam profile e−x
2/σ2 → e−(x−x0)2/σ2

, where
x0 = g/ω2

x. Second, it adds an energy-imbalance term

δĴz to the Hamiltonian, where

δ =

∫
dxVgrav(x)

(
|w1(x)|2 − |w2(x)|2

)
. (39)
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In order to provide a realistic estimate for the sen-
sitivity of the measurement of g, we use the following
parameters. We take a cavity with finesse F = 4 × 106,
length L = 2.954 mm, and loss rate κ = 25 kHz. Setting
the distance between the wells D = 1.6 µm, the charac-
teristic length of the harmonic oscillator aho = 0.8 µm
and characteristic length in the perpendicular direction
lH = 1.6 µm gives the trap frequencies (ωx, ωy, ωz) =
2π × (181, 41, 41) Hz. We choose 87Rb atoms and the
detuning from the atomic transition ∆a = −2.015 GHz.
The width of the TEM00 mode function is σ = 13.65 µm,
which finally gives a1 = −171 kHz and a2 = −103 kHz.
The derivatives of these two coefficients with respect to
the metrological parameter g are a′1 = 13.6 GHz

m and

a′2 = 8.34 GHz
m .

With N ≈ 9.22 × 105 atoms, the renormalized cavity
detuning ϕ can be tuned to −400 Hz (the bare detuning
being ∆c = −155 GHz), giving the mean number of pho-
tons n̄ ' 5.6 × 104 for η = 100 MHz. If t > 1/κ, and
when the input state of atoms is the coherent spin state
[see Eq. (10)], the formula from Eq. (37) yields the pre-
cision ∆g = 8 × 10−7g. Such sensitivity can be reached
within a measurement time on the order of κ:

∆g

g
= 5× 10−9

√
Hz. (40)

V. CONCLUSIONS

We have shown that a hybrid system of matter and
light can act as a sensing device in which the cooperative
effects play a prominent role. These effects generically
enhance the precision by improving the scaling with the
number of particles in both subsystems.

By considering a fundamental model of N qubits cou-
pled to a single electromagnetic mode, we showed that
the precision in estimating the light-matter coupling con-
stant exhibits a double-Heisenberg scaling ∆θ ∝ 1/(Nn),
where n is the number of photons. This scaling requires
the use of an entangled state of matter or a nonclassi-
cal state of photons. However, even for classical states a
Heisenberg scaling with the number of qubits or photons
can be reached.

To illustrate the usefulness of our hybrid light-matter
sensor, we proposed a specific, experimentally feasible
scheme in which a Bose-Einstein condensate is trapped in
a double-well potential within an optical cavity. We pre-
dicted that, even taking into account photon loss, the sen-
sor can determine the gravitational acceleration g with a

relative precision reaching ∆g/g ' 10−9Hz−1/2. Such a
precision, which still can be improved by employing non-
classical states of matter and light, is comparable to the
one predicted for a supersolid state of atoms in a optical
cavity [54].
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Appendix A: Hamiltonian and the coefficents

We outline the derivation of the Hamiltonian of the
coupled atom-light system, which is discussed in full ex-
tent in Ref. [56]. We consider an ultra-cold gas of N two-
level bosons, trapped in a double-well potential immersed
in an optical cavity of length L. The cavity is pumped
with a monochromatic radiation of frequency ωl, which
is far detuned from the frequency of the internal atomic
transition, allowing for an adiabatic elimination of the
excited state. Atoms occupy only the low-lying pair of
degenerate states of the double-well potential Vdw(x), so

the atomic field is described by two operators b̂1/2, which
annihilate a boson in the right/left site of the trap, i.e.,

Ψ̂(x) = w1(x)b̂1 + w2(x)b̂2. (A1)

Here, w1/2(x) are the Wannier-like states localized in the
corresponding site for the trap.

Combining the two-mode model for atoms and a single-
mode description of the photonic field, we obtain the
Hamiltonian, which is a sum of the free Hamiltonian of
light (l), atoms (a) and an interaction part (a+l)

Ĥ = Ĥl + Ĥa + Ĥa+l, (A2)

where

Ĥl = −∆cn̂+ η(â+ â†) (A3a)

Ĥa = ωJ Ĵx + δĴz (A3b)

Ĥa+l = (a1N̂ + ã1Ĵz + a2Ĵx)n̂. (A3c)

Here â is the photonic annihilation operator and n̂ = â†â.
The angular momentum operators are

Ĵx =
1

2
(b̂†1b̂2 + b̂2b̂

†
1), (A4a)

Ĵy =
1

2i
(b̂†1b̂2 − b̂2b̂†1), (A4b)

Ĵz =
1

2
(b̂†1b̂1 − b̂†2b̂2). (A4c)

and N̂ = b̂†1b̂1 + b̂†2b̂2 is the atom-number operator. The
∆C = ωl − ωc is the cavity detuning (ωc = 2πc

L ) and η is
the strength of the pump.

The coefficients a1, ã1 and a2 (the symmetric and the
anti-symmetric part of the ac-Stark shift and the cavity
assisted tunneling constant, respectively), are expressed
in terms of

Iij =
~U0(1 + e−k

2l2H )

2Lπσ
√
l2H + σ2

∫
dxw∗i (x)wj(x)e−x

2/σ2

, (A5)
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as a1 = I11 +I22, ã1 = I11−I22 and a2 = I12 +I21. Here,
lH is the length of the strong harmonic confinement, k is
the wavevector of the cavity light, σ is beam waist at close

to the middle of the cavity, U0 =
Ω2
R

∆a
, and ΩR is single

mode Rabi frequency and ∆a = ωl − ωa the detuning of
the laser from the atomic transition of frequency ωa.

Finally, the parameter determining the atom-only
Hamiltonian are the bare Josephson energy and the en-
ergy imbalance between the wells induced by some exter-
nal potential Vext(x).

ωJ = −2

∫
dxw1(x)

(
− ~2

2m

d2

dx2
+ Vdw(x)

)
w2(x),

(A6a)

δ =

∫
dxVext(x)

(
w2

1(x)− w2
2(x)

)
(A6b)

As argued in the main text, for realistic parameters δ and
ã1 can be neglected leaving the Hamiltonian in the form

Ĥ = −∆cn̂+ η(â+ â†) + (a1N̂ + a2Ĵx)n̂. (A7)

where the free atomic term ωJ Ĵx was included as a phase
factor in the dynamics of the initial state. In a fixed-N
subspace the operator N̂ is replaced with N .

Appendix B: Evolution operator

We now derive the expression for the evolution oper-
ator. The Hamiltonian from Eq. (A7) can be written
as

Ĥ = ω̂â†â+ η(â+ â†), (B1)

where ω̂ = a1N −∆c + a2Ĵx. Now we observe that

Ĥ = ω̂D̂†(β̂)â†âD̂(β̂)− ηβ̂, (B2)

where β̂ = ηω̂−1, while

D̂(β̂) = eβ̂â
†−β̂†â (B3)

is the generalized displacement operator. Since [ω̂, β̂] =
0, we can write the evolution operator as follows

Û(t) = D̂†(β̂)e−iω̂tâ
†âD̂(β̂)eiηtβ̂ , (B4)

The initial state has a general form

%̂(0) =

∞∑
n,n′=0

N
2∑

m,m′=−N2

%mm
′

nn′ |n,m〉〈n′,m′| , (B5)

where |n,m〉 denoted a photonic Fock state and an eigen-

state of the atomic operator Ĵx, namely

|n,m〉 = |n〉 ⊗ |m〉 , â†â |n〉 = n |n〉 , Ĵx |m〉 = m |m〉 .
(B6)

The action of the evolution operator (B4) on the density
matrix from Eq. (B5) gives

%̂(t) =
∑
n,n′

m,m′

%mm
′

nn′ D̂†(βm)e−iωmtâ
†âD̂(βm)eiη(βm−βm′ )t×

× |n,m〉〈n′,m′| D̂†(βm′)eiωm′ tâ†âD̂(βm′), (B7)

where γm = βm(e−iωmt − 1), ωm = −∆c + a1N + a2m
and βm = η

ωm
. Note that

|Φ1〉 ≡ D̂(β) |n〉 =
1√
n!
D̂(β)(â†)n |0〉 = (B8)

1√
n!
D̂(β)(â†)nD̂†(β)D̂(β) |0〉 =

1√
n!

(â† − β)n |β〉 ,

as β ∈ R. With this expression at hand, we can take the
next step and act with the free-evolution term

|Φ2〉 ≡ e−iωâ
†ât |Φ1〉 =

1√
n!
e−iωâ

†ât(â† − β)n |β〉

=
1√
n!
e−iωâ

†ât(â† − β)neiωâ
†âte−iωâ

†ât |β〉

=
1√
n!

(â†e−iωt − β)n
∣∣βe−iωt〉 . (B9)

In the last step, we add the second displacement opera-
tor, to get

D̂†(β) |Φ2〉 =
1√
n!
D̂†(β)(â†e−iωt − β)n

∣∣βe−iωt〉
=

1√
n!
D̂†(β)(â†e−iωt − β)nD̂(β)D̂†(β)

∣∣βe−iωt〉
=

1√
n!
e−iβ

2 sin(ωt)((â† + β)e−iωt − β)n
∣∣βe−iωt − β〉

=
1√
n!
e−iβ

2 sin(ωt)(â†e−iωt + γ)n |γ〉 , (B10)

where γ = β(e−iωt − 1). We again use the displacement
operator

(â†e−iωt + γ)n |γ〉 =
1√
n!

(â†e−iωt + γ)nD̂(γ) |0〉

= D̂(γ)D̂†(γ)(â†e−iωt + γ)nD̂(γ) |0〉
= D̂(γ)((â† + γ∗)e−iωt + γ)n |0〉 . (B11)

But note that

γ∗e−iωt + γ = β(eiωt − 1)e−iωt + γ

= β(1− e−iωt) + γ = −γ + γ = 0. (B12)

Therefore, we obtain the final expression

D̂†(β)e−iωâ
†âtD̂(β) |n〉 =

eiβ
2 sin(ωt)

√
n!

D̂(γ)(â†e−iωt)n |0〉

= e−inωte−iβ
2 sin(ωt)D̂(γ) |n〉 . (B13)



10

We now plug this result into Eq. (B7) and obtain

%̂(t) =
∑
m,m′

CmCm′ |γm〉〈γm′ | ⊗ |m〉〈m′|

× eiη(βm−βm′ )te−i[β
2
m sin(ωmt)−β2

m′ sin(ωm′ t)] (B14)

as used in the main text.

Appendix C: Derivation of the generator ĥ from
Eq (6)

The generator of the interferometric/metrological
transformation is equal to

ĥ = i(∂θÛ)Û†. (C1)

The derivative over the parameter will hit all the
parameter-dependent parts of the evolution operator.
For instance

∂θβ̂ = −ηω̂−2 ∂ω̂

∂θ
= − β̂

2

η

∂ω̂

∂θ
. (C2)

All other steps leading to Eq. (6) follow immediately from
the properties of the displacement operator.

Appendix D: Sensitivities in the η = 0 case

We now separately consider the no-pump case where
initially light is in a coherent state |α〉, and derive the
expressions for the error propagation formula for atoms-
and photons-only. The complete density matrix in such
case is given by

%̂(t) =
∑
m,m′

%
(A)
m,m′ |γm〉〈γm′ | ⊗ |m〉〈m′| , (D1)

where γm = αe−iωmt (note that %
(A)
m,m′ = CmCm′ , so %̂(t)

is pure). However the density-matix representation is
useful for the claculation of the reduced matrices. This
is the starting point for the discussion in the remaining
part of this Appendix.

1. Error propagation formula for atoms

We first calculate the atomic density matrix by tracing-
out the photonic degree of freedom. We obtain

%̂A = Tr [%̂(t)]L =

N∑
m,m′=0

%
(A)
m,m′ 〈γm′ |γm〉 |m〉〈m′| =

=

N∑
m,m′=0

%
(A)
m,m′e

−α2[1−cos(δ(m−m′))]×

× eiα2 sin(δ(m−m′)) |m〉〈m′| , (D2)

where δ = a2t. To calculate the error propagation for-
mula, we note that

Ĵz |m〉 =
1

2

(√(
N

2
+m+ 1

)(
N

2
−m

)
|m+ 1〉

+

√(
N

2
+m

)(
N

2
−m+ 1

)
|m− 1〉

)
(D3)

and analogically for Ĵ2
z . Therefore we obtain

〈Ĵz〉 =
N

2
en(cos δ−1) cos(n sin δ) (D4a)

〈Ĵ2
z 〉 =

N

8
(N − 1)

[
en(cos 2δ−1) cos(n sin 2δ) + 1

]
+
N

4
(D4b)

∂θ〈Ĵz〉 = −N
2
na′2te

n(cos δ−1) sin [δ + n sin δ] . (D4c)

These expression, plugged into the error propagation for-
mula (25) gives

∆2θ =
1

Nn2(a′2t)
2

∆2Ĵz
1
4e

2n(cos δ−1) sin2 [δ + n sin δ]
. (D5)

This can be optimized by setting δ = k × 2π, k ∈ N,
which gives Eq. (25).

2. Error propagation formula for photons

We now take the state from Eq. (D1) and trace-out the
atomic degree of freedom to obtain

%̂L = Tr [%̂(t)]A =

N∑
m=0

%(A)
m,m |γm〉〈γm| , (D6)

i.e., the state is an incoherent mixture of coherent states.
From this representation of the photonic state, we imme-
diately obtain

〈X̂〉 =
1

2

∑
m

C2
m

(
γme

−iφ2 + γ∗me
iφ2

)
=

=
α

2

∑
m

C2
m

(
e−i(ωmt+

φ
2 ) + γ∗me

i(ωmt+
φ
2 )
)

=

= α cos

(
ϕt+

φ

2

)
cosN

(
δ

2

)
, (D7)

where in the last step we used the explicit expression for
Cm from Eq. (10). In a similar fashion, we obtain

〈X̂2〉 =
1

4
+
∑
m

C2
m(γ2

me
−iφ + γ∗2m e

iφ + 2|γm|2) =

=
1

4
+
α2

2
+
α2

2
cos(2ϕt+ φ) cosN (δ). (D8)
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for the mean of its square.
From these two results, the variance of X̂ can be ob-

tained and optimized (i.e., minimized) with respect to δ.
By picking δ = k × 2π, k ∈ N, we obtain

〈(∆X̂)2〉 =
1

4
(D9)

and the error propagation formula gives the sensitivity
equal to

∆2θ =
1

t2
1

4n

1

ϕ′2 sin2(ϕ+ φ/2)
. (D10)

Once we set sin2(ϕ+ φ/2) = 1, we recover Eq. (D10).

Appendix E: Sensitivities for η 6= 0

The photonic quadrature is

X̂φ =
1

2

(
âe−i

φ
2 + â†ei

φ
2

)
, (E1)

and using Eq. (28) and Eq. (B14) we obtain the mean
and the mean square

〈X̂φ〉 =
∑
m

C2
m

η

ωm

[
cos

(
ωmt+

φ

2

)
− cos

(
φ

2

)]
(E2a)

〈X̂2
φ〉 =

∑
m

C2
m

η2

ω2
m

[
cos

(
ωmt+

φ

2

)
− cos

(
φ

2

)]2

+
1

4
.

(E2b)

In the oscillatory regime and when the approxima-
tion (19) holds, the depndence of ωm on m can be
dropped, giving

〈X̂φ〉 '
[
cos

(
ϕt+

φ

2

)
− cos

(
φ

2

)]
η

ϕ
. (E3a)

〈X̂2
φ〉 ' 〈X̂φ〉2 +

1

4
. (E3b)

The sensitivity is inversely proportional to the square of
the derivative of 〈X̂φ〉, equal to

∂〈X̂φ〉
∂θ

= − η

ϕ2
ϕ′
[

cos

(
ϕt+

φ

2

)
− cos

(
φ

2

)
+ sin

(
ϕt+

φ

2

)
ϕt

]
. (E4)

thus by choosing φ in such a way that ϕt + φ
2 = π

2 +
kπ, k ∈ N, we obtain

∆2θ ' 1

t2
1

2n̄

1

ϕ′2
. (E5)

For atoms, the mean-field approximation described in
the main text gives with

∆2θ =
∆2Ĵz(t)(
∂θ〈Ĵz(t)〉

)2 =
1

N

1

(χ′)2
, (E6)

where

χ(t) = a2

∫ t

0

dτ |γ|2 = 2a2t
η2

ϕ2
(1− sinc(ϕt)). (E7)

For those sufficiently late instants of time t, when
sinc(ϕt)� 1, the error propagation formula gives

∆2θ =
∆2Ĵz(t)(
∂θ〈Ĵz(t)〉

)2 =
1

t2
1

N

1

n̄2

1

(a′2)2

1

(1− 2a2a′2
ϕ′

ϕ )2
.

(E8)

In the collapse regime, the cosine functions cancel out
in Eqs (E2), while the cosine squared averages to 1/2,
giving

〈X̂φ〉 ' −
η

ϕ
cos

(
φ

2

)
(E9a)

〈X̂2
φ〉 '

η2

ϕ2

[
1

2
+ cos2

(
φ

2

)]
+

1

4
. (E9b)

The variance is bigger than in the oscillatory regime and
the mean does grow with time. The sensitivity at φ = 0
is

∆2θ =

1
2
η2

ϕ2 + 1
4

η4

ϕ4
ϕ′2

ϕ2

' 1

n̄ϕ
′2

ϕ2

, (E10)

which is 2t2ϕ2 worse than Eq. (E5).
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